JP2014031915A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2014031915A
JP2014031915A JP2012171582A JP2012171582A JP2014031915A JP 2014031915 A JP2014031915 A JP 2014031915A JP 2012171582 A JP2012171582 A JP 2012171582A JP 2012171582 A JP2012171582 A JP 2012171582A JP 2014031915 A JP2014031915 A JP 2014031915A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
compressor
point
discharge temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012171582A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Akira Fujitaka
章 藤高
Yoshikazu Kawabe
義和 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012171582A priority Critical patent/JP2014031915A/en
Publication of JP2014031915A publication Critical patent/JP2014031915A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device, which uses a constant speed compressor and capillary tubes, capable of securing reliability of the compressor by suppressing the rise of a discharge temperature of the compressor at low cost at the time of an overload, even when it comes into a state of overload where the discharge temperature of the compressor surpasses a predetermined reference value because of the change in an environmental temperature and the like.SOLUTION: The refrigeration cycle device has a configuration in which a constant speed compressor 1 and capillary tubes 5 and 7 are used, and a heat exchange mechanism 8 for exchanging heat between a high pressure side cooling medium and a low pressure side cooling medium of the capillary tubes is installed. Thereby, even when it comes into a state of overload where a discharge temperature of the constant speed compressor 1 surpasses a predetermined reference value because of a change in an environmental temperature and the like, the rise of the discharge temperature of the compressor can be suppressed without using a solenoid valve, so that the refrigeration cycle device with high reliability can be achieved at low cost.

Description

本発明は、蒸気圧縮機式の冷凍サイクル装置に関する。   The present invention relates to a vapor compressor type refrigeration cycle apparatus.

従来、空気調和装置を含む冷凍装置が冷凍サイクル稼動時に環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合、圧縮機の絶縁や冷凍機油の変質など信頼性面に問題があり、この問題を解決するために絞り機構として絞り量可変の電動膨張弁、能力可変圧縮機を使用して吐出温度を調整してきた(例えば、特許文献1,2参照)。   Conventionally, when a refrigeration system including an air conditioner is in an overload state in which the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature during the refrigeration cycle operation, There is a problem in reliability such as alteration, and in order to solve this problem, an electric expansion valve with variable throttle amount and a variable capacity compressor have been used as the throttle mechanism to adjust the discharge temperature (for example, Patent Documents 1 and 2). reference).

また、絞り機構前の液冷媒を圧縮機吸入口に導入する液バイパス機構により吐出温度の上昇を抑えて圧縮機の信頼性を確保してきた。   In addition, the liquid bypass mechanism that introduces the liquid refrigerant before the throttling mechanism into the compressor suction port suppresses an increase in the discharge temperature, thereby ensuring the reliability of the compressor.

この様な背景の中にあって最近、HCFC系冷媒の代替冷媒としてHFC系冷媒の採用が検討され始めている。このHFC系冷媒は、オゾン層の保護に加え、地球温暖化の防止に効果を発揮する。すなわち、従来のHCFC系冷媒(R410A、R407Cなど)に比較して低GWPである。よって、HFC系冷媒での一種であるR32やR32を含む混合冷媒の適用が叫ばれている。   Against this background, recently, the adoption of HFC refrigerant as an alternative refrigerant for HCFC refrigerant has begun to be examined. This HFC-based refrigerant is effective in preventing global warming in addition to protecting the ozone layer. That is, it has a low GWP compared to conventional HCFC refrigerants (R410A, R407C, etc.). Therefore, the application of a mixed refrigerant containing R32 or R32, which is a kind of HFC-based refrigerant, is called out.

上記R32を空調装置に用いた場合、従来冷媒であるR22、R407C及びR410Aに比べて理論COPや熱伝達率が高く、圧力損失が小さいため、実際のサイクル効率が高くなるという効果がある。しかしながら、従来冷媒と比べて冷媒の熱物性である断熱指数が大きいため、圧縮機の吐出温度が約10〜20℃程度高いという特性がある。特に、過負荷の外気温度条件時にはさらに吐出温度が上昇する。   When R32 is used in an air conditioner, the theoretical COP and heat transfer rate are higher and the pressure loss is smaller than the conventional refrigerants R22, R407C, and R410A, so that the actual cycle efficiency is increased. However, since the heat insulation index which is the thermophysical property of the refrigerant is larger than that of the conventional refrigerant, there is a characteristic that the discharge temperature of the compressor is higher by about 10 to 20 ° C. In particular, the discharge temperature further increases during an overload outside air temperature condition.

