JP6343805B2 - Refrigeration equipment - Google Patents
Refrigeration equipment Download PDFInfo
- Publication number
- JP6343805B2 JP6343805B2 JP2014098334A JP2014098334A JP6343805B2 JP 6343805 B2 JP6343805 B2 JP 6343805B2 JP 2014098334 A JP2014098334 A JP 2014098334A JP 2014098334 A JP2014098334 A JP 2014098334A JP 6343805 B2 JP6343805 B2 JP 6343805B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- flow path
- valve
- compressor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Temperature-Responsive Valves (AREA)
Description
本発明は、蒸気圧縮機式の冷凍装置に関する。 The present invention relates to a vapor compressor type refrigeration apparatus.
従来、空気調和装置などに用いられる冷凍装置は、運転時に、環境温度の変化などにより圧縮機の吐出冷媒の温度が所定の基準値を越えるような過負荷状態となった場合、圧縮機の絶縁材料の劣化や冷凍機油の変質など信頼性面に問題が発生する。この問題を解決するために、絞り機構として絞り量可変の電動膨張弁を使用したり、圧縮機として能力可変圧縮機を使用したりして、吐出冷媒温度を調整してきた(例えば、特許文献1)。 Conventionally, a refrigeration system used for an air conditioner or the like has an insulation of a compressor when an overload condition occurs such that the temperature of refrigerant discharged from the compressor exceeds a predetermined reference value due to a change in environmental temperature during operation. Problems occur in terms of reliability, such as deterioration of materials and deterioration of refrigeration oil. In order to solve this problem, the discharge refrigerant temperature has been adjusted by using an electric expansion valve with a variable throttle amount as a throttle mechanism or a variable capacity compressor as a compressor (for example, Patent Document 1). ).
絞り量可変の電動膨張弁を用いることにより、圧縮機の吸入冷媒の過熱度(スーパーヒート)や、圧縮機の吐出冷媒の温度を制御することができ、冷凍サイクルを最適な状態で運転することができる。このため、冷凍装置はサイクル効率(COP)の高い運転ができる。 By using an electric expansion valve with variable throttle, it is possible to control the superheat of the refrigerant sucked by the compressor and the temperature of the refrigerant discharged from the compressor, and operate the refrigeration cycle in an optimal state. Can do. For this reason, the refrigeration apparatus can be operated with high cycle efficiency (COP).
また、絞り機構に流入する前の液冷媒を圧縮機の吸入口に導入するバイパス回路(液バイパス機構)を設けることにより、吐出冷媒の温度の上昇を抑えて圧縮機の信頼性を確保してきた(例えば、特許文献2)。 In addition, by providing a bypass circuit (liquid bypass mechanism) that introduces liquid refrigerant before flowing into the throttle mechanism into the suction port of the compressor, the rise in the temperature of the discharged refrigerant has been suppressed and the reliability of the compressor has been secured. (For example, patent document 2).
一方、冷凍装置には冷媒としては、HCFC系冷媒の代替冷媒としてHFC系冷媒が採用されているが、オゾン層の保護に加え、地球温暖化の防止が必要とされている。そこで、従来冷媒(R410A、R407Cなど)に比較して、地球温暖化係数の低い(低GWP)冷媒であるR32やR32を含む混合冷媒の使用が提案されている。 On the other hand, in the refrigeration apparatus, as a refrigerant, an HFC refrigerant is employed as an alternative refrigerant to the HCFC refrigerant, but in addition to protecting the ozone layer, it is necessary to prevent global warming. Therefore, the use of a mixed refrigerant containing R32 and R32, which are refrigerants having a low global warming potential (low GWP) compared to conventional refrigerants (R410A, R407C, etc.) has been proposed.
R32を冷凍装置に用いた場合には、R22、R410A、R407Cなどの従来冷媒を用いた場合に比べて理論COPや熱伝達率が高く、圧力損失が小さいため、実際のサイクル効率が高くなる。しかし、R32は、従来冷媒と比べて冷媒の熱物性である断熱指数が大きいため、圧縮機の吐出冷媒温度が約10℃以上高くなってしまう。特に、外気温度の高い過負荷条件時にはさらに吐出冷媒温度が上昇する。 When R32 is used in the refrigeration apparatus, the actual cycle efficiency is increased because the theoretical COP and heat transfer rate are higher and the pressure loss is smaller than when conventional refrigerants such as R22, R410A, and R407C are used. However, since R32 has a larger adiabatic index, which is the thermophysical property of the refrigerant, compared to the conventional refrigerant, the refrigerant discharge refrigerant temperature becomes higher by about 10 ° C. or more. In particular, the discharged refrigerant temperature further increases during an overload condition where the outside air temperature is high.
また、グローバル市場においては、価格を低く抑えるため、絞り機構として、固定絞りであるキャピラリーチューブを用いる場合が多い。その場合、標準的な運転条件や過負荷運転条件等の時に、圧縮機吸入冷媒のスーパーヒートや圧縮機吐出冷媒温度等を制御して、冷凍サイクルをそれぞれの条件の最適な状態に調整できなかった。 In the global market, in order to keep the price low, a capillary tube that is a fixed throttle is often used as the throttle mechanism. In that case, it is not possible to adjust the refrigeration cycle to the optimum state of each condition by controlling the superheat of the refrigerant sucked from the compressor, the refrigerant discharge refrigerant temperature, etc. under standard operating conditions or overload operating conditions It was.
絞り機構として、固定絞りを採用した冷凍装置に、R32単一冷媒やR32を主成分とする混合冷媒を用いる場合、過負荷運転時に吐出冷媒温度を許容温度以下になるようにキャピラリーチューブの流量を設定すると、標準的な運転条件では、キャピラリーチューブの流量が大きくなりすぎる。このため、冷凍サイクルを最適な状態に調整できず、冷凍能力やサイクル効率が低下するという課題がある。特に、R32単一冷媒やR32を主成分
とする混合冷媒を用いる場合には、従来の冷媒を用いる場合に比べてこの傾向が大きい。
When using a R32 single refrigerant or a mixed refrigerant containing R32 as the main component in a refrigeration system that employs a fixed throttle as the throttle mechanism, the flow rate of the capillary tube should be adjusted so that the discharge refrigerant temperature is below the allowable temperature during overload operation. If set, the capillary tube flow rate will be too high under standard operating conditions. For this reason, there is a problem that the refrigeration cycle cannot be adjusted to an optimum state and the refrigeration capacity and cycle efficiency are reduced. In particular, when an R32 single refrigerant or a mixed refrigerant containing R32 as a main component is used, this tendency is greater than when a conventional refrigerant is used.
