JPH0233110Y2 - - Google Patents

Info

Publication number
JPH0233110Y2
JPH0233110Y2 JP18615084U JP18615084U JPH0233110Y2 JP H0233110 Y2 JPH0233110 Y2 JP H0233110Y2 JP 18615084 U JP18615084 U JP 18615084U JP 18615084 U JP18615084 U JP 18615084U JP H0233110 Y2 JPH0233110 Y2 JP H0233110Y2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
solenoid valve
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18615084U
Other languages
Japanese (ja)
Other versions
JPS61101369U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18615084U priority Critical patent/JPH0233110Y2/ja
Publication of JPS61101369U publication Critical patent/JPS61101369U/ja
Application granted granted Critical
Publication of JPH0233110Y2 publication Critical patent/JPH0233110Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は空冷ヒートポンプ式空気調和機に関す
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an air-cooled heat pump type air conditioner.

(従来の技術) 第3図及び第4図に従来の空冷ヒートポンプ式
空気調和機の1例が示され、第3図はその冷媒回
路図、第4図はその電気制御回路図である。
(Prior Art) An example of a conventional air-cooled heat pump type air conditioner is shown in FIGS. 3 and 4, FIG. 3 is a refrigerant circuit diagram thereof, and FIG. 4 is an electrical control circuit diagram thereof.

暖房運転時には冷媒は第3図に実線矢印で示す
ように、圧縮機1、四方切換弁2、室内熱交換器
3、逆止弁5、暖房用絞り7、室外熱交換器9、
四方切換弁2、アキユームレータ11をこの順に
通つて圧縮機1に戻る。
During heating operation, the refrigerant flows through the compressor 1, four-way switching valve 2, indoor heat exchanger 3, check valve 5, heating throttle 7, outdoor heat exchanger 9,
It passes through the four-way switching valve 2 and the accumulator 11 in this order and returns to the compressor 1.

