JPH0236059Y2 - - Google Patents

Info

Publication number
JPH0236059Y2
JPH0236059Y2 JP14549184U JP14549184U JPH0236059Y2 JP H0236059 Y2 JPH0236059 Y2 JP H0236059Y2 JP 14549184 U JP14549184 U JP 14549184U JP 14549184 U JP14549184 U JP 14549184U JP H0236059 Y2 JPH0236059 Y2 JP H0236059Y2
Authority
JP
Japan
Prior art keywords
circuit
compressor
heat exchanger
heating
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14549184U
Other languages
Japanese (ja)
Other versions
JPS6160066U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14549184U priority Critical patent/JPH0236059Y2/ja
Publication of JPS6160066U publication Critical patent/JPS6160066U/ja
Application granted granted Critical
Publication of JPH0236059Y2 publication Critical patent/JPH0236059Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は冷凍装置、詳しくは、圧縮機、利用側
熱交換器、受液器、膨張機構及び熱源側熱交換器
を順次接続して暖房サイクル運転を行えると共
に、この暖房サイクル運転の停止時に高低圧を均
圧するごとくした冷凍装置に関する。
[Detailed description of the invention] (Field of industrial application) The present invention is a refrigeration system, specifically a compressor, a user-side heat exchanger, a liquid receiver, an expansion mechanism, and a heat source-side heat exchanger that are connected in sequence to perform heating. The present invention relates to a refrigeration system that can perform cycle operation and equalizes high and low pressures when the heating cycle operation is stopped.

(従来の技術) 実公昭55−34538号公報に記載されているもの
を第3図に基づいて概略説明すると、圧縮機55
と、凝縮器50、受液器52、膨張弁51、蒸発
器54、アキユムレータ53を接続して冷媒回路
を形成する冷凍装置において、前記受液器52の
ガス域と、前記圧縮機55の吸入側に設けるアキ
ユムレータ53とを接続するバイパス回路56を
設け、このバイパス回路56に開閉弁57を備え
たものである。
(Prior art) The technology described in Publication of Utility Model Publication No. 55-34538 will be briefly explained based on FIG.
In a refrigeration system in which a condenser 50, a liquid receiver 52, an expansion valve 51, an evaporator 54, and an accumulator 53 are connected to form a refrigerant circuit, the gas area of the liquid receiver 52 and the suction of the compressor 55 are connected. A bypass circuit 56 is provided to connect the accumulator 53 provided on the side, and this bypass circuit 56 is equipped with an on-off valve 57.

そして、運転時においては、前記バイパス回路
56に介装した前記開閉弁57を閉鎖し、開閉弁
58,59を開放して、冷凍運転を行うのであ
り、また、この運転の停止時には、前記開閉弁5
7を閉じてポンプダウン運転をすると同時に前記
開閉弁57を開放して前記バイパス回路56を介
して受液器52内の圧力を低下させ冷媒回収を図
るものである。
During operation, the on-off valve 57 installed in the bypass circuit 56 is closed, and the on-off valves 58 and 59 are opened to perform the refrigeration operation, and when the operation is stopped, the on-off valve 57 is closed, and the on-off valves 58 and 59 are opened. Valve 5
7 is closed to perform pump-down operation, and at the same time, the on-off valve 57 is opened to reduce the pressure in the liquid receiver 52 via the bypass circuit 56 and recover the refrigerant.

(考案が解決しようとする問題点) ところが、この従来のものは前記運転停止時に
おけるポンプダウン運転時、受液器52内のガス
冷媒をアキユムレータ53に流通させるものであ
るので、このガス冷媒が圧縮機55に吸込まれる
分だけ蒸発器54内の冷媒を圧縮機55の吸込量
が少なくなり、その結果圧縮機55のポンプダウ
ン運転時間が長くなる問題があつた。
(Problems to be Solved by the Invention) However, in this conventional system, the gas refrigerant in the liquid receiver 52 is passed through the accumulator 53 during the pump down operation at the time of the stoppage of the operation. There is a problem in that the amount of refrigerant sucked into the evaporator 54 by the compressor 55 decreases by the amount of refrigerant sucked into the compressor 55, and as a result, the pump-down operation time of the compressor 55 becomes longer.

しかも、特に暖房運転時においては、外気温が
低いため、冷媒を蒸発させるためには冷媒の蒸発
温度を外気温より低くする必要があるが、この蒸
発温度に相当する圧力を大気圧よりも低くする
と、冷媒回路の低圧域に空気が侵入する原因とな
ることから、設計上蒸発温度を低下させることは
限度があり、従つて蒸発器54内の冷媒は蒸発し
にくゝこのことからもポンプダウン運転を長びく
ことゝなり、圧縮機55にとつて好ましいことで
はない。
Moreover, especially during heating operation, the outside temperature is low, so in order to evaporate the refrigerant, the evaporation temperature of the refrigerant must be lower than the outside temperature, but the pressure corresponding to this evaporation temperature must be lower than atmospheric pressure. This causes air to enter the low-pressure region of the refrigerant circuit, so there is a limit to how much the evaporation temperature can be lowered due to the design, and therefore the refrigerant in the evaporator 54 is difficult to evaporate. This prolongs the down operation, which is not desirable for the compressor 55.

