JP4140642B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4140642B2
JP4140642B2 JP2006202827A JP2006202827A JP4140642B2 JP 4140642 B2 JP4140642 B2 JP 4140642B2 JP 2006202827 A JP2006202827 A JP 2006202827A JP 2006202827 A JP2006202827 A JP 2006202827A JP 4140642 B2 JP4140642 B2 JP 4140642B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
chamber
pipe
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006202827A
Other languages
Japanese (ja)
Other versions
JP2008032243A (en
Inventor
諭 石川
和貴 堀
英二 熊倉
克己 鉾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006202827A priority Critical patent/JP4140642B2/en
Priority to PCT/JP2007/064112 priority patent/WO2008013079A1/en
Priority to EP07790874.7A priority patent/EP2048456B1/en
Publication of JP2008032243A publication Critical patent/JP2008032243A/en
Application granted granted Critical
Publication of JP4140642B2 publication Critical patent/JP4140642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipe Accessories (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置に関し、特に冷媒回路を流れる冷媒の圧力脈動の低減対策に係るものである。   The present invention relates to a refrigeration apparatus that performs a vapor compression refrigeration cycle by circulating refrigerant, and particularly relates to measures for reducing pressure pulsation of refrigerant flowing in a refrigerant circuit.

従来より、蒸気圧縮式の冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている。   Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle is known.

例えば特許文献1には、冷媒として二酸化炭素を用いた冷凍装置が開示されている。この冷凍装置の冷媒回路には、圧縮機と放熱器と容積型の膨張機と蒸発器とが接続されている。圧縮機では、冷媒が臨界圧力以上となるまで圧縮される。圧縮機の吐出冷媒は、放熱器で放熱した後、膨張機で膨張される。その後、冷媒は蒸発器で蒸発した後、圧縮機に吸入されて再び圧縮される。例えばこの冷凍装置の暖房運転では、放熱器から放出された熱によって室内が暖房される。   For example, Patent Document 1 discloses a refrigeration apparatus using carbon dioxide as a refrigerant. A compressor, a radiator, a positive displacement expander, and an evaporator are connected to the refrigerant circuit of the refrigeration apparatus. In the compressor, the refrigerant is compressed until it reaches a critical pressure or higher. The refrigerant discharged from the compressor is radiated by the radiator and then expanded by the expander. Thereafter, the refrigerant evaporates in the evaporator, and then is sucked into the compressor and compressed again. For example, in the heating operation of the refrigeration apparatus, the room is heated by the heat released from the radiator.

このように冷媒が循環して冷凍サイクルを行う冷凍装置では、圧縮機による冷媒の圧縮動作や、膨張機による冷媒の膨張動作に伴い冷媒の圧力が変動し、冷媒の圧力脈動が大きくなってしまうことがある。その結果、この圧力脈動に起因して、騒音が発生したり、冷媒配管に接続される機器類の故障を招く虞があった。   In such a refrigeration apparatus in which the refrigerant circulates and performs the refrigeration cycle, the refrigerant pressure fluctuates due to the refrigerant compression operation by the compressor and the refrigerant expansion operation by the expander, and the refrigerant pressure pulsation increases. Sometimes. As a result, due to the pressure pulsation, there is a possibility that noise may be generated or a device connected to the refrigerant pipe may be broken.

そこで、特許文献2の冷凍装置では、このような冷媒の圧力脈動を低減するために、膨張機の内部に脈動吸収機構を設けるようにしている。この圧力吸収機構は、冷媒を膨張するための膨張機構に形成された中空状のシリンダ室と、このシリンダ室内に収納されるピストンとを備えている。シリンダ室は、膨張機のケーシング内に形成される冷媒の流入側通路と繋がっている。この流入側通路を流れる冷媒の圧力が変動すると、この変動に伴いピストンが変位し、シリンダ室の容積が変化する。その結果、特許文献2の膨張機では、シリンダの容積変化に伴い冷媒の圧力変動が緩和され、上述した圧力脈動が低減される。
特開2000−234814号公報 特開2004−286880号公報
Therefore, in the refrigeration apparatus of Patent Document 2, a pulsation absorbing mechanism is provided inside the expander in order to reduce the pressure pulsation of the refrigerant. The pressure absorption mechanism includes a hollow cylinder chamber formed in an expansion mechanism for expanding the refrigerant, and a piston accommodated in the cylinder chamber. The cylinder chamber is connected to a refrigerant inflow side passage formed in the casing of the expander. When the pressure of the refrigerant flowing through the inflow side passage fluctuates, the piston is displaced with the fluctuation, and the volume of the cylinder chamber changes. As a result, in the expander disclosed in Patent Document 2, the pressure fluctuation of the refrigerant is reduced with the change in the volume of the cylinder, and the pressure pulsation described above is reduced.
JP 2000-234814 A JP 2004-286880 A

特許文献2のような圧力吸収機構は、シリンダ室の容積が大きければ大きい程、冷媒の圧力を効果的に吸収することができる。ところが、特許文献2のように圧力吸収機構を膨張機の内部に収納しようとすると、膨張機の他の構成部品の制約を受けて、この圧力吸収機構を収納するためのスペースを充分確保できないことがある。その結果、圧力吸収機構を小さくすることを余儀なくされ、この圧力吸収機構で冷媒の圧力脈動を大幅に低減することができなくなってしまうことがある。   A pressure absorption mechanism like patent document 2 can absorb the pressure of a refrigerant effectively, so that the volume of a cylinder room is large. However, if the pressure absorbing mechanism is to be housed inside the expander as in Patent Document 2, it is not possible to secure a sufficient space for housing the pressure absorbing mechanism due to restrictions of other components of the expander. There is. As a result, the pressure absorbing mechanism is forced to be small, and the pressure pulsation of the refrigerant may not be significantly reduced by this pressure absorbing mechanism.

本発明は、かかる点に鑑みてなされたものであり、その目的は、蒸気圧縮式の冷凍サイクルを行う冷凍装置において、冷媒の圧力脈動を大幅に低減することができるようにすることである。   This invention is made | formed in view of this point, The objective is to enable it to reduce significantly the pressure pulsation of a refrigerant | coolant in the refrigerating apparatus which performs a vapor compression type refrigerating cycle.

第1の発明は、圧縮機(20)と放熱器(21)と容積型の膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して接続されると共に冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置を前提としている。そして、この冷凍装置は、中空状のシリンダ部材(31)と、該シリンダ部材(31)の内部空間を第1室(33)と第2室(34)とに仕切ると共に、第1室(33)内の圧力変動に応じてシリンダ部材(31)内を変位するピストン(32)と、該第1室(33)を冷媒配管(11,12,13,14)と繋ぐ第1接続管(35)と、上記第2室(34)と冷媒配管(11,12,13,14)とを接続すると共に絞り機構(37)を有する第2接続管(36)とを有する脈動吸収装置(30)を備え、上記第1接続管(35)が、上記膨張機(22)の流入側と上記放熱器(21)の流出側との間の冷媒配管(12)に接続される一方、上記第2接続管(36)は、上記圧縮機(20)の吐出側と上記放熱器(21)の流入側との間の冷媒配管(11)に接続されることを特徴とするものである。 In the first invention, a compressor (20), a radiator (21), a positive displacement expander (22), and an evaporator (23) are connected via a refrigerant pipe (11, 12, 13, 14). And a refrigerating apparatus including a refrigerant circuit (10) that performs a vapor compression refrigeration cycle by circulating the refrigerant. The refrigeration apparatus partitions the hollow cylinder member (31) and the internal space of the cylinder member (31) into a first chamber (33) and a second chamber (34), and the first chamber (33 ) In the cylinder member (31) according to the pressure fluctuation in the first connection pipe (35) connecting the first chamber (33) to the refrigerant pipe (11, 12, 13, 14). ) And the second chamber (34) and the refrigerant pipe (11, 12, 13, 14), and a pulsation absorbing device (30) having a second connecting pipe (36) having a throttle mechanism (37 ) The first connection pipe (35) is connected to a refrigerant pipe (12) between the inflow side of the expander (22) and the outflow side of the radiator (21), while the second connection pipe (36) is characterized in Rukoto connected to the refrigerant pipe (11) between the discharge side and the radiator inflow side (21) of the compressor (20).

また、第2の発明は、圧縮機(20)と放熱器(21)と容積型の膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して接続されると共に冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置を前提としている。そして、この冷凍装置は、中空状のシリンダ部材(31)と、該シリンダ部材(31)の内部空間を第1室(33)と第2室(34)とに仕切ると共に、第1室(33)内の圧力変動に応じてシリンダ部材(31)内を変位するピストン(32)と、該第1室(33)を冷媒配管(11,12,13,14)と繋ぐ第1接続管(35)と、上記第2室(34)と冷媒配管(11,12,13,14)とを接続すると共に絞り機構(37)を有する第2接続管(36)とを有する脈動吸収装置(30)を備え、上記第1接続管(35)が、上記膨張機(22)の流出側と上記蒸発器(23)の流入側との間の冷媒配管(13)に接続される一方、上記第2接続管(36)は、上記蒸発器(23)の流出側と上記圧縮機(20)の吸入側との間の冷媒配管(14)に接続されることを特徴とするものである。In the second invention, the compressor (20), the radiator (21), the positive displacement expander (22), and the evaporator (23) are connected via the refrigerant pipe (11, 12, 13, 14). A refrigerating apparatus including a refrigerant circuit (10) that performs a vapor compression refrigeration cycle by being connected and circulating a refrigerant is assumed. The refrigeration apparatus partitions the hollow cylinder member (31) and the internal space of the cylinder member (31) into a first chamber (33) and a second chamber (34), and the first chamber (33 ) In the cylinder member (31) according to the pressure fluctuation in the first connection pipe (35) connecting the first chamber (33) to the refrigerant pipe (11, 12, 13, 14). ) And the second chamber (34) and the refrigerant pipe (11, 12, 13, 14), and a pulsation absorbing device (30) having a second connecting pipe (36) having a throttle mechanism (37) The first connection pipe (35) is connected to a refrigerant pipe (13) between the outflow side of the expander (22) and the inflow side of the evaporator (23), while the second The connection pipe (36) is connected to a refrigerant pipe (14) between the outflow side of the evaporator (23) and the suction side of the compressor (20).

