JPS6029562A - Defroster for air conditioner - Google Patents

Defroster for air conditioner

Info

Publication number
JPS6029562A
JPS6029562A JP13907783A JP13907783A JPS6029562A JP S6029562 A JPS6029562 A JP S6029562A JP 13907783 A JP13907783 A JP 13907783A JP 13907783 A JP13907783 A JP 13907783A JP S6029562 A JPS6029562 A JP S6029562A
Authority
JP
Japan
Prior art keywords
heat exchanger
way valve
compressor
outdoor heat
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13907783A
Other languages
Japanese (ja)
Inventor
育雄 赤嶺
堀 通真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13907783A priority Critical patent/JPS6029562A/en
Publication of JPS6029562A publication Critical patent/JPS6029562A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調機等に使用さ”れる冷凍サイクルの除霜
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a defrosting device for a refrigeration cycle used in an air conditioner or the like.

従来例の構成とその問題点 従来の空気調和機は、例えば第1図に示すとおり、圧縮
機(1)、四方弁(2)、室内熱交換器(3)、減圧器
(4)および室外熱交換器(5)を順次冷媒配管で連結
し、再び四方弁(2)からアキュームレータ(6)を介
して圧縮機(1)に戻る流路によυ冷凍サイクルを構成
するものである。このような冷凍サイクルにおける除霜
方式としては、第1図に示すように四方弁(2)を、前
記冷凍サイクルによる暖房モードから冷房モードに切換
え、暖房時に低圧で蒸発器となり着霜した室外熱交換器
(5)を凝縮器に変えて除霜を行なう方法が一般にとら
れていた。しかし、このような従来の除霜方式では除霜
運転時に室内熱交換器(3)が蒸発器となるので、この
ままではコールドドラフトを生ずる。そこで、このよう
なコールドドラフトを防止するために、通常は室内熱交
換器(3)に近接して補助ヒータQυを設け、かつ室内
熱交換器(3)に流れる冷媒を極力抑えるため、その交
換?J?1(3)に・、(減圧器(4)を介して)l<
イパス回路00を設け、そのバイパス回路01中の電磁
弁00を開状態とするような制御が行なわれていた。ま
た、このような方式では除霜時に蒸発器として機能した
室内熱交換器(3)はシステムが暖房モードに復帰して
凝縮器に戻ったとしても、その履歴の故に圧力および温
度の立上りが遅くなシ、定常状態に達するまでの時間が
かかるため、快適性に欠けるという欠点を持っていた。
Structure of the conventional example and its problems A conventional air conditioner, for example, as shown in Fig. 1, has a compressor (1), a four-way valve (2), an indoor heat exchanger (3), a pressure reducer (4), and an outdoor air conditioner. A υ refrigeration cycle is constructed by sequentially connecting the heat exchangers (5) with refrigerant piping and returning to the compressor (1) from the four-way valve (2) via the accumulator (6). As shown in Figure 1, the defrosting method in such a refrigeration cycle involves switching the four-way valve (2) from the heating mode of the refrigeration cycle to the cooling mode, and converting the frosted outdoor heat into an evaporator at low pressure during heating. Generally, defrosting is carried out by replacing the exchanger (5) with a condenser. However, in such a conventional defrosting system, the indoor heat exchanger (3) serves as an evaporator during defrosting operation, so if left as is, a cold draft will occur. Therefore, in order to prevent such cold drafts, an auxiliary heater Qυ is usually provided close to the indoor heat exchanger (3), and in order to suppress the refrigerant flowing into the indoor heat exchanger (3) as much as possible, ? J? 1 (3), (via pressure reducer (4)) l<
A bypass circuit 00 was provided, and control was performed to open the solenoid valve 00 in the bypass circuit 01. In addition, in this type of system, even if the indoor heat exchanger (3), which functioned as an evaporator during defrosting, returns to heating mode and returns to the condenser, the rise in pressure and temperature is slow due to its history. However, it had the disadvantage of lacking comfort because it took time to reach a steady state.

発明の目的 本発明は、前記従来例の欠点に鑑みてなされたもので、
除霜終了後、暖房サイクルに復帰した時の暖房能力の立
上シを早くして快適性の向上を図ることを目的とするも
のである。
Purpose of the Invention The present invention has been made in view of the drawbacks of the conventional example, and
The purpose of this is to improve comfort by speeding up the start-up of heating capacity when the heating cycle is resumed after defrosting.