本考案の目的は、前記暖房運転停止時に、蒸発
器となる熱交換器の入口側に受液器内のガス冷媒
を流通させて、このガス冷媒を加熱源として前記
熱交換器内の冷媒を加熱蒸発させると共に高低圧
バランスを行うようにすることにより、暖房運転
停止時における低圧側回路の液冷媒を速やかに除
去できるようにする点にある。
The purpose of the present invention is to circulate the gas refrigerant in the liquid receiver to the inlet side of the heat exchanger that becomes the evaporator when the heating operation is stopped, and use the gas refrigerant as a heating source to heat the refrigerant in the heat exchanger. By heating and evaporating the refrigerant and performing high-low pressure balancing, the liquid refrigerant in the low-pressure side circuit can be quickly removed when the heating operation is stopped.

(問題点を解決するための手段) 本考案の構成を第1図に基づいて説明すると、
圧縮機7、利用側熱交換器1、受液器4(以下暖
房用膨張弁という)5及び熱源側熱交換器2を順
次接続して冷媒回路を形成し暖房サイクル運転を
行えるようにした冷凍装置において、前記暖房用
膨張弁5と前記熱源側熱交換器2との間の接続配
管Aと、前記受液器4のガス域との間に均圧回路
13を設ける一方、暖房サイクル運転の停止指令
時、前記均圧回路13を開く弁装置2方弁14
と、暖房サイクル運転の停止指令後、前記圧縮機
7の運転を一定時間継続させる制御手段とを設け
たのである。
(Means for solving the problem) The configuration of the present invention will be explained based on Fig. 1.
A refrigeration system in which a compressor 7, a user-side heat exchanger 1, a liquid receiver 4 (hereinafter referred to as a heating expansion valve) 5, and a heat source-side heat exchanger 2 are sequentially connected to form a refrigerant circuit to perform heating cycle operation. In the device, a pressure equalization circuit 13 is provided between the connection pipe A between the heating expansion valve 5 and the heat source side heat exchanger 2 and the gas region of the liquid receiver 4, while a pressure equalization circuit 13 is provided between the heating expansion valve 5 and the heat source side heat exchanger 2, and the A two-way valve 14 that opens the pressure equalizing circuit 13 when a stop command is issued.
and a control means for continuing the operation of the compressor 7 for a certain period of time after receiving a command to stop the heating cycle operation.

尚、第1図のものにおいては、前記冷媒回路に
四路切換弁8、冷房用膨張弁3を設けて暖房サイ
クル運転のみならず、冷房サイクル運転も行える
ようにしている。
In the case of FIG. 1, a four-way switching valve 8 and a cooling expansion valve 3 are provided in the refrigerant circuit so that not only heating cycle operation but also cooling cycle operation can be performed.

(作 用) 暖房サイクル運転の停止時に、運転停止指令の
出力と同時に前記均圧回路13が開放される一
方、前記圧縮機7が前記指令後一定時間継続運転
されるので、前記受液器4内の高温のガス冷媒が
前記均圧回路13から、前記熱源側熱交換器2へ
と流通し、この間に前記ガス冷媒が過熱状態で前
記熱源側熱交換器2に流通するので該熱交換器2
内の液冷媒の蒸発が促進されるのであり、この結
果、前記暖房サイクル運転停止時に低圧側回路中
の液冷媒を加熱蒸発させて速やかに圧縮機7に吸
込ませることができ、従つて、暖房サイクル運転
の再起動時に液圧縮を生じるのを確実に防止でき
るのである。
(Function) When the heating cycle operation is stopped, the pressure equalizing circuit 13 is opened simultaneously with the output of the operation stop command, while the compressor 7 is continuously operated for a certain period of time after the command, so that the liquid receiver 4 The high temperature gas refrigerant inside flows from the pressure equalization circuit 13 to the heat source side heat exchanger 2, and during this time, the gas refrigerant flows in a superheated state to the heat source side heat exchanger 2, so that the heat exchanger 2
As a result, when the heating cycle operation is stopped, the liquid refrigerant in the low-pressure side circuit can be heated and evaporated and quickly sucked into the compressor 7. This makes it possible to reliably prevent liquid compression from occurring when restarting cycle operation.

(実施例) 以下、本考案の実施例を図面を基に説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図に示したものは、水熱交換器から成る利
用側熱交換器1と、空気熱交換器から成る熱源側
熱交換器2とを備えるヒートポンプ形の冷凍装置
である。
What is shown in FIG. 1 is a heat pump type refrigeration system that includes a user side heat exchanger 1 consisting of a water heat exchanger and a heat source side heat exchanger 2 consisting of an air heat exchanger.

詳しくは、前記利用側熱交換器1、冷房用膨張
弁3、受液器4、暖房用膨張機構としての暖房用
膨張弁5、前記熱源側熱交換器2、アキユムレー
タ6、圧縮機7、四路切換弁8を接続して冷媒回
路を形成している。そして、前記熱源側熱交換器
2にはフアンモータ22に取付けたフアン21を
付設している。
In detail, the use side heat exchanger 1, the cooling expansion valve 3, the liquid receiver 4, the heating expansion valve 5 as a heating expansion mechanism, the heat source side heat exchanger 2, the accumulator 6, the compressors 7 and 4. A path switching valve 8 is connected to form a refrigerant circuit. A fan 21 attached to a fan motor 22 is attached to the heat source side heat exchanger 2.

かくして、前記四路切換弁8を第1図に破線で
示すごとく切換えて、冷媒を破線矢印のごとく循
環させる暖房サイクルと、前記四路切換弁8を実
線で示すごとく切換えて、冷媒を実線矢印を循環
させる冷房サイクルとを形成できるごとくしてい
る。
In this way, the four-way switching valve 8 is switched as shown by the broken line in FIG. 1 to circulate the refrigerant as shown in the broken line for the heating cycle, and the four-way switching valve 8 is switched as shown in the solid line to circulate the refrigerant as shown in the solid line in the heating cycle. It is possible to form a cooling cycle that circulates air.