また、液バイパス機構を採用した冷凍装置には、吐出冷媒温度が一定以上となった時に開成する電磁弁が必要である。また、電磁弁を動作させる電気回路なども必要となり、冷凍装置を製造する上でのコストアップの要因となっていた。 In addition, a refrigeration apparatus that employs a liquid bypass mechanism requires an electromagnetic valve that opens when the discharged refrigerant temperature reaches a certain level. In addition, an electric circuit for operating the electromagnetic valve is also required, which has been a factor in increasing costs in manufacturing the refrigeration apparatus.
本発明の目的は、高価な電動膨張弁や電磁弁を用いることなく、圧縮機の吐出冷媒温度が所定の基準値を越えるような過負荷状態となった場合においても、吐出冷媒温度の上昇を抑制して、圧縮機の信頼性を確保するとともに、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することである。 The object of the present invention is to increase the discharge refrigerant temperature even in an overload state in which the discharge refrigerant temperature of the compressor exceeds a predetermined reference value without using an expensive electric expansion valve or solenoid valve. It is intended to provide a refrigeration apparatus that suppresses and ensures the reliability of the compressor and that can be operated with high cycle efficiency during standard operation.
前記従来の課題を解決するために、第1の発明は、冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して冷凍サイクルを構成し、前記絞り装置と並列に制御弁を設け、前記制御弁は、前記凝縮器の出口冷媒が流れる第1流路と、前記圧縮機の吐出冷媒が流れる第2流路と、前記第1流路の流路断面積を変化させる弁体と、前記第2流路に設けられた形状記憶合金バネとを備え、前記第2流路を流れる冷媒が一定以上の温度になると前記形状記憶合金バネが変態して前記弁体を駆動するものである。 In order to solve the conventional problems, the first invention uses an R32 single refrigerant or a mixed refrigerant mainly composed of R32 as a refrigerant, and connects a compressor, a condenser, a throttling device, and an evaporator in an annular shape. The control valve is provided in parallel with the expansion device, and the control valve includes a first flow path through which the outlet refrigerant of the condenser flows, and a second flow path through which the discharge refrigerant of the compressor flows. When the refrigerant flowing through the second flow path has a temperature equal to or higher than a certain value, the valve body for changing the cross-sectional area of the first flow path and the shape memory alloy spring provided in the second flow path are provided. The shape memory alloy spring is transformed to drive the valve body.
第2の発明は、冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して冷凍サイクルを構成し、前記絞り装置と直列に制御弁を設け、前記制御弁は、前記凝縮器の出口冷媒が流れる第1流路と、前記圧縮機の吐出冷媒が流れる第2流路と、前記第1流路の流路断面積を変化させる弁体と、前記第2流路に設けられた形状記憶合金バネとを備え、前記第2流路を流れる冷媒が一定以上の温度になると前記形状記憶合金バネが変態して前記弁体を駆動するものである。 The second invention uses a R32 single refrigerant or a mixed refrigerant mainly composed of R32 as a refrigerant, and configures a refrigeration cycle by connecting a compressor, a condenser, an expansion device, and an evaporator in an annular shape, and the expansion device A control valve is provided in series with the first flow path through which the outlet refrigerant of the condenser flows, a second flow path through which the discharge refrigerant of the compressor flows, and a flow path disconnection of the first flow path. A valve body that changes an area; and a shape memory alloy spring provided in the second flow path, and the shape memory alloy spring is transformed when the temperature of the refrigerant flowing through the second flow path reaches a predetermined temperature or more. The valve body is driven.
本発明によれば、過負荷状態となった場合においても、圧縮機の吐出冷媒温度の上昇を抑制して圧縮機の信頼性を確保できるとともに、標準的な運転時にはサイクル効率の高い運転が可能である冷凍装置を低コストで実現できる。 According to the present invention, even when an overload condition occurs, it is possible to ensure the reliability of the compressor by suppressing the rise in the refrigerant discharge refrigerant temperature, and to operate with high cycle efficiency during standard operation. Can be realized at low cost.
第1の発明は、冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して冷凍サイクルを構成し、前記絞り装置と並列に制御弁を設け、前記制御弁は、前記凝縮器の出口冷媒が流れる第1流路と、前記圧縮機の吐出冷媒が流れる第2流路と、前記第1流路の流路断面積を変化させる弁体と、前記第2流路に設けられた形状記憶合金バネとを備え、前記第2流路を流れる冷媒が一定以上の温度になると前記形状記憶合金バネが変態して前記弁体を駆動するものである
。
The first invention uses an R32 single refrigerant or a mixed refrigerant mainly composed of R32 as a refrigerant, and configures a refrigeration cycle by connecting a compressor, a condenser, an expansion device, and an evaporator in an annular shape, and the expansion device A control valve is provided in parallel with the control valve. The control valve includes a first flow path through which the outlet refrigerant of the condenser flows, a second flow path through which the discharge refrigerant of the compressor flows, and a flow path disconnection of the first flow path. A valve body that changes an area; and a shape memory alloy spring provided in the second flow path, and the shape memory alloy spring is transformed when the temperature of the refrigerant flowing through the second flow path reaches a predetermined temperature or more. The valve body is driven.
これにより、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。 As a result, it is possible to provide a refrigeration apparatus that can ensure the reliability of the compressor by suppressing an increase in the discharged refrigerant temperature at the time of overload at a low cost and can operate with high cycle efficiency during standard operation. it can.
第2の発明は、冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して冷凍サイクルを構成し、前記絞り装置と直列に制御弁を設け、前記制御弁は、前記凝縮器の出口冷媒が流れる第1流路と、前記圧縮機の吐出冷媒が流れる第2流路と、前記第1流路の流路断面積を変化させる弁体と、前記第2流路に設けられた形状記憶合金バネとを備え、前記第2流路を流れる冷媒が一定以上の温度になると前記形状記憶合金バネが変態して前記弁体を駆動するものである。 The second invention uses a R32 single refrigerant or a mixed refrigerant mainly composed of R32 as a refrigerant, and configures a refrigeration cycle by connecting a compressor, a condenser, an expansion device, and an evaporator in an annular shape, and the expansion device A control valve is provided in series with the first flow path through which the outlet refrigerant of the condenser flows, a second flow path through which the discharge refrigerant of the compressor flows, and a flow path disconnection of the first flow path. A valve body that changes an area; and a shape memory alloy spring provided in the second flow path, and the shape memory alloy spring is transformed when the temperature of the refrigerant flowing through the second flow path reaches a predetermined temperature or more. The valve body is driven.