発明の構成 上記目的を達成するために、本発明は、圧縮機、四方弁
、室内熱交換器、流量制御弁および室外熱交換器を順次
冷媒配管で連結し、さらに前記四方弁を介して前記圧縮
機に帰還接続し、前記四方弁を第1の状態として開通し
た冷凍サイク/I/を構成するようにし、前記流量制御
弁と前記室外熱交換器との間から分岐した前記室内熱交
換器のためのバイパス回路を設け、前記圧縮機の吸入側
を三方弁を介して前記バイパス回路の他端又は前記四方
弁に接続できるようにするとともに、前記室外熱交換器
の着霜時に前記四方弁を第2の状態にして前記圧縮機の
吐出口を室外熱交換器に導き、かつ前記流量制御弁を閉
状態にし、さらに前記三方弁を前記バイパス回路側に切
換えて前記室内熱交換器の四方弁側流路口をしゃ断する
ようにした制御回路を設けたものである。
Structure of the Invention In order to achieve the above object, the present invention connects a compressor, a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger in sequence with refrigerant piping, and further provides the The indoor heat exchanger is connected to the compressor in return and constitutes a refrigeration cycle /I/ in which the four-way valve is opened in a first state, and the indoor heat exchanger is branched from between the flow rate control valve and the outdoor heat exchanger. A bypass circuit is provided for connecting the suction side of the compressor to the other end of the bypass circuit or the four-way valve via a three-way valve, and when the outdoor heat exchanger is frosted, the four-way valve is set to the second state, the discharge port of the compressor is guided to the outdoor heat exchanger, and the flow control valve is closed, and the three-way valve is switched to the bypass circuit side to direct the discharge port of the compressor to the outdoor heat exchanger. A control circuit is provided to cut off the valve side flow path opening.

この構成により、除霜運転時に流量制御弁と三方弁の作
用で室内熱交換器内に高温・高圧の液冷媒を封じ込め、
除霜終了後の暖房能力の立上シを早くするものである。
With this configuration, high-temperature, high-pressure liquid refrigerant is confined within the indoor heat exchanger by the action of the flow control valve and three-way valve during defrosting operation.
This speeds up the start-up of heating capacity after defrosting.

実施例の説明 以下、図面により本発明の実施例を詳細に説明する。Description of examples Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例の冷凍サイクル、第8図はそ
の電気回路図、および第4図はその暖房能力変化と制御
方法を示す図である。
FIG. 2 is a refrigeration cycle according to an embodiment of the present invention, FIG. 8 is an electric circuit diagram thereof, and FIG. 4 is a diagram showing changes in heating capacity and a control method thereof.

第2図において、(1)は圧縮機、(2)は四方弁、(
3)は室内熱交換器、θのは電動膨張弁、(5)は室外
熱交換器、(イ)は三方弁、(6)はアキュームレータ
であり、これらは順次冷媒配管08)で連結され、四方
弁(2)を実線で示す第1の状態として前記の順に冷媒
を通ずる冷凍サイクルを構成する。また、電動膨張弁α
″4の出口側からは減圧器(9)及び三方弁(イ)を含
むバイパス回路a傷が接続され、アキュームレータ(6
)の入口は前記三方弁を介してバイパス回路Q0又は四
方弁(2)に連結されている。
In Figure 2, (1) is a compressor, (2) is a four-way valve, (
3) is an indoor heat exchanger, θ is an electric expansion valve, (5) is an outdoor heat exchanger, (A) is a three-way valve, and (6) is an accumulator, which are sequentially connected by refrigerant piping 08), A refrigeration cycle is constructed in which the four-way valve (2) is in the first state shown by the solid line and the refrigerant is passed in the above order. In addition, electric expansion valve α
A bypass circuit a including a pressure reducer (9) and a three-way valve (a) is connected from the outlet side of ``4'', and an accumulator (6
) is connected to the bypass circuit Q0 or the four-way valve (2) via the three-way valve.

