JP2014031916A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2014031916A
JP2014031916A JP2012171583A JP2012171583A JP2014031916A JP 2014031916 A JP2014031916 A JP 2014031916A JP 2012171583 A JP2012171583 A JP 2012171583A JP 2012171583 A JP2012171583 A JP 2012171583A JP 2014031916 A JP2014031916 A JP 2014031916A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
control valve
temperature
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012171583A
Other languages
Japanese (ja)
Inventor
Akira Fujitaka
章 藤高
Yoshikazu Kawabe
義和 川邉
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012171583A priority Critical patent/JP2014031916A/en
Publication of JP2014031916A publication Critical patent/JP2014031916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle capable of securing reliability of a compressor by suppressing the rise of a discharge temperature of the compressor at the time of an overload even when it comes into a state of an overload where the discharge temperature of the compressor surpasses a predetermined reference value because of the change in an environmental temperature and the like.SOLUTION: A refrigeration device has a configuration in which a capillary tube 3 and a control valve 4 which is connected in parallel to the capillary tube are used as a diaphragm device, and the control valve is driven by a shape memory alloy spring, and also a refrigeration cycle is configured by using a constant speed compressor 1. Thereby, the refrigeration device can be provided in which the rise in a discharge temperature of the compressor at the time of an overload can be suppressed with a low cost configuration without using an expensive diaphragm amount variable type electric expansion valve and a capacity variable compressor and the like, reliability of the compressor can be secured, and an operation with high cycle efficiency is possible at the time of a normal operation.

Description

本発明は、蒸気圧縮機式の冷凍装置に関する。   The present invention relates to a vapor compressor type refrigeration apparatus.

従来、空気調和装置を含む冷凍装置が、運転時に、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合、圧縮機の絶縁材料の劣化や冷凍機油の変質など信頼性面に問題が発生する。この問題を解決するために絞り機構として絞り量可変の電動膨張弁、能力可変圧縮機を使用して吐出温度を調整してきた(例えば、特許文献1,2参照)。   Conventionally, when a refrigeration apparatus including an air conditioner is in an overload state in which the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature during operation, deterioration of the insulating material of the compressor Problems occur in terms of reliability, such as alteration of refrigeration oil. In order to solve this problem, the discharge temperature has been adjusted by using an electric expansion valve having a variable throttle amount and a variable capacity compressor as a throttle mechanism (see, for example, Patent Documents 1 and 2).

例えば、絞り量可変の電動膨張弁を用いれば、圧縮機吸入冷媒のスーパーヒートや圧縮機吐出温度を制御することができ、冷凍サイクルを最適な状態で運転することができて、サイクル効率の高い運転ができるという特徴がある。   For example, if an electric expansion valve with a variable throttle amount is used, the superheat of the compressor suction refrigerant and the discharge temperature of the compressor can be controlled, the refrigeration cycle can be operated in an optimum state, and the cycle efficiency is high. It is characterized by being able to drive.

また、絞り機構前の液冷媒を圧縮機吸入口に導入する液バイパス機構を採用することにより吐出温度の上昇を抑えて圧縮機の信頼性を確保することができる。   Further, by adopting a liquid bypass mechanism that introduces the liquid refrigerant before the throttling mechanism into the compressor suction port, it is possible to suppress an increase in discharge temperature and to ensure the reliability of the compressor.

この様な背景の中にあって最近、HCFC系冷媒の代替冷媒としてHFC系冷媒の採用が検討され始めている。このHFC系冷媒は、オゾン層の保護に加え、地球温暖化の防止に効果を発揮する。すなわち、従来のHCFC系冷媒(R410A、R407Cなど)に比較して低GWPである。よって、HFC系冷媒での一種であるR32やR32を含む混合冷媒の適用が叫ばれている。   Against this background, recently, the adoption of HFC refrigerant as an alternative refrigerant for HCFC refrigerant has begun to be examined. This HFC-based refrigerant is effective in preventing global warming in addition to protecting the ozone layer. That is, it has a low GWP compared to conventional HCFC refrigerants (R410A, R407C, etc.). Therefore, the application of a mixed refrigerant containing R32 or R32, which is a kind of HFC-based refrigerant, is called out.

上記R32を空調装置に用いた場合には、従来冷媒であるR22、R407C及びR410Aに比べて理論COPや熱伝達率が高く、圧力損失が小さいため、実際のサイクル効率が高くなるという効果がある。しかしながら、従来冷媒と比べて冷媒の熱物性である断熱指数が大きいため、圧縮機の吐出温度が約10℃以上高くなるという特性がある。特に、外気温度の高い過負荷条件時にはさらに吐出温度が上昇する。   When R32 is used in an air conditioner, the theoretical COP and heat transfer coefficient are higher than those of conventional refrigerants R22, R407C and R410A, and the pressure loss is small, so that the actual cycle efficiency is increased. . However, since the heat insulation index which is the thermophysical property of the refrigerant is larger than that of the conventional refrigerant, there is a characteristic that the discharge temperature of the compressor becomes higher by about 10 ° C. or more. In particular, the discharge temperature further increases during an overload condition where the outside air temperature is high.