冷房運転時には、冷媒は第3図に破線矢印で示
すように、圧縮機1、四方切換弁2、室外熱交換
器9、逆止弁8、冷房用絞り6、室内熱交換器
3、四方切換弁2、アキユームレータ11をこの
順に通つて圧縮機1に戻る。4は室内フアン、1
0は室外フアン、12は高圧のガス冷媒回路内圧
力を検知し、これが所定値以上になつたときに作
動して空気調和機の運転を停止する高圧圧力開閉
器、13は除霜用サーモで、暖房運転時、室外熱
交換器9に着霜し、これを流れる冷媒温度が所定
値以下になつたときに閉路する。14は除霜用コ
ントローラで、除霜リレー114及びその接点1
14A,114B並びにタイマー115及びその
接点115Aを具えている。暖房運転時にタイマ
ー115に設定された時間が経過してその接点1
15Aが閉路したとき、除霜用サーモ13が閉路
すると除霜用リレー114が励磁されて、その接
点114A及び114Bが図示と逆に切り換えら
れ、四方切換弁用ソレノイド2A及び室外フアン
用リレー110を消磁することにより四方切換弁
2を冷房運転時の状態に切り換えるとともに室外
フアン10を停止させてデフロスト運転を行な
い、冷媒を冷房運転時と同様第3図の破線矢印に
示すように循環させて、室外熱交換器9に高温の
冷媒ガスを流入させることによりこれに付着して
いる霜を融解する。デフロスト運転の結果、除霜
用サーモ13が開路すると、除霜用リレー114
が消磁されてその接点114A及び114Bが切
り換えられて図示の状態に戻る。これに伴つて、
四方切換弁2は暖房運転状態に切り換えられると
同時に室外フアン10が起動され、かつ、タイマ
ー115がリセツトされる。15は冷風防止用サ
ーモで、デフロスト運転時に室内熱交換器3を流
れる冷媒温度が所定値以下のとき閉路する。16
は冷風防止用コントローラで冷風防止用リレー1
16及びその接点116Aを具えている。そし
て、冷風防止用サーモ15が閉路したとき、冷風
防止用リレー116が励磁されてその接点116
Aを開路し、室内フアン用リレー104を消磁す
ることにより室内フアン4を停止する。なお、第
4図において130は起動スイツチ、131は冷
暖切換用スイツチ、101は圧縮機用リレーであ
る。
During cooling operation, the refrigerant flows through the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 9, the check valve 8, the cooling throttle 6, the indoor heat exchanger 3, and the four-way switching valve as shown by the broken line arrow in FIG. It passes through the valve 2 and the accumulator 11 in this order and returns to the compressor 1. 4 is an indoor fan, 1
0 is an outdoor fan, 12 is a high-pressure switch that detects the pressure inside the high-pressure gas refrigerant circuit and is activated to stop the air conditioner when the pressure exceeds a predetermined value, and 13 is a defrosting thermostat. During the heating operation, frost forms on the outdoor heat exchanger 9, and the circuit is closed when the temperature of the refrigerant flowing through it falls below a predetermined value. 14 is a defrosting controller, which includes a defrosting relay 114 and its contact 1.
14A, 114B, a timer 115 and its contacts 115A. When the time set in the timer 115 has elapsed during heating operation, the contact 1
15A is closed, when the defrosting thermometer 13 is closed, the defrosting relay 114 is energized, and its contacts 114A and 114B are switched in the opposite direction to that shown in the figure, and the four-way switching valve solenoid 2A and the outdoor fan relay 110 are switched. By degaussing, the four-way switching valve 2 is switched to the cooling operation state, and the outdoor fan 10 is stopped to perform the defrost operation, and the refrigerant is circulated as shown by the broken line arrow in FIG. 3 in the same way as during the cooling operation. By flowing high temperature refrigerant gas into the outdoor heat exchanger 9, frost adhering thereto is melted. As a result of the defrost operation, when the defrost thermostat 13 opens, the defrost relay 114
is demagnetized and its contacts 114A and 114B are switched back to the state shown. Along with this,
At the same time as the four-way switching valve 2 is switched to the heating operation state, the outdoor fan 10 is activated and the timer 115 is reset. Reference numeral 15 denotes a cold air prevention thermostat, which closes when the temperature of the refrigerant flowing through the indoor heat exchanger 3 is below a predetermined value during defrost operation. 16
is the cold wind prevention controller and the cold wind prevention relay 1.
16 and its contact 116A. When the cold air prevention thermometer 15 closes, the cold air prevention relay 116 is energized and its contacts 116
The indoor fan 4 is stopped by opening the circuit A and demagnetizing the indoor fan relay 104. In FIG. 4, 130 is a start switch, 131 is a cooling/heating switch, and 101 is a compressor relay.

(考案が解決しようとする問題点) 上記従来の空気調和機においては、室温又は外
気温が上昇した場合等の高負荷運転時には、冷媒
回路内の冷媒圧力が上昇するので高圧圧力開閉器
12が作動して空気調和機の運転が停止する。ま
た、この場合に回路内冷媒温度も上昇するので冷
凍機油が劣化して圧縮機1の損傷を惹起す。
(Problems to be solved by the invention) In the conventional air conditioner described above, during high load operation such as when the room temperature or outside temperature rises, the refrigerant pressure in the refrigerant circuit increases, so the high pressure switch 12 is closed. The air conditioner will stop operating. Furthermore, in this case, the temperature of the refrigerant in the circuit also rises, causing deterioration of the refrigerating machine oil and causing damage to the compressor 1.

また、デフロスト運転時に室内フアン4を停止
させると室内熱交換器3からの吸熱が殆んどな
く、冷媒循環量も減るので除霜に要する時間が長
くなつたり、デフロスト運転時に圧縮機1に吸入
される冷媒圧力が負圧となつて圧縮機1の性能を
悪化させるという不具合が生ずる。
Additionally, if the indoor fan 4 is stopped during defrost operation, there is almost no heat absorption from the indoor heat exchanger 3, and the amount of refrigerant circulated is reduced, so the time required for defrosting becomes longer, and the air is sucked into the compressor 1 during defrost operation. A problem arises in that the refrigerant pressure applied becomes negative pressure and the performance of the compressor 1 is deteriorated.