第1や第2の発明では、冷媒回路(10)に圧縮機(20)及び膨張機(22)が接続される。冷媒は、圧縮機(20)で圧縮されて高圧冷媒となった後、熱交換器等で放熱してから、膨張機(22)へ流入する。膨張機(22)では、高圧冷媒が減圧されて低圧冷媒となった後、熱交換器等で蒸発する。この冷媒は、再び圧縮機(20)で圧縮されて高圧冷媒となる。 In the first and second inventions, the compressor (20) and the expander (22) are connected to the refrigerant circuit (10). The refrigerant is compressed by the compressor (20) to become a high-pressure refrigerant, radiates heat with a heat exchanger or the like, and then flows into the expander (22). In the expander (22), the high-pressure refrigerant is depressurized to become a low-pressure refrigerant, and then evaporated in a heat exchanger or the like. This refrigerant is compressed again by the compressor (20) to become a high-pressure refrigerant.

第1や第2の発明では、蒸気圧縮式の冷凍サイクルを行う冷凍装置に脈動吸収装置(30)が設けられる。脈動吸収装置(30)には、シリンダ部材(31)とピストン(32)と第1接続管(35)とが設けられる。本発明では、シリンダ部材(31)内の第1室(33)が第1接続管(35)を介して冷媒配管(11,12,13,14)と接続される。つまり、本発明の脈動吸収装置(30)は、上述した特許文献2のように膨張機の内部に設けられず、圧縮機や膨張機等を相互に接続するための冷媒配管(11,12,13,14)に取り付けられる。このため、本発明では、圧縮機等の各構成部品の制約を受けることなく、圧力吸収機構を比較的大きなサイズとしながら、この圧力吸収機構を冷媒配管(11,12,13,14)に取り付けることができる。 In the first and second inventions, the pulsation absorbing device (30) is provided in a refrigeration apparatus that performs a vapor compression refrigeration cycle. The pulsation absorbing device (30) is provided with a cylinder member (31), a piston (32), and a first connection pipe (35). In the present invention, the first chamber (33) in the cylinder member (31) is connected to the refrigerant pipe (11, 12, 13, 14) via the first connection pipe (35). That is, the pulsation absorbing device (30) of the present invention is not provided inside the expander as in Patent Document 2 described above, and refrigerant pipes (11, 12, 13 and 14). For this reason, in the present invention, the pressure absorbing mechanism is attached to the refrigerant pipe (11, 12, 13, 14) without being restricted by each component such as a compressor and the pressure absorbing mechanism having a relatively large size. be able to.

脈動吸収装置(30)では、第1接続管(35)と接続する冷媒配管(11,12,13,14)を流れる冷媒の圧力が変動すると、この冷媒の圧力変動に伴いピストン(32)が変位する。具体的には、例えば冷媒配管(11,12,13,14)の冷媒の圧力が上昇すると、この圧力の上昇に伴いピストン(32)が第2室(34)側に変位し、第1室(33)の容積が拡大する。その結果、第1室(33)及び該第1室(33)と第1接続管(35)を介して繋がる冷媒配管(11,12,13,14)内の圧力が低下するので、冷媒の圧力上昇が緩和される。一方、例えば冷媒配管(11,12,13,14)の冷媒の圧力が低下すると、この圧力の低下に伴いピストン(32)が第1室(33)側に変位し、第1室(33)の容積が縮小する。その結果、第1室(33)及び該第1室(33)と第1接続管(35)を介して繋がる冷媒配管(11,12,13,14)内の圧力が上昇するので、冷媒の圧力低下が緩和される。   In the pulsation absorber (30), when the pressure of the refrigerant flowing through the refrigerant pipe (11, 12, 13, 14) connected to the first connecting pipe (35) fluctuates, the piston (32) Displace. Specifically, for example, when the pressure of the refrigerant in the refrigerant pipe (11, 12, 13, 14) increases, the piston (32) is displaced toward the second chamber (34) with the increase in pressure, and the first chamber The volume of (33) is expanded. As a result, the pressure in the refrigerant chamber (11, 12, 13, 14) connected to the first chamber (33) and the first chamber (33) via the first connection pipe (35) is reduced. Pressure rise is alleviated. On the other hand, for example, when the pressure of the refrigerant in the refrigerant pipe (11, 12, 13, 14) decreases, the piston (32) is displaced toward the first chamber (33) as the pressure decreases, and the first chamber (33) The volume of is reduced. As a result, the pressure in the first chamber (33) and in the refrigerant pipe (11, 12, 13, 14) connected to the first chamber (33) via the first connection pipe (35) is increased. Pressure drop is alleviated.

また、第1や第2の発明では、第2接続管(36)及び絞り機構(37)が設けられる。第2接続管(36)と上記第1接続管(35)とは、冷媒回路(10)において同圧の冷媒が流れる冷媒配管(11,12,13,14)に双方が接続される。従って、第1室(33)には、第1接続管(35)側から冷媒配管(11,12,13,14)の圧力が作用する一方、第2室(34)には、第2接続管(36)側からの冷媒配管(11,12,13,14)の圧力が更に絞り機構(37)で減圧されてから作用することになる。そして、本発明では、ピストン(32)の第2室(34)側の面に絞り機構(37)で減圧した後の冷媒の圧力を作用させることにより、第1室(33)側の冷媒の圧力脈動を吸収するようにしている。 In the first and second inventions, the second connecting pipe (36) and the throttle mechanism (37) are provided. Both the second connection pipe (36) and the first connection pipe (35) are connected to refrigerant pipes (11, 12, 13, 14) through which refrigerant of the same pressure flows in the refrigerant circuit (10). Accordingly, the pressure of the refrigerant pipe (11, 12, 13, 14) acts on the first chamber (33) from the first connecting pipe (35) side, while the second connection is connected to the second chamber (34). The refrigerant pipe (11, 12, 13, 14) from the pipe (36) side acts after the pressure is further reduced by the throttle mechanism (37). And in this invention, the pressure of the refrigerant | coolant of the 1st chamber (33) side is made to act on the surface of the piston (32) by the side of the 2nd chamber (34) by making the pressure of the refrigerant | coolant after pressure-reducing with a throttle mechanism (37) act. The pressure pulsation is absorbed.

具体的に、まず、冷媒配管(11,12,13,14)の圧力が一定となる通常時には、ピストン(32)は、シリンダ部材(31)内の所定位置で静止している。ここで、このような通常時から冷媒配管(11,12,13,14)内の冷媒の圧力が上昇すると、第1接続管(35)では絞り機構(37)による冷媒の減圧がない分だけ、第2室(34)よりも第1室(33)の方が圧力が急激に高くなり、両室(33,34)の圧力バランスが崩れる。このため、ピストン(32)は、第1室(33)の容積を増大させるように変位し、この増大した容積分の冷媒が第1接続管(35)を介して第1室(33)へ吸い込まれる。その結果、第1室(33)及び該第1室(33)と繋がる冷媒配管(11,12,13,14)の圧力が低下し、冷媒配管(11,12,13,14)内の圧力上昇が緩和される。この際、第2室(34)の容積は減少するが、第2接続管(36)には絞り機構(37)が設けられているため、第2室(34)の冷媒は、第2接続管(36)を介して冷媒配管(11,12,13,14)へは殆ど流れない。このため、第2室(34)の容積の減少に伴い、第2室(34)内の圧力も徐々に上昇し、第1室(33)と第2室(34)の圧力バランスが再び釣り合った状態となる。   Specifically, first, at a normal time when the pressure of the refrigerant pipes (11, 12, 13, 14) is constant, the piston (32) is stationary at a predetermined position in the cylinder member (31). Here, when the pressure of the refrigerant in the refrigerant pipe (11, 12, 13, 14) rises from such a normal time, the first connecting pipe (35) is not depressurized by the throttling mechanism (37). The pressure in the first chamber (33) is suddenly higher than that in the second chamber (34), and the pressure balance between the two chambers (33, 34) is lost. For this reason, the piston (32) is displaced so as to increase the volume of the first chamber (33), and the refrigerant of the increased volume is transferred to the first chamber (33) via the first connection pipe (35). Inhaled. As a result, the pressure of the first chamber (33) and the refrigerant pipe (11, 12, 13, 14) connected to the first chamber (33) decreases, and the pressure in the refrigerant pipe (11, 12, 13, 14). The rise is mitigated. At this time, the volume of the second chamber (34) decreases, but the second connecting pipe (36) is provided with the throttle mechanism (37), so that the refrigerant in the second chamber (34) Almost no flow to the refrigerant pipe (11, 12, 13, 14) through the pipe (36). For this reason, as the volume of the second chamber (34) decreases, the pressure in the second chamber (34) gradually increases, and the pressure balance between the first chamber (33) and the second chamber (34) is balanced again. It becomes a state.

一方、通常時から冷媒配管(11,12,13,14)内の冷媒の圧力が低下すると、絞り機構(37)による冷媒の減圧がない分だけ、第2室(34)よりも第1室(33)の方が圧力が急激に低くなり、両室(33,34)の圧力バランスが崩れる。このため、ピストン(32)は、第1室(33)の容積を減少させるように変位し、この減少した容積分の冷媒が第1接続管(35)を介して冷媒配管(11,12,13,14)へ押し出される。その結果、第1室(33)及び該第1室(33)と繋がる冷媒配管(11,12,13,14)の圧力が上昇し、冷媒の圧力低下が緩和される。この際、第2室(34)の容積は増大するが、第2接続管(36)には絞り機構(37)が設けられているため、冷媒配管(11,12,13,14)の冷媒は、第2接続管(36)を介して第2室(34)へ殆ど流れない。このため、第2室(34)の容積の増大に伴い、第2室(34)内の圧力も徐々に低下し、第1室(33)と第2室(34)の圧力バランスが再び釣り合った状態となる。   On the other hand, when the pressure of the refrigerant in the refrigerant pipe (11, 12, 13, 14) decreases from the normal time, the first chamber is more than the second chamber (34) by the amount that the refrigerant is not reduced by the throttle mechanism (37). In (33), the pressure drops sharply and the pressure balance in both chambers (33, 34) is lost. For this reason, the piston (32) is displaced so as to reduce the volume of the first chamber (33), and the refrigerant corresponding to the reduced volume passes through the first connection pipe (35) to the refrigerant pipes (11, 12, 13 and 14). As a result, the pressure of the first chamber (33) and the refrigerant pipe (11, 12, 13, 14) connected to the first chamber (33) increases, and the pressure drop of the refrigerant is alleviated. At this time, the volume of the second chamber (34) increases, but the second connecting pipe (36) is provided with the throttle mechanism (37), so that the refrigerant in the refrigerant pipe (11, 12, 13, 14). Hardly flows to the second chamber (34) through the second connection pipe (36). For this reason, as the volume of the second chamber (34) increases, the pressure in the second chamber (34) gradually decreases, and the pressure balance between the first chamber (33) and the second chamber (34) is balanced again. It becomes a state.