特許第3465654号公報Japanese Patent No. 3465654 実公平2−33110号公報No. 2-333110

上記吐出温度の上昇防止はすでに述べたように絞り量可変の電動膨張弁、能力可変圧縮機を使用すれば可能であるが、大幅なコスト高を招くため、グローバル市場においては、価格を低く抑えるべく、一定速圧縮機と固定絞りであるキャピラリーチューブを用いる場合が多い。   As described above, it is possible to prevent the discharge temperature from rising by using an electric expansion valve with variable throttle amount and variable capacity compressor. However, since the cost is greatly increased, the price is kept low in the global market. Therefore, a constant speed compressor and a capillary tube which is a fixed throttle are often used.

このような一定速圧縮機と固定絞りであるキャピラリーチューブを用いた場合、標準的な運転条件や過負荷運転条件等の時に、圧縮機吸入冷媒のスーパーヒートや圧縮機吐出温度等を制御して、冷凍サイクルを、それぞれの条件の最適な状態に調整できない。そのため、R32単一冷媒やR32を主成分とする混合冷媒を用いる場合、過負荷運転時に許容吐出温度以下になるようにキャピラリーチューブの流量を設定すると、従来の冷媒と比べて、標準的な運転条件では、キャピラリーチューブの流量が大きすぎるため、冷凍サイク
ルを最適な状態に調整できず、冷凍能力やサイクル効率が低下するという課題がある。また、液バイパス機構は吐出温度が一定以上となった時に開成する電磁弁が必要であり、室外機に電磁弁を動作させる電気回路などが必要となり、コストアップの要因となってしまう。
When such a constant speed compressor and a capillary tube with a fixed throttle are used, the superheat of the compressor suction refrigerant, the discharge temperature of the compressor, etc. are controlled under standard operating conditions and overload operating conditions. The refrigeration cycle cannot be adjusted to the optimum state for each condition. Therefore, when using a single R32 refrigerant or a mixed refrigerant containing R32 as a main component, if the flow rate of the capillary tube is set so as to be equal to or lower than the allowable discharge temperature during an overload operation, a standard operation is achieved as compared with a conventional refrigerant. Under the conditions, since the flow rate of the capillary tube is too large, the refrigeration cycle cannot be adjusted to the optimum state, and there is a problem that the refrigeration capacity and the cycle efficiency are lowered. In addition, the liquid bypass mechanism requires an electromagnetic valve that opens when the discharge temperature exceeds a certain level, and an electric circuit that operates the electromagnetic valve on the outdoor unit is required, which increases costs.

本発明はこのような点に鑑みてなしたもので、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、低コストで過負荷時の圧縮機の吐出温度上昇を抑制して圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することを目的としたものである。   The present invention has been made in view of the above points, and even when an overload state in which the discharge temperature of the compressor exceeds a predetermined reference value due to a change in the environmental temperature or the like, the overload is performed at low cost. It is an object of the present invention to provide a refrigeration apparatus that suppresses an increase in the discharge temperature of the compressor at the time to ensure the reliability of the compressor and can be operated with high cycle efficiency during standard operation.

本発明は上記目的を達成するため、冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して構成した冷凍サイクルであって、前記絞り装置をキャピラリーチューブと該キャピラリーチューブと並列に配置した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって制御される構成、或いは前記絞り装置をキャピラリーチューブと該キャピラリーチューブと直列に接続した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって開閉制御される流路と常開型の流路とを並列に備えた構成としたものである。   In order to achieve the above object, the present invention uses an R32 single refrigerant or a mixed refrigerant mainly composed of R32 as a refrigerant, and a refrigeration cycle in which a constant speed compressor, a condenser, a throttling device, and an evaporator are connected in an annular shape. The throttle device includes a capillary tube and a control valve arranged in parallel with the capillary tube, and the control valve is controlled by a shape memory alloy spring, or the throttle device is a capillary tube. The control valve includes a control valve connected in series with the capillary tube, and the control valve includes a flow path controlled by a shape memory alloy spring and a normally open flow path in parallel. is there.

これにより、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、高価な絞り量可変型の電動膨張弁、能力可変圧縮機等を用いることなくキャピラリーチューブと形状記憶合金バネによって駆動される制御弁を用いるだけで圧縮機の吐出温度上昇を抑制することが可能となる。   As a result, even when the discharge temperature of the compressor exceeds a predetermined reference value due to changes in the environmental temperature, etc., the expensive variable throttle amount type electric expansion valve, variable capacity compressor, etc. It is possible to suppress an increase in the discharge temperature of the compressor only by using a control valve driven by a capillary tube and a shape memory alloy spring without using it.