(問題点を解決するための手段) 本考案は上記従来の問題点を解消するために提
案されたものであつて、その要旨とするところは
圧縮機、四方切換弁、室内熱交換器、冷房用絞
り、暖房用絞り、室外熱交換器、アキユームレー
タを組み込んだ冷媒回路を具える空冷ヒートポン
プ式空気調和機において、前記冷媒回路の高圧液
冷媒回路と前記アキユームレータの入口側との間
に電磁弁及び絞りを有するバイパス冷媒回路を設
けると共に前記電磁弁を過負荷運転時及びデフロ
スト運転時に開とし、過負荷運転時に上記電磁弁
を開としたときデフロスト制御回路を無効とする
制御回路を設けたことを特徴とする空冷ヒートポ
ンプ式空気調和機にある。
(Means for Solving the Problems) The present invention was proposed to solve the above-mentioned conventional problems, and its gist is a compressor, a four-way switching valve, an indoor heat exchanger, an air conditioner, and an air conditioner. In an air-cooled heat pump air conditioner comprising a refrigerant circuit incorporating a heating diaphragm, an outdoor heat exchanger, and an accumulator, between the high-pressure liquid refrigerant circuit of the refrigerant circuit and the inlet side of the accumulator. a bypass refrigerant circuit having a solenoid valve and a throttle, and a control circuit that opens the solenoid valve during overload operation and defrost operation, and disables the defrost control circuit when the solenoid valve is opened during overload operation. The air-cooled heat pump type air conditioner is characterized by the following features:

(実施例) 本宰案の1実施例が第1図及び第2図に示さ
れ、第1図は冷媒回路図、第2図は電気制御回路
図である。第1図及び第2図において第3図及び
第4図における機器と同じ機器には同じ符号が付
されている。
(Embodiment) An embodiment of the present proposal is shown in FIGS. 1 and 2, where FIG. 1 is a refrigerant circuit diagram and FIG. 2 is an electrical control circuit diagram. In FIGS. 1 and 2, the same equipment as in FIGS. 3 and 4 is given the same reference numeral.

高圧液冷媒回路30即ち、冷房運転時、暖房運
転時及びデフロスト運転時に高圧の液冷媒が流れ
る冷房用絞り6と暖房用絞り7とを接続する冷媒
配管とアキユムレータ11の入口側との間をバイ
パス冷媒回路31で接続し、このバイパス冷媒回
路31に電磁弁19と絞り20が介装されてい
る。17は圧縮機1の吐出管に接続された吐出冷
媒ガス温度検知サーモ、18は高圧圧力検知器、
21はコントローラでバイパス用リレー121と
その常開接点121A及びその常閉接点121B
を具えている。そして、バイパス用リレー121
は吐出冷媒ガス検知サーモ17及び高圧圧力検知
器18と直列に接続され、常開接点121Aは除
霜用リレー114の接点114Cと並列でかつ、
電磁弁19用コイル19Aと直列に接続され、常
閉接点121Bは除霜用リレー114と直列に接
続されている。
A high-pressure liquid refrigerant circuit 30, that is, a bypass between the refrigerant pipe connecting the cooling throttle 6 and the heating throttle 7 through which high-pressure liquid refrigerant flows during cooling operation, heating operation, and defrosting operation, and the inlet side of the accumulator 11 They are connected through a refrigerant circuit 31, and this bypass refrigerant circuit 31 is provided with a solenoid valve 19 and a throttle 20. 17 is a discharge refrigerant gas temperature detection thermometer connected to the discharge pipe of the compressor 1; 18 is a high pressure detector;
21 is a controller that includes a bypass relay 121, its normally open contact 121A, and its normally closed contact 121B.
It is equipped with And bypass relay 121
is connected in series with the discharge refrigerant gas detection thermo 17 and the high pressure pressure detector 18, and the normally open contact 121A is in parallel with the contact 114C of the defrosting relay 114, and
It is connected in series with the coil 19A for the electromagnetic valve 19, and the normally closed contact 121B is connected in series with the defrosting relay 114.