尚、図中9,10はそれぞれ逆止弁である。ま
た、前記アキユムレータ6は筒状の容器6aに短
寸の冷媒流入管6bと、油戻し孔6cとガス吸入
孔6dとをもつU字管から成る流出管6eとを内
設するものである。
In addition, 9 and 10 in the figure are check valves, respectively. The accumulator 6 has a cylindrical container 6a internally provided with a short refrigerant inflow pipe 6b and an outflow pipe 6e which is a U-shaped pipe having an oil return hole 6c and a gas suction hole 6d.

また、前記冷房用膨張弁3、暖房用膨張弁5は
それぞれ弁開度を電気的に制御する電動弁からな
るものであり、それぞれ各運転サイクルにおいて
吸入ガスの過熱度制御を行うごとくなしている。
具体的には、前記利用側熱交換器1の冷房時の出
口側にそれぞれ温度検出器31及び圧力検出器3
2を設けると共に、該各検出器31,32からの
出力を基に吸入ガスの過熱度を算出し、前記冷房
用膨張弁3に出力する制御器33を設けるのであ
る。同様にして前記暖房用膨張弁5に対応させて
温度検出器61、圧力検出器62及び制御器63
を設けて、前記暖房用膨張弁5の弁開度を制御す
るごとくなしている。
Further, the cooling expansion valve 3 and the heating expansion valve 5 each consist of an electric valve that electrically controls the valve opening degree, and are designed to control the degree of superheating of the intake gas in each operation cycle. .
Specifically, a temperature detector 31 and a pressure detector 3 are respectively installed on the outlet side of the user-side heat exchanger 1 during cooling.
2, and a controller 33 that calculates the degree of superheating of the intake gas based on the outputs from the respective detectors 31 and 32 and outputs the calculated degree to the cooling expansion valve 3. Similarly, a temperature detector 61, a pressure detector 62, and a controller 63 are provided corresponding to the heating expansion valve 5.
is provided to control the opening degree of the heating expansion valve 5.

更に、前記受液器4のガス域と前記アキユムレ
ータ6とを接続する冷房サイクル運転(以下、冷
房運転という)用の第1均圧回路11を設け、該
回路11に冷房運転停止時に開放する第1開閉弁
12を設けている。
Furthermore, a first pressure equalizing circuit 11 for cooling cycle operation (hereinafter referred to as cooling operation) connecting the gas region of the liquid receiver 4 and the accumulator 6 is provided, and the circuit 11 has a first pressure equalizing circuit 11 that is opened when the cooling operation is stopped. 1 on-off valve 12 is provided.

以上の如く構成する冷凍装置において、前記受
液器4のガス域と、前記暖房用膨張弁5と前記熱
源側熱交換器2との間を接続する接続配管Aとを
接続する暖房サイクル運転(以下、暖房運転とい
う)用の第2均圧回路13とを設け、かつ、該回
路13に暖房運転の停止時にこの均圧回路13を
開放する弁装置、具体的には第2開閉弁14を設
けるのであり、更に、 暖房運転時に、運転停止指令が出力された時
に、この出力後から一定時間、前記圧縮機7の運
転を継続させる制御手段を設けるのである。
In the refrigeration system configured as described above, a heating cycle operation ( A second pressure equalizing circuit 13 for heating operation (hereinafter referred to as heating operation) is provided, and a valve device, specifically a second on-off valve 14, is provided in the circuit 13 to open this pressure equalizing circuit 13 when the heating operation is stopped. In addition, a control means is provided for causing the compressor 7 to continue operating for a certain period of time after the output of an operation stop command during heating operation.

尚、前記制御手段については電気回路の説明の
項で詳記する。
The control means will be described in detail in the description of the electric circuit.

また、暖房運転の運転停止指令の出力と同時
に、前記第2開閉弁14を開放する一方、前記暖
房用膨張弁5を閉鎖するための手段を後記するご
とく電気回路により構成している。
Moreover, means for opening the second on-off valve 14 and closing the heating expansion valve 5 at the same time as the output of the heating operation stop command is constituted by an electric circuit as described later.

かくして、暖房運転時における運転停止時に、
停止指令の出力と同時に前記第2開閉弁14を開
放すると同時に、前記暖房用膨張弁5を閉鎖する
一方、前記圧縮機7の運転を前記指令の出力後一
定時間継続して、前記暖房用膨張弁5を介して液
冷媒が前記熱源側熱交換器2側に流出するのを阻
止すると共に、前記受液器4のガス域のガス冷媒
を前記第2均圧回路13、前記熱源側熱交換器
2、四路切換弁8、アキユムレータ6を通つて圧
縮機7へと流通させ、しかる後前記圧縮機7を停
止できるようにしたのである。
Thus, when the heating operation is stopped,
Simultaneously with the output of the stop command, the second on-off valve 14 is opened, and the heating expansion valve 5 is closed, while the operation of the compressor 7 is continued for a certain period of time after the output of the command, and the heating expansion valve 5 is closed. The liquid refrigerant is prevented from flowing out to the heat source side heat exchanger 2 side through the valve 5, and the gas refrigerant in the gas region of the liquid receiver 4 is transferred to the second pressure equalizing circuit 13 for heat exchange on the heat source side. The compressor 7 is made to flow through the compressor 2, the four-way selector valve 8, and the accumulator 6, and then the compressor 7 can be stopped.