これにより、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。 As a result, it is possible to provide a refrigeration apparatus that can ensure the reliability of the compressor by suppressing an increase in the discharged refrigerant temperature at the time of overload at a low cost and can operate with high cycle efficiency during standard operation. it can.
第3の発明は、第1または第2の発明において、R32を主成分とする混合冷媒は、R32とハイドロフルオロオレフィンの混合冷媒としたものである。 According to a third invention, in the first or second invention, the mixed refrigerant mainly composed of R32 is a mixed refrigerant of R32 and a hydrofluoroolefin.
これにより、R32とハイドロフルオロオレフィンの混合冷媒を使用した場合においても、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。 As a result, even when a mixed refrigerant of R32 and hydrofluoroolefin is used, the reliability of the compressor is secured by suppressing the increase in the discharge refrigerant temperature at the time of overload at a low cost. A refrigeration apparatus capable of operating with high cycle efficiency can be provided. Furthermore, it is possible to provide a refrigeration apparatus that can reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the influence of warming.
第4の発明は、第3の発明において、ハイドロフルオロオレフィンは、HFO1234yfとしたものである。 In a fourth aspect based on the third aspect, the hydrofluoroolefin is HFO1234yf.
これにより、R32とHFO1234yfの混合冷媒を使用した場合においても、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。 As a result, even when a mixed refrigerant of R32 and HFO1234yf is used, the reliability of the compressor is ensured by suppressing an increase in the discharge refrigerant temperature at the time of overload at a low cost, and the cycle efficiency at the time of standard operation It is possible to provide a refrigeration apparatus that can be operated at high speed. Furthermore, it is possible to provide a refrigeration apparatus that can reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the influence of warming.
第5の発明は、第3の発明において、ハイドロフルオロオレフィンは、HFO1234zeとしたものである。 In a fifth aspect based on the third aspect, the hydrofluoroolefin is HFO1234ze.
これにより、R32とHFO1234zeの混合冷媒を使用した場合においても、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。 As a result, even when a mixed refrigerant of R32 and HFO1234ze is used, the reliability of the compressor is ensured by suppressing an increase in the discharge refrigerant temperature at the time of overload at a low cost, and the cycle efficiency during standard operation It is possible to provide a refrigeration apparatus that can be operated at high speed. Furthermore, it is possible to provide a refrigeration apparatus that can reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the influence of warming.
第6の発明は、第3の発明において、ハイドロフルオロオレフィンは、HFO1123としたものである。 In a sixth aspect based on the third aspect, the hydrofluoroolefin is HFO1123.
これにより、R32とHFO1123の混合冷媒を使用した場合においても、低コストで、過負荷時の吐出冷媒温度の上昇を抑制することで圧縮機の信頼性を確保し、標準的な
運転時にはサイクル効率の高い運転が可能である。さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。
As a result, even when a mixed refrigerant of R32 and HFO1123 is used, the reliability of the compressor is ensured by suppressing an increase in the discharge refrigerant temperature at the time of overload at a low cost, and the cycle efficiency at the time of standard operation High operation is possible. Furthermore, it is possible to provide a refrigeration apparatus that can reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the influence of warming.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
以下に、本発明の冷凍装置について説明する。本発明の冷凍装置の適用例として、空気調和機について図1を用いて説明する。図1は本発明の実施の形態1における空気調和機の冷凍サイクル構成図である。
(Embodiment 1)
The refrigeration apparatus of the present invention will be described below. As an application example of the refrigeration apparatus of the present invention, an air conditioner will be described with reference to FIG. FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to Embodiment 1 of the present invention.
実施の形態1に係る空気調和機は、屋外に設置される室外機8と屋内に設置される室内機9とを備えた、いわゆるセパレート式の空気調和機である。室外機8は、冷媒を圧縮する圧縮機1、冷媒と外気の熱を交換する室外熱交換器2、室外熱交換器2内を流れる冷媒と外気の熱交換を促進する室外ファン6、絞り装置としてのキャピラリーチューブ3、制御弁4等を備えている。室内機9は、冷媒と室内空気の熱を交換する室内熱交換器5、室内熱交換器5内を流れる冷媒と室内空気の熱交換を促進する室内ファン7等を備えている。室外機8と室内機9は液側接続管21とガス側接続管22で接続されている。 The air conditioner according to Embodiment 1 is a so-called separate air conditioner including an outdoor unit 8 installed outdoors and an indoor unit 9 installed indoors. The outdoor unit 8 includes a compressor 1 that compresses the refrigerant, an outdoor heat exchanger 2 that exchanges heat between the refrigerant and the outside air, an outdoor fan 6 that promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 2 and the outside air, and a throttle device As a capillary tube 3, a control valve 4, and the like. The indoor unit 9 includes an indoor heat exchanger 5 that exchanges heat between the refrigerant and room air, an indoor fan 7 that promotes heat exchange between the refrigerant flowing in the indoor heat exchanger 5 and room air, and the like. The outdoor unit 8 and the indoor unit 9 are connected by a liquid side connecting pipe 21 and a gas side connecting pipe 22.
空気調和機の冷房運転時には、室外熱交換器2が凝縮器として作用し、室内熱交換器5が蒸発器として作用する。圧縮機1、室外熱交換器2、絞り装置としてのキャピラリーチューブ3、室内熱交換器5を配管により環状に接続して、冷凍サイクルを構成している。 During the cooling operation of the air conditioner, the outdoor heat exchanger 2 acts as a condenser, and the indoor heat exchanger 5 acts as an evaporator. A compressor 1, an outdoor heat exchanger 2, a capillary tube 3 as an expansion device, and an indoor heat exchanger 5 are connected in a ring shape by piping to constitute a refrigeration cycle.
