JPS62272048A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS62272048A
JPS62272048A JP61115590A JP11559086A JPS62272048A JP S62272048 A JPS62272048 A JP S62272048A JP 61115590 A JP61115590 A JP 61115590A JP 11559086 A JP11559086 A JP 11559086A JP S62272048 A JPS62272048 A JP S62272048A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
defrosting
indoor
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115590A
Other languages
Japanese (ja)
Inventor
Masaya Yamazaki
雅也 山崎
Yasuhiro Niima
康博 新間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61115590A priority Critical patent/JPS62272048A/en
Publication of JPS62272048A publication Critical patent/JPS62272048A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a defrosting time by a method wherein an operation of an indoor fan is turned off when a defrosting operation is carried out by supplying coolant through a bypass passage. CONSTITUTION:When a heating operation is carried out, frost gradually deposits to a surface of an outdoor heat exchanger 3 acting as an evaporator and a desired time elapses from a starting of operation to reach a defrosting time, a control part 22 turns on a relay contact point 32 and turns off a relay contact point 35. An opening or closing valve coil 7L is energized, an indoor fan motor 9m is stopped and an outer fan motor 8m is stopped. In this way, the opening or closing valve 7 is released, a part of discharged coolant of a compressor 1 passes through a bypass passage 6, is supplied to an outdoor heat exchanger 3 and then an outdoor heat exchanger 3 is defrosted. During this defrosting operation, an operation of an indoor fan 9 is off and the coolant flowing into an indoor heat exchanger 5 is not condensed and is passed through the indoor heat exchanger 5, finally flows into the outdoor heat exchanger 3. The flowing coolant may melt frost at the outdoor heat exchanger 3 together with the coolant supplied by bypass passage.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的1 (産業上の利用分野〉 この発明は、暖房運転を可能とするヒートポンプ式の空
気調和機に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention 1 (Industrial Application Field) The present invention relates to a heat pump type air conditioner that enables heating operation.

(従来の技術) ヒートポンプ式の空気調和機においては、暖房運転時、
蒸発器として作用する室外熱交換器の表面に霜が付着し
、そのままでは暖房能力の低下を招いてしまう。そこで
、定期的または必要に応じて室外熱交換器の除霜を行な
う必要がある。
(Conventional technology) In a heat pump type air conditioner, during heating operation,
Frost builds up on the surface of the outdoor heat exchanger, which acts as an evaporator, and if left untreated, the heating capacity will decrease. Therefore, it is necessary to defrost the outdoor heat exchanger periodically or as needed.

除霜の方法としては、第3図に示すように、圧縮機から
吐出される冷媒の一部を室外熱交換器にバイパス供給す
ることにより、暖房を実行しながら学外熱交a器の除霜
を行なういわゆるホットガスバイパス除霜がある。
As shown in Figure 3, the defrosting method is to bypass supply a part of the refrigerant discharged from the compressor to the outdoor heat exchanger, thereby defrosting the external heat exchanger A while performing heating. There is a so-called hot gas bypass defrosting method.

第3図において、1は圧縮機で、この圧M機1に四方弁
2.室外熱交換器3.減圧装置たとえば膨張弁4.空白
熱交換器5などが順次連通され、ヒートポンプ式冷凍サ
イクルが構成されている。
In FIG. 3, 1 is a compressor, and this compressor 1 has a four-way valve 2. Outdoor heat exchanger 3. Pressure reducing device such as an expansion valve4. The blank heat exchanger 5 and the like are successively connected to form a heat pump type refrigeration cycle.

つまり、冷房運転時は図示実線矢印の方向に冷媒が流机
て冷房サイクルが形成され、暖房運転時は四方弁2が切
換作動することにより図示fvHFil矢印の方向に冷
媒が流れて暖房サイクルが形成される。
In other words, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and during heating operation, the four-way valve 2 is switched and the refrigerant flows in the direction of the fvHFil arrow shown to form a heating cycle. be done.

そして、圧I!i!f11の冷媒吐出口と至外烈交換器
3との間にはバイパス路6が設けられ、そのバイパス路
6には電磁開閉弁7が設けられている。また、室外熱交
換器3の近傍には室外ファン8が配設され、室内熱交換
器5の近傍には室内ファン9が配設されている。なお、
○は室外ユニット、■は室内ユニットである。
And pressure I! i! A bypass passage 6 is provided between the refrigerant discharge port of f11 and the external heat exchanger 3, and an electromagnetic on-off valve 7 is provided in the bypass passage 6. Further, an outdoor fan 8 is arranged near the outdoor heat exchanger 3, and an indoor fan 9 is arranged near the indoor heat exchanger 5. In addition,
○ indicates an outdoor unit, ■ indicates an indoor unit.