尚、詳しくは後記するが、暖房運転の停止時に
は前記第1の均圧回路11の前記開閉弁12は全
閉にしている。
Although details will be described later, the on-off valve 12 of the first pressure equalizing circuit 11 is fully closed when the heating operation is stopped.

また、冷房運転における運転の停止時において
も、停止指令の出力と同時に、前記第1均圧回路
11の開閉弁12を開放する一方、前記圧縮機7
を一定時間継続運転するようにし、しかる後前記
圧縮機7を停止させるようにしている。尚、この
場合は、前記受液器4に滞留するガス冷媒は該受
液器4から前記アキユムレータ3に直接流出し、
前記利用側熱交換器1にはほとんど流通しない。
Also, when the cooling operation is stopped, the on-off valve 12 of the first pressure equalizing circuit 11 is opened simultaneously with the output of the stop command, while the compressor 7
The compressor 7 is operated continuously for a certain period of time, and then the compressor 7 is stopped. In this case, the gas refrigerant remaining in the liquid receiver 4 directly flows out from the liquid receiver 4 to the accumulator 3,
Almost no water flows to the user-side heat exchanger 1.

次に、前記冷凍装置の運転制御を行うための電
気回路を第2図に基づいて概略説明する。
Next, an electric circuit for controlling the operation of the refrigeration system will be schematically explained based on FIG. 2.

第2図に示した電気回路は、 冷暖切換スイツチSSXと、主として前記四
路切換弁8を暖房サイクル位置、冷房サイクル
位置に切換えるための暖房用及び冷房用補助リ
レーWX,SXとを備え、冷房、暖房運転の切
換えを行う冷暖切換回路15、 利用側熱交換器1側の温度調節を行うサーモ
スタツトWEXと運転開始用のスイツチSSを備
える温度調節回路16、 圧縮機7のモータ用の電磁開閉器MCを備え
る圧縮機発停回路17、 第1、第2均圧回路11,13に介装する各
通電開型の開閉弁12,14のソレノイドリレ
ー20EP1,20EP2を備え、前記各均圧回路1
1,12の開閉制御を行う均圧回路制御回路1
8、 前記熱源側熱交換器2に付設したフアン21
のモータ22用の電磁開閉器88FXを備える
フアン発停回路19、 閉側コイルC1,開側コイルC2もつ、前記
冷房用、暖房用膨張機構3,5の各電動部M
2,M1と、過熱度制御を行うための前記各制
御器33,63とを備える膨張弁開度制御回路
20、 主に前記圧縮機発停回路17、前記フアン発
停制御回路19の動作指令を出力する主として
圧縮機発停指令回路23からなるものである。
The electric circuit shown in FIG. 2 includes a heating/cooling switch SSX and auxiliary relays WX, SX for heating and cooling mainly for switching the four-way switching valve 8 to the heating cycle position and the cooling cycle position. , a heating/cooling switching circuit 15 for switching between heating operation, a temperature adjustment circuit 16 including a thermostat WEX for adjusting the temperature on the heat exchanger 1 side on the user side and a switch SS for starting operation, and an electromagnetic opening/closing circuit for the motor of the compressor 7. a compressor start/stop circuit 17 including a compressor MC; a solenoid relay 20EP1, 20EP2 for each energized opening type on-off valve 12, 14 interposed in the first and second pressure equalizing circuits 11, 13; 1
Equalizing circuit control circuit 1 that controls the opening and closing of 1 and 12
8. Fan 21 attached to the heat source side heat exchanger 2
a fan start/stop circuit 19 including an electromagnetic switch 88FX for the motor 22; each motorized part M of the cooling and heating expansion mechanisms 3 and 5 having a closing coil C1 and an opening coil C2;
2. Expansion valve opening degree control circuit 20 comprising M1 and the respective controllers 33 and 63 for superheat degree control, mainly operation commands for the compressor start/stop circuit 17 and the fan start/stop control circuit 19 It mainly consists of a compressor start/stop command circuit 23 that outputs the following.

上記電気回路において、前記温度調節回路16
における前記サーモスタツトWEXは、暖房運転
時においては、前記利用側熱交換器1の温水温度
が設定温度以上になると開路し、設定温度より低
くなると閉路し、冷房運転時は逆に動作するよう
にしており、かくして、前記サーモスタツト
WEXの開動作により該回路16が冷凍装置の停
止指令を出力するようにしている。
In the electric circuit, the temperature adjustment circuit 16
The thermostat WEX is configured to open when the hot water temperature of the user-side heat exchanger 1 reaches or exceeds a set temperature during heating operation, closes when the temperature drops below the set temperature, and operates in the opposite manner during cooling operation. and thus the thermostat
When the WEX is opened, the circuit 16 outputs a command to stop the refrigeration system.

また、上記実施例においては、前記圧縮機発停
指令回路23は、前記運転停止指令の発令から一
定時間(40秒)カウントするタイマーIT1と、該
タイマーIT1の限時動作b接点IT1ー1と前記圧
縮機7、フアン21の発停指令を出力する補助リ
レーIT1Xとの直列回路との並列回路を備えてお
り、該回路により、前記運転停止指令後、一定時
間前記圧縮機7の運転を継続する制御手段を構成
している。
In the above embodiment, the compressor start/stop command circuit 23 includes a timer IT1 that counts a certain period of time (40 seconds) from the issuance of the operation stop command, a time limit b contact IT1-1 of the timer IT1, and the It is equipped with a parallel circuit with a series circuit with an auxiliary relay IT1X that outputs a command to start and stop the compressor 7 and fan 21, and by this circuit, the operation of the compressor 7 is continued for a certain period of time after the command to stop operation is issued. It constitutes a control means.