なお、翰は室内熱交換器り3)のだめの温度検知器、(
7)および(8)はそれぞれ室内熱交換器(3)、およ
び室外熱交換器(5)のだめの送風機、θ心は室外熱交
換器(5)のための着霜検知器であり、電動膨張弁θ功
は絞り作用と、管路を閉路とする機能を兼ねそなえたも
のである。
In addition, the handle is an indoor heat exchanger.3) Nodame's temperature detector, (
7) and (8) are the blowers for the indoor heat exchanger (3) and the outdoor heat exchanger (5), respectively, and θ is the frost detector for the outdoor heat exchanger (5), and the electric expansion The valve θ has both a throttling action and the function of closing the pipe.

第3図において、04)は電源であり、これには運転ス
イッチθ0と圧縮機(1)の運転・停止用スイッチ(イ
)を介して圧縮機(1)のモータ(1a)が直列に接続
されている。0Oは温度検知器(1)および着霜検知器
(11)からのは号により圧縮機(1)の運転・停止お
よび除霜を行なわせる制御回路であり、スイッチ00を
介して電源α4)に接続されたスイッチαηにより暖房
モードと除霜モードを切換えるものである。スイッチQ
7)の接点(17a )と他方の電源ライン(ハ)との
間には、四方弁(2)を駆動するだめの電磁コイル(2
a)、電動膨張弁Q2を駆動するための電磁コイル(1
2a) 、室内熱交換器用送風機(7)のモータ(7a
)、および室外熱交換器用送風機(8)のモータ(8a
)とが接続され、スイッチOf)の他方の接点(17b
)とライン(ハ)との間には三方弁駆動用の電磁コイル
(22a)が接続されている。
In Fig. 3, 04) is a power supply, to which the motor (1a) of the compressor (1) is connected in series via the operation switch θ0 and the start/stop switch (A) of the compressor (1). has been done. 0O is a control circuit that operates/stops the compressor (1) and defrosts the compressor (1) according to the numbers from the temperature detector (1) and the frost detector (11), and connects the power supply α4) via the switch 00. The connected switch αη switches between heating mode and defrosting mode. switch Q
Between the contact point (17a) of 7) and the other power line (c), there is an electromagnetic coil (2) that drives the four-way valve (2).
a), an electromagnetic coil (1) for driving the electric expansion valve Q2;
2a), the motor (7a) of the indoor heat exchanger blower (7)
), and the motor (8a) of the outdoor heat exchanger blower (8)
) is connected, and the other contact (17b
) and the line (c) are connected with an electromagnetic coil (22a) for driving the three-way valve.

なお三方弁(イ)は電磁コイ1v(22a)に通電時、
バイパス回路に連結する。このような回路構成において
スイッチ07)を切換えることにより、接点(17a 
)および(17b)のいずれかが選択的に運転スイッチ
(1■を介して電源04)に接続されるものである。
In addition, when the three-way valve (a) is energized to the electromagnetic coil 1v (22a),
Connect to bypass circuit. In such a circuit configuration, by switching the switch 07), the contact (17a
) and (17b) are selectively connected to the power supply 04 via the operation switch (1).

次に、第4図を参照して暖房能力の時間的変化と除霜サ
イクル、および各々の弁制御との関係に注目しつつ、本
実施例の動作を説明する。
Next, the operation of this embodiment will be described with reference to FIG. 4, focusing on the relationship between the temporal change in heating capacity, the defrosting cycle, and each valve control.

まず、暖房時被空調室の温度が所望の設定温度よシも低
い時に運転スイッチ00を閉じると、温度検知器翰から
の”低温度″信号により制御装置0eば、スイッチ(ハ
)を閉接動作させ、同時に、の スイッチ01作子を接点(17a)と閉接させる。
First, when the operation switch 00 is closed when the temperature of the air-conditioned room during heating is lower than the desired set temperature, the control device 0e receives a "low temperature" signal from the temperature detector 0e and closes the switch (c). At the same time, the switch 01 is brought into close contact with the contact (17a).