すなわち、暖房運転時、室内熱交換器5が凝縮器、室外
熱交換器3が蒸発器として作用する。この暖房運転が進
むと、それに伴って室外熱交換器3の表面に徐々に霜が
付着するようになる。そして、除霜タイミングになると
、開閉弁7が開放し、圧縮機1の吐出冷媒の一部がバイ
パス路6を通って室外熱交換器3に供給される。
That is, during heating operation, the indoor heat exchanger 5 acts as a condenser, and the outdoor heat exchanger 3 acts as an evaporator. As this heating operation progresses, frost gradually begins to adhere to the surface of the outdoor heat exchanger 3. Then, when the defrosting timing comes, the on-off valve 7 opens and a part of the refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 through the bypass path 6.

ところで、このようなホットガスバイパス除霜において
は、暖房を続けながら除霜できるという利点がある反面
、除霜能力が低く、よって除霜に長い時間がかかるとい
う欠点がある。すなわち、除霜中は当然ながら暖房能力
の低下を+a <ため、除霜に長い時間がかかる情況で
は暖房効率の大幅な低下を招いてしまう。さらに、除霜
中は室内熱交換器5への冷媒流入量が少ないため、室内
熱交換器5において液化した冷媒がそのまま室内熱交換
器5に溜まり込み易く、除霜にかかる時間が長いとその
うち冷媒循環量が不足して除霜不能に至ることさえある
。さらに、除霜にかかる時間が長いと圧縮811への液
バツク量が増加し、圧縮機1の寿命に悪影響を及ぼして
しまう。
By the way, such hot gas bypass defrosting has the advantage of being able to defrost while continuing heating, but has the disadvantage that the defrosting ability is low and therefore defrosting takes a long time. That is, during defrosting, the heating capacity naturally decreases by +a<, so in situations where defrosting takes a long time, the heating efficiency will decrease significantly. Furthermore, since the amount of refrigerant flowing into the indoor heat exchanger 5 is small during defrosting, the refrigerant liquefied in the indoor heat exchanger 5 tends to accumulate in the indoor heat exchanger 5, and if the time taken for defrosting is long, Defrosting may even become impossible due to insufficient refrigerant circulation. Furthermore, if the time required for defrosting is long, the amount of liquid backing up to the compressor 811 will increase, which will adversely affect the life of the compressor 1.

(発明が解決しようとする問題点) この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、除霜にががる時間を大幅に短
縮することができ、これにより暖房効率の向上が図れる
とともに確実な除霜を行なうことができ、さらには圧縮
機への液バック伝を減らすことができ、快適性の向上お
よび圧縮機の寿命向上などを可能とするすぐれた空気調
和機を提供することにある。
(Problems to be solved by the invention) This invention was made in view of the above circumstances.
The purpose of this is to significantly shorten the time it takes to defrost, thereby improving heating efficiency and ensuring reliable defrosting. An object of the present invention is to provide an excellent air conditioner that can reduce air flow, improve comfort, and extend the life of a compressor.

[発明の構成] (問題点を解決するための手段) 圧縮礪、四方弁、室外熱交換器、減圧装胃。[Structure of the invention] (Means for solving problems) Compression chamber, four-way valve, outdoor heat exchanger, vacuum chamber.

室内熱交換器などを順次連通してなるピー1−ポ2フ式
冷凍サイクルと、@房運転時、前記圧縮機の吐出冷媒の
一部または舶記至内熱交換器を経た冷媒の一部を前記室
外熱交換器にバイパスして供給するバイパス路と、この
バイパス路に設けた開閉弁と、暖房運転時、定期的また
は必要に応じて前記開閉弁を開放し、前記室外熱交換器
に対する除霜を行なう手段と、この除霜時、室内ファン
の運転を停止する手段とからなる。
A point-to-point refrigeration cycle consisting of an indoor heat exchanger, etc. connected in sequence, and a part of the refrigerant discharged from the compressor or a part of the refrigerant that has passed through the indoor heat exchanger during operation. a bypass path for bypassing and supplying heat to the outdoor heat exchanger, and an on-off valve provided in this bypass path, and during heating operation, the on-off valve is opened periodically or as necessary, and the on-off valve is opened periodically or as necessary to It consists of means for defrosting, and means for stopping the operation of the indoor fan during defrosting.