しかして、暖房運転時、圧縮機1より吐出され
た高温高圧のガス冷媒は第1図の実線矢印で示す
ように四方弁2を通り室内熱交換器3にて室内フ
アン4から送り込まれた室内空気と熱交換して凝
縮して高圧の液冷媒となり、逆止弁5を通り、絞
り7で減圧されて低圧の液ガスの二相流となり、
室外熱交換器9で室外フアン10から送り込まれ
た外気と熱交換して蒸圧し低圧のガス冷媒となり
四方弁2を通りアキユームレータ11を経て圧縮
機1へ戻る。
During heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 as shown by the solid arrow in FIG. It exchanges heat with air and condenses to become a high-pressure liquid refrigerant, passes through a check valve 5, is depressurized by a throttle 7, and becomes a two-phase flow of low-pressure liquid gas.
The outdoor heat exchanger 9 exchanges heat with the outside air sent in from the outdoor fan 10 and vaporizes it to become a low-pressure gas refrigerant, which passes through the four-way valve 2 and returns to the compressor 1 via the accumulator 11.

冷房運転時、冷媒は第1図の破線矢印で示すよ
うに圧縮機1から四方弁2、室外熱交換器9、逆
止弁8、冷房用絞り6、室内熱交換器3、四方弁
2、アキユームレータ11をこの順に通り圧縮機
1へ戻る。
During cooling operation, the refrigerant flows from the compressor 1 to the four-way valve 2, to the outdoor heat exchanger 9, to the check valve 8, to the cooling throttle 6, to the indoor heat exchanger 3, to the four-way valve 2, as shown by the broken line arrow in FIG. It passes through the accumulator 11 in this order and returns to the compressor 1.

デフロスト運転時、冷媒は上記冷房運転時と同
様第1図の破線矢印で示すように流れる。
During the defrost operation, the refrigerant flows as shown by the broken line arrow in FIG. 1, similar to the above-mentioned cooling operation.

暖房運転時、室温又は外気温の高い時は高圧即
ち、圧縮機1の出口から暖房用絞り7の入口まで
の冷媒回路内圧力及び圧縮機1から吐出される冷
媒ガス温度が高くなる。そのため高圧圧力検知器
18及び吐出ガス温度検知サーモ17が閉路して
バイパス用リレー121を励磁し、その常開接点
121Aを閉路すると同時に常閉接点121Bを
開路する。常開接点121Aが閉路すると電磁弁
用コイル19Aが励磁されて電磁弁19が開く。
かくして、高圧冷媒回路30内の高圧液冷媒がバ
イパス冷媒回路31の電磁弁19及び絞り20を
通りアキユームレータ11に流入し、ここで1時
的に保持された後徐々に圧縮機1に戻る。液冷媒
がアキユームレータ11に保持されると、冷媒回
路内を循環する冷媒量が減り、これに伴つて、冷
媒回路内の冷媒圧力が低下し、除霜用サーモ13
が取り付けられている冷媒配管の温度も下るが、
常閉接点121Bが開路しているので、除霜用サ
ーモ13が閉路してもデフロスト運転を開始する
ことはない。
During heating operation, when the room temperature or outside temperature is high, the pressure inside the refrigerant circuit from the outlet of the compressor 1 to the inlet of the heating throttle 7 and the temperature of the refrigerant gas discharged from the compressor 1 become high. Therefore, the high-pressure pressure detector 18 and the discharge gas temperature detection thermometer 17 are closed to excite the bypass relay 121, and at the same time, the normally open contact 121A is closed and the normally closed contact 121B is opened. When the normally open contact 121A closes, the solenoid valve coil 19A is excited and the solenoid valve 19 opens.
Thus, the high-pressure liquid refrigerant in the high-pressure refrigerant circuit 30 flows into the accumulator 11 through the solenoid valve 19 and throttle 20 of the bypass refrigerant circuit 31, where it is temporarily held and then gradually returns to the compressor 1. . When the liquid refrigerant is held in the accumulator 11, the amount of refrigerant circulating in the refrigerant circuit decreases, and the refrigerant pressure in the refrigerant circuit decreases, causing the defrosting thermostat 13 to decrease.
The temperature of the refrigerant piping to which it is installed also decreases, but
Since the normally closed contact 121B is open, the defrost operation will not start even if the defrosting thermostat 13 is closed.