特許第3465654号公報Japanese Patent No. 3465654 実公平2−33110号公報No. 2-333110

しかし、一定速圧縮機と固定絞りであるキャピラリーチューブを用いた冷凍サイクル装置では過負荷時に吐出温度を調整できない。また、液バイパス機構は吐出温度が一定以上となった時に開成する電磁弁が必要となるため、コストアップの要因となっていた。   However, in a refrigeration cycle apparatus using a constant speed compressor and a capillary tube that is a fixed throttle, the discharge temperature cannot be adjusted during an overload. Further, the liquid bypass mechanism requires a solenoid valve that opens when the discharge temperature becomes a certain level or more, which has been a factor in increasing costs.

本発明はこのような点に鑑みてなしたもので、一定速圧縮機とキャピラリーチューブを用い、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、低コストで過負荷時における圧縮機の吐出温度の上昇を抑制して圧縮機の信頼性を確保可能な冷凍サイクル装置を提供することを目的としたものである。   The present invention has been made in view of these points, and uses a constant speed compressor and a capillary tube, resulting in an overload state in which the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature or the like. In this case, it is an object of the present invention to provide a refrigeration cycle apparatus capable of ensuring the reliability of the compressor by suppressing an increase in the discharge temperature of the compressor at the time of overload at low cost.

本発明は、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接した冷凍サイクルにおいて、前記絞り装置をキャピラリーチューブとし、前記キャピラリーチューブの高圧側冷媒と低圧側冷媒で熱交換する構成としたものである。   The present invention is a refrigeration cycle in which a constant speed compressor, a condenser, a throttle device, and an evaporator are connected in an annular shape, and the throttle device is a capillary tube, and heat is exchanged between the high pressure side refrigerant and the low pressure side refrigerant of the capillary tube. It is what.

これにより、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、電磁弁を用いることなく圧縮機の吐出温度の上昇を抑制することが可能となる。   This suppresses an increase in the compressor discharge temperature without using a solenoid valve even when the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature or the like. Is possible.

本発明は、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、電磁弁を用いることなく圧縮機の吐出温度上昇を抑制することが可能となるので、低コストで信頼性の高い冷凍サイクルとすることができる。   The present invention suppresses an increase in the discharge temperature of the compressor without using a solenoid valve even when the discharge temperature of the compressor exceeds a predetermined reference value due to a change in environmental temperature or the like. Therefore, a highly reliable refrigeration cycle can be achieved at low cost.

本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner in Embodiment 1 of the present invention 従来の冷凍サイクルにおけるPH線図PH diagram in the conventional refrigeration cycle 本発明の実施の形態1の冷凍サイクルにおける過負荷運転時のPH線図PH diagram during overload operation in refrigeration cycle according to Embodiment 1 of the present invention キャピラリーを流れる冷媒量と過冷却度の関係図Relationship between the amount of refrigerant flowing through the capillary and the degree of supercooling

第1の発明は、一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接した冷凍サイクルにおいて、前記絞り装置をキャピラリーチューブとし、前記キャピラリーチューブの高圧側冷媒と低圧側冷媒の間で互いに熱交換する熱交換機構を設置した構成としてあり、電磁弁を用いることなく低コストで過負荷時の圧縮機の吐出温度の上昇を抑制でき圧縮機の信頼性を確保可能な冷凍サイクル装置を提供することができる。   According to a first aspect of the present invention, in a refrigeration cycle in which a constant speed compressor, a condenser, a throttle device, and an evaporator are connected in an annular shape, the throttle device is a capillary tube, and between the high-pressure side refrigerant and the low-pressure side refrigerant of the capillary tube A refrigeration cycle system that has a heat exchange mechanism for exchanging heat with each other, can suppress the rise in the discharge temperature of the compressor at the time of overload, and can ensure the reliability of the compressor without using a solenoid valve. Can be provided.