(作用) 冷媒のバイパス供給による除霜時、室内ファンの運転が
オフする。室内ファンの運転がオフすると、圧縮ほから
室内熱交換器に流入する冷媒が凝縮しないままその室内
熱交換器を経、室外熱交換器に流入する。この流入冷媒
は、バイパス供給による冷媒と共に室外熱交換器の霜を
溶かす。
(Function) During defrosting by bypass supply of refrigerant, the operation of the indoor fan is turned off. When the operation of the indoor fan is turned off, the refrigerant flowing into the indoor heat exchanger from the compression chamber flows through the indoor heat exchanger and into the outdoor heat exchanger without being condensed. This inflow refrigerant, together with the refrigerant supplied by the bypass, melts the frost on the outdoor heat exchanger.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

冷凍サイクルの構成は第3図と同じである。The configuration of the refrigeration cycle is the same as shown in FIG.

第1図において、20は商用交流電源で、この電源20
にはトランス21を介して制御部22が接続される。こ
の制御部22は、マイクロコンピュータおよびそのマイ
クロコンピュータの指令に応動するリレーなどからなり
、室内温度センサ23の検知;温度や運転操作部24で
設定される運転条件などに応じて各種運転制郊を行なう
ものである しかして、電源20ニハ、リレー接点3+a 、 31
b、リレー接点(双方向性接点)32の常閉側、および
リレー接点33を介して室内ファンモータ(単相誘導モ
ータ) 9mの主巻線Mが接続される。主巻線Mには運
転コンデンサ25を介して補助巻線Aが並列に接続され
る。
In FIG. 1, 20 is a commercial AC power supply, and this power supply 20
A control section 22 is connected to via a transformer 21. The control section 22 is composed of a microcomputer and a relay that responds to commands from the microcomputer, and controls various driving restrictions according to the detection of the indoor temperature sensor 23 and the temperature and operating conditions set by the operation control section 24. Therefore, the power supply is 20 ni, the relay contact is 3 + a, 31
b, a 9 m main winding M of an indoor fan motor (single-phase induction motor) is connected via the normally closed side of the relay contact (bidirectional contact) 32 and the relay contact 33. An auxiliary winding A is connected in parallel to the main winding M via a driving capacitor 25 .

N源20にはリレー接点31a 、 31b 、 34
、および端子板40を介して圧縮機モータ(単相誘導モ
ータ)1mの主巻線Mが接続される。主巻線Mには運転
コンデン41を介して補助巻線Aが並列に接続される。
The N source 20 has relay contacts 31a, 31b, 34.
, and a main winding M of 1 m of a compressor motor (single-phase induction motor) is connected via the terminal plate 40 . An auxiliary winding A is connected in parallel to the main winding M via an operating capacitor 41 .

電源20ニハリレ一接点31a 、 31b 、 35
、オヨヒ端子阪40を介して室内ファンモータ(単相誘
導モータ) 8mの主巻線〜1が接続される。主巻線N
1には運転コンデン42を介して補助巻線Aが並列に接
続される。
Power supply 20 Niharire one contact 31a, 31b, 35
, an indoor fan motor (single-phase induction motor) 8m main winding ~1 is connected through the Oyohi terminal bank 40. Main winding N
An auxiliary winding A is connected in parallel to the auxiliary winding 1 via the operating capacitor 42.

電源20ニハリレ一接点31a 、 31b 、 36
、および端子板40を介して四方弁コイル2Lが接続さ
れる。
Power supply 20 Niharire one contact 31a, 31b, 36
, and the four-way valve coil 2L is connected via the terminal plate 40.

さらに、電源20にはリレー接点31a 、 311)
、リレー接点32の常開側、および端子板40を介して
開閉弁ロイル7Lが接続される。
Furthermore, the power supply 20 has relay contacts 31a, 311).
, the normally open side of the relay contact 32, and the on-off valve coil 7L are connected via the terminal plate 40.

なお、リレー接点31a 、 31b 、 32.33
.34.35゜36は、全て制御部22内のリレーの接
点である。
In addition, relay contacts 31a, 31b, 32.33
.. 34, 35° and 36 are all relay contacts within the control unit 22.