冷房運転時は高圧圧力検知器18の取付管が低
圧ラインとなり、高圧圧力検知器18が閉路する
ので、吐出ガス温度検知サーモ17のみの開閉に
よつて電磁弁19を開閉する。デフロスト運転時
は除霜リレー114の接点114Cが閉路するの
で、デフロスト時にもバイパス用電磁弁19が開
く。
During cooling operation, the attachment pipe of the high-pressure pressure detector 18 becomes a low-pressure line, and the high-pressure pressure detector 18 is closed, so that the electromagnetic valve 19 is opened and closed by opening and closing only the discharge gas temperature detection thermometer 17. During the defrost operation, the contact 114C of the defrost relay 114 is closed, so the bypass solenoid valve 19 is also opened during the defrost operation.

高圧圧力検知器18の作動圧力を高圧圧力開閉
器12の作動圧力より低く選ぶことにより高圧圧
力開閉器12が作動して、圧縮機1が運転停止す
る前に電磁弁19を開き、アキユームレータ11
に液冷媒を一時的に保持して冷媒回路内を循環す
る冷媒量を減少させる。
By selecting the operating pressure of the high-pressure pressure detector 18 to be lower than the operating pressure of the high-pressure pressure switch 12, the high-pressure pressure switch 12 is activated, and before the compressor 1 stops operating, the solenoid valve 19 is opened and the accumulator 11
This reduces the amount of refrigerant circulating in the refrigerant circuit by temporarily holding liquid refrigerant in the refrigerant circuit.

又高圧圧力開閉器12の作動圧力以下であつて
も吐出冷媒ガス温度が圧縮機1の使用制限を越え
ることがあるので吐出ガス温度検知サーモ17の
作動値を圧縮機1の吐出ガス温度使用制限以内で
作動するように選ぶことにより吐出冷媒ガス温度
から圧縮機1の使用制限を越える前に電磁弁19
を開きアキユームレータ11に液冷媒を一時保持
して徐々に液冷媒を圧縮機1に戻す。
In addition, even if the discharged refrigerant gas temperature is below the operating pressure of the high-pressure pressure switch 12, the discharged refrigerant gas temperature may exceed the usage limit of the compressor 1, so the operating value of the discharged gas temperature detection thermometer 17 is set as the discharged gas temperature usage limit of the compressor 1. The solenoid valve 19 is activated before the discharge refrigerant gas temperature exceeds the usage limit of the compressor 1.
is opened, the liquid refrigerant is temporarily held in the accumulator 11, and the liquid refrigerant is gradually returned to the compressor 1.

更に、デフロスト時も電磁弁19が開くので圧
縮機1へ吸入される冷媒量が増加する。
Furthermore, since the solenoid valve 19 is opened during defrosting, the amount of refrigerant sucked into the compressor 1 increases.

しかして、第3図及び第4図に示す従来の空気
調和機では、暖房運転時、外気温が上昇すると、
室外熱交換器9の吸熱量が増え冷媒の蒸発圧力が
上昇し、圧縮機1はこの冷媒ガスを吸入して圧縮
するため高圧圧力が高くなる。一方、室内温度が
上昇すると冷媒の凝縮温度が上昇するため高圧圧
力が高くなる。すなわち、室温又は、外気温のい
ずれが上昇しても高圧圧力が高くなり、高圧圧力
開閉器12が作動すると空気調和機の運転は停止
する。
However, in the conventional air conditioners shown in FIGS. 3 and 4, when the outside temperature rises during heating operation,
The amount of heat absorbed by the outdoor heat exchanger 9 increases, and the evaporation pressure of the refrigerant increases, and the compressor 1 sucks and compresses this refrigerant gas, so that the high pressure increases. On the other hand, when the indoor temperature rises, the condensation temperature of the refrigerant rises, so the high pressure increases. That is, the high pressure increases regardless of whether the room temperature or the outside temperature rises, and when the high pressure switch 12 is activated, the operation of the air conditioner is stopped.