第2の発明は、第1の発明において、冷媒としてR32またはR32を主成分とする混合冷媒を用いたものであり、オゾン層の保護に加え、従来冷媒(R410A、R407Cなど)に比較して低GWPであるから、地球温暖化の防止に大きく貢献しつつ、R32やR32を主成分とする混合冷媒の問題点である過負荷時の圧縮機の吐出温度上昇を抑制でき、圧縮機の信頼性を確保した冷凍サイクル装置を提供することができる。   The second invention uses a refrigerant mixture mainly composed of R32 or R32 as a refrigerant in the first invention, and in addition to protecting the ozone layer, compared to conventional refrigerants (R410A, R407C, etc.) The low GWP contributes greatly to the prevention of global warming, while suppressing the rise in compressor discharge temperature during overload, which is a problem with mixed refrigerants mainly composed of R32 and R32. It is possible to provide a refrigeration cycle apparatus that ensures the performance.

第3の発明は、第2の発明におけるR32を主成分とする混合冷媒は、R32とHFO1234yfの混合冷媒としたものである。   In the third invention, the mixed refrigerant mainly comprising R32 in the second invention is a mixed refrigerant of R32 and HFO1234yf.

これにより、第2の発明と同様、地球温暖化の防止に大きく貢献しつつ、R32を主成分とする混合冷媒の問題点である過負荷時の圧縮機の吐出温度上昇を抑制でき、圧縮機の信頼性を確保した冷凍サイクル装置を提供することができる。   Thereby, like the second invention, while greatly contributing to the prevention of global warming, an increase in the discharge temperature of the compressor at the time of overload, which is a problem of the mixed refrigerant containing R32 as a main component, can be suppressed. It is possible to provide a refrigeration cycle apparatus that ensures the reliability.

第4の発明は、第1〜3の発明において、キャピラリーチューブは冷房運転用と暖房運転用を設置した構成としてあり、冷房、暖房でそれぞれの最適な絞り量とすることができ、効率を向上できる。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the capillary tube is provided with a cooling operation and a heating operation, so that the optimum throttle amount can be obtained for each of the cooling and heating, thereby improving efficiency. it can.

第5の発明は、第1〜4の発明において、キャピラリーチューブの高圧側配管と低圧側配管を相互に密着させて熱交換させる構成としてあり、過負荷時の圧縮機の吐出温度上昇を効率よく抑制できる。   According to a fifth invention, in the first to fourth inventions, the high-pressure side pipe and the low-pressure side pipe of the capillary tube are in close contact with each other to exchange heat, and the discharge temperature rise of the compressor at the time of overload is efficiently increased. Can be suppressed.

以下に、本発明の冷凍サイクル装置について説明する。なお、この実施の形態よって本発明が限定されるものではない。   The refrigeration cycle apparatus of the present invention will be described below. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の冷凍サイクル装置を空気調和機に用いた時の冷凍サイクル図である。尚、冷房運転と暖房運転では凝縮器12と蒸発器14が入れ替わるため、暖房運転時には符
号に()を付して併記した。
(Embodiment 1)
FIG. 1 is a refrigeration cycle diagram when the refrigeration cycle apparatus of the present invention is used in an air conditioner. In addition, since the condenser 12 and the evaporator 14 are switched in the cooling operation and the heating operation, () is added to the reference numerals in the heating operation.

本発明の空気調和機はR32またはR32を主成分とする混合冷媒を用いたもので、混合冷媒はR32とHFO1234yfとの混合冷媒である。よって、地球温暖化防止に効果を発揮するが、過負荷の外気温度条件時には従来冷媒に比べ更に吐出温度が高くなる問題点がある。この問題点を以下に述べる構成によって、解消している。   The air conditioner of the present invention uses R32 or a mixed refrigerant mainly composed of R32, and the mixed refrigerant is a mixed refrigerant of R32 and HFO1234yf. Therefore, although effective in preventing global warming, there is a problem that the discharge temperature becomes higher than that of the conventional refrigerant when the outside air temperature condition is overloaded. This problem is solved by the configuration described below.

すなわち、本実施の形態による空気調和機は、室外機側に、冷媒を圧縮する一定速圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷房運転時には凝縮器12となり暖房運転時には蒸発器14となり冷媒と外気の熱を交換する室外熱交換器3、室外熱交換器3内を流れる冷媒と外気の熱交換を促進する室外ファン11を備えている。   That is, the air conditioner according to the present embodiment has, on the outdoor unit side, a constant speed compressor 1 that compresses refrigerant, a four-way valve 2 that switches a refrigerant circuit during cooling and heating operation, a condenser 12 during cooling operation, and a heating operation. An outdoor heat exchanger 3 that becomes an evaporator 14 and exchanges heat between the refrigerant and the outside air, and an outdoor fan 11 that promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 3 and the outside air are provided.