また、第1の発明では、第1接続管(35)が膨張機(22)の流入側の冷媒配管(12)に接続される。ここで、膨張機(22)の流入側の冷媒は、高圧のガス冷媒等と比較して比較的密度が大きいため、冷媒の圧力脈動が大きくなり易い。これに対し、本発明では、第1接続管(35)を膨張機(22)の流入側の冷媒配管(12)に接続しているので、この冷媒配管(12)における冷媒の圧力脈動が効果的に低減される。 In the first invention, the first connection pipe (35) is connected to the refrigerant pipe (12) on the inflow side of the expander (22). Here, since the refrigerant on the inflow side of the expander (22) has a relatively high density compared to a high-pressure gas refrigerant or the like, the pressure pulsation of the refrigerant tends to increase. On the other hand, in the present invention, since the first connection pipe (35) is connected to the refrigerant pipe (12) on the inflow side of the expander (22), the pressure pulsation of the refrigerant in the refrigerant pipe (12) is effective. Reduced.

更に第1の発明では、第2接続管(36)を圧縮機(20)の吐出側の冷媒配管(11)に接続している。このため、第2室(34)は、圧縮機(20)の吐出冷媒で満たされることになる。ここで、圧縮機(20)の吐出冷媒は、高圧の液冷媒と比較して圧縮性に富むため、第1室(33)側の冷媒の圧力変動に伴いピストン(32)が変位しても、第2室(34)内の圧力は変動しにくい。従って、本発明の脈動吸収装置(30)では、第1室(33)の圧力変動に伴うピストン(32)の応答性が向上し、脈動吸収装置(30)による圧力脈動の吸収効果が高まる。 Furthermore, in the first invention, the second connection pipe (36) is connected to the refrigerant pipe (11) on the discharge side of the compressor (20). For this reason, the second chamber (34) is filled with the refrigerant discharged from the compressor (20). Here, since the refrigerant discharged from the compressor (20) is more compressible than the high-pressure liquid refrigerant, even if the piston (32) is displaced due to the pressure fluctuation of the refrigerant on the first chamber (33) side. The pressure in the second chamber (34) is unlikely to fluctuate. Therefore, in the pulsation absorbing device (30) of the present invention, the response of the piston (32) accompanying the pressure fluctuation in the first chamber (33) is improved, and the pressure pulsation absorbing effect by the pulsation absorbing device (30) is enhanced.

また、第2の発明では、第1接続管(35)を膨張機(22)の流出側の冷媒配管(13)に接続することで、比較的圧力脈動が大きくなり易い膨張機(22)の流出側において、脈動吸収装置(30)によってこの圧力脈動が効果的に低減される。 In the second aspect of the invention, the first connecting pipe (35) is connected to the refrigerant pipe (13) on the outflow side of the expander (22), so that the pressure pulsation is relatively large. On the outflow side, this pressure pulsation is effectively reduced by the pulsation absorber (30).

更に第2の発明では、第2接続管(36)を圧縮機(20)の吸入側の冷媒配管(14)に接続している。このため、第2室(34)は、圧縮機(20)の吸入側の低圧ガス冷媒で満たされることになる。ここで、この低圧ガス冷媒は、低圧の液冷媒等と比較して圧縮性に富むため、第1室(33)側の冷媒の圧力変動に伴いピストン(32)が変位しても、第2室(34)の圧力は変動しにくい。従って、本発明の脈動吸収装置(30)では、第1室(33)の圧力変動に伴うピストン(32)の応答性が向上し、脈動吸収装置(30)による圧力脈動の吸収効果が高まる。 Furthermore, in the second invention, the second connection pipe (36) is connected to the refrigerant pipe (14) on the suction side of the compressor (20). For this reason, the second chamber (34) is filled with the low-pressure gas refrigerant on the suction side of the compressor (20). Here, since this low-pressure gas refrigerant is more compressible than a low-pressure liquid refrigerant or the like, even if the piston (32) is displaced due to the pressure fluctuation of the refrigerant on the first chamber (33) side, The pressure in the chamber (34) is unlikely to fluctuate. Therefore, in the pulsation absorbing device (30) of the present invention, the response of the piston (32) accompanying the pressure fluctuation in the first chamber (33) is improved, and the pressure pulsation absorbing effect by the pulsation absorbing device (30) is enhanced.

の発明は、第1又は第2の冷凍装置において、上記冷媒回路(10)では、冷媒として二酸化炭素が用いられ、上記圧縮機(20)の吐出冷媒圧力を臨界圧力以上とする冷凍サイクルが行われることを特徴とするものである。 According to a third aspect of the present invention, in the first or second refrigeration apparatus, in the refrigerant circuit (10), carbon dioxide is used as a refrigerant, and a refrigerant pressure discharged from the compressor (20) is equal to or higher than a critical pressure. Is performed.

の発明の冷媒回路(10)では、二酸化炭素を臨界圧力以上まで圧縮しながら冷凍サイクルが行われる。このように冷媒を臨界圧力以上まで圧縮すると、冷媒の圧力脈動が大きくなり易いが、本発明では、この冷媒の圧力脈動が脈動吸収装置(30)によって効果的に低減される。 In the refrigerant circuit (10) of the third invention, the refrigeration cycle is performed while compressing carbon dioxide to a critical pressure or higher. When the refrigerant is compressed to a critical pressure or higher in this way, the pressure pulsation of the refrigerant tends to increase, but in the present invention, the pressure pulsation of the refrigerant is effectively reduced by the pulsation absorbing device (30).

第1や第2の発明では、脈動吸収装置(30)を第1接続管(35)を介して冷媒配管(11,12,13,14)に接続するようにしている。つまり、本発明では、特許文献2のように膨張機の内部に脈動吸収機構を設けず、冷媒配管(11,12,13,14)に脈動吸収装置(30)を直接取り付けるようにしている。このため、本発明によれば、脈動吸収装置(30)の大型化、ひいてはシリンダ部材(31)内の第1室(33)の大容量化を図ることができ、この脈動吸収装置(30)で冷媒の圧力脈動を大幅に低減することができる。また、このように脈動吸収装置(30)を冷媒配管(11,12,13,14)に取り付けるようにすると、膨張機の内部に組み込む場合と異なり、脈動吸収装置(30)のメンテナンスや交換が容易となる。 In the first and second inventions, the pulsation absorbing device (30) is connected to the refrigerant pipe (11, 12, 13, 14) via the first connection pipe (35). That is, in the present invention, unlike the Patent Document 2, the pulsation absorbing mechanism (30) is directly attached to the refrigerant pipe (11, 12, 13, 14) without providing the pulsation absorbing mechanism inside the expander. For this reason, according to the present invention, it is possible to increase the size of the pulsation absorbing device (30) and to increase the capacity of the first chamber (33) in the cylinder member (31). Thus, the pressure pulsation of the refrigerant can be greatly reduced. In addition, when the pulsation absorber (30) is attached to the refrigerant pipe (11, 12, 13, 14) in this way, unlike the case where it is incorporated into the expander, maintenance and replacement of the pulsation absorber (30) are not possible. It becomes easy.

第1や第2の発明では、第1接続管(35)及び第2接続管(36)を同圧の冷媒配管(11,12,13,14)に接続し、第2接続管(36)に絞り機構(37)を設けるようにしている。このため、第2接続管(36)を介して第2室(34)に作用する冷媒の圧力を利用して、第1接続管(35)と繋がる冷媒配管(11,12,13,14)における冷媒の圧力脈動を効果的に低減することができる。 In the first and second inventions, the first connection pipe (35) and the second connection pipe (36) are connected to the refrigerant pipe (11, 12, 13, 14) of the same pressure, and the second connection pipe (36) An aperture mechanism (37) is provided in For this reason, the refrigerant | coolant piping (11,12,13,14) connected with a 1st connection pipe (35) using the pressure of the refrigerant | coolant which acts on a 2nd chamber (34) via a 2nd connection pipe (36) It is possible to effectively reduce the pressure pulsation of the refrigerant.

また、第1の発明では、第1室(33)を膨張機(22)の流入側の冷媒配管(12)と繋ぐ一方、第2室(34)に圧縮機(20)の吐出冷媒を導入するようにしている。このため、例えば第2室(34)に液冷媒を作用させる場合と比較して、膨張機(22)の流入側の圧力変動に対するピストン(32)の応答性が増し、膨張機(22)の流入側の冷媒配管(12)における冷媒の圧力脈動を効果的に吸収することができる。 In the first invention, the refrigerant discharged from the compressor (20) is introduced into the second chamber (34) while the first chamber (33) is connected to the refrigerant pipe (12) on the inflow side of the expander (22). Like to do. For this reason, for example, compared with the case where liquid refrigerant is applied to the second chamber (34), the response of the piston (32) to the pressure fluctuation on the inflow side of the expander (22) increases, and the expander (22) It is possible to effectively absorb the pressure pulsation of the refrigerant in the refrigerant pipe (12) on the inflow side.

また、第2の発明では、第1室(33を膨張機(22)の流出側の冷媒配管(13)と繋ぐ一方、第2室(34)に圧縮機(20)の吸入ガス冷媒を導入するようにしている。このため、例えば第2室(34)に液冷媒を作用させる場合と比較して、膨張機(22)の流出側の圧力変動に対するピストン(32)の応答性が増し、膨張機(22)の流出側の冷媒配管(13)における冷媒の圧力脈動を効果的に吸収することができる。 In the second invention, the suction gas refrigerant of the compressor (20) is introduced into the second chamber (34) while the first chamber (33 is connected to the refrigerant pipe (13) on the outflow side of the expander (22). For this reason, the response of the piston (32) to the pressure fluctuation on the outflow side of the expander (22) is increased, for example, compared with the case where the liquid refrigerant is applied to the second chamber (34), The refrigerant pressure pulsation in the refrigerant pipe (13) on the outflow side of the expander (22) can be effectively absorbed.

の発明では、二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクルを行う冷媒回路(10)に、第1から第6の発明に係る脈動吸収装置(30)を適用するようにしている。このように、二酸化炭素を臨界圧力以上まで圧縮すると、冷媒の圧力脈動が大きくなり易いが、本発明では、この圧力脈動を効果的に低減することができる。 In the third invention, the pulsation absorbing device (30) according to the first to sixth inventions is applied to a refrigerant circuit (10) that performs a refrigeration cycle that compresses carbon dioxide to a critical pressure or higher. Thus, when carbon dioxide is compressed to a critical pressure or higher, the pressure pulsation of the refrigerant tends to increase, but in the present invention, this pressure pulsation can be effectively reduced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.