本発明によれば、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、低コストで圧縮機の吐出温度の上昇を抑制して圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能である。   According to the present invention, even when the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature or the like, an increase in the discharge temperature of the compressor is suppressed at a low cost. Compressor reliability is ensured, and cycle-efficient operation is possible during standard operation.

本発明の実施の形態1における冷凍装置を適用した空気調和機の冷凍サイクル図Refrigeration cycle diagram of an air conditioner to which the refrigeration apparatus according to Embodiment 1 of the present invention is applied. 同空気調和機に用いた制御弁の断面図Cross section of control valve used in the air conditioner 同制御弁に用いた形状記憶合金バネの温度−ひずみ曲線(ヒステリシス曲線)図Temperature-strain curve (hysteresis curve) diagram of the shape memory alloy spring used for the control valve 同制御弁の動作を説明する断面図Sectional drawing explaining operation | movement of the control valve 本発明の実施の形態2における冷凍装置を適用した空気調和機の冷凍サイクル図Refrigeration cycle diagram of an air conditioner to which the refrigeration apparatus in Embodiment 2 of the present invention is applied. 同空気調和機に用いた第2の制御弁の断面図Sectional drawing of the 2nd control valve used for the air conditioner 同第2の制御弁の動作を説明する断面図Sectional drawing explaining operation | movement of the said 2nd control valve

第1の発明は、冷媒としてR32またはR32を主成分とする混合冷媒を用い、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して構成した冷凍サイクルであって、前記絞り装置をキャピラリーチューブと該キャピラリーチューブと並列に配置した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって制御される構成としてある。   A first aspect of the present invention is a refrigeration cycle comprising a constant speed compressor, a condenser, a throttle device, and an evaporator connected in an annular shape using R32 or a mixed refrigerant mainly composed of R32 as a refrigerant. The apparatus is constituted by a capillary tube and a control valve arranged in parallel with the capillary tube, and the control valve is controlled by a shape memory alloy spring.

これにより、高価な絞り量可変型の電動膨張弁、能力可変圧縮機等を用いることなくキャピラリーチューブと形状記憶合金バネによって駆動される制御弁を用いるだけの低コスト構成で過負荷時の圧縮機の吐出温度上昇を抑制でき、圧縮機の信頼性を確保し、標準的
な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。
As a result, the compressor at the time of overload can be constructed at a low cost by using only a control valve driven by a capillary tube and a shape memory alloy spring without using an expensive variable expansion amount type electric expansion valve, variable capacity compressor, etc. Thus, it is possible to provide a refrigeration apparatus that can suppress the increase in the discharge temperature, ensure the reliability of the compressor, and can operate with high cycle efficiency during standard operation.

第2の発明は、冷媒としてR32またはR32を主成分とする混合冷媒を用い、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して構成した冷凍サイクルであって、前記絞り装置をキャピラリーチューブと該キャピラリーチューブと直列に接続した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって開閉制御される流路と常開型の流路とを並列に備えた構成としたものである。   A second invention is a refrigeration cycle comprising a constant speed compressor, a condenser, a throttling device, and an evaporator connected in an annular shape using R32 or a mixed refrigerant mainly composed of R32 as a refrigerant, wherein the throttling The apparatus is composed of a capillary tube and a control valve connected in series with the capillary tube, and the control valve includes a flow path controlled by a shape memory alloy spring and a normally open flow path in parallel. It is a configuration.

これにより、前記第1の発明と同様、高価な絞り量可変型の電動膨張弁、能力可変圧縮機等を用いることなくキャピラリーチューブと形状記憶合金バネによって駆動される制御弁を用いるだけの低コスト構成で過負荷時の圧縮機の吐出温度上昇を抑制でき、圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能な冷凍装置を提供することができる。   As a result, as in the first aspect of the present invention, the cost can be reduced simply by using a control valve driven by a capillary tube and a shape memory alloy spring without using an expensive variable expansion amount electric expansion valve, variable capacity compressor, or the like. With this configuration, it is possible to provide a refrigeration apparatus that can suppress an increase in the discharge temperature of the compressor during an overload, ensure the reliability of the compressor, and can operate with high cycle efficiency during standard operation.

第3の発明は、第1、第2の発明において、R32を主成分とする混合冷媒は、R32とHFO1234yfの混合冷媒としたものである。   According to a third invention, in the first and second inventions, the mixed refrigerant containing R32 as a main component is a mixed refrigerant of R32 and HFO1234yf.