その結果、圧縮機用モータ(1a)と、室内外の熱交換
器用ファンモータ(7a)および(8a)と、電磁コイ
ル(2a)および(12&)が通電する。これにより、
四方弁(2)が第2図に実線で示す位置の暖房モードに
、また、電動膨張弁02が開状態となり、圧縮機(1)
、室内熱交換器用送風機(7)および、室外熱交換器用
送風機(8)がそれぞれ起動する。この時、三方弁(イ
)は、四方弁(2)とアキュームレータ(6)とを連結
している。このことにより圧縮機(1)で高温高圧に圧
縮されたガス冷媒は、室内熱交換器(3)で凝縮し高温
高圧の液冷媒となり、さらに電動膨張弁0ので減圧され
て低温低圧のガスと液の二相冷媒となる。この冷媒は室
外熱交換器(5)に流入蒸発し、四方弁(2)、三方弁
(イ)およびアキュームレータ(6)を通って再び圧縮
機Q)へと戻ってくる。この時、室内熱交換器(3)に
おいて周囲室内空気と熱交換が行なわれ、室内熱交換器
用送風機(7)により温風が被空調室の方へ吹き出され
てくる。すなわち、第4図において、時間0で運転スイ
ッチ(10を閉じて暖房モードを開始することにより、
暖房能力は時間の経過とともに増大し被空調室の温度は
上昇してくる。その後、ある一定時間は定常状態である
が、特に低外気温条件においては、室外熱交換器(5)
で結露した水分が霜を形成し、吸熱能力が減少してくる
だめ霜を除去してやる必要がある。
As a result, the compressor motor (1a), the indoor/outdoor heat exchanger fan motors (7a) and (8a), and the electromagnetic coils (2a) and (12&) are energized. This results in
The four-way valve (2) is in the heating mode shown by the solid line in Fig. 2, the electric expansion valve 02 is in the open state, and the compressor (1) is in the heating mode.
, the indoor heat exchanger blower (7), and the outdoor heat exchanger blower (8) are started. At this time, the three-way valve (a) connects the four-way valve (2) and the accumulator (6). As a result, the gas refrigerant compressed to high temperature and high pressure by the compressor (1) is condensed in the indoor heat exchanger (3) to become high temperature and high pressure liquid refrigerant, and is further depressurized by the electric expansion valve 0 to become low temperature and low pressure gas. It becomes a liquid two-phase refrigerant. This refrigerant flows into the outdoor heat exchanger (5), evaporates, passes through the four-way valve (2), the three-way valve (a), and the accumulator (6), and returns to the compressor Q). At this time, heat exchange is performed with the surrounding indoor air in the indoor heat exchanger (3), and warm air is blown toward the air-conditioned room by the indoor heat exchanger blower (7). That is, in FIG. 4, by closing the operation switch (10) and starting the heating mode at time 0,
The heating capacity increases over time, and the temperature of the air-conditioned room rises. After that, it is in a steady state for a certain period of time, but the outdoor heat exchanger (5)
The condensed moisture forms frost, which reduces the heat absorbing ability, so it is necessary to remove the frost.

そこで、形成された霜が一定レベルに達すると着霜検知
器0υによりその状態を検知し、制御装置Oeに信号を
送ってこれを除霜モードに切換える。つまり、着霜検知
器(1])からの信号により制御装置06)は、スイッ
チθカの動作子を接点(17b)と閉接するように動作
させる。その結果、モータ(7a)および(8a)と、
電磁コイル(2a)、および(12& )が非通電とな
るために、四方弁(2)は第2図に破線で示す除霜モー
ドに切換わり、さらに電動膨張弁0のが閉状態になると
ともに、室内熱交換器用送風機(7)および室外熱交換
器用送風機(8)が停止する。同時に、三方弁@O電磁
コイル(22&)が通電するため、三方弁(イ)は、バ
イパス回路0りとアキュームレータ(6)を連結する。
Therefore, when the formed frost reaches a certain level, the frost detector 0υ detects the state and sends a signal to the control device Oe to switch it to the defrosting mode. In other words, the control device 06) operates the operating element of the switch θ to close the contact (17b) based on the signal from the frost detector (1]). As a result, motors (7a) and (8a),
Since the electromagnetic coils (2a) and (12&) are de-energized, the four-way valve (2) switches to the defrosting mode shown by the broken line in Fig. 2, and the electric expansion valve 0 becomes closed. , the indoor heat exchanger blower (7) and the outdoor heat exchanger blower (8) stop. At the same time, the three-way valve @O electromagnetic coil (22&) is energized, so the three-way valve (a) connects the bypass circuit 0 and the accumulator (6).