実施形態1の冷凍装置は、室内を空調する空気調和装置(1)を構成するものである。この冷凍装置(1)は、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる冷媒回路(10)を備えている。この冷媒回路(10)には、冷媒として二酸化炭素が充填されている。そして、冷媒回路(10)では、冷媒が臨界圧力以上まで圧縮される冷凍サイクルが行われる。   The refrigeration apparatus of Embodiment 1 constitutes an air conditioner (1) that air-conditions a room. The refrigeration apparatus (1) includes a refrigerant circuit (10) in which a refrigerant circulates to perform a vapor compression refrigeration cycle. This refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. In the refrigerant circuit (10), a refrigeration cycle is performed in which the refrigerant is compressed to a critical pressure or higher.

冷媒回路(10)には、圧縮機(20)と放熱器(21)と膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して互いに接続されている。具体的には、圧縮機(20)の吐出側には、第1高圧冷媒配管(11)の一端が接続している。第1高圧冷媒配管(11)の他端は、放熱器(21)の一端と接続している。放熱器(21)の他端には、第2高圧冷媒配管(12)の一端が接続している。第2高圧冷媒配管(12)の他端は、膨張機(22)の流入側と接続している。膨張機(22)の流出側には、第1低圧冷媒配管(13)の一端が接続している。第1低圧冷媒配管(13)の他端は、蒸発器(23)の一端が接続している。蒸発器(23)の他端には、第2低圧冷媒配管(14)の一端が接続している。第2低圧冷媒配管(14)の他端は、圧縮機(20)の吸入側と接続している。   A compressor (20), a radiator (21), an expander (22), and an evaporator (23) are connected to the refrigerant circuit (10) via refrigerant pipes (11, 12, 13, 14). ing. Specifically, one end of the first high-pressure refrigerant pipe (11) is connected to the discharge side of the compressor (20). The other end of the first high-pressure refrigerant pipe (11) is connected to one end of the radiator (21). One end of the second high-pressure refrigerant pipe (12) is connected to the other end of the radiator (21). The other end of the second high-pressure refrigerant pipe (12) is connected to the inflow side of the expander (22). One end of the first low-pressure refrigerant pipe (13) is connected to the outflow side of the expander (22). One end of the evaporator (23) is connected to the other end of the first low-pressure refrigerant pipe (13). One end of the second low-pressure refrigerant pipe (14) is connected to the other end of the evaporator (23). The other end of the second low-pressure refrigerant pipe (14) is connected to the suction side of the compressor (20).

上記圧縮機(20)は、容積型の圧縮機で構成されている。この圧縮機(20)には、ケーシング内にロータリー型の圧縮機構が収納されている。この圧縮機(20)の圧縮機構では、ガス冷媒が臨界圧力以上の冷媒となるまで圧縮される。上記放熱器(21)は、例えば室内空間に配置されており、フィンアンドチューブ式の熱交換器で構成されている。放熱器(21)では、高圧ガス冷媒から室内空気へ熱が放出される。上記膨張機(22)は、容積型の膨張機で構成されている。この膨張機(22)では、ケーシング内にロータリー型の膨張機構が収納されている。この膨張機(22)の膨張機構では、高圧冷媒が低圧冷媒となるまで減圧される。上記蒸発器(23)は、例えば室外空間に配置されており、フィンアンドチューブ式の熱交換器で構成されている。蒸発器(23)では、低圧の液冷媒が室外空気から吸熱して蒸発する。   The compressor (20) is a positive displacement compressor. In the compressor (20), a rotary type compression mechanism is accommodated in a casing. In the compression mechanism of the compressor (20), the gas refrigerant is compressed until it becomes a refrigerant having a critical pressure or higher. The said heat radiator (21) is arrange | positioned, for example in indoor space, and is comprised with the fin and tube type heat exchanger. In the radiator (21), heat is released from the high-pressure gas refrigerant to the room air. The expander (22) is a positive displacement expander. In the expander (22), a rotary type expansion mechanism is accommodated in the casing. In the expansion mechanism of the expander (22), the pressure is reduced until the high-pressure refrigerant becomes a low-pressure refrigerant. The evaporator (23) is disposed, for example, in an outdoor space, and is configured by a fin-and-tube heat exchanger. In the evaporator (23), the low-pressure liquid refrigerant absorbs heat from the outdoor air and evaporates.

本発明の特徴として、冷媒回路(10)には脈動吸収装置(30)が設けられている。この脈動吸収装置(30)は、シリンダ部材(31)とピストン(32)とを備えている。シリンダ部材(31)は、中空円筒状の形成されており、その内部に円柱状のシリンダ室が形成されている。ピストン(32)は、円柱状に形成されており、上記シリンダ部材(31)のシリンダ室に収納されている。このピストン(32)は、上記シリンダ室を第1室となる圧力緩衝室(33)と第2室となる背圧室(34)とに区画している。また、ピストン(32)は、比較的軽量なアルミニウム材料で構成されている。   As a feature of the present invention, the refrigerant circuit (10) is provided with a pulsation absorbing device (30). The pulsation absorbing device (30) includes a cylinder member (31) and a piston (32). The cylinder member (31) is formed in a hollow cylindrical shape, and a columnar cylinder chamber is formed therein. The piston (32) is formed in a columnar shape and is accommodated in the cylinder chamber of the cylinder member (31). The piston (32) divides the cylinder chamber into a pressure buffer chamber (33) serving as a first chamber and a back pressure chamber (34) serving as a second chamber. The piston (32) is made of a relatively lightweight aluminum material.

シリンダ部材(31)のシリンダ室には、背圧室(34)にスプリング(32a)が設けられている。このスプリング(32a)は、一端がシリンダ部材(31)の内壁に接続され、他端が上記ピストン(32)に接続されている。このスプリング(32a)は、ピストン(32)を背圧室(34)側から圧力緩衝室(33)側へ付勢する弾性部材を構成している。   In the cylinder chamber of the cylinder member (31), a spring (32a) is provided in the back pressure chamber (34). One end of the spring (32a) is connected to the inner wall of the cylinder member (31), and the other end is connected to the piston (32). The spring (32a) constitutes an elastic member that biases the piston (32) from the back pressure chamber (34) side to the pressure buffer chamber (33) side.

脈動吸収装置(30)は、第1接続管(35)と第2接続管(36)とを備えている。第1接続管(35)は、一端が圧力緩衝室(33)と接続し、他端が第2高圧冷媒配管(12)と接続している。つまり、圧力緩衝室(33)は、第1接続管(35)を介して第2高圧冷媒配管(12)と繋がっている。第2接続管(36)は、一端が背圧室(34)と接続し、他端が第1高圧冷媒配管(11)と接続している。つまり、背圧室(34)は、第2接続管(36)を介して第1高圧冷媒配管(11)と繋がっている。また、第2接続管(36)には、キャピラリーチューブ(37)が設けられている。このキャピラリーチューブ(37)は、冷媒を減圧するための絞り機構を構成している。以上のようにして、第1接続管(35)と第2接続管(36)とは、互いに同圧の冷媒が流れる冷媒配管(11,12)にそれぞれ接続されている。   The pulsation absorbing device (30) includes a first connection pipe (35) and a second connection pipe (36). The first connection pipe (35) has one end connected to the pressure buffer chamber (33) and the other end connected to the second high-pressure refrigerant pipe (12). That is, the pressure buffer chamber (33) is connected to the second high-pressure refrigerant pipe (12) via the first connection pipe (35). The second connection pipe (36) has one end connected to the back pressure chamber (34) and the other end connected to the first high-pressure refrigerant pipe (11). That is, the back pressure chamber (34) is connected to the first high-pressure refrigerant pipe (11) via the second connection pipe (36). The second connection pipe (36) is provided with a capillary tube (37). The capillary tube (37) constitutes a throttling mechanism for decompressing the refrigerant. As described above, the first connection pipe (35) and the second connection pipe (36) are respectively connected to the refrigerant pipes (11, 12) through which refrigerant of the same pressure flows.

脈動吸収装置(30)では、上記圧力緩衝室(33)内が高圧の気液二相状態の冷媒で満たされる一方、上記背圧室(34)内がキャピラリーチューブ(37)で減圧された後の冷媒で満たされている。そして、上記ピストン(32)は、第2高圧冷媒配管(12)を流れる冷媒の圧力変動に応じてシリンダ室で変位し、圧力緩衝室(33)の容積を変化させるように構成されている。   In the pulsation absorbing device (30), the pressure buffer chamber (33) is filled with a high-pressure gas-liquid two-phase refrigerant, while the back pressure chamber (34) is decompressed by a capillary tube (37). Filled with refrigerant. And the said piston (32) is comprised in a cylinder chamber according to the pressure fluctuation of the refrigerant | coolant which flows through a 2nd high pressure refrigerant | coolant piping (12), and is comprised so that the volume of a pressure buffer chamber (33) may be changed.

−運転動作−
次に、本発明の実施形態1に係る空気調和装置(1)の運転動作について説明する。この空気調和装置(1)の運転時には、圧縮機(20)の圧縮機構と膨張機(22)の膨張機構とが駆動される。圧縮機(20)の圧縮機構では、ガス冷媒が臨界圧力以上となるまで圧縮される。圧縮機(20)で圧縮された冷媒は、第1高圧冷媒配管(11)へ吐出される。第1高圧冷媒配管(11)を流れる冷媒は、放熱器(21)を流れる。放熱器(21)では、冷媒から室内空気へ熱が放出される。その結果、室内の暖房が行われる。放熱器(21)で熱を放出した冷媒は、第2高圧冷媒配管(12)を流れ、膨張機(22)へ流入する。
-Driving action-
Next, the operation | movement operation | movement of the air conditioning apparatus (1) which concerns on Embodiment 1 of this invention is demonstrated. During the operation of the air conditioner (1), the compression mechanism of the compressor (20) and the expansion mechanism of the expander (22) are driven. In the compression mechanism of the compressor (20), the gas refrigerant is compressed until the pressure becomes equal to or higher than the critical pressure. The refrigerant compressed by the compressor (20) is discharged to the first high-pressure refrigerant pipe (11). The refrigerant flowing through the first high-pressure refrigerant pipe (11) flows through the radiator (21). In the radiator (21), heat is released from the refrigerant to the room air. As a result, the room is heated. The refrigerant that has released heat from the radiator (21) flows through the second high-pressure refrigerant pipe (12) and flows into the expander (22).