そして、上記冷媒の吐出温度上昇問題を解決する熱交換機構8が設けてある。この熱交換機構は、冷房運転時には開成し暖房運転時に閉止する冷房時逆止弁4、暖房時に絞り装置となる暖房用キャピラリー5、暖房運転時には開成し冷房運転時に閉止する暖房時逆止弁6、冷房時に絞り装置であるキャピラリー13となる冷房用キャピラリー7、冷房用キャピラリー7または暖房時に絞り装置であるキャピラリー13となる暖房用キャピラリー5近傍の高圧側冷媒配管と低圧側冷媒配管相互を密着させて熱交換を行なうように構成してある。   And the heat exchange mechanism 8 which solves the discharge temperature rise problem of the said refrigerant | coolant is provided. The heat exchanging mechanism includes a cooling check valve 4 that opens during cooling operation and closes during heating operation, a heating capillary 5 that serves as a throttle device during heating, and a heating check valve 6 that opens during heating operation and closes during cooling operation. The high pressure side refrigerant pipe and the low pressure side refrigerant pipe in the vicinity of the cooling capillary 7 serving as the capillary 13 serving as a throttling device during cooling, the cooling capillary 7 or the heating capillary 5 serving as the capillary 13 serving as a throttling device during heating are brought into close contact with each other. Heat exchange.

さらに、室内機側には、冷房運転時には蒸発器14となり暖房運転時には凝縮器12となり冷媒と室内空気の熱を交換する室内熱交換器9、室内熱交換器9内を流れる冷媒と室内空気の熱交換を促進する室内ファン10を備えている。   Furthermore, on the indoor unit side, an evaporator 14 is used in the cooling operation and a condenser 12 is used in the heating operation. The indoor heat exchanger 9 exchanges heat between the refrigerant and the room air, and the refrigerant and room air flowing through the indoor heat exchanger 9 are exchanged. An indoor fan 10 that promotes heat exchange is provided.

そして、上記室外機22は屋外に、室内機21は屋内に設置されており、室外機22と室内機21は液側接続管23とガス側接続管24で接続されている。   The outdoor unit 22 is installed outdoors and the indoor unit 21 is installed indoors. The outdoor unit 22 and the indoor unit 21 are connected by a liquid side connection pipe 23 and a gas side connection pipe 24.

このように構成された、空気調和機について動作を説明する。   Operation | movement is demonstrated about the air conditioner comprised in this way.

先ず、冷房運転時には、一定速圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通る。そして、室外ファン11によって外気と熱交換を促進して放熱し高圧の液冷媒となり熱交換機構8に送られ、冷房運転時に開成する冷房時逆止弁4を通って、冷房用キャピラリー7に送られる。この時暖房時逆止弁6は閉止している。   First, during the cooling operation, the refrigerant compressed by the constant speed compressor 1 becomes a high-temperature and high-pressure refrigerant and passes through the four-way valve 2. Then, heat exchange with the outside air is promoted by the outdoor fan 11 to dissipate heat and become high-pressure liquid refrigerant, which is sent to the heat exchange mechanism 8 and sent to the cooling capillary 7 through the cooling check valve 4 that is opened during the cooling operation. It is done. At this time, the heating check valve 6 is closed.

冷房用キャピラリー7では減圧されて低温低圧の二相冷媒となり熱交換機構8で高圧側冷媒と相互に熱交換して、液接続管23を通って、室内熱交換器9に送られる。   In the cooling capillary 7, the pressure is reduced to become a low-temperature and low-pressure two-phase refrigerant, the heat exchange mechanism 8 exchanges heat with the high-pressure side refrigerant, and the liquid is connected to the indoor heat exchanger 9 through the liquid connection pipe 23.