冷凍サイクル内には、ジフルオロメタン(R32)単一冷媒またはR32を主成分とする混合冷媒が封入されている。R32を主成分とする混合冷媒としては、R32と2,3,3,3−テトラフルオロ−1−プロペン(HFO1234yf)との混合冷媒、R32とトランス−1,3,3,3−テトラフルオロプロペン(HFO1234ze)、またはR32とトリフルオロエチレン(HFO1123)との混合冷媒が、冷媒そのものの持つ温暖化係数の低減と、高いサイクル効率による冷凍サイクルとしての温暖化影響を低減との効果を両立する上で望ましい。 In the refrigeration cycle, difluoromethane (R32) single refrigerant or a mixed refrigerant containing R32 as a main component is enclosed. The mixed refrigerant mainly composed of R32 includes a mixed refrigerant of R32 and 2,3,3,3-tetrafluoro-1-propene (HFO1234yf), and R32 and trans-1,3,3,3-tetrafluoropropene. (HFO1234ze) or a mixed refrigerant of R32 and trifluoroethylene (HFO1123) achieves both the effect of reducing the global warming coefficient of the refrigerant itself and reducing the effect of global warming as a refrigeration cycle due to high cycle efficiency. Is desirable.
また、使用される冷媒で、R32とHFO1123の混合冷媒は、R32が30重量%以上60重量%以下とする。R1123にR32を30重量%以上混合することで、R1123の不均化反応を抑制できる。また、R32とHFO1123混合冷媒は、従来冷媒と比べて冷媒の熱物性である断熱指数が大きいため、圧縮機の吐出冷媒温度が高くなる。このため、過負荷条件時に吐出冷媒温度を低減することにより、圧縮機の信頼性を確保できるという効果が大きく影響する。 In addition, R32 is 30 wt% or more and 60 wt% or less in the refrigerant used, which is a mixed refrigerant of R32 and HFO1123. By mixing 30 wt% or more of R32 with R1123, the disproportionation reaction of R1123 can be suppressed. In addition, the mixed refrigerant of R32 and HFO1123 has a higher heat insulation index, which is the thermophysical property of the refrigerant, than that of the conventional refrigerant, and thus the refrigerant discharge refrigerant temperature becomes higher. For this reason, the effect that the reliability of a compressor can be ensured by reducing the discharge refrigerant temperature under an overload condition greatly affects.
この冷凍装置において、絞り装置はキャピラリーチューブ3であり、制御弁4は、キャピラリーチューブ3と並列に接続されている。制御弁4は、凝縮器の出口冷媒が流れる第1流路14と、圧縮機1の吐出冷媒が流れる第2流路15とを備えている。つまり、制御弁4の第1流路14は、室外熱交換器2の出口とキャピラリーチューブ3の入口とを分岐し、キャピラリーチューブ3の出口と液側接続管21とに合流するバイパス回路に接続されている。また、制御弁4の第2流路15は、圧縮機1の出口と室外熱交換器2との間に接続されている。 In this refrigeration apparatus, the expansion device is a capillary tube 3, and the control valve 4 is connected in parallel with the capillary tube 3. The control valve 4 includes a first flow path 14 through which the outlet refrigerant of the condenser flows and a second flow path 15 through which the discharge refrigerant of the compressor 1 flows. That is, the first flow path 14 of the control valve 4 branches from the outlet of the outdoor heat exchanger 2 and the inlet of the capillary tube 3 and is connected to a bypass circuit that joins the outlet of the capillary tube 3 and the liquid side connection pipe 21. Has been. The second flow path 15 of the control valve 4 is connected between the outlet of the compressor 1 and the outdoor heat exchanger 2.
図2は、実施の形態1における冷凍装置に用いられる制御弁4の縦断面図である。図2において、10は弁体、11は弁座、12はバイアスバネ、13は形状記憶合金バネ、14は第1流路、15は第2流路、16はバイアスバネ12と形状記憶合金バネ13のバネ力の差により駆動され磁性体である弁駆動体である。弁体10は磁性体である弁駆動体1
6の動きに従って移動するものである。
FIG. 2 is a longitudinal sectional view of the control valve 4 used in the refrigeration apparatus in the first embodiment. In FIG. 2, 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is a shape memory alloy spring, 14 is a first flow path, 15 is a second flow path, 16 is a bias spring 12 and a shape memory alloy spring. 13 is a valve drive body that is driven by a difference in spring force of 13 and is a magnetic body. The valve body 10 is a valve drive body 1 which is a magnetic body.
It moves according to the movement of 6.
制御弁4は、外殻を構成する略円筒状の本体41と、本体41内に設けられ本体41の内径より外径の小さい略円筒状の仕切体42と、本体41および仕切体42の両側には、それぞれの端部を塞ぐ側版を備えている。第1流路14は、仕切体42の内壁と2枚の側板とで形成される略密閉空間で形成される円筒状の流路である。第2流路15は、本体41の内壁と仕切体42の外壁と2枚の側板とで形成される略密閉空間で形成される円環柱状の流路である。第1流路14、第2流路15の側板にはそれぞれ、配管が接続される入口部、出口部が設けられている。第2流路15の出口部が設けられた側の側板には、側面がテーパ状に形成された孔である弁座11が設けられている。 The control valve 4 includes a substantially cylindrical main body 41 constituting an outer shell, a substantially cylindrical partition body 42 provided in the main body 41 and having an outer diameter smaller than the inner diameter of the main body 41, and both sides of the main body 41 and the partition body 42. Has a side plate that closes each end. The first flow path 14 is a cylindrical flow path formed by a substantially sealed space formed by the inner wall of the partition 42 and the two side plates. The second flow path 15 is an annular column-shaped flow path formed by a substantially sealed space formed by the inner wall of the main body 41, the outer wall of the partition 42, and two side plates. The side plates of the first flow path 14 and the second flow path 15 are respectively provided with an inlet portion and an outlet portion to which piping is connected. The side plate on the side where the outlet portion of the second flow path 15 is provided is provided with a valve seat 11 which is a hole having a tapered side surface.