次に、上記冷凍装置の作用を第1図及び、第2
図に示す電気回路の動作に沿つて説明する。
Next, the operation of the above-mentioned refrigeration system will be explained in Figures 1 and 2.
The operation of the electric circuit shown in the figure will be explained.

まず、前記冷暖切換スイツチSSXを暖房側に
切換えて行う暖房運転時であつて、前記利用側熱
交換器2における温水温度が前記設定温度より低
い場合を説明する。
First, a case will be described in which the hot water temperature in the user-side heat exchanger 2 is lower than the set temperature during heating operation performed by switching the cooling/heating changeover switch SSX to the heating side.

[] 前記スイツチSSXの暖房側への切換え
により、前記運転スイツチSS投入前において、
前記暖房用補助WXが励磁され、 四路切換弁8が暖房側位置(第1図破線位
置)に切換えられると共に、 前記膨張弁開度制御回路20の常開接点
WX−2が閉路し、後記するごとく補助リレ
ー74SXが消磁されており常開接点74SX−2
が開路し、常閉接点74SXー1が閉路してい
るので、前記制御器63が通電されて該制御
器63により前記暖房用膨張弁5の弁開度制
御が行われる一方、前記電動部M2へ通電さ
れて前記冷房用膨張弁3が全開に保持される
のであり(暖房運転時の制御状態)、 更に、前記均圧開路開閉制御回路18の常
開接点WXー1が閉路され、前記第2開閉弁
14のソレノイドリレー20EP2が励磁され、
前記第2開閉弁14が開状態となり、前記第
2均圧回路13が開放される一方、常開接点
SXー1が開路され、第1開閉弁12のソレ
ノイドリレー20EP1が消磁して、前記第1開
閉弁12が閉状態となつて、前記第1均圧回
路11が閉鎖される。
[] By switching the switch SSX to the heating side, before turning on the operation switch SS,
The heating auxiliary WX is energized, the four-way switching valve 8 is switched to the heating side position (broken line position in Figure 1), and the normally open contact of the expansion valve opening control circuit 20 is turned on.
WX-2 is closed, auxiliary relay 74SX is demagnetized as described later, and normally open contact 74SX-2
is open and the normally closed contact 74SX-1 is closed, so the controller 63 is energized and controls the opening degree of the heating expansion valve 5, while the electric part M2 The cooling expansion valve 3 is held fully open (control state during heating operation), and the normally open contact WX-1 of the pressure equalization opening/closing control circuit 18 is closed. The solenoid relay 20EP2 of the 2 on-off valve 14 is energized,
The second on-off valve 14 is in the open state, and the second pressure equalizing circuit 13 is opened, while the normally open contact
SX-1 is opened, the solenoid relay 20EP1 of the first on-off valve 12 is demagnetized, the first on-off valve 12 is closed, and the first pressure equalizing circuit 11 is closed.

[] しかして、前記温度調節回路16の運転
スイツチSSを閉路すると、前記サーモスタツ
トWEXが閉路しているので、前記補助リレー
4X、タイマー4XTが励磁される。これにより、 前記均圧開路開閉制御回路18の常閉接点
4Xー1が開路して、前記第2開閉弁14の
ソレノイドリレー20EP2が消磁され、前記開
閉弁14が閉状態となり、前記第2均圧回路
13も閉鎖され、また、 前記膨張弁開度制御回路20の前記常閉接
点4Xー2も開路されるが、前記常開接点
IT1Xー4が開路しているので、補助リレー
74SXは消磁状態を保持し、前記各膨張弁3,
5は暖房運転時の制御状態を保持する。
[] When the operation switch SS of the temperature control circuit 16 is closed, the thermostat WEX is closed, so the auxiliary relay is closed.
4X, timer 4XT is energized. As a result, the normally closed contact of the pressure equalization opening/closing control circuit 18
4X-1 is opened, the solenoid relay 20EP2 of the second on-off valve 14 is demagnetized, the on-off valve 14 is closed, the second pressure equalizing circuit 13 is also closed, and the expansion valve opening control is performed. The normally closed contact 4X-2 of the circuit 20 is also opened, but the normally open contact
Since IT1X-4 is open, the auxiliary relay
74SX maintains a demagnetized state, and each expansion valve 3,
5 holds the control state during heating operation.