室内ファン10によって吸い込まれた室内空気は室内熱交換器9を通って冷媒と熱交換し、冷媒は室内空気の熱を吸熱し蒸発気化して低温のガス冷媒となる。このとき冷媒によって吸熱された室内空気は温度湿度が低下して、室内ファン10により室内に吹き出され室内を冷房する。また、ガス冷媒は、ガス側接続管24を通過して四方弁2に入り一定速圧縮機1に戻る。   The indoor air sucked by the indoor fan 10 exchanges heat with the refrigerant through the indoor heat exchanger 9, and the refrigerant absorbs the heat of the indoor air and evaporates to become a low-temperature gas refrigerant. At this time, the indoor air absorbed by the refrigerant has a reduced temperature and humidity, and is blown into the room by the indoor fan 10 to cool the room. Further, the gas refrigerant passes through the gas side connecting pipe 24 and enters the four-way valve 2 and returns to the constant speed compressor 1.

また、暖房運転時には、一定速圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通り、ガス接続管24に送られる。室内ファン10によって吸い込まれた室内空気は室内熱交換器9を通って冷媒と熱交換し、冷媒は室内空気へ熱を放熱し凝縮して高圧の液冷媒となる。このとき室内空気は冷媒の熱を吸熱し温度が上昇した状態で室内ファン10によって室内に吹き出され室内を暖房する。その後、冷媒は液接続管23を通って熱交換機構8に送られ、暖房運転時に開成する暖房時逆止弁6を通って暖房用キャピラリー5に送られる。この時冷房時逆止弁4は閉止している。   During the heating operation, the refrigerant compressed by the constant speed compressor 1 passes through the four-way valve 2 and is sent to the gas connection pipe 24 as a high-temperature and high-pressure refrigerant. The indoor air sucked by the indoor fan 10 exchanges heat with the refrigerant through the indoor heat exchanger 9, and the refrigerant dissipates heat to the indoor air and condenses to become high-pressure liquid refrigerant. At this time, the indoor air absorbs the heat of the refrigerant and is blown into the room by the indoor fan 10 in a state where the temperature is raised, thereby heating the room. Thereafter, the refrigerant is sent to the heat exchanging mechanism 8 through the liquid connection pipe 23, and is sent to the heating capillary 5 through the heating check valve 6 opened during the heating operation. At this time, the check valve 4 at the time of cooling is closed.

暖房用キャピラリー5において減圧されて低温低圧の二相冷媒となり、熱交換機構8で高圧側冷媒と相互に熱交換して、室外熱交換器3に送られて、室外ファン11によって外気と熱交換を促進して蒸発気化し、四方弁2を経由して一定速圧縮機1へ戻される。   The pressure is reduced in the heating capillary 5 to become a low-temperature and low-pressure two-phase refrigerant. The heat exchange mechanism 8 exchanges heat with the high-pressure refrigerant, and is sent to the outdoor heat exchanger 3, and exchanges heat with the outside air by the outdoor fan 11. To evaporate and return to the constant speed compressor 1 via the four-way valve 2.

このようにして冷暖房運転がなされる。   In this way, the air conditioning operation is performed.

次に図2を用いて従来技術の冷凍サイクルについて説明する。図2は従来技術の冷凍サイクルのPH線図である。図2において実線は通常運転時の冷凍サイクルであり、A点は圧縮機吸入、B点は圧縮機吐出、C点は凝縮器出口、D点は蒸発器入口を示している。   Next, a conventional refrigeration cycle will be described with reference to FIG. FIG. 2 is a PH diagram of a prior art refrigeration cycle. In FIG. 2, the solid line represents the refrigeration cycle during normal operation, point A represents compressor suction, point B represents compressor discharge, point C represents a condenser outlet, and point D represents an evaporator inlet.

また、破線は過負荷時の冷凍サイクルでありA’点は圧縮機吸入、B’点は圧縮機吐出、C’点は凝縮器出口、D’点は蒸発器入口を示している。T1はB’点を通る等温線の温度を示し、T2はB点を通る等温線の温度であり、T1>T2の関係にある。   Further, the broken line indicates the refrigeration cycle at the time of overload. The A ′ point indicates the compressor suction, the B ′ point indicates the compressor discharge, the C ′ point indicates the condenser outlet, and the D ′ point indicates the evaporator inlet. T1 indicates the temperature of the isotherm passing through the point B ', T2 is the temperature of the isotherm passing through the point B, and T1> T2.