第1流路14内には、第1流路14の流路断面積を変化させる弁体10が設けられている。弁体10は、仕切体42内を中心軸方向に摺動しながら移動する円盤状の弁体基部10aと、弁座11のテーパ形状に相対する円錐台形状の弁部10bと、弁体基部10aと弁部10bとを接続する軸とを備えている。弁体基部10aには、第1流路14の入口部から出口部へと冷媒が流れる第1流通孔10cが設けられている。弁体10のうち、少なくとも弁体基部10aは、弁駆動体16が発生する磁力を受ける被磁性体で形成されている。 A valve body 10 that changes the cross-sectional area of the first flow path 14 is provided in the first flow path 14. The valve body 10 includes a disc-shaped valve body base portion 10a that moves while sliding in the central axis direction within the partition body 42, a truncated cone-shaped valve portion 10b that faces the taper shape of the valve seat 11, and a valve body base portion. 10a and a shaft for connecting the valve portion 10b. The valve body base portion 10a is provided with a first flow hole 10c through which the refrigerant flows from the inlet portion to the outlet portion of the first flow path 14. Of the valve body 10, at least the valve body base portion 10 a is formed of a magnetic material that receives the magnetic force generated by the valve driver 16.
第2流路15内には、本体41と仕切体42との間を中心軸方向に摺動しながら移動する円環形状の弁駆動体16が設けられている。弁駆動体16には、第2流路15の入口部から出口部へと冷媒が流れる第2流通孔16aが設けられている。また、弁駆動体16と第2流路15の一方の側版との間には、コイルバネ形状のバイアスバネ12が設けられている。そして、弁駆動体16と他方の側板との間には、コイルバネ形状の形状記憶合金バネ13が設けられている。形状記憶合金バネ13は、第2流路15内を流れる冷媒、つまり、圧縮機1の吐出冷媒にさらされており、圧縮機1の吐出冷媒が一定以上の温度になると変態する。 An annular valve driver 16 that moves while sliding in the central axis direction between the main body 41 and the partition 42 is provided in the second flow path 15. The valve driver 16 is provided with a second flow hole 16 a through which the refrigerant flows from the inlet portion to the outlet portion of the second flow path 15. A coil spring-shaped bias spring 12 is provided between the valve driver 16 and one side plate of the second flow path 15. A shape memory alloy spring 13 having a coil spring shape is provided between the valve driver 16 and the other side plate. The shape memory alloy spring 13 is exposed to the refrigerant flowing through the second flow path 15, that is, the refrigerant discharged from the compressor 1, and transforms when the refrigerant discharged from the compressor 1 reaches a certain temperature.
バイアスバネ12と形状記憶合金バネ13の変位量のバランスにより、弁駆動体16は本体41内を軸方向に移動する。そして、磁性体である弁駆動体16の移動にともなって、被磁性体で形成された弁体10が仕切体42内を軸方向に移動する。これによって、弁部10bと弁座11との間に形成される隙間が変化する。 The valve driver 16 moves in the body 41 in the axial direction by the balance of the displacement amount of the bias spring 12 and the shape memory alloy spring 13. As the valve drive body 16 that is a magnetic body moves, the valve body 10 formed of a magnetic body moves in the partition 42 in the axial direction. Thereby, the clearance gap formed between the valve part 10b and the valve seat 11 changes.
図3は形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)である。加熱時と冷却時の動作温度には温度差、すなわち温度ヒステリシスがあり、形状記憶合金バネ13は加熱時の変態温度T1(例えば110℃)に、冷却時の変態温度T2(例えば90℃)に調節している。 FIG. 3 is a temperature-strain curve (hysteresis curve) of the shape memory alloy spring 13. There is a temperature difference between the operating temperature during heating and cooling, that is, temperature hysteresis, and the shape memory alloy spring 13 has a transformation temperature T1 during heating (eg, 110 ° C.) and a transformation temperature T 2 during cooling (eg, 90 ° C.). It is adjusting.
上記構成において、制御弁4の動作を説明する。圧縮機1の吐出冷媒温度が上昇した時、形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、バイアスバネ12のバネ力に抗して弁駆動体16を押動する。その動きに従って弁体10も移動して、図6に示すように、第1流路14は開状態となる。そのため、凝縮器である室外熱交換器2の出口冷媒の一部は第1流路14を流れ、キャピラリーチューブ3を流れる冷媒は減少する。 In the above configuration, the operation of the control valve 4 will be described. When the discharge refrigerant temperature of the compressor 1 rises, the shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1 and pushes the valve driver 16 against the spring force of the bias spring 12. The valve body 10 also moves in accordance with the movement, and the first flow path 14 is opened as shown in FIG. Therefore, a part of the outlet refrigerant of the outdoor heat exchanger 2 that is a condenser flows through the first flow path 14, and the refrigerant flowing through the capillary tube 3 decreases.
一方、圧縮機1の吐出冷媒温度が低下して、設定変態温度T2より低くなると、形状記憶合金バネ13は変形し、弁駆動体16はバイアスバネ12に押動される。それに従って弁体10の弁部10bが弁座11に押し当てられ、図2に示すように、第1流路14は閉状態となる。そのため、冷媒はキャピラリーチューブ3にしか流れることができない。 On the other hand, when the discharge refrigerant temperature of the compressor 1 decreases and becomes lower than the set transformation temperature T2, the shape memory alloy spring 13 is deformed and the valve driver 16 is pushed by the bias spring 12. Accordingly, the valve portion 10b of the valve body 10 is pressed against the valve seat 11, and the first flow path 14 is closed as shown in FIG. Therefore, the refrigerant can flow only to the capillary tube 3.
この様に構成された、空気調和機について動作を説明する。まず、通常の運転状態について冷房運転を例にして説明する。通常の運転状態では、圧縮機1の吐出冷媒温度は設定変態温度T2より低いために、制御弁4は閉状態となっている。圧縮機1によって圧縮された冷媒は高温高圧の冷媒となり、室外熱交換器2に流入し、室外ファン6によって外気と熱交換を促進して放熱し高圧の液冷媒となり、キャピラリーチューブ3に送られる。この時、制御弁4は閉止している。 The operation of the air conditioner configured as described above will be described. First, the normal operation state will be described by taking cooling operation as an example. In a normal operation state, the control valve 4 is closed because the refrigerant discharge temperature of the compressor 1 is lower than the set transformation temperature T2. The refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant, flows into the outdoor heat exchanger 2, promotes heat exchange with the outside air by the outdoor fan 6, dissipates heat, becomes a high-pressure liquid refrigerant, and is sent to the capillary tube 3. . At this time, the control valve 4 is closed.