膨張機(22)の膨張機構では、高圧冷媒が低圧の気液2相状態の冷媒となるように減圧される。膨張機(22)で減圧された冷媒は、第1低圧冷媒配管(13)へ流出する。第1低圧冷媒配管(13)を流れる冷媒は、蒸発器(23)を流れる。蒸発器(23)では、液冷媒が室外空気から吸熱して蒸発する。蒸発器(23)で蒸発したガス冷媒は、第2低圧冷媒配管(14)を流れ、圧縮機(20)に吸入される。圧縮機(20)の圧縮機構では、再び冷媒が臨界圧力以上となるまで圧縮される。   In the expansion mechanism of the expander (22), the high-pressure refrigerant is depressurized so as to become a low-pressure gas-liquid two-phase refrigerant. The refrigerant decompressed by the expander (22) flows out to the first low-pressure refrigerant pipe (13). The refrigerant flowing through the first low-pressure refrigerant pipe (13) flows through the evaporator (23). In the evaporator (23), the liquid refrigerant absorbs heat from the outdoor air and evaporates. The gas refrigerant evaporated in the evaporator (23) flows through the second low-pressure refrigerant pipe (14) and is sucked into the compressor (20). In the compression mechanism of the compressor (20), the refrigerant is compressed again until it reaches the critical pressure or higher.

−圧力吸収機構による圧力脈動の抑制動作−
ところで、上述した空気調和装置の運転動作では、圧縮機(20)による冷媒の圧縮動作や、膨張機(22)による冷媒の膨張動作に伴い、冷媒回路(10)を流れる冷媒の圧力が変動し、各冷媒配管(11,12,13,14)で冷媒の圧力脈動が生じることがある。特に、膨張機(22)の流入側の第2高圧冷媒配管(12)では、比較的密度が大きい冷媒が流れるため、冷媒の圧力脈動も大きくなり易い。そこで、実施形態1の空気調和装置(1)では、上述の脈動吸収装置(30)によって、第2高圧冷媒配管(12)を流れる冷媒の圧力脈動を小さくするようにしている。
-Suppression of pressure pulsation by pressure absorption mechanism-
By the way, in the operation operation of the air conditioner described above, the pressure of the refrigerant flowing through the refrigerant circuit (10) fluctuates with the refrigerant compression operation by the compressor (20) and the refrigerant expansion operation by the expander (22). , Refrigerant pressure pulsation may occur in each refrigerant pipe (11, 12, 13, 14). In particular, in the second high-pressure refrigerant pipe (12) on the inflow side of the expander (22), a refrigerant having a relatively high density flows, so that the pressure pulsation of the refrigerant tends to increase. Therefore, in the air conditioner (1) of the first embodiment, the pressure pulsation of the refrigerant flowing through the second high-pressure refrigerant pipe (12) is reduced by the above-described pulsation absorbing device (30).

以下には、この脈動吸収装置(30)による冷媒の圧力脈動の抑制動作について図2(A)〜(C)を参照しながら説明する。   Hereinafter, the operation of suppressing the pressure pulsation of the refrigerant by the pulsation absorbing device (30) will be described with reference to FIGS.

まず、第2高圧冷媒配管(12)で冷媒の圧力が変動していない通常時には、例えばピストン(32)が図2(A)に示す状態となる。この状態では、第1高圧冷媒配管(11)側から第1接続管(35)を介してピストン(32)における圧力緩衝室(33)側の面に作用する冷媒の圧力と、第2高圧冷媒配管(12)側から第2接続管(36)及びキャピラリーチューブ(37)を介してピストン(32)における背圧室(34)側の面に作用する冷媒の圧力と、スプリング(32a)によってピストン(32)に付与される付勢力とが釣り合っている。   First, at a normal time when the refrigerant pressure does not fluctuate in the second high-pressure refrigerant pipe (12), for example, the piston (32) is in the state shown in FIG. In this state, the pressure of the refrigerant acting on the pressure buffer chamber (33) side surface of the piston (32) from the first high pressure refrigerant pipe (11) side through the first connection pipe (35), and the second high pressure refrigerant A piston is formed by the pressure of the refrigerant acting on the back pressure chamber (34) side surface of the piston (32) from the pipe (12) side through the second connection pipe (36) and the capillary tube (37), and the spring (32a). The urging force given to (32) is balanced.

図2(A)の状態から、第2高圧冷媒配管(12)を流れる冷媒の圧力が上昇すると、第1接続管(35)には第2接続管(36)のようにキャピラリーチューブ(37)による冷媒の減圧がない分だけ、圧力緩衝室(33)の方が背圧室(34)よりも圧力が急激に上昇する。このため、ピストン(32)は、図2(B)に示すように、圧力緩衝室(33)の容積を増大させるように背圧室(34)側へ変位する。その結果、圧力緩衝室(33)の容積が増大した分だけ、第2高圧冷媒配管(12)から圧力緩衝室(33)へ冷媒が吸い込まれる。従って、第2高圧冷媒配管(12)を流れる冷媒の圧力が低下し、この冷媒の圧力上昇が緩和される。   When the pressure of the refrigerant flowing through the second high-pressure refrigerant pipe (12) rises from the state of FIG. 2 (A), the capillary tube (37) is connected to the first connection pipe (35) like the second connection pipe (36). The pressure in the pressure buffer chamber (33) rises more rapidly than the back pressure chamber (34) by the amount that the refrigerant is not depressurized. For this reason, as shown in FIG. 2 (B), the piston (32) is displaced toward the back pressure chamber (34) so as to increase the volume of the pressure buffer chamber (33). As a result, the refrigerant is sucked from the second high-pressure refrigerant pipe (12) into the pressure buffer chamber (33) by the amount corresponding to the increase in the volume of the pressure buffer chamber (33). Therefore, the pressure of the refrigerant flowing through the second high-pressure refrigerant pipe (12) decreases, and the pressure increase of this refrigerant is alleviated.

一方、この際には、背圧室(34)の容積が減少する。しかしながら、背圧室(34)と繋がる第2接続管(36)には、キャピラリーチューブ(37)が設けられているため、背圧室(34)の冷媒は、第2接続管(36)を介して第1高圧冷媒配管(11)へ殆ど流れない。このため、背圧室(34)の容積の減少に伴い、背圧室(34)内の圧力も徐々に上昇し、ピストン(32)に作用する力が再び釣り合った状態となる。   On the other hand, at this time, the volume of the back pressure chamber (34) decreases. However, since the capillary tube (37) is provided in the second connection pipe (36) connected to the back pressure chamber (34), the refrigerant in the back pressure chamber (34) passes through the second connection pipe (36). Through the first high-pressure refrigerant pipe (11). For this reason, as the volume of the back pressure chamber (34) decreases, the pressure in the back pressure chamber (34) also gradually increases, and the force acting on the piston (32) is balanced again.

また、図2(A)の状態から、第2高圧冷媒配管(12)を流れる冷媒の圧力が低下すると、第1接続管(35)には第2接続管(36)のようにキャピラリーチューブ(37)による冷媒の減圧がない分だけ、圧力緩衝室(33)の方が背圧室(34)よりも圧力が急激に低くなる。このため、ピストン(32)は、図2(C)に示すように、圧力緩衝室(33)の容積を減少させるように圧力緩衝室(33)側へ変位する。その結果、圧力緩衝室(33)の容積が減少した分だけ、圧力緩衝室(33)から第2高圧冷媒配管(12)へ冷媒が吐出される。従って、第2高圧冷媒配管(12)を流れる冷媒の圧力が上昇し、この冷媒の圧力低下が緩和される。   2A, when the pressure of the refrigerant flowing through the second high-pressure refrigerant pipe (12) decreases, the first connection pipe (35) is connected to the capillary tube (like the second connection pipe (36)). The pressure in the pressure buffer chamber (33) is drastically lower than that in the back pressure chamber (34) by the amount of refrigerant depressurization due to 37). Therefore, as shown in FIG. 2C, the piston (32) is displaced toward the pressure buffer chamber (33) so as to reduce the volume of the pressure buffer chamber (33). As a result, the refrigerant is discharged from the pressure buffer chamber (33) to the second high-pressure refrigerant pipe (12) by the amount that the volume of the pressure buffer chamber (33) is reduced. Therefore, the pressure of the refrigerant flowing through the second high-pressure refrigerant pipe (12) increases, and the pressure drop of this refrigerant is alleviated.

一方、この際には、背圧室(34)の容積が増大する。しかしながら、第2接続管(36)には、キャピラリーチューブ(37)が設けられているため、第1高圧冷媒配管(11)を流れる冷媒は、第2接続管(36)を介して背圧室(34)へ殆ど流れない。このため、背圧室(34)の容積の増大に伴い、背圧室(34)内の圧力も徐々に減少し、ピストン(32)に作用する力が再び釣り合った状態となる。   On the other hand, at this time, the volume of the back pressure chamber (34) increases. However, since the capillary tube (37) is provided in the second connection pipe (36), the refrigerant flowing through the first high-pressure refrigerant pipe (11) passes through the second connection pipe (36) to the back pressure chamber. Almost no flow to (34). For this reason, as the volume of the back pressure chamber (34) increases, the pressure in the back pressure chamber (34) gradually decreases, and the force acting on the piston (32) is balanced again.

以上のように、脈動吸収装置(30)は、第2高圧冷媒配管(12)を流れる冷媒の圧力変動に伴い、ピストン(32)の位置を図2(B)や図2(C)に示すように、前後に進退させる。その結果、この空気調和装置(1)では、第2高圧冷媒配管(12)を流れる冷媒の上昇や低下が緩和され、冷媒の圧力脈動の低減化が図られる。   As described above, the pulsation absorbing device (30) shows the position of the piston (32) in FIG. 2 (B) and FIG. 2 (C) in accordance with the pressure fluctuation of the refrigerant flowing through the second high-pressure refrigerant pipe (12). As you move forward and backward. As a result, in this air conditioner (1), the rise and fall of the refrigerant flowing through the second high-pressure refrigerant pipe (12) is alleviated, and the pressure pulsation of the refrigerant is reduced.