これにより、R32とHFO1234yfの混合冷媒を使用した場合においても、低コストで過負荷時の圧縮機の吐出温度の上昇を抑制でき、縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能であるとともに、さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。   As a result, even when a mixed refrigerant of R32 and HFO1234yf is used, an increase in the discharge temperature of the compressor at the time of overload can be suppressed at a low cost, ensuring the reliability of the compressor, and the cycle efficiency during standard operation In addition, it is possible to provide a refrigeration apparatus that can be operated at a high level, can further reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the effects of warming.

第4の発明は、第1、第2の発明において、R32を主成分とする混合冷媒は、R32とHFO1234zeの混合冷媒としたものである。   According to a fourth invention, in the first and second inventions, the mixed refrigerant containing R32 as a main component is a mixed refrigerant of R32 and HFO1234ze.

これにより、第3の発明と同様、R32とHFO1234zeの混合冷媒を使用した場合においても、低コストで過負荷時の圧縮機の吐出温度の上昇を抑制でき縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能であるとともに、さらに冷媒の温暖化係数を低減でき、サイクル効率が高く温暖化影響を低減可能な冷凍装置を提供することができる。   Thus, as in the third aspect of the invention, even when a mixed refrigerant of R32 and HFO1234ze is used, an increase in the discharge temperature of the compressor at the time of overload can be suppressed at low cost, ensuring the reliability of the compressor, and the standard It is possible to provide a refrigeration apparatus that can be operated with high cycle efficiency during a typical operation, can further reduce the warming coefficient of the refrigerant, has high cycle efficiency, and can reduce the influence of warming.

以下に、本発明の冷凍装置について説明する。なお、この実施の形態よって本発明が限定されるものではない。   The refrigeration apparatus of the present invention will be described below. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本実施の形態では、本発明の冷凍装置を空気調和機に適用した場合を例にして説明する。
(Embodiment 1)
In this embodiment, a case where the refrigeration apparatus of the present invention is applied to an air conditioner will be described as an example.

図1は本発明の実施の形態における空気調和機の冷凍サイクル図である。   FIG. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention.

本発明の空気調和機はR32単一冷媒またはR32を主成分とする混合冷媒を用いたもので、混合冷媒はR32とHFO1234yfとの混合冷媒、またはR32とHFO1234zeとの混合冷媒である。よって、地球温暖化防止に効果を発揮するが、過負荷の外気温度条件時には従来冷媒に比べ更に吐出温度が高くなる問題点がある。この問題点を以下に述べる構成によって、解消している。   The air conditioner of the present invention uses an R32 single refrigerant or a mixed refrigerant mainly composed of R32, and the mixed refrigerant is a mixed refrigerant of R32 and HFO1234yf or a mixed refrigerant of R32 and HFO1234ze. Therefore, although effective in preventing global warming, there is a problem that the discharge temperature becomes higher than that of the conventional refrigerant when the outside air temperature condition is overloaded. This problem is solved by the configuration described below.

すなわち、本実施の形態における空気調和機は、室外機側に、冷媒を圧縮する一定速圧縮機1、凝縮器となり冷媒と外気の熱を交換する室外熱交換器2、室外熱交換器2内を流れる冷媒と外気の熱交換を促進する室外ファン6と、上記冷媒の吐出温度上昇問題を解決する絞り装置を備えている。   That is, the air conditioner in the present embodiment includes a constant speed compressor 1 that compresses refrigerant, an outdoor heat exchanger 2 that serves as a condenser and exchanges heat of the refrigerant and outside air, and an outdoor heat exchanger 2 in the outdoor unit side. The outdoor fan 6 that promotes heat exchange between the refrigerant flowing through the outside air and the throttle device that solves the problem of an increase in the discharge temperature of the refrigerant.

この絞り装置は、キャピラリーチューブ3と、該キャピラリーチューブ3と並列に接続され、通常の室外気温(例えば40℃以下)の冷房運転時には閉止し、室外気温が高い冷房運転時に閉止する制御弁4とで構成してある。   This throttling device is connected to the capillary tube 3 in parallel with the capillary tube 3 and is closed during cooling operation at a normal outdoor temperature (for example, 40 ° C. or less) and closed during cooling operation at a high outdoor temperature. It consists of

一方、室内機側には、蒸発器となり冷媒と室内空気の熱を交換する室内熱交換器5、室内熱交換器5内を流れる冷媒と室内空気の熱交換を促進する室内ファン7を備えている。   On the other hand, the indoor unit is provided with an indoor heat exchanger 5 that serves as an evaporator and exchanges heat between the refrigerant and room air, and an indoor fan 7 that promotes heat exchange between the refrigerant flowing in the indoor heat exchanger 5 and room air. Yes.

そして、上記室外機8は屋外に、室内機9は屋内に設置されており、室外機8と室内機9は液側接続管21とガス側接続管22で接続されている。   The outdoor unit 8 is installed outdoors and the indoor unit 9 is installed indoors. The outdoor unit 8 and the indoor unit 9 are connected by a liquid side connection pipe 21 and a gas side connection pipe 22.