キャピラリーチューブ3で、冷媒は減圧されて低温低圧の二相冷媒となり、液側接続管21を通って、室内熱交換器5に送られる。 In the capillary tube 3, the refrigerant is depressurized to become a low-temperature and low-pressure two-phase refrigerant, which is sent to the indoor heat exchanger 5 through the liquid side connection pipe 21.
室内ファン7によって吸い込まれた室内空気は室内熱交換器5を通って低温低圧の二相冷媒と熱交換し、冷媒は室内空気の熱を吸熱し蒸発気化して低温のガス冷媒となる。このとき冷媒によって吸熱された室内空気は温度湿度が低下して室内ファン7によって室内に吹き出され室内を冷房する。また、ガス冷媒は、ガス側接続管22を通過して圧縮機1に戻る。 The indoor air sucked by the indoor fan 7 passes through the indoor heat exchanger 5 and exchanges heat with the low-temperature and low-pressure two-phase refrigerant, and the refrigerant absorbs the heat of the indoor air and evaporates and becomes a low-temperature gas refrigerant. At this time, the indoor air absorbed by the refrigerant is lowered in temperature and humidity and blown out into the room by the indoor fan 7 to cool the room. Further, the gas refrigerant passes through the gas side connecting pipe 22 and returns to the compressor 1.
次に室外気温が高い状態などの過負荷運転時の運転状態について説明する。冷房運転時、室外気温が高く、制御弁4の第2流路15を流れる圧縮機1の吐出冷媒の温度が設定変態温度T1より高い時は、形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁駆動体16を押動しバイアスバネ12を圧縮する。このため、弁体10は磁性体である弁駆動体16の動きに従って移動して、第1流路14は開状態となる。これにより、圧縮機1から吐出された冷媒が流れる冷媒流路が第1流路14とキャピラリーチューブ3の両方に増加する。このため、キャピラリーチューブ3を流れる冷媒は減少する。その結果、絞り装置での減圧量が減少し、吐出冷媒温度が低下する。 Next, the operation state at the time of overload operation, such as a state with high outdoor temperature, is demonstrated. During the cooling operation, when the outdoor air temperature is high and the temperature of the refrigerant discharged from the compressor 1 flowing through the second flow path 15 of the control valve 4 is higher than the set transformation temperature T1, the shape memory alloy spring 13 is a spring force of the bias spring 12. The bias driver 12 is compressed by pushing the valve driver 16 against the above. For this reason, the valve body 10 moves according to the movement of the valve drive body 16 which is a magnetic body, and the first flow path 14 is opened. As a result, the refrigerant flow path through which the refrigerant discharged from the compressor 1 flows increases in both the first flow path 14 and the capillary tube 3. For this reason, the refrigerant flowing through the capillary tube 3 decreases. As a result, the amount of decompression at the expansion device decreases, and the discharged refrigerant temperature decreases.
さらに、制御弁4の第2流路15を流れる圧縮機1の吐出冷媒の温度が形状記憶合金バネ13の設定変態温度T2より低くなると、再び、図4のように形状記憶合金バネ13は変形し、弁駆動体16はバイアスバネ12に押動される。それに従って弁体10の弁部10bが弁座11に押し当てられ、第1流路14は閉状態となる。冷媒はキャピラリーチューブ3しか流れることができず、絞り装置前後で圧力差が大きくなり、最適な冷凍サイクルを実現し、サイクル効率が向上する。 Further, when the temperature of the refrigerant discharged from the compressor 1 flowing through the second flow path 15 of the control valve 4 becomes lower than the set transformation temperature T2 of the shape memory alloy spring 13, the shape memory alloy spring 13 is deformed again as shown in FIG. The valve driver 16 is pushed by the bias spring 12. Accordingly, the valve portion 10b of the valve body 10 is pressed against the valve seat 11, and the first flow path 14 is closed. The refrigerant can only flow through the capillary tube 3, and the pressure difference between the front and rear of the throttle device increases, realizing an optimal refrigeration cycle and improving cycle efficiency.
このように、室外気温が非常に高く、圧縮機1の吐出冷媒の温度が高くなるような場合は、絞り装置の冷媒流量が増加し、圧縮機1の吐出冷媒温度を低減する。一方、外気温度が通常の温度の場合は、通常の絞り装置の流量に制御でき、サイクル効率の良い冷房運転が可能となる。 As described above, when the outdoor air temperature is very high and the temperature of the refrigerant discharged from the compressor 1 becomes high, the refrigerant flow rate of the expansion device increases, and the temperature of the refrigerant discharged from the compressor 1 decreases. On the other hand, when the outside air temperature is a normal temperature, the flow rate of the normal throttle device can be controlled, and a cooling operation with high cycle efficiency is possible.
(実施の形態2)
図5は、本発明の冷凍装置の第2の実施の形態における冷凍サイクル図である。第2の実施の形態において、第1の実施の形態と同じ構成は同じ符号を付して説明を省略する。
(Embodiment 2)
FIG. 5 is a refrigeration cycle diagram in the second embodiment of the refrigeration apparatus of the present invention. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
図5において、第2の制御弁19は、キャピラリーチューブ3と直列に接続された制御弁である。つまり、第2の制御弁19の第1流路14は、キャピラリーチューブ3の出口と液側接続管21との間に接続されている。また、第2の制御弁19の第2流路15は、圧縮機1の出口と室外熱交換器2との間に接続されている。 In FIG. 5, the second control valve 19 is a control valve connected in series with the capillary tube 3. That is, the first flow path 14 of the second control valve 19 is connected between the outlet of the capillary tube 3 and the liquid side connection pipe 21. The second flow path 15 of the second control valve 19 is connected between the outlet of the compressor 1 and the outdoor heat exchanger 2.
第2の制御弁19は、第1の実施の形態1で説明した制御弁4とは構造が異なり、減圧機構を備えている。 The second control valve 19 is different in structure from the control valve 4 described in the first embodiment and includes a pressure reducing mechanism.
図6は、第2の制御弁19の縦断面図である。図6において、弁体10は、弁体基部1
0aと弁部10bとを接続する軸内に連通する第3流路20を備えている。第3流路20の一端は、弁体基部10aの弁部10bが設けられていない側に開口し、他端は、弁部10bの円錐台形状の天面に開口している。なお、形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)は、図3の実施の形態1のものと同一である。
FIG. 6 is a longitudinal sectional view of the second control valve 19. In FIG. 6, the valve body 10 includes a valve body base 1.