それに対し、第1図及び第2図に示す空気調和
機においては、外気温又は室温の上昇により高圧
圧力検知器18が作動すると電磁弁19が開いて
アキユームレータ11内に液冷媒が1時的に保持
され、徐々に圧縮機1に戻つてくる。従つて、冷
媒回路を循環する冷媒量が減少することにより高
圧圧力が下り、高圧圧力開閉器12の作動を防ぐ
ことができ、従つて、運転可能な外気温及び室温
の範囲が従来よりも拡大できる。その後、室温又
は外気温が下り、高圧圧力検知器18が復帰する
と電磁弁19が閉じることによりアキユームレー
タ11内の冷媒は再び冷媒回路を循環することに
なる。
On the other hand, in the air conditioners shown in FIGS. 1 and 2, when the high-pressure pressure detector 18 is activated due to a rise in outside temperature or room temperature, the solenoid valve 19 opens and liquid refrigerant flows into the accumulator 11. The compressor 1 gradually returns to the compressor 1. Therefore, by reducing the amount of refrigerant circulating in the refrigerant circuit, the high pressure is lowered and the high pressure switch 12 can be prevented from operating, and the range of outside temperature and room temperature that can be operated is expanded than before. can. Thereafter, when the room temperature or outside temperature drops and the high-pressure pressure sensor 18 returns to normal, the solenoid valve 19 closes and the refrigerant in the accumulator 11 circulates through the refrigerant circuit again.

又、冷房運転時及び暖房運転時において、吐出
冷媒ガス温度の上昇した時吐出ガス温度検知サー
モ17が作動して電磁弁19が開き、液冷媒の一
部が圧縮機1へ戻つてくることにより圧縮機1の
コイル巻線の温度を下げることで圧縮機1の信頼
性向上に貢献する、その後室温又は外気温が下が
り、吐出冷媒ガス温度が下ると吐出ガス温度検知
サーモ17が復帰し電磁弁19が閉じる。また、
デフロスト運転時は第3図及び第4図に示す従来
の空気調和機では霜の着いた室外熱交換器9が凝
縮器として機能し高圧が非常に低くなる。そのた
め冷房用の絞り6を通る冷媒流量が減ずると同時
に室内フアン4が停止し室内熱交換器3での熱交
換がなく冷媒循環量は非常に小さくなるので圧縮
機1に吸入される冷媒が不足し、圧縮機1の吸入
圧力が負圧になつたり、冷媒の循環量が小さいた
めに室外熱交換器9の霜を溶かす時間が長くなつ
ていた。しかるに、第1図及び第2図に示す空気
調和機ではデフロスト運転時除霜用リレー114
の接点114Cを利用して電磁弁19を開き、強
制的に冷媒を圧縮機1へ戻すことにより圧縮機1
への冷媒流入量が増えデフロストに要する時間が
短縮でき、また圧縮機1の吸入圧力の負圧になる
不具合が解消できる。
In addition, during cooling operation and heating operation, when the temperature of the discharged refrigerant gas rises, the discharged gas temperature detection thermometer 17 is activated, the solenoid valve 19 is opened, and a portion of the liquid refrigerant returns to the compressor 1. By lowering the temperature of the coil winding of the compressor 1, it contributes to improving the reliability of the compressor 1.Afterwards, when the room temperature or outside temperature drops and the temperature of the discharged refrigerant gas decreases, the discharged gas temperature detection thermometer 17 returns and the solenoid valve 19 closes. Also,
During defrost operation, in the conventional air conditioner shown in FIGS. 3 and 4, the frosted outdoor heat exchanger 9 functions as a condenser and the high pressure becomes extremely low. Therefore, the flow rate of refrigerant passing through the cooling throttle 6 decreases, and at the same time the indoor fan 4 stops, and there is no heat exchange in the indoor heat exchanger 3, and the amount of refrigerant circulating becomes very small, so there is a shortage of refrigerant sucked into the compressor 1. However, because the suction pressure of the compressor 1 becomes a negative pressure and the amount of refrigerant circulated is small, it takes a long time to melt the frost on the outdoor heat exchanger 9. However, in the air conditioners shown in FIGS. 1 and 2, the defrosting relay 114 is
The solenoid valve 19 is opened using the contact point 114C, and the refrigerant is forcibly returned to the compressor 1.
The amount of refrigerant flowing into the compressor increases, the time required for defrosting can be shortened, and the problem of negative suction pressure of the compressor 1 can be solved.