−実施形態1の効果−
上記実施形態1では、第1接続管(35)及び第2接続管(36)を介して脈動吸収装置(30)を冷媒配管(11,12)に接続するようにしている。つまり、上記実施形態1では、特許文献2のように膨張機の内部に脈動吸収機構を設けるのではなく、冷媒配管(11,12)に脈動吸収装置(30)を直接取り付けるようにしている。このため、上記実施形態1によれば、脈動吸収装置(30)の大型化、ひいてはシリンダ部材(31)内のシリンダ室の大容量化を図ることができ、この脈動吸収装置(30)で冷媒の圧力脈動を大幅に低減することができる。また、このように脈動吸収装置(30)を冷媒配管(11,12)に取り付けるようにすると、膨張機の内部に組み込む場合と異なり、脈動吸収装置(30)のメンテナンスや交換が容易となる。
-Effect of Embodiment 1-
In the first embodiment, the pulsation absorber (30) is connected to the refrigerant pipe (11, 12) via the first connection pipe (35) and the second connection pipe (36). That is, in the first embodiment, the pulsation absorbing device (30) is directly attached to the refrigerant pipes (11, 12) instead of providing the pulsation absorbing mechanism inside the expander as in Patent Document 2. Therefore, according to the first embodiment, it is possible to increase the size of the pulsation absorbing device (30) and to increase the capacity of the cylinder chamber in the cylinder member (31). The pressure pulsation can be greatly reduced. Further, when the pulsation absorbing device (30) is attached to the refrigerant pipe (11, 12) in this manner, unlike the case where the pulsation absorbing device (30) is incorporated into the expander, maintenance and replacement of the pulsation absorbing device (30) are facilitated.

また、上記実施形態1では、第1接続管(35)及び第2接続管(36)を同圧の冷媒配管(11,12)に接続し、第2接続管(36)にキャピラリーチューブ(37)を設けるようにしている。このため、第2接続管(36)を介して背圧室(34)に作用する冷媒の圧力を利用して、第2高圧冷媒配管(12)における冷媒の圧力脈動を効果的に吸収することができる。   In the first embodiment, the first connection pipe (35) and the second connection pipe (36) are connected to the refrigerant pipes (11, 12) having the same pressure, and the capillary tube (37) is connected to the second connection pipe (36). ). For this reason, the pressure of the refrigerant acting on the back pressure chamber (34) via the second connection pipe (36) is used to effectively absorb the pressure pulsation of the refrigerant in the second high-pressure refrigerant pipe (12). Can do.

また、上記実施形態1では、圧力緩衝室(33)を膨張機(22)の流入側の第2高圧冷媒配管(12)と繋ぐ一方、背圧室(34)を圧縮機(20)の吐出側の第1高圧冷媒配管(11)と繋ぎ背圧室(34)に圧縮機(20)の吐出冷媒を導入するようにしている。ここで、圧縮機(20)の吐出冷媒は、例えば高圧の液冷媒と比較して圧縮性に富むため、圧力緩衝室(33)側の冷媒の圧力変動に伴いピストン(32)が変位しても、背圧室(34)の圧力が変動しにくい。このため、上記実施形態1によれば、背圧室(34)に液冷媒を導入させる場合と比較して、圧力緩衝室(33)の圧力変動に対するピストン(32)の応答性が増し、第2高圧冷媒配管(12)における冷媒の圧力脈動を効果的に吸収することができる。   In the first embodiment, the pressure buffer chamber (33) is connected to the second high-pressure refrigerant pipe (12) on the inflow side of the expander (22), while the back pressure chamber (34) is discharged from the compressor (20). The refrigerant discharged from the compressor (20) is introduced into the back pressure chamber (34) connected to the first high-pressure refrigerant pipe (11) on the side. Here, since the refrigerant discharged from the compressor (20) is more compressible than, for example, high-pressure liquid refrigerant, the piston (32) is displaced in accordance with the pressure fluctuation of the refrigerant on the pressure buffer chamber (33) side. However, the pressure in the back pressure chamber (34) is unlikely to fluctuate. Therefore, according to the first embodiment, the responsiveness of the piston (32) to the pressure fluctuation in the pressure buffer chamber (33) is increased as compared with the case where the liquid refrigerant is introduced into the back pressure chamber (34). The pressure pulsation of the refrigerant in the two high-pressure refrigerant pipes (12) can be effectively absorbed.

参考例1
参考例1に係る空気調和装置(1)は、上記実施形態1と脈動吸収装置(30)の第2接続管(36)の接続箇所が異なるものである。具体的には、図3に示すように、この変形例の脈動吸収装置(30)では、第2接続管(36)の他端が、第1接続管(35)と同様に第2高圧冷媒配管(12)に接続されている。そして、脈動吸収装置(30)では、圧力緩衝室(33)と背圧室(34)との双方に、第2高圧冷媒配管(12)内の冷媒が導入される。
-Reference Example 1-
The connection part of the 2nd connection pipe (36) of the said Embodiment 1 and the pulsation absorber (30) differs in the air conditioning apparatus (1) which concerns on the reference example 1. FIG. Specifically, as shown in FIG. 3, in the pulsation absorbing device (30) of this modification, the other end of the second connection pipe (36) is the second high-pressure refrigerant in the same manner as the first connection pipe (35). Connected to pipe (12). In the pulsation absorbing device (30), the refrigerant in the second high-pressure refrigerant pipe (12) is introduced into both the pressure buffer chamber (33) and the back pressure chamber (34).

この参考例1においても、上記実施形態1と同様、第2高圧冷媒配管(12)を流れる冷媒の圧力変動に応じてピストン(32)が変位し、圧力緩衝室(33)の容積が拡縮される。その結果、上記実施形態1と同様にして、第2高圧冷媒配管(12)を流れる冷媒の圧力脈動が低減される。 Also in the reference example 1 , as in the first embodiment, the piston (32) is displaced according to the pressure fluctuation of the refrigerant flowing through the second high-pressure refrigerant pipe (12), and the volume of the pressure buffer chamber (33) is expanded / contracted. The As a result, the pressure pulsation of the refrigerant flowing through the second high-pressure refrigerant pipe (12) is reduced as in the first embodiment.

一方、この参考例1では、第1接続管(35)と第2接続管(36)との双方が第2高圧冷媒配管(12)に接続されているため、各接続管(35,36)を流れる冷媒の温度差が殆どない状態となっている。このため、この変形例では、圧力緩衝室(33)と背圧室(34)との間でピストン(32)を介して冷媒が熱交換してしまうことがない。従って、この変形例では、脈動吸収装置(30)における冷媒の熱交換に伴い冷媒回路(10)で熱損失が生じてしまうことを回避できる。 On the other hand, in Reference Example 1 , since both the first connection pipe (35) and the second connection pipe (36) are connected to the second high-pressure refrigerant pipe (12), each connection pipe (35, 36) There is almost no temperature difference between the refrigerants flowing through. For this reason, in this modification, the refrigerant does not exchange heat between the pressure buffer chamber (33) and the back pressure chamber (34) via the piston (32). Therefore, in this modification, it is possible to avoid heat loss from occurring in the refrigerant circuit (10) due to heat exchange of the refrigerant in the pulsation absorbing device (30).

《発明の実施形態2》
本発明の実施形態2に係る空気調和装置(1)では、図4に示すように、脈動吸収装置(30)の第1接続管(35)が膨張機(22)の流出側の第1低圧冷媒配管(13)と繋がり、第2接続管(36)が圧縮機(20)の吸入側の第2低圧冷媒配管(14)と繋がっている。つまり、実施形態2の脈動吸収装置(30)では、圧力緩衝室(33)に膨張機(22)の流出側の低圧冷媒が導入され、背圧室(34)に圧縮機(20)の吸入側の低圧ガス冷媒が導入される。
<< Embodiment 2 of the Invention >>
In the air conditioner (1) according to Embodiment 2 of the present invention, as shown in FIG. 4, the first connection pipe (35) of the pulsation absorber (30) is the first low pressure on the outflow side of the expander (22). The second pipe (36) is connected to the refrigerant pipe (13), and the second low-pressure refrigerant pipe (14) on the suction side of the compressor (20). That is, in the pulsation absorbing device (30) of the second embodiment, the low pressure refrigerant on the outflow side of the expander (22) is introduced into the pressure buffer chamber (33), and the compressor (20) is sucked into the back pressure chamber (34). Side low-pressure gas refrigerant is introduced.

実施形態2では、第1低圧冷媒配管(13)を流れる冷媒の圧力変動に応じてピストン(32)が変位し、上記実施形態1と同様にして、第1低圧冷媒配管(13)を流れる冷媒の圧力脈動が低減される。   In the second embodiment, the piston (32) is displaced according to the pressure fluctuation of the refrigerant flowing through the first low-pressure refrigerant pipe (13), and the refrigerant flowing through the first low-pressure refrigerant pipe (13) in the same manner as in the first embodiment. The pressure pulsation is reduced.

この実施形態2では、背圧室(34)が低圧のガス冷媒で満たされるため、例えば背圧室(34)が液冷媒で満たされている場合と比較して、圧力緩衝室(33)側の圧力変動に伴うピストン(32)の応答性が向上する。従って、この実施形態2によれば、第1低圧冷媒配管(13)における冷媒の圧力脈動を効果的に吸収することができる。   In the second embodiment, since the back pressure chamber (34) is filled with the low-pressure gas refrigerant, the pressure buffer chamber (33) side is compared with the case where the back pressure chamber (34) is filled with the liquid refrigerant, for example. The responsiveness of the piston (32) accompanying the pressure fluctuation is improved. Therefore, according to the second embodiment, the pressure pulsation of the refrigerant in the first low-pressure refrigerant pipe (13) can be effectively absorbed.

参考例2
参考例2に係る空気調和装置(1)は、上記実施形態2と脈動吸収装置(30)の第2接続管(36)の接続箇所が異なるものである。具体的には、図5に示すように、この参考例2の脈動吸収装置(30)では、第2接続管(36)の他端が、第1接続管(35)と同様に第1低圧冷媒配管(13)に接続されている。そして、脈動吸収装置(30)では、圧力緩衝室(33)と背圧室(34)との双方に、第1低圧冷媒配管(13)内の冷媒が導入される。
-Reference example 2-
The connection part of the 2nd connection pipe (36) of the said Embodiment 2 and the pulsation absorber (30) differs in the air conditioning apparatus (1) which concerns on the reference example 2. FIG. Specifically, as shown in FIG. 5, in the pulsation absorbing device (30) of Reference Example 2, the other end of the second connection pipe (36) is the first low pressure similarly to the first connection pipe (35). Connected to the refrigerant pipe (13). In the pulsation absorbing device (30), the refrigerant in the first low-pressure refrigerant pipe (13) is introduced into both the pressure buffer chamber (33) and the back pressure chamber (34).