[] また、前記タイマー4XTの励磁により、
その30秒後に前記限時動作a接点4XTー1が
閉路して前記補助リレー4XTXが励磁され、か
くして、前記圧縮機発停指令回路23の前記常
開接点4XTXー1が開路する一方、前記常閉接
点4XTXー2が閉路して、前記補助リレー
IT1Xが励磁される。これにより、 前記常開接点IT1Xー1が閉路し、前記補
助リレーIT1Xが自己保持され、また、 前記圧縮機発停回路17の常開接点IT1X
ー2も閉路して前記開閉器MCが励磁され、
前記圧縮機7が始動し、かつ、 前記フアン発停回路19の常開接点IT1X
ー3も閉路して、前記熱源側熱交換器2のフ
アン21も始動する一方、 前記膨張弁開度制御回路20の前記常開接
点IT1Xー4も閉路するが、前記常閉接点4X
ー2が開路しているので前記補助リレー
74SXは消磁状態を継続し、前記各膨張弁3,
5はやはり暖房運転時の制御状態に保持され
る。
[] Also, due to the excitation of the timer 4XT,
After 30 seconds, the time-limited operation contact 4XT-1 closes, the auxiliary relay 4XTX is energized, and the normally open contact 4XTX-1 of the compressor start/stop command circuit 23 opens, while the normally closed contact 4XT-1 closes. Contact 4XTX-2 is closed and the auxiliary relay
IT1X is excited. As a result, the normally open contact IT1X-1 is closed, the auxiliary relay IT1X is self-held, and the normally open contact IT1X of the compressor start/stop circuit 17 is closed.
-2 is also closed and the switch MC is energized,
The compressor 7 starts, and the normally open contact IT1X of the fan start/stop circuit 19
-3 is also closed, and the fan 21 of the heat source side heat exchanger 2 is also started, while the normally open contact IT1X-4 of the expansion valve opening control circuit 20 is also closed, but the normally closed contact 4X
-2 is open, so the auxiliary relay
74SX continues the demagnetization state, and each expansion valve 3,
5 is also maintained in the control state during heating operation.

以上のごとく、前記四路切換弁8、各膨張弁
3,5が暖房運転時の制御状態に保持され、か
つ、前記各均圧回路11,13が閉鎖された状態
で前記圧縮機7、フアン21が駆動されて、暖房
運転が開始されるのである。
As described above, when the four-way switching valve 8 and the expansion valves 3 and 5 are maintained in the control state during heating operation, and the pressure equalization circuits 11 and 13 are closed, the compressor 7 and the fan 21 is driven and heating operation is started.

次に、この暖房運転の継続により、前記利用側
熱交換器1における温水温度が上昇し、前記設定
温度に達した場合を説明する。
Next, a case will be described in which the temperature of the hot water in the user-side heat exchanger 1 rises due to the continuation of this heating operation and reaches the set temperature.

[] 前記設定温度に達すると前記温度調節回
路16の前記サーモスタツトWEXが開路して、
前記補助リレー4X、タイマー4XT、補助リレ
ー4XTXがそれぞれ消磁され運転停止指令が出
力される。これにより、 前記均圧回路開閉制御回路18の前記常閉
接点4Xー1が閉路して前記ソレノイドリレ
ー20EP2が励磁され、前記第2開閉弁14が
開となり、前記第2均圧回路13が開放され
ると同時に、 前記膨張弁開度制御回路20の前記常閉接
点4Xー2も閉路して前記補助リレー74SXが
励磁され、前記各常閉接点74SXー1が開路
し、常開接点74SXー2が閉路することによ
り、前記暖房用膨張弁5が全閉にされる。一
方、 [] 前記補助リレー4XTXの消磁により、前
記圧縮機発停指令回路23の前記常開接点
4XTXー2が開路すると同時に、前記常閉接点
4XTXー1が閉路して前記タイマーIT1が励磁
され、一定時間(40秒)のカウントを開始す
る。この間、前記限時動作b接点IT1ー1は閉
路状態を保持するので、前記補助リレーIT1X
も励磁状態に継続する。従つて、前記圧縮機発
停回路18の前記常開接点IT1Xー2、前記フ
アン発停回路19の常開接点IT1Xー3はそれ
ぞれ閉路状態を継続し、前記圧縮機7、フアン
22の駆動が継続される。
[] When the set temperature is reached, the thermostat WEX of the temperature adjustment circuit 16 opens,
The auxiliary relay 4X, timer 4XT, and auxiliary relay 4XTX are each demagnetized and an operation stop command is output. As a result, the normally closed contact 4X-1 of the pressure equalizing circuit opening/closing control circuit 18 is closed, the solenoid relay 20EP2 is energized, the second opening/closing valve 14 is opened, and the second pressure equalizing circuit 13 is opened. At the same time, the normally closed contact 4X-2 of the expansion valve opening degree control circuit 20 is also closed, the auxiliary relay 74SX is energized, each of the normally closed contacts 74SX-1 is opened, and the normally open contact 74SX- 2 closes, the heating expansion valve 5 is fully closed. On the other hand, [] By demagnetizing the auxiliary relay 4XTX, the normally open contact of the compressor start/stop command circuit 23
At the same time as 4XTX-2 opens, the normally closed contact
4XTX-1 is closed, the timer IT1 is excited, and starts counting a certain period of time (40 seconds). During this time, the time-limited operation b contact IT1-1 maintains the closed state, so the auxiliary relay IT1X
continues to be in an excited state. Therefore, the normally open contact IT1X-2 of the compressor start/stop circuit 18 and the normally open contact IT1X-3 of the fan start/stop circuit 19 continue to be closed, and the drive of the compressor 7 and fan 22 is stopped. Continued.