図2に示す様に、環境温度の変化などにより通常運転が過負荷運転となった場合には高圧圧力、低圧圧力が上昇するとともに、圧縮機吐出温度も上昇することになり、環境温度が想定以上に上昇した場合など条件によっては圧縮機の吐出温度が所定の基準値を越える場合がある。   As shown in FIG. 2, when the normal operation becomes an overload operation due to a change in the environmental temperature or the like, the high pressure and the low pressure are increased, and the compressor discharge temperature is also increased. The discharge temperature of the compressor may exceed a predetermined reference value depending on conditions such as a rise above.

しかしながら、本発明の熱交換機構8を用いた場合は、これを抑制することができる。その熱交換機構8の動作について図3を用いて詳細に説明する。図3は過負荷運転時のPH線図を示しており、実線は本発明の冷凍サイクルを示し、破線は従来技術の冷凍サイクルを示している。   However, this can be suppressed when the heat exchange mechanism 8 of the present invention is used. The operation of the heat exchange mechanism 8 will be described in detail with reference to FIG. FIG. 3 shows a PH diagram during overload operation, where the solid line indicates the refrigeration cycle of the present invention, and the broken line indicates the prior art refrigeration cycle.

A’点、B’点、C’点及びD’点は従来技術の冷凍サイクルの各ポイントを示している。A’点は圧縮機吸入、B’点は圧縮機吐出、C’点は凝縮器出口、D’点は蒸発器入口を示している。   A 'point, B' point, C 'point and D' point indicate points of the prior art refrigeration cycle. A 'point indicates compressor suction, B' point indicates compressor discharge, C 'point indicates condenser outlet, and D' point indicates evaporator inlet.

また、A点,B点、C点、D点、E点及びF点は本発明の冷凍サイクルの各ポイントを示している。A点は圧縮機吸入、B点は圧縮機吐出、C点は凝縮器出口、D点は蒸発器入口を示しており、E点はキャピラリー入口、F点はキャピラリー出口を示している。   Moreover, A point, B point, C point, D point, E point, and F point have shown each point of the refrigerating cycle of this invention. Point A indicates compressor suction, point B indicates compressor discharge, point C indicates a condenser outlet, point D indicates an evaporator inlet, point E indicates a capillary inlet, and point F indicates a capillary outlet.

冷房運転時には凝縮器である室外熱交換器3出口がC点、冷房用キャピラリー7入口がE点、出口がF点となり、蒸発器である室内熱交換器9の入口がD点となる。   During the cooling operation, the outlet of the outdoor heat exchanger 3 that is a condenser is the point C, the inlet of the cooling capillary 7 is the point E, the outlet is the point F, and the inlet of the indoor heat exchanger 9 that is the evaporator is the point D.

室外熱交換器3を通った高温高圧の液冷媒は、熱交換機構8に入る。一方、低温低圧の二相となった冷媒が熱交換機構8を通るため互いに熱交換を行なうことになる。従って、室外熱交換器3を通った高温高圧の液冷媒は熱交換機構8で熱交換して放熱するため、C点からE点に変化する。E点の冷媒は冷房用キャピラリー7に入って断熱膨張してF点となり低温低圧の二相冷媒となり、熱交換機構8で熱交換して吸熱するためF点からD点に変化する。この様にして熱交換機構8での熱交換が行なわれる。   The high-temperature and high-pressure liquid refrigerant that has passed through the outdoor heat exchanger 3 enters the heat exchange mechanism 8. On the other hand, the low-temperature and low-pressure two-phase refrigerant passes through the heat exchange mechanism 8 and exchanges heat with each other. Therefore, the high-temperature and high-pressure liquid refrigerant that has passed through the outdoor heat exchanger 3 exchanges heat by the heat exchange mechanism 8 to dissipate heat, so that the point C changes to the point E. The refrigerant at point E enters the cooling capillary 7 and adiabatically expands to become point F to become a low-temperature and low-pressure two-phase refrigerant. The heat exchange mechanism 8 exchanges heat and absorbs heat, so the point changes from point F to point D. In this way, heat exchange is performed by the heat exchange mechanism 8.

この時、冷房用キャピラリー7に入る冷媒の過冷却度は従来技術の冷凍サイクルに比べて大きくなることになる。冷房用キャピラリー7を通る冷媒循環量は高圧圧力と低圧圧力の圧力差とはほぼ比例の関係にある。   At this time, the degree of supercooling of the refrigerant entering the cooling capillary 7 is larger than that of the conventional refrigeration cycle. The amount of refrigerant circulating through the cooling capillary 7 is approximately proportional to the pressure difference between the high pressure and the low pressure.