この参考例2においても、上記実施形態2と同様、第1低圧冷媒配管(13)を流れる冷媒の圧力変動に応じてピストン(32)が変位し、圧力緩衝室(33)の容積が拡縮される。その結果、上記実施形態2と同様にして、第1低圧冷媒配管(13)を流れる冷媒の圧力脈動が低減される。   Also in the reference example 2, as in the second embodiment, the piston (32) is displaced in accordance with the pressure fluctuation of the refrigerant flowing through the first low-pressure refrigerant pipe (13), and the volume of the pressure buffer chamber (33) is expanded / contracted. The As a result, the pressure pulsation of the refrigerant flowing through the first low-pressure refrigerant pipe (13) is reduced as in the second embodiment.

一方、この参考例2では、第1接続管(35)と第2接続管(36)との双方が第1低圧冷媒配管(13)に接続されているため、各接続管(35,36)を流れる冷媒の温度差が殆どない状態となっている。このため、この変形例では、圧力緩衝室(33)と背圧室(34)との間でピストン(32)を介して冷媒が熱交換してしまうことがない。従って、この変形例では、脈動吸収装置(30)における冷媒の熱交換に伴い冷媒回路(10)で熱損失が生じてしまうことを回避できる。   On the other hand, in this reference example 2, since both the first connection pipe (35) and the second connection pipe (36) are connected to the first low-pressure refrigerant pipe (13), each connection pipe (35, 36). There is almost no temperature difference between the refrigerants flowing through. For this reason, in this modification, the refrigerant does not exchange heat between the pressure buffer chamber (33) and the back pressure chamber (34) via the piston (32). Therefore, in this modification, it is possible to avoid heat loss from occurring in the refrigerant circuit (10) due to heat exchange of the refrigerant in the pulsation absorbing device (30).

−参考例3−
参考例3に係る空気調和装置(1)では、図6に示すように、脈動吸収装置(30)の第1接続管(35)及び第2接続管(36)が、圧縮機(20)の吐出側の第1高圧冷媒配管(11)と繋がっている。つまり、参考例3の脈動吸収装置(30)では、圧力緩衝室(33)及び背圧室(34)の双方に圧縮機(20)の吐出冷媒が導入される。
-Reference Example 3-
In the air conditioner (1) according to Reference Example 3 , as shown in FIG. 6, the first connection pipe (35) and the second connection pipe (36) of the pulsation absorber (30) are connected to the compressor (20). The discharge side first high-pressure refrigerant pipe (11) is connected. That is, in the pulsation absorbing device (30) of Reference Example 3, the refrigerant discharged from the compressor (20) is introduced into both the pressure buffer chamber (33) and the back pressure chamber (34).

参考例3では、第1高圧冷媒配管(11)を流れる冷媒の圧力変動に応じてピストン(32)が変位し、上記各実施形態と同様にして、第1高圧冷媒配管(11)を流れる冷媒の圧力脈動が低減される。 In Reference Example 3 , the piston (32) is displaced according to the pressure fluctuation of the refrigerant flowing through the first high-pressure refrigerant pipe (11), and the refrigerant flowing through the first high-pressure refrigerant pipe (11) in the same manner as in the above embodiments. The pressure pulsation is reduced.

この参考例3においても、第1接続管(35)と第2接続管(36)との双方が第1高圧冷媒配管(11)に接続されているため、各接続管(35,36)を流れる冷媒の温度差が殆どない状態となっている。このため、実施形態3においても、脈動吸収装置(30)における冷媒の熱交換に伴い冷媒回路(10)で熱損失が生じてしまうことを回避できる。 Also in this reference example 3 , since both the first connecting pipe (35) and the second connecting pipe (36) are connected to the first high-pressure refrigerant pipe (11), each connecting pipe (35, 36) is connected to the first connecting pipe (35). There is almost no temperature difference between the flowing refrigerants. For this reason, also in Embodiment 3, it can avoid that heat loss will arise in a refrigerant circuit (10) with the heat exchange of the refrigerant | coolant in a pulsation absorber (30).

−参考例4−
参考例4に係る空気調和装置(1)では、図7に示すように、脈動吸収装置(30)の第1接続管(35)及び第2接続管(36)が、圧縮機(20)の吸入側の第2低圧冷媒配管(14)と繋がっている。つまり、参考例4の脈動吸収装置(30)では、圧力緩衝室(33)及び背圧室(34)の双方に圧縮機(20)の吸入冷媒が導入される。
-Reference example 4-
In the air conditioner (1) according to Reference Example 4 , as shown in FIG. 7, the first connection pipe (35) and the second connection pipe (36) of the pulsation absorber (30) are connected to the compressor (20). It is connected to the second low-pressure refrigerant pipe (14) on the suction side. That is, in the pulsation absorbing device (30) of Reference Example 4 , the suction refrigerant of the compressor (20) is introduced into both the pressure buffer chamber (33) and the back pressure chamber (34).

参考例4では、第2低圧冷媒配管(14)を流れる冷媒の圧力変動に応じてピストン(32)が変位し、上記各実施形態と同様にして、第2低圧冷媒配管(14)を流れる冷媒の圧力脈動が低減される。 In Reference Example 4 , the piston (32) is displaced according to the pressure fluctuation of the refrigerant flowing through the second low-pressure refrigerant pipe (14), and the refrigerant flowing through the second low-pressure refrigerant pipe (14) in the same manner as in the above embodiments. The pressure pulsation is reduced.

この参考例4においても、第1接続管(35)と第2接続管(36)との双方が第2低圧冷媒配管(14)に接続されているため、各接続管(35,36)を流れる冷媒の温度差が殆どない状態となっている。このため、参考例4においても、脈動吸収装置(30)における冷媒の熱交換に伴い冷媒回路(10)で熱損失が生じてしまうことを回避できる。 Also in this reference example 4 , since both the first connection pipe (35) and the second connection pipe (36) are connected to the second low-pressure refrigerant pipe (14), the connection pipes (35, 36) are connected to each other. There is almost no temperature difference between the flowing refrigerants. For this reason, also in the reference example 4 , it can avoid that heat loss will arise in a refrigerant circuit (10) with the heat exchange of the refrigerant | coolant in a pulsation absorber (30).

《その他の実施形態》
上記各実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About each said embodiment, it is good also as the following structures.

上記各実施形態において、例えば図8に示すように、空気調和装置(1)で冷房運転と暖房運転とを可変とするようにしても良い。具体的に、図8の例では、冷媒回路(10)に四路切換弁(50)とブリッジ回路(60)とを設けるようにしている。この場合には、四路切換弁(50)の設定を図8に示す実線と破線とで変更することで、冷媒の循環方向が逆転し、暖房運転と冷房運転とを切り換えることができる。この構成においても、図8に示すようにして本発明の脈動吸収装置(30)を冷媒配管に取り付けることで、冷房運転と暖房運転との双方において冷媒の圧力脈動を低減することができる。   In each of the above embodiments, for example, as shown in FIG. 8, the cooling operation and the heating operation may be made variable by the air conditioner (1). Specifically, in the example of FIG. 8, the refrigerant circuit (10) is provided with a four-way switching valve (50) and a bridge circuit (60). In this case, by changing the setting of the four-way switching valve (50) between the solid line and the broken line shown in FIG. 8, the refrigerant circulation direction is reversed, and the heating operation and the cooling operation can be switched. Also in this configuration, the pressure pulsation of the refrigerant can be reduced in both the cooling operation and the heating operation by attaching the pulsation absorbing device (30) of the present invention to the refrigerant pipe as shown in FIG.

上記各実施形態では、冷媒回路(10)の冷媒として二酸化炭素を用い、この二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクルを行うようにしている。しかしながら、冷媒回路(10)には、例えばR410A等の他の冷媒を用いるようにしても良い。また、この場合には、必ずしも冷媒を臨界圧力以上まで圧縮しなくても良い。   In each of the above embodiments, carbon dioxide is used as the refrigerant in the refrigerant circuit (10), and a refrigeration cycle is performed in which the carbon dioxide is compressed to a critical pressure or higher. However, other refrigerants such as R410A may be used for the refrigerant circuit (10). In this case, the refrigerant does not necessarily have to be compressed to a critical pressure or higher.

また、上記各実施形態において、圧縮機(20)の圧縮機構と、膨張機(22)の膨張機構とを回転軸によって連結し、いわゆる一軸連結式の膨張圧縮機を構成するようにしても良い。   In each of the above embodiments, the compression mechanism of the compressor (20) and the expansion mechanism of the expander (22) may be connected by a rotating shaft to constitute a so-called uniaxially connected expansion compressor. .

また、上記各実施形態では、放熱器(21)で放出した熱を室内の暖房に利用する空気調和装置に、本発明に係る脈動吸収装置(30)を適用するようにしている。しかしながら、例えば放熱器(21)で放出した熱で給湯を行う給湯器や、蒸発器(23)で室内の冷房や庫内の冷却を行う冷凍装置等に、本発明に係る脈動吸収装置(30)を適用するようにしても良い。   In each of the above embodiments, the pulsation absorbing device (30) according to the present invention is applied to an air conditioner that uses the heat released from the radiator (21) for indoor heating. However, the pulsation absorbing device (30) according to the present invention can be applied to, for example, a water heater that supplies hot water with the heat released from the radiator (21), a refrigerator that cools the room indoors or cools the interior using the evaporator (23), and the like. ) May be applied.

なお、以上の各実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, each above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置における冷媒の圧力脈動の低減対策について有用である。   As described above, the present invention is useful for measures for reducing the pressure pulsation of the refrigerant in the refrigeration apparatus in which the refrigerant circulates and performs a vapor compression refrigeration cycle.

図1は、実施形態1に係る冷凍装置の冷媒回路の概略構成図である。FIG. 1 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to the first embodiment. 図2(A)は、通常時の脈動吸収装置の概略構成図であり、図2(B)は、冷媒配管内の冷媒の圧力が上昇した際の脈動吸収装置の概略構成図であり、図2(C)は、冷媒配管内の冷媒の圧力が低下した際の脈動吸収装置の概略構成図である。2A is a schematic configuration diagram of the pulsation absorbing device in a normal state, and FIG. 2B is a schematic configuration diagram of the pulsation absorbing device when the pressure of the refrigerant in the refrigerant pipe rises. 2 (C) is a schematic configuration diagram of the pulsation absorbing device when the pressure of the refrigerant in the refrigerant pipe is lowered. 図3は、参考例1に係る冷凍装置の冷媒回路の概略構成図である。FIG. 3 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to Reference Example 1 . 図4は、実施形態2に係る冷凍装置の冷媒回路の概略構成図である。FIG. 4 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to the second embodiment. 図5は、参考例2に係る冷凍装置の冷媒回路の概略構成図である。FIG. 5 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to Reference Example 2 . 図6は、参考例3に係る冷凍装置の冷媒回路の概略構成図である。FIG. 6 is a schematic configuration diagram of a refrigerant circuit of a refrigeration apparatus according to Reference Example 3 . 図7は、参考例4に係る冷凍装置の冷媒回路の概略構成図である。FIG. 7 is a schematic configuration diagram of a refrigerant circuit of a refrigeration apparatus according to Reference Example 4 . 図8は、その他の実施形態に係る冷凍装置の冷媒回路の概略構成図である。FIG. 8 is a schematic configuration diagram of a refrigerant circuit of a refrigeration apparatus according to another embodiment.