図2は、上記絞り装置を構成する制御弁4の断面図である。図2において、10は弁体、11は弁座、12はバイアスバネ、13は形状記憶合金バネ、14は第1流路である。   FIG. 2 is a cross-sectional view of the control valve 4 constituting the throttle device. In FIG. 2, 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is a shape memory alloy spring, and 14 is a first flow path.

図3は形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)である。加熱時と冷却時の動作温度には温度差、すなわち温度ヒステリシスがあり、形状記憶合金バネ13は加熱時の変態温度T1(例えば52℃)に、冷却時の変態温度T2(例えば−50℃)に調節している。   FIG. 3 is a temperature-strain curve (hysteresis curve) of the shape memory alloy spring 13. There is a temperature difference between the operating temperature at the time of heating and cooling, that is, temperature hysteresis, and the shape memory alloy spring 13 has a transformation temperature T2 at the time of cooling (for example, −50 ° C.) to the transformation temperature T1 at the time of heating (for example, −50 ° C.) It is adjusted to.

上記構成において、制御弁4の動作を説明する。   In the above configuration, the operation of the control valve 4 will be described.

形状記憶合金バネ13は設定した変態温度T1以上になると図2に示すように伸長し、バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となり、冷媒は第1流路14を流れ、キャピラリーチューブ3を流れる冷媒は減少する。一方、形状記憶合金バネ13は設定変態温度T2より低くなると、図4に示すようにバイアスバネ12に押動され弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒はキャピラリーチューブ3しか流れることができない。   When the shape memory alloy spring 13 becomes equal to or higher than the set transformation temperature T1, it extends as shown in FIG. 2, pushes the valve body 10 against the spring force of the bias spring 12, and the first flow path 14 is opened. The refrigerant flows through the first flow path 14, and the refrigerant flowing through the capillary tube 3 decreases. On the other hand, when the shape memory alloy spring 13 becomes lower than the set transformation temperature T2, as shown in FIG. 4, the bias spring 12 pushes the valve body 10 against the valve seat 11, and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the capillary tube 3.

このような制御弁4を用いた空気調和機について動作を説明する。   The operation of the air conditioner using such a control valve 4 will be described.

制御弁4が動作していない場合の冷房運転時には、一定速圧縮機1によって圧縮された冷媒は高温高圧の冷媒となり、室外熱交換器2に流入し、室外ファン6によって外気と熱交換を促進して放熱し高圧の液冷媒となり、キャピラリーチューブ3に送られる。この時、制御弁4は閉止している。   During the cooling operation when the control valve 4 is not operating, the refrigerant compressed by the constant speed compressor 1 becomes a high-temperature and high-pressure refrigerant, flows into the outdoor heat exchanger 2, and promotes heat exchange with the outside air by the outdoor fan 6. Then, the heat is dissipated to form a high-pressure liquid refrigerant, which is sent to the capillary tube 3. At this time, the control valve 4 is closed.

よって上記液冷媒はキャピラリーチューブ3をとおり、ここで液冷媒は減圧されて低温低圧の二相冷媒となり、液側接続管21を通って、室内熱交換器5に送られる。   Therefore, the liquid refrigerant passes through the capillary tube 3, where the liquid refrigerant is decompressed to become a low-temperature and low-pressure two-phase refrigerant, and is sent to the indoor heat exchanger 5 through the liquid side connection pipe 21.

室内熱交換器5に送られた低温低圧の二相冷媒は室内ファン7によって吸い込まれた室内空気と熱交換し、冷媒は室内空気の熱を吸熱し蒸発気化して低温のガス冷媒となる。一方、冷媒によって吸熱された室内空気は温度湿度が低下して室内ファン7によって室内に吹き出され室内を冷房する。また、ガス冷媒は、ガス側接続管22を通過して一定速圧縮機1に戻る。   The low-temperature and low-pressure two-phase refrigerant sent to the indoor heat exchanger 5 exchanges heat with the indoor air sucked by the indoor fan 7, and the refrigerant absorbs the heat of the indoor air and evaporates and becomes a low-temperature gas refrigerant. On the other hand, the indoor air absorbed by the refrigerant is lowered in temperature and humidity and blown out into the room by the indoor fan 7 to cool the room. Further, the gas refrigerant passes through the gas side connecting pipe 22 and returns to the constant speed compressor 1.