また、図4にキャピラリーチューブ13を流れる冷媒量と過冷却度の関係を示す。図4に示す様に一定圧力差の元では過冷却度の小さな領域では冷媒循環量の変化が大きく、一定の過冷却度以上となった場合には冷媒循環量はほぼ一定となる。従来技術の冷凍サイク
ルではキャピラリーチューブ13入口での過冷却度は小さいため、本発明の冷凍サイクルにより過冷却度を大きくすることで、キャピラリーチューブ13を流れる冷媒循環量は増加しその割合は大きいことになる。
FIG. 4 shows the relationship between the amount of refrigerant flowing through the capillary tube 13 and the degree of supercooling. As shown in FIG. 4, when the pressure difference is constant, the refrigerant circulation amount changes greatly in a region where the degree of supercooling is small, and the refrigerant circulation amount becomes substantially constant when the degree of supercooling exceeds a certain level. In the prior art refrigeration cycle, the degree of supercooling at the inlet of the capillary tube 13 is small. Therefore, by increasing the degree of supercooling according to the refrigeration cycle of the present invention, the amount of refrigerant circulating through the capillary tube 13 is increased and the ratio is large. become.

従って、一定速圧縮機1の循環量を増加させるため一定速圧縮機1の吸入密度を大きくするために低圧圧力がやや上昇するため一定速圧縮機1の吐出温度は低下することになる。また、このとき低圧圧力が上昇するため、圧縮機の入力が低下して冷凍サイクルの効率が向上する。   Therefore, in order to increase the circulation amount of the constant speed compressor 1, the low pressure is slightly increased to increase the suction density of the constant speed compressor 1, so that the discharge temperature of the constant speed compressor 1 is lowered. Further, at this time, since the low-pressure pressure increases, the input of the compressor is reduced and the efficiency of the refrigeration cycle is improved.

図3に示すT1はB’点を通る等温線の温度を示し、T3はB点を通る等温線の温度であり、T1>T3の関係にある。   T1 shown in FIG. 3 indicates the temperature of the isotherm passing through the point B ', T3 is the temperature of the isotherm passing through the point B, and T1> T3.

さらにまた、従来技術の冷凍サイクルにおいて通常運転ではキャピラリー入口での過冷却度は大きいため、本発明の冷凍サイクルとした場合においても、キャピラリーを流れる冷媒量はやや増加する傾向にあるが、過負荷運転時に比べて大きな差は生じない。   Furthermore, since the degree of supercooling at the capillary inlet is large in normal operation in the refrigeration cycle of the prior art, even in the case of the refrigeration cycle of the present invention, the amount of refrigerant flowing through the capillary tends to increase slightly, but overload There is no big difference compared to driving.

暖房運転時にも同様の動作により過負荷運転時にキャピラリーを流れる冷媒量が増加して一定速圧縮機1の吐出温度は低下することになるが、詳細な説明は割愛する。   During the heating operation, the amount of refrigerant flowing through the capillaries increases during the overload operation due to the same operation, and the discharge temperature of the constant speed compressor 1 decreases, but a detailed description is omitted.

このようにして一定速圧縮機1、凝縮器12、絞り装置、蒸発器14を環状に連接した冷凍サイクルにおいて、前記絞り装置をキャピラリーチューブ13とし、前記キャピラリーチューブ13の高圧側冷媒と低圧側冷媒を熱交換する構成とすることで、電磁弁を用いることなく低コストで環境温度の変化などにより一定速圧縮機1の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、圧縮機の吐出温度の上昇を抑制して一定速圧縮機1の信頼性を確保可能となる。む。   In this way, in the refrigeration cycle in which the constant speed compressor 1, the condenser 12, the expansion device, and the evaporator 14 are connected in an annular shape, the expansion device is the capillary tube 13, and the high-pressure side refrigerant and the low-pressure side refrigerant of the capillary tube 13 are used. By adopting a configuration for exchanging heat, an overload state in which the discharge temperature of the constant speed compressor 1 exceeds a predetermined reference value due to a change in environmental temperature or the like at low cost without using a solenoid valve is performed. In addition, it is possible to ensure the reliability of the constant speed compressor 1 by suppressing an increase in the discharge temperature of the compressor. Mu