符号の説明Explanation of symbols

1 空気調和装置(冷凍装置)
10 冷媒回路
11 第1高圧冷媒配管(冷媒配管)
12 第2高圧冷媒配管(冷媒配管)
13 第1低圧冷媒配管(冷媒配管)
14 第2低圧冷媒配管(冷媒配管)
20 圧縮機
22 膨張機
30 脈動吸収装置
31 シリンダ部材
32 ピストン
33 圧力緩衝室(第1室)
34 背圧室(第2室)
35 第1接続管
36 第2接続管
1 Air conditioner (refrigeration equipment)
10 Refrigerant circuit
11 First high-pressure refrigerant piping (refrigerant piping)
12 Second high-pressure refrigerant piping (refrigerant piping)
13 First low-pressure refrigerant pipe (refrigerant pipe)
14 Second low-pressure refrigerant piping (refrigerant piping)
20 Compressor
22 Expander
30 Pulsation absorber
31 Cylinder member
32 pistons
33 Pressure buffer chamber (first chamber)
34 Back pressure chamber (2nd chamber)
35 First connection pipe
36 Second connection pipe

Claims (3)

圧縮機(20)と放熱器(21)と容積型の膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して接続されると共に冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置であって、
中空状のシリンダ部材(31)と、該シリンダ部材(31)の内部空間を第1室(33)と第2室(34)とに仕切ると共に、第1室(33)内の圧力変動に応じてシリンダ部材(31)内を変位するピストン(32)と、該第1室(33)を冷媒配管(11,12,13,14)と繋ぐ第1接続管(35)と、上記第2室(34)と冷媒配管(11,12,13,14)とを接続すると共に絞り機構(37)を有する第2接続管(36)とを有する脈動吸収装置(30)を備え
上記第1接続管(35)が、上記膨張機(22)の流入側と上記放熱器(21)の流出側との間の冷媒配管(12)に接続される一方、
上記第2接続管(36)は、上記圧縮機(20)の吐出側と上記放熱器(21)の流入側との間の冷媒配管(11)に接続されることを特徴とする冷凍装置。
The compressor (20), the radiator (21), the positive displacement expander (22) and the evaporator (23) are connected via the refrigerant pipe (11, 12, 13, 14) and the refrigerant circulates. A refrigeration apparatus comprising a refrigerant circuit (10) for performing a vapor compression refrigeration cycle,
The hollow cylinder member (31) and the internal space of the cylinder member (31) are partitioned into a first chamber (33) and a second chamber (34), and in response to pressure fluctuations in the first chamber (33). A piston (32) that is displaced in the cylinder member (31), a first connection pipe (35) that connects the first chamber (33) to the refrigerant pipe (11, 12, 13, 14), and the second chamber. (34) and a refrigerant pipe (11, 12, 13, 14), and a pulsation absorbing device (30) having a second connecting pipe (36) having a throttle mechanism (37) .
While the first connection pipe (35) is connected to the refrigerant pipe (12) between the inflow side of the expander (22) and the outflow side of the radiator (21),
The second connection pipe (36) The refrigeration system according to claim Rukoto connected to the refrigerant pipe (11) between the inlet side of the discharge side and the radiator of the compressor (20) (21).
圧縮機(20)と放熱器(21)と容積型の膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して接続されると共に冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置であって、
中空状のシリンダ部材(31)と、該シリンダ部材(31)の内部空間を第1室(33)と第2室(34)とに仕切ると共に、第1室(33)内の圧力変動に応じてシリンダ部材(31)内を変位するピストン(32)と、該第1室(33)を冷媒配管(11,12,13,14)と繋ぐ第1接続管(35)と、上記第2室(34)と冷媒配管(11,12,13,14)とを接続すると共に絞り機構(37)を有する第2接続管(36)とを有する脈動吸収装置(30)を備え、
上記第1接続管(35)が、上記膨張機(22)の流出側と上記蒸発器(23)の流入側との間の冷媒配管(13)に接続される一方、
上記第2接続管(36)は、上記蒸発器(23)の流出側と上記圧縮機(20)の吸入側との間の冷媒配管(14)に接続されることを特徴とする冷凍装置。
The compressor (20), the radiator (21), the positive displacement expander (22) and the evaporator (23) are connected via the refrigerant pipe (11, 12, 13, 14) and the refrigerant circulates. A refrigeration apparatus comprising a refrigerant circuit (10) for performing a vapor compression refrigeration cycle,
The hollow cylinder member (31) and the internal space of the cylinder member (31) are partitioned into a first chamber (33) and a second chamber (34), and in response to pressure fluctuations in the first chamber (33). A piston (32) that is displaced in the cylinder member (31), a first connection pipe (35) that connects the first chamber (33) to the refrigerant pipe (11, 12, 13, 14), and the second chamber. (34) and a refrigerant pipe (11, 12, 13, 14), and a pulsation absorbing device (30) having a second connecting pipe (36) having a throttle mechanism (37).
While the first connecting pipe (35) is connected to a refrigerant pipe (13) between the outflow side of the expander (22) and the inflow side of the evaporator (23),
The second connecting pipe (36) The refrigeration system according to claim Rukoto connected to the refrigerant pipe (14) between the suction side of the evaporator (23) outlet side and the compressor (20).
請求項1又は2において、
上記冷媒回路(10)では、冷媒として二酸化炭素が用いられ、上記圧縮機(20)の吐出冷媒圧力を臨界圧力以上とする冷凍サイクルが行われることを特徴とする冷凍装置。
In claim 1 or 2 ,
In the refrigerant circuit (10), a refrigerating cycle is performed in which carbon dioxide is used as a refrigerant and a refrigerant pressure discharged from the compressor (20) is set to a critical pressure or higher.
JP2006202827A 2006-07-26 2006-07-26 Refrigeration equipment Active JP4140642B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006202827A JP4140642B2 (en) 2006-07-26 2006-07-26 Refrigeration equipment
PCT/JP2007/064112 WO2008013079A1 (en) 2006-07-26 2007-07-17 Refrigeration device
EP07790874.7A EP2048456B1 (en) 2006-07-26 2007-07-17 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202827A JP4140642B2 (en) 2006-07-26 2006-07-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2008032243A JP2008032243A (en) 2008-02-14
JP4140642B2 true JP4140642B2 (en) 2008-08-27

Family

ID=38981392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202827A Active JP4140642B2 (en) 2006-07-26 2006-07-26 Refrigeration equipment

Country Status (3)

Country Link
EP (1) EP2048456B1 (en)
JP (1) JP4140642B2 (en)
WO (1) WO2008013079A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461623B1 (en) * 2013-08-12 2014-11-20 (주)한엑스 A refrigerating cycle device with a pulsation damper

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2577188T3 (en) * 2010-06-01 2020-02-10 Carrier Corp Pulsation Interruption
CN102072591A (en) * 2011-01-18 2011-05-25 蔡茂林 Variable volume intelligent heat pump
CN103604245B (en) * 2013-07-22 2016-04-13 陈恩鉴 A kind of steam compression type air-conditioning system that energy efficiency amplifier is housed
US10591100B2 (en) * 2017-11-15 2020-03-17 Ford Global Technologies, Llc Refrigerant hammer arrestor and refrigerant loop incorporating that refrigerant hammer arrestor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD264257A1 (en) * 1987-09-17 1989-01-25 Erfurt Kuehlmoebelwerk DAMPING DEVICE FOR PRESSURE VIBRATIONS IN PISTON FLOW COMPRESSORS
NO915127D0 (en) * 1991-12-27 1991-12-27 Sinvent As VARIABLE VOLUME COMPRESSION DEVICE
JPH10159719A (en) * 1996-11-28 1998-06-16 Hitachi Constr Mach Co Ltd Pulsation reducing device for hydraulic pump
JP2000234814A (en) 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
JP2002188581A (en) * 2000-12-19 2002-07-05 Mitsubishi Heavy Ind Ltd Refrigerant pump system
JP2004190938A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Refrigerating plant
JP4093311B2 (en) 2003-03-19 2008-06-04 シャープ株式会社 Image forming apparatus
US20050194207A1 (en) * 2004-03-04 2005-09-08 York International Corporation Apparatus and method of sound attenuation in a system employing a VSD and a quarter-wave resonator
JP4617812B2 (en) * 2004-09-30 2011-01-26 ダイキン工業株式会社 Positive displacement expander

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461623B1 (en) * 2013-08-12 2014-11-20 (주)한엑스 A refrigerating cycle device with a pulsation damper

Also Published As

Publication number Publication date
EP2048456B1 (en) 2017-08-30
WO2008013079A1 (en) 2008-01-31
EP2048456A1 (en) 2009-04-15
JP2008032243A (en) 2008-02-14
EP2048456A4 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP2007263383A (en) Refrigerating device
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP5936785B1 (en) Air conditioner
WO2016059696A1 (en) Refrigeration cycle device
JP6042026B2 (en) Refrigeration cycle equipment
JP2007240025A (en) Refrigerating device
JP2005147456A (en) Air conditioner
JP4140642B2 (en) Refrigeration equipment
JP2007178072A (en) Air conditioner for vehicle
JP4442237B2 (en) Air conditioner
JP4096984B2 (en) Refrigeration equipment
JP2008039233A (en) Refrigerating device
JP7105580B2 (en) air conditioner
JP4904970B2 (en) Refrigeration equipment
JPWO2018096580A1 (en) Refrigeration cycle device
JP6343805B2 (en) Refrigeration equipment
WO2014203500A1 (en) Air conditioner
JPWO2019198175A1 (en) Refrigeration cycle equipment
JP2009270496A (en) Compressor and refrigerating cycle using it
WO2022029845A1 (en) Air conditioner
JP2005337577A5 (en)
JP4581795B2 (en) Refrigeration equipment
KR20050043089A (en) Heat pump
JP2005337577A (en) Refrigerating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4140642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5