このようにして、圧縮機(1)から吐出された高温高圧
のガス冷媒は室外熱交換器(5)に流入して凝縮し、高
温高圧の液冷媒となる過程における放熱効果によって、
室外熱交換器(5)に形成された霜を融解する。室外熱
交換器(5)から流出した冷媒は、バイパス回路0傍に
設けられた減圧器(9)および三方弁(イ)を通過して
アキュームレータ(6)から圧縮機(1)へと戻ってく
る。この場合、電動膨張弁(iと三方弁(ハ)とによっ
て、室内熱交換器(3)内に暖房運転時に高温高圧であ
った液冷媒が封じ込められている。そして、ある時間経
過後、除霜状態を認識した着霜検知器01)により除霜
終了の信号が送られると、制御装置(InはスイッチQ
71の動作子を接点(17a)と閉接するように動作さ
せる。
In this way, the high-temperature, high-pressure gas refrigerant discharged from the compressor (1) flows into the outdoor heat exchanger (5) and condenses, and due to the heat radiation effect in the process of becoming a high-temperature, high-pressure liquid refrigerant,
Melt the frost formed on the outdoor heat exchanger (5). The refrigerant flowing out from the outdoor heat exchanger (5) passes through the pressure reducer (9) and three-way valve (a) installed near the bypass circuit 0, returns to the compressor (1) from the accumulator (6), and returns to the compressor (1) from the accumulator (6). come. In this case, the electric expansion valve (i) and the three-way valve (c) confine the liquid refrigerant that was at high temperature and pressure during heating operation in the indoor heat exchanger (3).Then, after a certain period of time, it is removed. When the defrosting end signal is sent by the frost detector 01 which has recognized the frost condition, the control device (In is the switch Q
The operating element 71 is operated to close the contact (17a).

このようにして、四方弁(2)が暖房モードに切換わり
、三方弁(イ)はこれを第2状態に駆動する電磁コイル
(22& )が非通電となるため、もとの状態に戻って
四方弁(2)とアキュームレータ(6)を連結し、さら
に電動膨張弁aノが開状態となり、送風機(7)および
(8)が起動するため、再び暖房運転が開始される。
In this way, the four-way valve (2) switches to heating mode, and the three-way valve (a) returns to its original state because the electromagnetic coil (22 & ) that drives it to the second state is de-energized. The four-way valve (2) and the accumulator (6) are connected, and the electric expansion valve a is opened, and the blowers (7) and (8) are started, so that the heating operation is started again.

このように、本発明では従来に比べて室内熱交換器(3
)が除霜時において電動膨張弁0のと三方弁(財)とに
より流路口を閉じられるため、暖房定常時に近い冷媒状
態、つまりその器内を高温高圧に保たれていることと、
液冷媒を封じ込んでいることにより、除霜モードを解除
して暖房モードに戻った時、室内熱交換器(3)を高温
高圧にするまでの熱量が少なくてすむ。また、保持され
ていだ液冷媒は即座に電動膨張弁aのを通過して、室外
熱交換器へ流入し、吸熱効果を発揮するため、暖房能力
の立上りが早くなる。
In this way, the present invention has an indoor heat exchanger (three
) during defrosting, the flow path opening is closed by the electric expansion valve 0 and the three-way valve, so the refrigerant state is maintained close to that during steady heating, that is, the inside of the container is maintained at high temperature and high pressure.
By sealing in the liquid refrigerant, when the defrosting mode is canceled and the heating mode is returned to, the amount of heat required to raise the indoor heat exchanger (3) to high temperature and high pressure is required. In addition, the retained liquid refrigerant immediately passes through the electric expansion valve a and flows into the outdoor heat exchanger to exert an endothermic effect, so that the heating capacity can be increased quickly.