ここで、上記冷房運転時、室外気温が高く、制御弁4を流れる冷媒の温度が設定変態温度T2より高い時は、制御弁4の形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁体10を押動しバイアスバネ12を圧縮するため、第1流路14は開状態となり、キャピラリーチューブ3を流れる冷媒は減少するが、冷媒流路が第1流路14とキャピラリーチューブ3の両方に増加するため、絞り装置での減圧が減少し、吐出温度が低下する。   Here, during the cooling operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 4 is higher than the set transformation temperature T2, the shape memory alloy spring 13 of the control valve 4 resists the spring force of the bias spring 12. Since the valve body 10 is pushed and the bias spring 12 is compressed, the first flow path 14 is opened and the refrigerant flowing through the capillary tube 3 decreases, but the refrigerant flow path is the first flow path 14 and the capillary tube 3. Therefore, the pressure reduction in the expansion device decreases, and the discharge temperature decreases.

一方、室外気温が低くなり、制御弁4を流れる冷媒の温度が形状記憶合金バネ13の設定変態温度T2より低くなると、図4のように形状記憶合金バネ13はバイアスバネ12に押動され弁体10を弁座11に押し当て、第1流路14は閉状態となる。よって、冷媒はキャピラリーチューブ3しか流れることができず、絞り装置前後で圧力差が大きくなり、最適な冷凍サイクルを実現し、サイクル効率が向上する。   On the other hand, when the outdoor air temperature decreases and the temperature of the refrigerant flowing through the control valve 4 becomes lower than the set transformation temperature T2 of the shape memory alloy spring 13, the shape memory alloy spring 13 is pushed by the bias spring 12 as shown in FIG. The body 10 is pressed against the valve seat 11, and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the capillary tube 3, the pressure difference before and after the expansion device becomes large, an optimum refrigeration cycle is realized, and the cycle efficiency is improved.

このように、室外気温が非常に高く、圧縮機吐出温度が高くなる場合は、絞り装置の冷媒流量が増加し、吐出温度を低減し、外気温度が通常の温度の場合は、通常の絞り装置の流量に制御でき、サイクル効率の良い冷房運転が可能となる。   Thus, when the outdoor air temperature is very high and the compressor discharge temperature becomes high, the refrigerant flow rate of the throttle device increases, the discharge temperature is reduced, and when the outdoor temperature is normal temperature, the normal throttle device Therefore, the cooling operation with high cycle efficiency is possible.

また、このような運転はキャピラリーチューブ3と形状記憶合金バネ13によって駆動される制御弁4を用いるだけで実現することができ、新たに追加する制御弁4は形状記憶合金バネ13によって駆動されるものであるから、従来の絞り量可変型の電動膨張弁に比べ安価であり、低コストで実現することができる。   Such operation can be realized only by using the control valve 4 driven by the capillary tube 3 and the shape memory alloy spring 13, and the newly added control valve 4 is driven by the shape memory alloy spring 13. Therefore, it is cheaper than a conventional variable expansion amount type electric expansion valve, and can be realized at low cost.

(実施の形態2)
図5は、本発明の実施の形態2における冷凍装置の冷凍サイクル図である。
(Embodiment 2)
FIG. 5 is a refrigeration cycle diagram of the refrigeration apparatus in Embodiment 2 of the present invention.

この実施の形態2では、絞り装置を、キャピラリーチューブ3と、このキャピラリーチューブ3とを直列に接続した第2の制御弁19とで構成し、かつ、上記第2の制御弁19は以下に述べるような構成としてある点で前記実施の形態1と異なる。その他の点は実施の形態1と同様であり、同一部分には同一番号を付記して説明は省略する。   In the second embodiment, the throttling device is composed of a capillary tube 3 and a second control valve 19 in which the capillary tube 3 is connected in series, and the second control valve 19 is described below. It differs from the said Embodiment 1 by a point with such a structure. Other points are the same as those of the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.

図6は上記第2の制御弁19を示す断面図であり、10は弁体、11は弁座、12はバイアスバネ、13は形状記憶合金バネ、14は第1流路、20は弁体10に設けた常開型の第2流路で、前記第1流路14とは並列関係になっている。   FIG. 6 is a sectional view showing the second control valve 19, wherein 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is a shape memory alloy spring, 14 is a first flow path, and 20 is a valve body. 10 is a normally open second flow path, which is in parallel with the first flow path 14.

なお、上記第2の制御弁19の形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)は、図3の第2の実施の形態のものと同一である。   The temperature-strain curve (hysteresis curve) of the shape memory alloy spring 13 of the second control valve 19 is the same as that of the second embodiment of FIG.

上記構成において、第2の制御弁19の動作を説明する。   In the above configuration, the operation of the second control valve 19 will be described.

形状記憶合金バネ13は設定した変態温度T1以上になると図6に示すように伸長し、バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となり、冷媒は第1流路14と常開型の第2流路20を流れる。   When the shape memory alloy spring 13 becomes equal to or higher than the set transformation temperature T1, it expands as shown in FIG. 6, pushes the valve body 10 against the spring force of the bias spring 12, and the first flow path 14 is opened. The refrigerant flows through the first flow path 14 and the normally open second flow path 20.