以上のごとく、前記暖房用膨張弁5の閉鎖に
より、前記受液器4から前記熱源側熱交換器2
への液冷媒の供給が停止される一方、前記フア
ン21の駆動により前記熱源側熱交換器2に滞
留する液冷媒が蒸発され、かつ、前記受液器4
のガス域に滞留する高温の高圧ガスが前記第2
均圧回路13を介して前記熱源側熱交換器2に
過熱状態で流通するので、前記熱交換器2に滞
留する液冷媒の蒸発が一層促進され、これら冷
媒は前記圧縮機7へと流出するのである。この
結果、前記圧縮機7の運転を継続する一定時間
(40秒)の間に暖房運転時における低圧側回路
に滞留する液冷媒量は著しく減少するのであ
る。
As described above, by closing the heating expansion valve 5, the liquid receiver 4 is transferred from the heat source side heat exchanger 2 to the heat source side heat exchanger 2.
While the supply of liquid refrigerant to the liquid refrigerant is stopped, the liquid refrigerant remaining in the heat source side heat exchanger 2 is evaporated by driving the fan 21, and the liquid refrigerant remaining in the liquid receiver 4 is evaporated.
The high-temperature, high-pressure gas remaining in the gas region of the second
Since it flows in a superheated state to the heat source side heat exchanger 2 via the pressure equalization circuit 13, the evaporation of the liquid refrigerant staying in the heat exchanger 2 is further promoted, and these refrigerants flow out to the compressor 7. It is. As a result, the amount of liquid refrigerant remaining in the low-pressure side circuit during the heating operation is significantly reduced during a certain period of time (40 seconds) during which the compressor 7 continues to operate.

[] しかして、前記一定時間が経過すると、
前記圧縮機発停指令回路23の前記限時動作b
接点IT1ー1が開路し、前記補助リレーIT1X
が消磁される。このことにより、 自己保持用の前記常開接点IT1Xー1が開
路すると共に、 前記圧縮機発停回路17の常開接点IT1X
ー2が開路して、前記開閉器MCが消磁して
前記圧縮機7が停止し、更に、 前記フアン発停回路19の前記常開接点
IT1Xー3が開路し、前記開閉器88FXが消
磁して、前記フアン21が停止する。
[] However, after the certain period of time has elapsed,
The time-limited operation b of the compressor start/stop command circuit 23
Contact IT1-1 opens, and the auxiliary relay IT1X
is demagnetized. As a result, the normally open contact IT1X-1 for self-holding opens, and the normally open contact IT1X of the compressor start/stop circuit 17 opens.
-2 is opened, the switch MC is demagnetized, the compressor 7 is stopped, and the normally open contact of the fan start/stop circuit 19 is opened.
IT1X-3 is opened, the switch 88FX is demagnetized, and the fan 21 is stopped.

かくして、前記圧縮機7の停止により前記第2
均圧回路13を介して冷媒回路の高圧バランスが
行われるのである。
Thus, by stopping the compressor 7, the second
High pressure balancing of the refrigerant circuit is performed via the pressure equalization circuit 13.

以上のごとく、暖房運転の停止時に均圧を行う
に当つて、運転停止指令後に一定時間、前記圧縮
機7の運転を継続し、前記受液器4の高圧ガス冷
媒を低圧側回路に循環させるようにしたから、該
低圧側回路に滞留する液冷媒量を少なくでき、従
つて、再起動時に前記圧縮機7に前記アキユムレ
ータ6の液冷媒が多量に流入し、液面が上昇して
この液冷媒が前記流出管6eのガス吸入孔6dか
ら該流出管6eへ流入して液圧縮の問題を生じる
ようなことがないのである。
As described above, in performing pressure equalization when the heating operation is stopped, the compressor 7 continues to operate for a certain period of time after the operation stop command, and the high-pressure gas refrigerant in the liquid receiver 4 is circulated to the low-pressure side circuit. As a result, the amount of liquid refrigerant remaining in the low-pressure side circuit can be reduced. Therefore, upon restart, a large amount of liquid refrigerant from the accumulator 6 flows into the compressor 7, and the liquid level rises, causing the liquid refrigerant to rise. This prevents the refrigerant from flowing into the outflow pipe 6e from the gas suction hole 6d of the outflow pipe 6e and causing a liquid compression problem.

尚、本実施例においては冷房運転における運転
停止時においても、運転停止指令発令後一定時間
(40秒)前記圧縮機7、フアン21の運転を継続
するようにしており、前記暖房運転時の場合と相
違する点は運転停止指令により、前記第1開閉弁
12を開にし、第1均圧回路11を開放する一
方、前記第2開閉弁14を閉にして前記第2均圧
回路13を閉鎖する点である。かくすると、前記
受液器4の高圧ガス冷媒は前記第1均圧回路11
を介して前記アキユムレータ6に直接流出する
が、冷房運転時は周囲温度が高いので低圧側回路
に多量の液冷媒が留まるようなことがなく、再起
動時に液圧縮の問題を生じるような事もないので
ある。
In this embodiment, even when the cooling operation is stopped, the compressor 7 and the fan 21 continue to operate for a certain period of time (40 seconds) after the operation stop command is issued. The difference is that according to the operation stop command, the first on-off valve 12 is opened and the first pressure equalizing circuit 11 is opened, while the second on-off valve 14 is closed and the second pressure equalizing circuit 13 is closed. This is the point. In this way, the high pressure gas refrigerant in the liquid receiver 4 is transferred to the first pressure equalizing circuit 11.
However, since the ambient temperature is high during cooling operation, a large amount of liquid refrigerant does not remain in the low pressure side circuit, which may cause liquid compression problems when restarting. There isn't.