つぎに、上記のような構成において第2図のフローチャ
ートを参照しながら作用を説明する。
Next, the operation of the above configuration will be explained with reference to the flowchart of FIG. 2.

操作部24で暖房運転および所望の室内温度を設定し、
かつ運転開始操作を行なう。すると、制御部22は、室
内温度センサ23の検知温度つまり室内温度と上記設定
温度とを比較し、室内温度が設定温度よりも低ければリ
レー接点31a 、 31b 、 34をオンし、圧縮
殿モータ1mを起動する。さらに、リレー接点33.3
5.36をオンし、室内ファンモータ9mおよび室外フ
ァンモータ8mを起動するとともに、四方弁コイル2L
を励磁する。
Set the heating operation and desired indoor temperature using the operation unit 24,
And perform operation start operation. Then, the control unit 22 compares the temperature detected by the indoor temperature sensor 23, that is, the indoor temperature, with the set temperature, and if the indoor temperature is lower than the set temperature, turns on the relay contacts 31a, 31b, and 34, and turns on the compression chamber motor 1m. Start. Furthermore, relay contact 33.3
5.36 to start the indoor fan motor 9m and the outdoor fan motor 8m, and turn on the four-way valve coil 2L.
Excite.

こうして、圧縮機1が運転オンし、かつ四方弁2がオン
(切換作動)することにより、暖房サイクルが形成され
る。そして、室外ファン8の運転オンにより室外空気が
室外熱交換器3を通して循環し、その室外熱交換器3に
おける冷媒の蒸発作用によって室外から熱が汲み上げら
れる。一方、室内ファン9の運転オンにより室内空気が
室内熱交換器5を通して循環し、その室内熱交換器5に
おける冷媒の凝縮作用により、上記汲み上げられた熱が
室内に放出される。つまり、暖房運転の実施となる。
In this way, the compressor 1 is turned on and the four-way valve 2 is turned on (switching operation), thereby forming a heating cycle. Then, when the outdoor fan 8 is turned on, outdoor air circulates through the outdoor heat exchanger 3, and heat is pumped up from outside by the evaporation action of the refrigerant in the outdoor heat exchanger 3. On the other hand, when the indoor fan 9 is turned on, indoor air circulates through the indoor heat exchanger 5, and due to the condensation action of the refrigerant in the indoor heat exchanger 5, the pumped up heat is released into the room. In other words, heating operation is performed.

この暖房運転時、蒸発器として作用する室外熱交換器3
の表面に徐々に霜が付着するようになる。
During this heating operation, the outdoor heat exchanger 3 acts as an evaporator.
Frost gradually forms on the surface.

しかして、運転開始から所定時間が経過して除霜タイミ
ングになると、制御部22はリレー接点32をオンし、
かつリレー接点35をオフする。すると、開閉弁ロイル
7Lが励磁されるとともに、室内ファンモータ9mが停
止する。ざらに、室外ファンモータ8mff1停止する
Then, when a predetermined period of time has passed since the start of operation and the defrosting timing has arrived, the control unit 22 turns on the relay contact 32,
And the relay contact 35 is turned off. Then, the on-off valve coil 7L is excited and the indoor fan motor 9m is stopped. Suddenly, outdoor fan motor 8mff1 stopped.

こうして、開閉弁7がオン(開放)することにより、圧
1機1の吐出冷媒の一部がバイパス路6を通って室外熱
交換器3に供給される。つまり、室外熱交換器3の除霜
がなされる。
In this way, when the on-off valve 7 is turned on (opened), a part of the refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 through the bypass path 6. That is, the outdoor heat exchanger 3 is defrosted.

この除霜時、室内ファン9の運転がオフしており、よっ
て室内熱交換器5に流入する冷媒は凝縮しないままその
室内熱交換器5を経、室外熱交換器3に流入する。この
流入冷媒は、バイパス供給による冷媒と共に室外熱交換
器3の霜を溶かす。
During defrosting, the operation of the indoor fan 9 is off, so the refrigerant flowing into the indoor heat exchanger 5 flows into the outdoor heat exchanger 3 via the indoor heat exchanger 5 without being condensed. This inflow refrigerant melts the frost in the outdoor heat exchanger 3 together with the refrigerant supplied by the bypass.