(考案の作用及び効果) 以上実施例について具体的に説明したが、本考
案においては圧縮機、四方切換弁、室内熱交換
器、冷房用絞り、暖房用絞り、室外熱交換器、ア
キユームレータを組み込んだ冷媒回路を具える空
冷ヒートポンプ式空気調和機において、前記冷媒
回路の高圧液冷媒回路と前記アキユームレータの
入口側との間に電磁弁及び絞りを有するバイパス
冷媒回路を設けると共に前記電磁弁を過負荷運転
時及びデフロスト運転時に開とし、過負荷運転時
に上記電磁弁を開としたときデフロスト制御回路
を無効とする制御回路を設けているので、過負荷
運転時例えば暖房運転時に外気温又は室温が上昇
したとき或いは暖房運転時及び冷房運転時に吐出
冷媒ガス温度が上昇したとき等において、電磁弁
を開き、高圧液冷媒回路内の液冷媒を電磁弁及び
絞りを経てアキユームレータ内に導いてこの中に
1時的に保持し冷媒回路内を循環する冷媒量を減
少させることにより高圧圧力開閉器の作動を防
ぎ、空気調和機の運転可能範囲を拡大すると同時
に圧縮機の温度を下げうるので圧縮機の信頼性を
向上できる。また、デフロスト運転時にも電磁弁
を開いて強制的に冷媒の1部を圧縮機内に導くこ
とにより圧縮機への冷媒流入量を増加させること
によりデフロストに要する時間を短縮させること
ができるとともに圧縮機の吸入圧力が負圧になる
のを防止できる。また、過負荷運転時に電磁弁を
開としたときデフロスト制御回路を無効とする制
御回路を設けたのでデフロスト運転の不要時にデ
フロスト運転が開始されるのを防止できる。
(Operations and effects of the invention) Although the embodiments have been specifically explained above, the present invention includes a compressor, a four-way switching valve, an indoor heat exchanger, a cooling diaphragm, a heating diaphragm, an outdoor heat exchanger, and an accumulator. In an air-cooled heat pump type air conditioner having a refrigerant circuit incorporating a The valve is opened during overload operation and defrost operation, and a control circuit is provided that disables the defrost control circuit when the solenoid valve is opened during overload operation. Or, when the room temperature rises, or when the temperature of the discharged refrigerant gas rises during heating or cooling operation, open the solenoid valve and let the liquid refrigerant in the high-pressure liquid refrigerant circuit pass through the solenoid valve and the throttle into the accumulator. By temporarily holding the refrigerant inside the refrigerant circuit and reducing the amount of refrigerant circulating within the refrigerant circuit, the high-pressure switch is prevented from operating, expanding the operating range of the air conditioner and at the same time lowering the compressor temperature. The reliability of the compressor can be improved. Also, during defrost operation, by opening the solenoid valve and forcibly guiding a portion of the refrigerant into the compressor, the amount of refrigerant flowing into the compressor can be increased, thereby shortening the time required for defrosting. can prevent the suction pressure from becoming negative pressure. Further, since a control circuit is provided that disables the defrost control circuit when the solenoid valve is opened during overload operation, it is possible to prevent the defrost operation from being started when the defrost operation is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の1実施例を示し、
第1図は冷媒回路図、第2図は電気制御回路図で
ある。第3図及び第4図は従来の空冷ヒートポン
プ式空気調和機の1例を示し、第3図は冷媒回路
図、第4図は電気制御回路図である。 圧縮機……1、四方切換弁……2、室内熱交換
器……3、冷房用絞り……6、暖房用絞り……
7、室外熱交換器……9、アキユームレータ……
11、高圧液冷媒回路……30、バイパス冷媒回
路……31、電磁弁……19、絞り………20、
除霜用サーモ……13、除霜用コントローラ……
14、除霜用リレ……114、除霜用リレーの接
点……114A,114B,114C、電磁弁用
コイル……19A、バイパス用リレー……12
1、バイパス用リレーの接点……121A,12
1B。
1 and 2 show one embodiment of the present invention,
FIG. 1 is a refrigerant circuit diagram, and FIG. 2 is an electrical control circuit diagram. 3 and 4 show an example of a conventional air-cooled heat pump type air conditioner, FIG. 3 is a refrigerant circuit diagram, and FIG. 4 is an electric control circuit diagram. Compressor...1, Four-way switching valve...2, Indoor heat exchanger...3, Cooling throttle...6, Heating throttle...
7. Outdoor heat exchanger...9. Accumulator...
11, High pressure liquid refrigerant circuit...30, Bypass refrigerant circuit...31, Solenoid valve...19, Throttle...20,
Defrost thermostat...13, Defrost controller...
14, Defrosting relay...114, Defrosting relay contacts...114A, 114B, 114C, Solenoid valve coil...19A, Bypass relay...12
1. Bypass relay contact...121A, 12
1B.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方切換弁、室内熱交換器、冷房用絞
り、暖房用絞り、室外熱交換器、アキユームレー
タを組み込んだ冷媒回路を具える空冷ヒートポン
プ式空気調和機において、前記冷媒回路の高圧液
冷媒回路と前記アキユームレータの入口側との間
に電磁弁及び絞りを有するバイパス冷媒回路を設
けると共に前記電磁弁を過負荷運転時及びデフロ
スト運転時に開とし、過負荷運転時に上記電磁弁
を開としたときデフロスト制御回路を無効とする
制御回路を設けたことを特徴とする空冷ヒートポ
ンプ式空気調和機。
In an air-cooled heat pump air conditioner equipped with a refrigerant circuit incorporating a compressor, a four-way switching valve, an indoor heat exchanger, a cooling diaphragm, a heating diaphragm, an outdoor heat exchanger, and an accumulator, the high-pressure liquid in the refrigerant circuit A bypass refrigerant circuit having a solenoid valve and a throttle is provided between the refrigerant circuit and the inlet side of the accumulator, and the solenoid valve is opened during overload operation and defrost operation, and the solenoid valve is opened during overload operation. An air-cooled heat pump type air conditioner characterized by being provided with a control circuit that disables a defrost control circuit when the defrost control circuit is disabled.
JP18615084U 1984-12-10 1984-12-10 Expired JPH0233110Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18615084U JPH0233110Y2 (en) 1984-12-10 1984-12-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18615084U JPH0233110Y2 (en) 1984-12-10 1984-12-10