(考案の効果) 以上のごとく本考案は、前記膨張弁5と前記熱
源側熱交換器2との間の接続配管Aと、前記受液
器4のガス域との間に均圧回路13を設ける一
方、暖房運転の停止指令時、前記均圧回路13を
開く弁装置14と、暖房サイクル運転の停止指令
後、前記圧縮機7の運転を一定時間継続させる制
御手段とを設けたから、前記受液器4からの高温
のガス冷媒によつて熱源側熱交換器2内の液冷媒
が加熱蒸発されて速やかに前記熱交換器2内を流
出し、圧縮機7に吸込まれるので、停止時に暖房
運転時の低圧側回路に液冷媒が多量に滞留するよ
うなことがなく、しかも高低圧もバランスするの
で、この結果、再起動時に圧縮機7が容易に起動
でき、かつ、圧縮機7で液圧縮を生じるのを防止
できるのである。
(Effect of the invention) As described above, the invention provides a pressure equalizing circuit 13 between the connection pipe A between the expansion valve 5 and the heat source side heat exchanger 2 and the gas region of the liquid receiver 4. On the other hand, since the valve device 14 that opens the pressure equalizing circuit 13 when the heating cycle operation is instructed to stop, and the control means that continues the operation of the compressor 7 for a certain period of time after the heating cycle operation stop instruction is provided, the above-mentioned receiver The liquid refrigerant in the heat source side heat exchanger 2 is heated and evaporated by the high-temperature gas refrigerant from the liquid container 4, quickly flows out of the heat exchanger 2, and is sucked into the compressor 7. A large amount of liquid refrigerant does not accumulate in the low-pressure side circuit during heating operation, and the high and low pressures are balanced. As a result, the compressor 7 can be started easily when restarting, and the compressor 7 can This can prevent liquid compression from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の冷媒回路図、第2図
は同実施例の電気回路図、第3図は従来例の冷媒
回路図である。 1……利用側熱交換器、2……熱源側熱交換
器、4……受液器、5……暖房用膨張機構、7…
…圧縮機、13……第2均圧回路、14……弁装
置(第2開閉弁)。
FIG. 1 is a refrigerant circuit diagram of an embodiment of the present invention, FIG. 2 is an electric circuit diagram of the same embodiment, and FIG. 3 is a refrigerant circuit diagram of a conventional example. 1... User side heat exchanger, 2... Heat source side heat exchanger, 4... Liquid receiver, 5... Expansion mechanism for heating, 7...
...Compressor, 13...Second pressure equalization circuit, 14...Valve device (second on-off valve).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機7、利用側熱交換器1、受液器4、膨張
機構5及び熱源側熱交換器2を順次接続して暖房
サイクル運転を行えるようにした冷凍装置におい
て、前記膨張機構5と前記熱源側熱交換器2との
間の接続配管Aと前記受液器4のガス域との間に
均圧回路13を設ける一方、暖房サイクル運転の
停止指令時、前記均圧回路13を開く弁装置14
と、暖房サイクル運転の停止指令後、前記圧縮機
7の運転を一定時間継続させる制御手段とを設け
たことを特徴とする冷凍装置。
In a refrigeration system in which a compressor 7, a utilization side heat exchanger 1, a liquid receiver 4, an expansion mechanism 5, and a heat source side heat exchanger 2 are sequentially connected to perform a heating cycle operation, the expansion mechanism 5 and the heat source A pressure equalizing circuit 13 is provided between the connecting pipe A between the side heat exchanger 2 and the gas region of the liquid receiver 4, and a valve device opens the pressure equalizing circuit 13 when a heating cycle operation stop command is issued. 14
A refrigeration system comprising: and a control means for continuing the operation of the compressor 7 for a certain period of time after receiving a command to stop the heating cycle operation.
JP14549184U 1984-09-26 1984-09-26 Expired JPH0236059Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14549184U JPH0236059Y2 (en) 1984-09-26 1984-09-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14549184U JPH0236059Y2 (en) 1984-09-26 1984-09-26

Publications (2)

Publication Number Publication Date
JPS6160066U JPS6160066U (en) 1986-04-23
JPH0236059Y2 true JPH0236059Y2 (en) 1990-10-02

Family

ID=30703744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14549184U Expired JPH0236059Y2 (en) 1984-09-26 1984-09-26

Country Status (1)

Country Link
JP (1) JPH0236059Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075897A1 (en) * 2014-11-11 2016-05-19 株式会社デンソー Refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089573Y2 (en) * 1990-06-15 1996-03-21 ダイキン工業株式会社 Refrigeration equipment
JP2697487B2 (en) * 1992-05-29 1998-01-14 ダイキン工業株式会社 Operation control device for refrigeration equipment
JP3109500B2 (en) * 1998-12-16 2000-11-13 ダイキン工業株式会社 Refrigeration equipment
JP6036357B2 (en) * 2013-02-05 2016-11-30 ダイキン工業株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075897A1 (en) * 2014-11-11 2016-05-19 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JPS6160066U (en) 1986-04-23

Similar Documents

Publication Publication Date Title
JPH0828969A (en) Cooling system
JPS6325471A (en) Air conditioner
JPH0236059Y2 (en)
JPH06265242A (en) Engine driven heat pump
JPH0620039Y2 (en) Air conditioner
JPH04174B2 (en)
JP3099574B2 (en) Air conditioner pressure equalizer
JPS59183255A (en) Air conditioner
JPS6132302Y2 (en)
JP2669069B2 (en) Heating and cooling machine
JPS6333092Y2 (en)
JPS6346350B2 (en)
JPS6015082Y2 (en) Refrigeration equipment
JPS6221889Y2 (en)
JPS6015849B2 (en) air conditioner
JPS5926202Y2 (en) air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPS62272048A (en) Air conditioner
JPH0120709B2 (en)
JP2792185B2 (en) Vehicle air conditioner
JP3680143B2 (en) Refrigeration equipment
JPS6224197Y2 (en)
JPS586227Y2 (en) air conditioner
JPH0113970Y2 (en)
JPH09145105A (en) Heat accumulating type air conditioner