このように、冷媒のほぼ全量が室外熱交換器3に流入す
ることにより、短時間のうちに除霜を完了することがで
きる。よって、暖房効率が向上して快適性の向上が図れ
る。しかも、室内熱交換器5に液冷媒が溜まり込まない
ので、確実な除霜を行ない得ることは勿論、圧縮殿1へ
の液バツク量が誠って圧縮機1の寿命向上が図れる。
In this way, almost the entire amount of refrigerant flows into the outdoor heat exchanger 3, so that defrosting can be completed in a short time. Therefore, heating efficiency is improved and comfort can be improved. Moreover, since the liquid refrigerant does not accumulate in the indoor heat exchanger 5, not only can defrosting be performed reliably, but also the amount of liquid backing into the compression chamber 1 can be reduced, thereby extending the life of the compressor 1.

制御部22は、除霜開始からの時間経過をカウントして
おり、予め設定された時間が経過するとそこでリレー接
点32をオフし、かつリレー接点35をオンする。つま
り、開閉弁7をオフ(開成)してバイパス路6を遮断す
るとともに、室内ファン9および室外ファン8をそれぞ
れ運転オンする。つまり、除霜を終了して暖房を再開す
る。この暖房再開時、制御部22は室内温度センサ23
の検知温度を無視する。すなわち、これは、室内ファン
9の運転がオフしていたために室内熱交換器5の温度が
高くなっていること、しかもその室内熱交換器5の近傍
には室内温度センサ23が設けられていることに対処し
たもので、室内熱交換器5の熱影響を受けることなく適
切な空内温度制陣を行なうものである。
The control unit 22 counts the elapsed time from the start of defrosting, and turns off the relay contact 32 and turns on the relay contact 35 when a preset time has elapsed. That is, the on-off valve 7 is turned off (opened) to block the bypass path 6, and the indoor fan 9 and the outdoor fan 8 are turned on. In other words, defrosting is finished and heating is restarted. When this heating is restarted, the control unit 22 uses the indoor temperature sensor 23
Ignore the detected temperature. In other words, this means that the temperature of the indoor heat exchanger 5 is high because the operation of the indoor fan 9 was off, and furthermore, the indoor temperature sensor 23 is installed near the indoor heat exchanger 5. This is to deal with this problem, and to appropriately control the air temperature without being affected by the heat of the indoor heat exchanger 5.

なお、上記実施例では、除霜の開始および終了を時間で
制罪したが、室外熱交換器3の温度に応じて制御しても
よい。また、圧縮機1の吐出冷媒一部を室外熱交換器3
にバイパス供給するタイプの冷凍サイクルを例に上げて
説明したが、第4図に示すようにバイパス路6を室内熱
交換器5と膨張弁4との間の冷媒配管から室外熱交換器
3にかけて設け、室内熱交換器5を経た冷媒の一部を室
外熱交換器3にバイパス供給するタイプの冷凍サイクル
にも同様に実施可能である。
In the above embodiment, the start and end of defrosting is controlled by time, but it may be controlled according to the temperature of the outdoor heat exchanger 3. In addition, a portion of the refrigerant discharged from the compressor 1 is transferred to the outdoor heat exchanger 3.
The explanation has been given using an example of a refrigeration cycle in which a bypass is supplied to the refrigeration cycle, but as shown in FIG. It is also possible to implement a refrigeration cycle of a type in which a part of the refrigerant that has passed through the indoor heat exchanger 5 is bypass-supplied to the outdoor heat exchanger 3.