一方、形状記憶合金バネ13は設定変態温度T2より低くなると、図7に示すようにバイアスバネ12に押動され弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒は第2流路20しか流れることができず流路が狭められるため、減圧される。   On the other hand, when the shape memory alloy spring 13 becomes lower than the set transformation temperature T2, as shown in FIG. 7, it is pushed by the bias spring 12, the valve body 10 hits the valve seat 11, and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the second flow path 20, and the flow path is narrowed, so the pressure is reduced.

次にこの様な第2の制御弁19を備えた冷凍装置の運転時の動作を説明する。   Next, the operation at the time of operation of the refrigeration apparatus provided with such a second control valve 19 will be described.

冷房運転時、室外気温が高く、第2の制御弁19を流れる冷媒の温度が設定変態温度T2より高い時は、図6のように形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁体10を押動しバイアスバネ12を圧縮するため、第1流路14は開状態となる。よって、冷媒は第2の制御弁19により減圧されず、第2の制御弁19前後で冷媒温度の差は生じない。   During the cooling operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the second control valve 19 is higher than the set transformation temperature T2, the shape memory alloy spring 13 resists the spring force of the bias spring 12 as shown in FIG. As a result, the valve body 10 is pushed and the bias spring 12 is compressed, so that the first flow path 14 is opened. Therefore, the refrigerant is not decompressed by the second control valve 19, and there is no difference in refrigerant temperature before and after the second control valve 19.

しかし室外気温が低くなり、第2の制御弁19を流れる冷媒の温度が形状記憶合金バネ13の設定変態温度T2より低くなると、図7のように形状記憶合金バネ13は、バイアスバネ12に押動され弁体10を弁座11に押し当て、第1流路14は閉状態となる。したがって、冷媒は第2流路20しか流れることができず流路が狭められるため、第2の制御弁19前後で圧力差が生じる。   However, when the outdoor air temperature decreases and the temperature of the refrigerant flowing through the second control valve 19 becomes lower than the set transformation temperature T2 of the shape memory alloy spring 13, the shape memory alloy spring 13 pushes against the bias spring 12 as shown in FIG. The valve body 10 is pressed against the valve seat 11 and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the second flow path 20, and the flow path is narrowed, so that a pressure difference occurs between the front and rear of the second control valve 19.

また、第2の制御弁19が動作している状態で、室外気温が上昇する等して、第2の制御弁19の冷媒温度が形状記憶合金バネ13の設定変態温度T1より高くなると、図6のように形状記憶合金バネ13は変態し伸び、バイアスバネ12を圧縮し、弁体10を弁座11から離して、第1流路14は開状態となる。その結果、冷媒は減圧されないため、第2の制御弁19前後で冷媒温度の差は生じない。   In addition, when the outdoor temperature rises while the second control valve 19 is operating, the refrigerant temperature of the second control valve 19 becomes higher than the set transformation temperature T1 of the shape memory alloy spring 13, and the like. 6, the shape memory alloy spring 13 is transformed and stretched, the bias spring 12 is compressed, the valve body 10 is separated from the valve seat 11, and the first flow path 14 is opened. As a result, since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the second control valve 19.

このように、減圧機構を持つ第2の制御弁19を用いることで、低コストで環境温度の変化などにより一定速圧縮機1の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、圧縮機の吐出温度の上昇を抑制して一定速圧縮機1の信頼性を確保し、サイクル効率の高い運転が可能となる。   As described above, by using the second control valve 19 having the pressure reducing mechanism, an overload state is achieved in which the discharge temperature of the constant speed compressor 1 exceeds a predetermined reference value due to a change in the environmental temperature at a low cost. Even in this case, an increase in the discharge temperature of the compressor can be suppressed to ensure the reliability of the constant speed compressor 1, and an operation with high cycle efficiency is possible.

また、第2の制御弁19は実施の形態1の制御弁と同様、形状記憶合金バネ13によって駆動されるので、従来の絞り量可変型の電動膨張弁に比べ安価であり、低コストで実現することができる。   Further, the second control valve 19 is driven by the shape memory alloy spring 13 like the control valve of the first embodiment, so that it is cheaper and lower in cost than the conventional variable expansion amount type electric expansion valve. can do.

本発明は、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、低コストで圧縮機の吐出温度の上昇を抑制して圧縮機の信頼性を確保し、標準的な運転時にはサイクル効率の高い運転が可能となり、一般用はもちろん産業用の幅広い冷凍装置に適用できる。   The present invention suppresses an increase in the discharge temperature of the compressor at a low cost even when the discharge temperature of the compressor exceeds a predetermined reference value due to a change in the environmental temperature or the like, thereby suppressing the increase in the discharge temperature of the compressor. This ensures high cycle efficiency during standard operation, and can be applied to a wide range of refrigeration equipment for industrial use as well as general use.