また、冷凍サイクル中に充てんされている全冷媒量のう
ち何割かが除霜運転時に2つの弁によって室内熱交換器
(3)内に閉じ込められているので、従来問題となって
いた圧縮機による液圧縮を防止することができる。これ
は、従来ならば除霜時に蒸発できなかっだ液冷媒がアキ
ュームレータ(6)に溜まり、オーバーフローして圧縮
機(1)に吸入される結果、液圧縮を引き起こしていた
ものであり、本発明では、前述のよう々制御方法により
このような問題も発生しないと考えられる。
In addition, some percentage of the total amount of refrigerant charged in the refrigeration cycle is trapped in the indoor heat exchanger (3) by two valves during defrosting operation, so the compressor Liquid compression can be prevented. This is because in the past, liquid refrigerant that could not be evaporated during defrosting would accumulate in the accumulator (6), overflow and be sucked into the compressor (1), causing liquid compression. It is thought that such a problem will not occur due to the control method as described above.

なお、本実施例では絞り作用と閉路作用を兼ねそなえた
電動膨張弁0埠を用いて除霜運転時に主回路を閉路とし
たが、この電動膨張弁(1埠の代わりに、例えばキャピ
ラリーチューブと電磁弁との組み合わせを用いても、前
記電動膨張弁oツと同等の機能を発揮させることができ
る。また、バイパス回路の減圧器は、主回路の減圧器と
共用できるものであれば、特に必要はない。
In this example, the main circuit was closed during the defrosting operation by using an electric expansion valve with both a throttling action and a circuit-closing function. Even when used in combination with a solenoid valve, the same function as the electric expansion valve described above can be achieved.In addition, the pressure reducer in the bypass circuit is especially suitable if it can be used in common with the pressure reducer in the main circuit. There's no need.

また、本実施例では、四方弁(2)の切換えと他の弁の
制御を同期させているが、これらの制御はある程度の時
間差があってもよい。しかし、四方弁(2)の切換えと
同時か、あるいは少し以前に流量制御弁0のを閉じ、三
方弁(イ)を切換える方が、効果が犬である。
Further, in this embodiment, switching of the four-way valve (2) and control of other valves are synchronized, but these controls may have a certain degree of time difference. However, it is more effective to close the flow control valve 0 at the same time as switching the four-way valve (2), or a little earlier, and switch the three-way valve (A).