[発明の効果] 以上述べたようにこの発明によれば、冷媒のバイパス供
給による除霜時、至内ファンの運転をオフするようにし
たので、除霜にかかる時間を大幅に短縮することができ
、これにより暖房効率の向上が図れるとともに確実な除
霜を行なうことができ、さらには圧縮機への液バック最
を減らすことができ、快適性の向上および圧縮機の寿命
向上などを可能とするすぐれた空気調和機を提供できる
[Effects of the Invention] As described above, according to the present invention, since the operation of the internal fan is turned off during defrosting by bypass supply of refrigerant, the time required for defrosting can be significantly shortened. This not only improves heating efficiency but also enables reliable defrosting, and also reduces liquid backflow to the compressor, improving comfort and extending the life of the compressor. We can provide you with an excellent air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例における制■回路の構成を
示す図、第2図は同実施例の動作を説明するためのタイ
ムチャート、第3図は同実施例および従来における冷凍
サイクルの構成を示す図、第4図は同実施例における冷
凍サイクルの変形例の構成を示す図である。 1・・・圧縮機、2・・・四方弁、3至外熱交換器、4
・・・膨張弁(減圧装置)、5・・・至内熱交換器、6
・・・バイパス路、7・・・電磁開閉弁、9・・・学内
ファン、22・・・制御部、O・・・学外ユニット、■
・・・学内ユニット。 出願人代理人 弁理士 鈴江弐尽 第1図 第2図
Fig. 1 is a diagram showing the configuration of a control circuit in an embodiment of the present invention, Fig. 2 is a time chart for explaining the operation of the embodiment, and Fig. 3 is a diagram of the refrigeration cycle in the embodiment and in the prior art. FIG. 4 is a diagram showing the structure of a modified example of the refrigeration cycle in the same embodiment. 1... Compressor, 2... Four-way valve, 3 External heat exchanger, 4
... expansion valve (pressure reducing device), 5 ... internal heat exchanger, 6
... Bypass path, 7... Solenoid on-off valve, 9... On-campus fan, 22... Control section, O... Off-campus unit, ■
...Internal unit. Applicant's agent Patent attorney Nijin Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換
器などを順次連通してなるヒートポンプ式冷凍サイクル
と、暖房運転時、前記圧縮機の吐出冷媒の一部または前
記室内熱交換器を経た冷媒の一部を前記室外熱交換器に
バイパスして供給するバイパス路と、このバイパス路に
設けた開閉弁と、暖房運転時、定期的または必要に応じ
て前記開閉弁を開放し、前記室外熱交換器に対する除霜
を行なう手段と、この除霜時、室内ファンの運転をオフ
する手段とを具備したことを特徴とする空気調和機。
A heat pump type refrigeration cycle consisting of a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, etc. connected in sequence, and a part of the refrigerant discharged from the compressor or the indoor heat exchanger during heating operation. a bypass path that bypasses and supplies a part of the refrigerant that has passed through the outdoor heat exchanger, an on-off valve provided in this bypass path, and the on-off valve is opened periodically or as necessary during heating operation, An air conditioner comprising: means for defrosting the outdoor heat exchanger; and means for turning off an indoor fan during defrosting.
JP61115590A 1986-05-20 1986-05-20 Air conditioner Pending JPS62272048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115590A JPS62272048A (en) 1986-05-20 1986-05-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115590A JPS62272048A (en) 1986-05-20 1986-05-20 Air conditioner

Publications (1)

Publication Number Publication Date
JPS62272048A true JPS62272048A (en) 1987-11-26

Family

ID=14666368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115590A Pending JPS62272048A (en) 1986-05-20 1986-05-20 Air conditioner

Country Status (1)

Country Link
JP (1) JPS62272048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048876A1 (en) * 2002-11-26 2004-06-10 Daikin Industries, Ltd. Heat exchanger for air and freezer device
JP2004176980A (en) * 2002-11-26 2004-06-24 Daikin Ind Ltd Refrigerating plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048876A1 (en) * 2002-11-26 2004-06-10 Daikin Industries, Ltd. Heat exchanger for air and freezer device
JP2004176980A (en) * 2002-11-26 2004-06-24 Daikin Ind Ltd Refrigerating plant

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
JPS6325471A (en) Air conditioner
CN110836554A (en) Heat pump system, control method thereof and defrosting control method
JPH0527018B2 (en)
JPS62272048A (en) Air conditioner
JPH06265242A (en) Engine driven heat pump
JPH0236059Y2 (en)
JPH0452469A (en) Air conditioner
JPH0620039Y2 (en) Air conditioner
JPH0359358A (en) Air conditioner
JPH0434375Y2 (en)
JP2000088361A (en) Air conditioner
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPS6346350B2 (en)
JPS6029562A (en) Defroster for air conditioner
JP2669069B2 (en) Heating and cooling machine
JPS6029561A (en) Defroster for air conditioner
JPH0233110Y2 (en)
JPS61276649A (en) Defrosting controller of heat pump type air conditioner
JPS62129659A (en) Air conditioner
JPS6330929Y2 (en)
JPS591965A (en) Method of defrosting air heat-source heat pump type air conditioner
JPS6317362A (en) Air conditioner
JPH0213905Y2 (en)
JPH0353553B2 (en)