1 一定速圧縮機
2 室外熱交換器
3 キャピラリーチューブ
4 制御弁
5 室内熱交換器
10 弁体
13 形状記憶合金バネ
14 第1流路
19 第2の制御弁
20 常開型の第2流路
DESCRIPTION OF SYMBOLS 1 Constant speed compressor 2 Outdoor heat exchanger 3 Capillary tube 4 Control valve 5 Indoor heat exchanger 10 Valve body 13 Shape memory alloy spring 14 1st flow path 19 2nd control valve 20 2nd flow path of a normally open type

Claims (4)

冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して構成した冷凍サイクルであって、前記絞り装置をキャピラリーチューブと該キャピラリーチューブと並列に配置した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって制御される構成としたことを特徴とする冷凍装置。 A refrigeration cycle in which a constant-speed compressor, a condenser, a throttling device, and an evaporator are connected in a ring shape using a single R32 refrigerant or a mixed refrigerant containing R32 as a main component as a refrigerant, the throttling device being a capillary A refrigeration apparatus comprising a tube and a control valve arranged in parallel with the capillary tube, wherein the control valve is controlled by a shape memory alloy spring. 冷媒としてR32単一冷媒またはR32を主成分とする混合冷媒を用い、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接して構成した冷凍サイクルであって、前記絞り装置をキャピラリーチューブと該キャピラリーチューブと直列に接続した制御弁とで構成し、かつ、前記制御弁は形状記憶合金バネによって開閉制御される流路と常開型の流路とを並列に備えた構成としたことを特徴とする冷凍装置。 A refrigeration cycle in which a constant-speed compressor, a condenser, a throttling device, and an evaporator are connected in a ring shape using a single R32 refrigerant or a mixed refrigerant containing R32 as a main component as a refrigerant, the throttling device being a capillary A tube and a control valve connected in series with the capillary tube, and the control valve includes a flow channel that is controlled to open and close by a shape memory alloy spring and a normally open flow channel in parallel. A refrigeration apparatus characterized by that. R32を主成分とする混合冷媒は、R32とHFO1234yfの混合冷媒であることを特徴とする請求項1または2記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2, wherein the mixed refrigerant containing R32 as a main component is a mixed refrigerant of R32 and HFO1234yf. R32を主成分とする混合冷媒は、R32とHFO1234zeの混合冷媒であることを特徴とする請求項1または2記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2, wherein the mixed refrigerant containing R32 as a main component is a mixed refrigerant of R32 and HFO1234ze.
JP2012171583A 2012-08-02 2012-08-02 Refrigeration device Pending JP2014031916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171583A JP2014031916A (en) 2012-08-02 2012-08-02 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171583A JP2014031916A (en) 2012-08-02 2012-08-02 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2014031916A true JP2014031916A (en) 2014-02-20

Family

ID=50281882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171583A Pending JP2014031916A (en) 2012-08-02 2012-08-02 Refrigeration device

Country Status (1)

Country Link
JP (1) JP2014031916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613615A (en) * 2015-02-03 2015-05-13 珠海格力电器股份有限公司 Air conditioner and control method thereof
JP2015215127A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Refrigeration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215127A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Refrigeration device
CN104613615A (en) * 2015-02-03 2015-05-13 珠海格力电器股份有限公司 Air conditioner and control method thereof
CN104613615B (en) * 2015-02-03 2017-06-06 珠海格力电器股份有限公司 Air conditioner and control method thereof

Similar Documents

Publication Publication Date Title
EP2840335B1 (en) Refrigerating cycle device
US9709304B2 (en) Air-conditioning apparatus
JP5797354B1 (en) Air conditioner
JP6079055B2 (en) Refrigeration equipment
WO2019073870A1 (en) Refrigeration device
JP6857815B2 (en) Refrigeration cycle equipment
CN109790995B (en) Air conditioner
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
EP3217115B1 (en) Air conditioning apparatus
JP2017145975A (en) Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
JP2012067985A (en) Refrigerating machine, refrigerating device, and air conditioning device
JP2012189238A (en) Refrigerating air conditioning apparatus
WO2014129361A1 (en) Air conditioner
JP6343805B2 (en) Refrigeration equipment
US20150000330A1 (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP2014031916A (en) Refrigeration device
WO2014199445A1 (en) Refrigerating device
WO2013084455A1 (en) Heat exchanger and air conditioner provided with same
WO2020188756A1 (en) Air conditioner
JPWO2019198175A1 (en) Refrigeration cycle equipment
WO2023047440A1 (en) Air conditioner
WO2013084431A1 (en) Air conditioner
JP2014081118A (en) Air conditioner
EP3128260A1 (en) Refrigeration device