発明の詳細 な説明したように、本発明は、除霜運転の際に四方弁を
切換えて圧縮ガス冷媒を室外熱交換器に導くと同時に室
内熱交換器内に暖房定常時に近い冷媒状態を保持するこ
とによシ、除霜終了後における暖房能力の立上りを早く
し、快適性の向上を図るものである。まだ、液圧縮を防
止することができる等、優れた効果を発揮するものであ
る。
As described in detail, the present invention switches the four-way valve during defrosting operation to guide the compressed gas refrigerant to the outdoor heat exchanger, while at the same time maintaining the refrigerant state close to the steady state of heating in the indoor heat exchanger. By doing so, the heating capacity can be started up quickly after defrosting, and comfort can be improved. However, it still exhibits excellent effects such as being able to prevent liquid compression.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す冷凍サイクル構成図、第2図は本
発明の一実施例を示す冷凍サイクル構成図、第3図は本
発明の一実施例における電気回路図、第4図は暖房能力
の経時変化と各々の弁制御を示すグラフである。 (1)・・・・・・・・・・・・・・・圧縮機(2)・
・・・・・・・・・・・・・・四方弁(3)・・・・・
・・・・・・・・・・室内熱交換器(5)・・・・・・
・・・・・・・・・室外熱交換器0の・・・・・・・・
・・・・・・・流量制御弁0e・・・・・・・・・・・
・・・・制御回路0す・・・・・・・・・・・・・・バ
イパス回路(イ)・・・・・・・・・・・・・・・三方
弁特許出願人 松下電器産業株式会社 代理人 新実健部 (外1名) 第1図 第2図 第3図 第4図
Fig. 1 is a refrigeration cycle configuration diagram showing a conventional example, Fig. 2 is a refrigeration cycle configuration diagram showing an embodiment of the present invention, Fig. 3 is an electric circuit diagram in an embodiment of the present invention, and Fig. 4 is a heating cycle diagram. It is a graph showing a change in capacity over time and each valve control. (1)・・・・・・・・・・・・Compressor (2)・
・・・・・・・・・・・・・・・Four-way valve (3)・・・・・・
・・・・・・・・・Indoor heat exchanger (5)・・・・・・
......Outdoor heat exchanger 0...
・・・・・・Flow rate control valve 0e・・・・・・・・・・・・
...Control circuit 0... Bypass circuit (a) ... Three-way valve patent applicant Matsushita Electric Industrial Co., Ltd. Agent Shinji Kenbu (1 other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内熱交換器、流量制御弁および室外
熱交換器を順次冷媒配管で連結し、さらに前記四方弁を
介して前記圧縮器に帰還接続し、前記四方弁を第1の状
態として開通した冷凍サイクルを構成するようにし、前
記流量制御弁と前記室外熱交換器との間から分岐した前
記室内熱交換器のだめのバイパス回路を設け、前記圧縮
機の吸入側を三方弁を介して前記バイパス回路の他端又
は前記四方弁に接続できるようにするとともに、前記室
外熱交換器の着霜時に前記四方弁を第2の状態として前
記圧縮機の吐出口を室外熱交換器に導き、かつ前ffp
量制御弁を閉状態にし、さらに前記三方弁をバイパス回
路側に切換えて前記室内熱交換器の四方弁側流路口をし
ゃ断するようにした制御回路を設けた空気調和機の除霜
装置。
A compressor, a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger are sequentially connected by refrigerant piping, and further connected back to the compressor via the four-way valve, and the four-way valve is brought into a first state. A refrigeration cycle opened to traffic is configured, and a bypass circuit for the indoor heat exchanger is provided that branches from between the flow rate control valve and the outdoor heat exchanger, and the suction side of the compressor is connected to the suction side of the compressor through a three-way valve. and connect the bypass circuit to the other end of the bypass circuit or the four-way valve, and when the outdoor heat exchanger is frosted, the four-way valve is set to a second state to guide the discharge port of the compressor to the outdoor heat exchanger. , and before ffp
A defrosting device for an air conditioner, comprising a control circuit that closes a quantity control valve and further switches the three-way valve to a bypass circuit side to cut off a four-way valve side flow path opening of the indoor heat exchanger.
JP13907783A 1983-07-27 1983-07-27 Defroster for air conditioner Pending JPS6029562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13907783A JPS6029562A (en) 1983-07-27 1983-07-27 Defroster for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13907783A JPS6029562A (en) 1983-07-27 1983-07-27 Defroster for air conditioner

Publications (1)

Publication Number Publication Date
JPS6029562A true JPS6029562A (en) 1985-02-14

Family

ID=15236947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13907783A Pending JPS6029562A (en) 1983-07-27 1983-07-27 Defroster for air conditioner

Country Status (1)

Country Link
JP (1) JPS6029562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291770A (en) * 1991-07-30 1994-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Roll crossing apparatus for cross-rolling mill
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291770A (en) * 1991-07-30 1994-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Roll crossing apparatus for cross-rolling mill
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device
JPWO2006103815A1 (en) * 2005-03-28 2008-09-04 東芝キヤリア株式会社 Water heater
US7454919B2 (en) 2005-03-28 2008-11-25 Toshiba Carrier Corporation Hot-water supply apparatus
JP4756035B2 (en) * 2005-03-28 2011-08-24 東芝キヤリア株式会社 Water heater

Similar Documents

Publication Publication Date Title
JPS6325471A (en) Air conditioner
JP4304832B2 (en) Air conditioner
JP3324420B2 (en) Refrigeration equipment
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPH0527018B2 (en)
JP2526716B2 (en) Air conditioner
JPS6029562A (en) Defroster for air conditioner
JPH03102150A (en) Defrost control method for air conditioner
JPH03211380A (en) Air conditioner
JPS6029561A (en) Defroster for air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPH04136669A (en) Multi-room air conditioner
JPS63187042A (en) Air conditioner
JPS6346350B2 (en)
JPS6066072A (en) Defroster for air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS62158951A (en) Heat pump type air conditioner
JPH03230060A (en) Heat pump type air conditioner
JPS62272048A (en) Air conditioner
JPH0353553B2 (en)
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPS5971963A (en) Heat pump type refrigeration cycle
JPH086950B2 (en) Operation control device for air conditioner
JPS591965A (en) Method of defrosting air heat-source heat pump type air conditioner
JPH03168568A (en) Air conditioner