A third flow path 20 is provided in communication with the shaft connecting 0a and the valve portion 10b. One end of the third flow path 20 opens to the side where the valve portion 10b of the valve body base portion 10a is not provided, and the other end opens to the top surface of the truncated cone shape of the valve portion 10b. The temperature-strain curve (hysteresis curve) of the shape memory alloy spring 13 is the same as that of the first embodiment shown in FIG.
上記構成において、第2の制御弁19の動作を説明する。圧縮機1の吐出冷媒温度が上昇した時、形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、バイアスバネ12のバネ力に抗して弁駆動体16を押動する。その動きに従って弁体10も移動して、図6に示すように、第1流路14は開状態となる。このとき、第1流路14内では、冷媒は、第1流通孔10cと第3流路20とを流れることができる。 In the above configuration, the operation of the second control valve 19 will be described. When the discharge refrigerant temperature of the compressor 1 rises, the shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1 and pushes the valve driver 16 against the spring force of the bias spring 12. The valve body 10 also moves in accordance with the movement, and the first flow path 14 is opened as shown in FIG. At this time, in the first flow path 14, the refrigerant can flow through the first flow hole 10 c and the third flow path 20.
一方、圧縮機1の吐出冷媒温度が低下して、設定変態温度T2より低くなると、形状記憶合金バネ13は変形し、弁駆動体16はバイアスバネ12に押動さる。それに従って弁体10の弁部10bは弁座11に押し当てられる。これにより、第1流路14内では、冷媒は第1流通孔10cを通って流れることができず、第3流路20のみを通って流れることとなる。そのため、第2の制御弁19を流れる室外熱交換器2の出口冷媒の流路が狭められるため、減圧される。 On the other hand, when the discharge refrigerant temperature of the compressor 1 decreases and becomes lower than the set transformation temperature T2, the shape memory alloy spring 13 is deformed, and the valve driver 16 is pushed by the bias spring 12. Accordingly, the valve portion 10 b of the valve body 10 is pressed against the valve seat 11. Thereby, in the 1st flow path 14, a refrigerant | coolant cannot flow through the 1st flow hole 10c, but will flow through only the 3rd flow path 20. FIG. Therefore, the flow path of the outlet refrigerant of the outdoor heat exchanger 2 that flows through the second control valve 19 is narrowed, so that the pressure is reduced.
次に、空気調和機の動作を説明する。通常の運転状態では、圧縮機1の吐出冷媒温度は設定変態温度T2より低いために、第2の制御弁19は弁体10が弁座11に押し付けられた状態となっている。 Next, the operation of the air conditioner will be described. In a normal operation state, since the discharged refrigerant temperature of the compressor 1 is lower than the set transformation temperature T2, the second control valve 19 is in a state where the valve body 10 is pressed against the valve seat 11.
室外気温が高い状態などの過負荷運転時の運転状態では、第2の制御弁19の第2流路15を流れる圧縮機1の吐出冷媒の温度が設定変態温度T1より高い時は、図6のように形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁駆動体16を押動しバイアスバネ12を圧縮する。このため、弁体10は磁性体である弁駆動体16の動きに従って移動して、第1流路14は開状態となる。冷媒は第1流通孔10cと第3流路20を流れるため、第2の制御弁19により減圧されず、第2の制御弁19前後で冷媒温度の差は生じない。その結果、圧縮機1の吐出冷媒温度を低下させることができる。 In an operating state during an overload operation such as a high outdoor air temperature, when the temperature of the refrigerant discharged from the compressor 1 flowing through the second flow path 15 of the second control valve 19 is higher than the set transformation temperature T1, FIG. As described above, the shape memory alloy spring 13 pushes the valve driver 16 against the spring force of the bias spring 12 to compress the bias spring 12. For this reason, the valve body 10 moves according to the movement of the valve drive body 16 which is a magnetic body, and the first flow path 14 is opened. Since the refrigerant flows through the first flow hole 10 c and the third flow path 20, the refrigerant is not decompressed by the second control valve 19, and there is no refrigerant temperature difference before and after the second control valve 19. As a result, the discharge refrigerant temperature of the compressor 1 can be lowered.
そして、室外気温が低くなる等で、第2の制御弁19の第2流路15を流れる圧縮機1の吐出冷媒の温度が形状記憶合金バネ13の設定変態温度T2より低くなると、図7のように形状記憶合金バネ13は変形し、弁駆動体16はバイアスバネ12に押動される。それに従って弁体10の弁部10bが弁座11に押し当てられる。これにより、冷媒は第1流通孔10cを流れることができず、第3流路20しか流れることができず流路が狭められる。このため、第2の制御弁19前後で圧力差が生じ、絞り装置前後で圧力差が大きくなり、最適な冷凍サイクルを実現し、サイクル効率が向上する。 When the temperature of the refrigerant discharged from the compressor 1 flowing through the second flow path 15 of the second control valve 19 becomes lower than the set transformation temperature T2 of the shape memory alloy spring 13 due to, for example, the outdoor air temperature becoming lower, FIG. Thus, the shape memory alloy spring 13 is deformed, and the valve driver 16 is pushed by the bias spring 12. Accordingly, the valve portion 10 b of the valve body 10 is pressed against the valve seat 11. As a result, the refrigerant cannot flow through the first flow hole 10c, but can flow only through the third flow path 20, and the flow path is narrowed. For this reason, a pressure difference arises before and behind the 2nd control valve 19, a pressure difference becomes large before and behind a throttle device, an optimal refrigerating cycle is realized, and cycle efficiency improves.
このように、減圧機構を持つ制御弁である第2の制御弁19を用いることで、低コストで環境温度の変化などにより圧縮機1の吐出冷媒の温度が所定の基準値を越えるような過負荷状態となった場合においても、圧縮機1の吐出冷媒温度の上昇を抑制して圧縮機1の信頼性を確保し、サイクル効率の高い運転を可能とした。 Thus, by using the second control valve 19 which is a control valve having a pressure reducing mechanism, the temperature of the refrigerant discharged from the compressor 1 exceeds a predetermined reference value due to a change in the environmental temperature at a low cost. Even in a load state, the increase in the refrigerant temperature discharged from the compressor 1 is suppressed to ensure the reliability of the compressor 1 and to enable operation with high cycle efficiency.