Publications (2)

Publication Number Publication Date
JPS61101369U JPS61101369U (en) 1986-06-28
JPH0233110Y2 true JPH0233110Y2 (en) 1990-09-06

Family

ID=30743616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18615084U Expired JPH0233110Y2 (en) 1984-12-10 1984-12-10

Country Status (1)

Country Link
JP (1) JPH0233110Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343805B2 (en) * 2014-05-12 2018-06-20 パナソニックIpマネジメント株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JPS61101369U (en) 1986-06-28

Similar Documents

Publication Publication Date Title
EP2228612B1 (en) Refrigeration system
JPS6325471A (en) Air conditioner
JPH11287538A (en) Air-conditioner
JP3868265B2 (en) Air conditioner
JP3175706B2 (en) Binary refrigeration equipment
JPH0233110Y2 (en)
JP2914020B2 (en) Heating and cooling machine
CN111174373B (en) Air conditioning system and control method thereof
JPH048704B2 (en)
JPH0213908Y2 (en)
JPH0623880Y2 (en) Heat pump device
JP2839347B2 (en) Air conditioner
JPH0526543A (en) Refrigerating plant
JPH06272971A (en) Air conditioner
JPS62213654A (en) Heat pump type refrigeration cycle
JPH0317177Y2 (en)
JPS6041481Y2 (en) air conditioner
JPH0327265Y2 (en)
JPS6330939Y2 (en)
JP3168730B2 (en) Air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPH05223360A (en) Air conditioner
JPH0519709Y2 (en)
JPS6029562A (en) Defroster for air conditioner
JP2867794B2 (en) Heating and cooling machine