本発明によれば、環境温度の変化などにより圧縮機の吐出温度が所定の基準値を越えるような過負荷状態となった場合においても、電磁弁を用いることなく圧縮機の吐出温度の上昇を抑制することが可能となるので、低コストで信頼性の高い冷凍サイクルとすることができ、家庭用はもちろん産業用の冷凍サイクルにも広く適用できるものである。   According to the present invention, the compressor discharge temperature can be increased without using the solenoid valve even when the compressor discharge temperature exceeds a predetermined reference value due to a change in environmental temperature or the like. Since it can be suppressed, it can be a low-cost and highly reliable refrigeration cycle, and can be widely applied not only to household use but also to industrial refrigeration cycles.

1 一定速圧縮機
8 熱交換機構
5 暖房用キャピラリー
7 冷房用キャピラリー
12 凝縮器
13 キャピラリーチューブ
14 蒸発器
1 Constant Speed Compressor 8 Heat Exchange Mechanism 5 Heating Capillary 7 Cooling Capillary 12 Condenser 13 Capillary Tube 14 Evaporator

Claims (5)

一定速圧縮機、凝縮器、絞り装置、蒸発器を環状に連接した冷凍サイクルにおいて、前記絞り装置をキャピラリーチューブとし、前記キャピラリーチューブの高圧側冷媒と低圧側冷媒との間で互いに熱交換する熱交換機構を設置したことを特徴とする冷凍サイクル装置。 In a refrigeration cycle in which a constant speed compressor, a condenser, an expansion device, and an evaporator are connected in an annular shape, the expansion device is a capillary tube, and heat is exchanged between the high pressure side refrigerant and the low pressure side refrigerant of the capillary tube. A refrigeration cycle apparatus provided with an exchange mechanism. 冷媒としてR32またはR32を主成分とする混合冷媒を用いたことを特徴とする請求項1記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein R32 or a mixed refrigerant mainly comprising R32 is used as the refrigerant. R32を主成分とする混合冷媒は、R32とHFO1234yfの混合冷媒であることを特徴とする請求項2記載の冷凍サイクル装置。 3. The refrigeration cycle apparatus according to claim 2, wherein the mixed refrigerant containing R32 as a main component is a mixed refrigerant of R32 and HFO1234yf. キャピラリーチューブは冷房用キャピラリーと暖房用キャピラリーを設置したことを特徴とする請求項1〜3のいずれか1項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the capillary tube is provided with a cooling capillary and a heating capillary. キャピラリーチューブの高圧側配管と低圧側配管を相互に密着させたことを特徴とする請求項1〜4のいずれか1項記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the high-pressure side pipe and the low-pressure side pipe of the capillary tube are in close contact with each other.
JP2012171582A 2012-08-02 2012-08-02 Refrigeration cycle device Pending JP2014031915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171582A JP2014031915A (en) 2012-08-02 2012-08-02 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171582A JP2014031915A (en) 2012-08-02 2012-08-02 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2014031915A true JP2014031915A (en) 2014-02-20

Family

ID=50281881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171582A Pending JP2014031915A (en) 2012-08-02 2012-08-02 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2014031915A (en)

Similar Documents

Publication Publication Date Title
JP5409715B2 (en) Air conditioner
JP2006283989A (en) Cooling/heating system
JP2007240025A (en) Refrigerating device
US10126026B2 (en) Refrigeration cycle apparatus
WO2013093979A1 (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP2017161182A (en) Heat pump device
JPWO2015133622A1 (en) Refrigeration cycle equipment
JP2012189238A (en) Refrigerating air conditioning apparatus
JP2011112327A (en) Air conditioner and refrigerating device
JP6576603B1 (en) Air conditioner
JP6110187B2 (en) Refrigeration cycle equipment
US20150000330A1 (en) Air conditioner
JPWO2019021464A1 (en) Air conditioner
JP4608303B2 (en) Vapor compression heat pump
WO2014199445A1 (en) Refrigerating device
JPWO2019198175A1 (en) Refrigeration cycle equipment
JP2015215127A (en) Refrigeration device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP2014031916A (en) Refrigeration device
JP2014031915A (en) Refrigeration cycle device
JP6381712B2 (en) Refrigeration cycle equipment
JP7398582B1 (en) air conditioner