なお、以上の実施の形態では空気調和機の冷房運転時の動作と効果を説明したが、冷凍装置に四方弁を設け、暖房運転も可能な構成としてもよい。この場合には、室外熱交換器2が蒸発器として作用し、室内熱交換器5が凝縮器として作用する。そして、暖房運転時に圧縮機1の吐出冷媒温度が所定の基準値を越えるような過負荷状態となった場合においても、制御弁4や第2の制御弁19が動作し、圧縮機1の吐出冷媒温度の上昇を抑制して、圧縮機1の信頼性を確保し、サイクル効率の高い運転を可能とすることもできる。 In addition, although the above embodiment demonstrated the operation | movement and effect at the time of air_conditioning | cooling operation of an air conditioner, it is good also as a structure which can provide a four-way valve in a refrigeration apparatus and can also perform heating operation. In this case, the outdoor heat exchanger 2 acts as an evaporator, and the indoor heat exchanger 5 acts as a condenser. Even when the refrigerant discharge temperature of the compressor 1 exceeds a predetermined reference value during the heating operation, the control valve 4 and the second control valve 19 operate to discharge the compressor 1 The rise in the refrigerant temperature can be suppressed, the reliability of the compressor 1 can be ensured, and the operation with high cycle efficiency can be enabled.
また、空気調和機以外の冷凍装置においても同様の効果を奏す。 In addition, the same effect can be obtained in a refrigeration apparatus other than an air conditioner.
本発明によれば、圧縮機の吐出冷媒温度の上昇を抑制して圧縮機の信頼性を向上させ、サイクル効率の高い冷凍装置を提供できるので、家庭用や業務用の空気調和機、蒸気圧縮機の給湯器、自動車用エアコンなどに適用できる。 According to the present invention, it is possible to improve the reliability of the compressor by suppressing an increase in the refrigerant discharge refrigerant temperature and to provide a refrigeration apparatus with high cycle efficiency. It can be applied to water heaters for automobiles and air conditioners for automobiles.
1 圧縮機
2 室外熱交換器
3 キャピラリーチューブ
4 制御弁
5 室内熱交換器
6 室外ファン
7 室内ファン
8 室外機
9 室内機
10 弁体
10a 弁体基部
10b 弁部
10c 第1流通孔
11 弁座
12 バイアスバネ
13 形状記憶合金バネ
14 第1流路
15 第2流路
16 弁駆動体
16a 第2流通孔
19 第2の制御弁
21 液側接続管
22 ガス側接続管
41 本体
42 仕切体
DESCRIPTION OF SYMBOLS 1 Compressor 2 Outdoor heat exchanger 3 Capillary tube 4 Control valve 5 Indoor heat exchanger 6 Outdoor fan 7 Indoor fan 8 Outdoor unit 9 Indoor unit 10 Valve body 10a Valve body base part 10b Valve part 10c 1st flow hole 11 Valve seat 12 Bias spring 13 Shape memory alloy spring 14 First flow path 15 Second flow path 16 Valve driver 16a Second flow hole 19 Second control valve 21 Liquid side connection pipe 22 Gas side connection pipe 41 Main body 42 Partition body
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014098334A JP6343805B2 (en) | 2014-05-12 | 2014-05-12 | Refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014098334A JP6343805B2 (en) | 2014-05-12 | 2014-05-12 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015215127A JP2015215127A (en) | 2015-12-03 |
JP6343805B2 true JP6343805B2 (en) | 2018-06-20 |
Family
ID=54752170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014098334A Expired - Fee Related JP6343805B2 (en) | 2014-05-12 | 2014-05-12 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6343805B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6312943B1 (en) * | 2016-10-28 | 2018-04-18 | 三菱電機株式会社 | Air conditioner |
JP2018123691A (en) * | 2017-01-30 | 2018-08-09 | ダイキン工業株式会社 | Compressor |
WO2023228628A1 (en) * | 2022-05-24 | 2023-11-30 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5369852U (en) * | 1976-11-15 | 1978-06-12 | ||
JPH0233110Y2 (en) * | 1984-12-10 | 1990-09-06 | ||
JPS60162785U (en) * | 1985-03-04 | 1985-10-29 | ダイキン工業株式会社 | Refrigeration equipment |
JPS6387472U (en) * | 1986-11-24 | 1988-06-07 | ||
JP3465654B2 (en) * | 1999-12-14 | 2003-11-10 | ダイキン工業株式会社 | Refrigeration equipment |
JP5935798B2 (en) * | 2011-05-19 | 2016-06-15 | 旭硝子株式会社 | Working medium and thermal cycle system |
JP2014031916A (en) * | 2012-08-02 | 2014-02-20 | Panasonic Corp | Refrigeration device |
-
2014
- 2014-05-12 JP JP2014098334A patent/JP6343805B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015215127A (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9709304B2 (en) | Air-conditioning apparatus | |
WO2019073870A1 (en) | Refrigeration device | |
JP5847366B1 (en) | Air conditioner | |
EP3217115B1 (en) | Air conditioning apparatus | |
AU2011357097B2 (en) | Air-conditioning apparatus | |
WO2016059696A1 (en) | Refrigeration cycle device | |
WO2016194098A1 (en) | Air-conditioning device and operation control device | |
WO2016079834A1 (en) | Air conditioning device | |
WO2015152369A1 (en) | Air conditioner | |
JPWO2016203624A1 (en) | Refrigeration cycle equipment | |
JP6080939B2 (en) | Air conditioner | |
JP6343805B2 (en) | Refrigeration equipment | |
EP3441696B1 (en) | Refrigeration cycle device | |
WO2017010007A1 (en) | Air conditioner | |
JP6288243B2 (en) | Air conditioner | |
JP4140642B2 (en) | Refrigeration equipment | |
WO2020188756A1 (en) | Air conditioner | |
JP2014031916A (en) | Refrigeration device | |
KR20180135882A (en) | A heat pump having refrigerant storage means | |
JP6984048B2 (en) | Air conditioner | |
EP3404341A1 (en) | Refrigeration cycle apparatus and liquid circulating apparatus including the same | |
WO2015038745A1 (en) | Carbon dioxide refrigeration system with a multi-way valve | |
WO2015140950A1 (en) | Air conditioner | |
US20240247845A1 (en) | Heating, ventilation, and air-conditioning systems and methods with bypass line | |
WO2021166126A1 (en) | Air-conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160520 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180423 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6343805 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |