JPS6221889Y2 - - Google Patents

Info

Publication number
JPS6221889Y2
JPS6221889Y2 JP1978060622U JP6062278U JPS6221889Y2 JP S6221889 Y2 JPS6221889 Y2 JP S6221889Y2 JP 1978060622 U JP1978060622 U JP 1978060622U JP 6062278 U JP6062278 U JP 6062278U JP S6221889 Y2 JPS6221889 Y2 JP S6221889Y2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
signal
low pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978060622U
Other languages
Japanese (ja)
Other versions
JPS54162964U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978060622U priority Critical patent/JPS6221889Y2/ja
Publication of JPS54162964U publication Critical patent/JPS54162964U/ja
Application granted granted Critical
Publication of JPS6221889Y2 publication Critical patent/JPS6221889Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は空気調和装置に関する。[Detailed explanation of the idea] The present invention relates to an air conditioner.

一般に空気調和装置は、運転停止中は蒸発器内
に液冷媒が飽和状態で貯溜しているため、運転を
再開すると、前記液冷媒が圧縮機に戻り、液バツ
クによる圧縮機損傷の問題がある。
Generally, when an air conditioner is stopped, liquid refrigerant is stored in the evaporator in a saturated state, so when operation is resumed, the liquid refrigerant returns to the compressor, causing the problem of damage to the compressor due to liquid back-up. .

そこで、運転開始時、この液バツクを防止する
ための一手段として、液管を閉鎖したまま圧縮機
を運転し、蒸発器内の液冷媒をガス化して圧縮機
に吸入し、凝縮器に吐出して蒸発器内の液冷媒を
抜いておくいわゆるポンプダウン運転を行うとと
もに、このポンプダウン運転を自動的に行うた
め、低圧スイツチを設けて蒸発器内の液冷媒が十
分ガス化して液バツクを呈しない程度に低圧圧力
が設定値以下に低下したときポンプダウン運転を
終了させて通常の冷凍運転に移行するようにする
ものが考えられる。
Therefore, as a means to prevent this liquid back-up at the start of operation, the compressor is operated with the liquid pipes closed, and the liquid refrigerant in the evaporator is gasified, sucked into the compressor, and discharged into the condenser. In addition to performing a so-called pump-down operation in which the liquid refrigerant in the evaporator is removed from the evaporator, a low-pressure switch is installed to automatically perform this pump-down operation to ensure that the liquid refrigerant in the evaporator is sufficiently gasified and the liquid back is removed. It is conceivable that the pump-down operation is terminated and the normal refrigeration operation is started when the low pressure falls below a set value to such an extent that no refrigeration occurs.

しかしながら、この低圧スイツチのみによるも
のでは、次の問題が生じる。すなわち、膨脹機構
として感温式膨脹弁を備えた空気調和装置では、
運転開始から数十秒あるいは数分までの過渡状態
においては、低圧圧力の低下は外部均圧管を介し
て瞬時に均圧チヤンバーに伝わるのに対し、この
低圧圧力の低下に起因する低圧ガス管内の冷媒温
度の低下は低圧ガス管及び感温筒を介して感温筒
に充填された冷媒に伝わるために低圧ガス管及び
感温筒の熱容量により時間遅れがあり、低圧ガス
管内の冷媒温度に相当する低圧圧力が均圧チヤン
バーに伝わるのに時間遅れが生ずる。このため、
感温式膨脹弁は見かけ上過熱度が設定値より大き
いことを検知し開くことになる。このため、蒸発
器出口の冷媒が実際に設定過熱度となるために必
要な量よりも多量の冷媒が感温式膨脹弁を流通す
ることとなり、蒸発器内で未蒸発のまま圧縮機に
吸込まれて液バツクとなるのである。したがつ
て、蒸発器内の貯溜液冷媒が少ない場合に前記膨
脹弁の感温筒内の冷媒の温度降下が低圧ガス管内
の冷媒温度の低下に追随しないうちに、低圧スイ
ツチが作動してポンプダウン運転を終了させる問
題がある。
However, using only this low pressure switch causes the following problem. In other words, in an air conditioner equipped with a temperature-sensitive expansion valve as an expansion mechanism,
In a transient state for tens of seconds or minutes after the start of operation, a drop in low pressure is instantaneously transmitted to the pressure equalization chamber via the external pressure equalization pipe, whereas the drop in low pressure gas in the low pressure gas pipe due to this drop in low pressure The decrease in refrigerant temperature is transmitted to the refrigerant filled in the temperature sensing cylinder via the low pressure gas pipe and temperature sensing cylinder, so there is a time delay due to the heat capacity of the low pressure gas pipe and temperature sensing cylinder, which corresponds to the refrigerant temperature in the low pressure gas pipe. There is a time delay in the transmission of the low pressure to the pressure equalization chamber. For this reason,
The temperature-sensitive expansion valve opens when it detects that the apparent degree of superheat is greater than the set value. As a result, a larger amount of refrigerant flows through the temperature-sensitive expansion valve than is necessary for the refrigerant at the evaporator outlet to actually reach the set superheat degree, and is sucked into the compressor without evaporating in the evaporator. This causes the liquid to drain and become a liquid bag. Therefore, when the amount of liquid refrigerant stored in the evaporator is low, the low pressure switch is activated and the pump is activated before the temperature drop of the refrigerant in the temperature sensing cylinder of the expansion valve follows the drop in refrigerant temperature in the low pressure gas pipe. There is a problem in terminating the down operation.

さらに、ポンプダウン運転時に前記膨脹弁がゴ
ミかみをおこし、前記膨脹弁が完全に閉鎖できず
微小面積あいていた場合などにおいては、膨脹弁
を微小流量冷媒が流通する(微小流量なので、液
バツクするには至らない)ため、低圧圧力が設定
値まで低下せずポンプダウン運転が持続し、通常
の冷凍運転へ移行できない問題がある。しかし、
かりに低圧圧力が設定値まで低下しなくとも一定
時間ポンプダウン運転を続行すれば低圧圧力もあ
る程度下がりかつ膨脹弁の感温筒内の冷媒の温度
降下も追随する結果、通常の冷凍運転に移行して
も液バツクは生じないことも又経験上知られてい
る。
Furthermore, if the expansion valve is not able to be completely closed due to dust build-up during pump down operation and a minute area is left open, a minute flow rate of refrigerant flows through the expansion valve (because the flow rate is minute, the liquid back up Therefore, there is a problem that the low pressure does not decrease to the set value and pump-down operation continues, making it impossible to shift to normal refrigeration operation. but,
However, even if the low pressure does not drop to the set value, if pump-down operation continues for a certain period of time, the low pressure will drop to some extent and the temperature of the refrigerant in the temperature sensing cylinder of the expansion valve will follow, resulting in a transition to normal refrigeration operation. It is also known from experience that no liquid back-up occurs even if

このため、上記通常の冷凍運転へ移行できない
という問題に対しては、例えば低圧スイツチにか
えて、ポンプダウン運転制御をタイマーで一定時
間行うこととすることにより通常の冷凍運転への
移行を確保することも考えられる。
Therefore, to solve the problem of not being able to transition to normal refrigeration operation, for example, instead of using a low pressure switch, a timer can be used to control pump down operation for a certain period of time to ensure transition to normal refrigeration operation. It is also possible.

しかしながら、蒸発器内にたまる液冷媒量は種
種の運転条件により異なり一定ではないので、安
全を見込んで設定すると、液冷媒量が多い場合に
は問題ないとしても液冷媒量が少量の場合には、
ポンプダウン運転の時間が長すぎることとなり、
過度のポンプダウン運転となる結果、低圧圧力が
低下しすぎる運転すなわちガス欠運転となり、圧
縮機に潤滑油がもどらず油膜切れなどによる圧縮
機損傷の原因となる問題がある。
However, the amount of liquid refrigerant that accumulates in the evaporator varies depending on the various operating conditions and is not constant, so if you set it with safety in mind, there may be no problem when the amount of liquid refrigerant is large, but when the amount of liquid refrigerant is small, ,
Pump down operation time is too long,
As a result of excessive pump down operation, there is a problem that the low pressure drops too much, that is, the operation runs out of gas, and lubricating oil does not return to the compressor, causing damage to the compressor due to lack of oil film.

そこで、本考案は、以上の問題に鑑み考案した
もので、目的は、ポンプダウン運転時、感温筒内
の冷媒の温度降下が低圧ガス管内の冷媒温度の低
下に追随できるようにすること、ポンプダウン運
転から確実に通常の冷凍運転へ移行が確実にでき
るようにすること、過度のポンプダウン運転によ
るガス欠運転を防止することにある。
Therefore, the present invention was devised in view of the above problems, and the purpose is to enable the temperature drop of the refrigerant in the temperature sensing cylinder to follow the drop in refrigerant temperature in the low pressure gas pipe during pump down operation. To ensure a reliable transition from pump-down operation to normal refrigeration operation, and to prevent gas-starvation operation due to excessive pump-down operation.

この目的を達成するため、本考案は、外部均圧
管をもつた感温式膨脹弁の前記均圧管に、高圧側
冷媒配管と連絡する連絡管を接続し、前記均圧管
および連絡管に、前記膨脹弁の均圧チヤンバーに
高圧側の冷媒圧力および低圧側の冷媒圧力を選択
的に導く制御弁装置を配設する一方、上限設定値
とこれより低い下限設定値とをもち、冷凍サイク
ルの低圧側の冷媒圧力が前記上限設定値から前記
下限設定値以下に低下したとき第1作動信号から
切換つて第2作動信号を発し、前記下限設定値か
ら前記上限設定値以上に上昇したとき第2作動信
号から切換つて第1作動信号を発する低圧スイツ
チと、圧縮機運転開始からカウントを開始し数分
以内の予じめ設定された所定時間経過時にカウン
トアツプ信号を発する自動復帰型のタイマーと
を、前記タイマーがカウントアツプ信号を発する
までは、前記均圧チヤンバーに前記低圧スイツチ
の第1作動信号により高圧側の冷媒圧力を導き、
第2作動信号により低圧側の冷媒圧力を導き、前
記タイマーがカウントアツプ信号を発したときは
前記低圧スイツチの第1、第2作動信号にかかわ
らず前記タイマーのカウントアツプ信号により前
記均圧チヤンバーに低圧側の冷媒圧力を導くよう
に前記制御弁装置の制御回路に介設したものであ
る。
In order to achieve this object, the present invention connects the pressure equalization pipe of a temperature-sensitive expansion valve with an external pressure equalization pipe to a communication pipe that communicates with the high pressure side refrigerant pipe, and connects the pressure equalization pipe and the communication pipe to the pressure equalization pipe. A control valve device is installed in the pressure equalization chamber of the expansion valve to selectively guide the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side. When the refrigerant pressure on the side decreases from the upper limit set value to below the lower limit set value, the first actuation signal is switched and a second actuation signal is issued, and when the refrigerant pressure increases from the lower limit set value to the upper limit set value or more, the second actuation signal is activated. A low pressure switch that issues a first operation signal by switching from a signal, and an automatic reset timer that starts counting from the start of compressor operation and issues a count-up signal when a preset predetermined time within several minutes has elapsed. until the timer issues a count-up signal, the refrigerant pressure on the high pressure side is introduced into the pressure equalization chamber by a first actuation signal of the low pressure switch;
The refrigerant pressure on the low pressure side is guided by a second actuation signal, and when the timer issues a count-up signal, the count-up signal of the timer causes the refrigerant pressure to be set in the pressure equalizing chamber regardless of the first and second actuation signals of the low pressure switch. It is interposed in the control circuit of the control valve device so as to guide the refrigerant pressure on the low pressure side.

これにより、本考案空気調和装置は、圧縮機運
転開始時、前記タイマーがカウントアツプ信号を
発するまでは、低圧スイツチの第1作動信号によ
り均圧チヤンバーに高圧側の冷媒圧力を導き前記
膨脹弁を閉じ、ポンプダウン運転を行う。そして
低圧側の冷媒圧力が前記低圧スイツチの上限設定
値から下限設定値以下に低下したとき第2作動信
号により前記均圧チヤンバーに低圧側の冷媒圧力
を導く。そして前記膨脹弁は過熱度制御を開始し
通常の冷凍運転を行う。このとき低圧低下が早い
と、感温筒内の冷媒の温度降下が低圧ガス管内の
冷媒の温度低下に追随できないので前記膨脹弁が
過度に開く。この過度に開くことと上限設定値は
下限設定値より通常1Kg/cm2程度高めにきめられ
ているのが普通であることから、低圧側の冷媒圧
力が前記下限設定値から上限設定値以上に上昇す
る。このため、第1作動信号により再び均圧チヤ
ンバーに高圧側の冷媒圧力を導くように前記制御
弁装置を制御する。従つて再度ポンプダウン運転
を開始する。このように、前記タイマーがカウン
トアツプ信号を発するまでは低圧スイツチの第1
作動信号と第2作動信号とによりポンプダウン運
転と通常の冷凍運転とがなされる間に感温筒内の
冷媒の温度降下が低圧ガス管内の冷媒の温度低下
に追随するのである。尚、前記膨脹弁は過度に開
いても又すぐ閉じるので液バツクには至らない。
また、低圧低下が遅いときは前記追随の点につい
ては問題ない。
As a result, in the air conditioner of the present invention, when the compressor starts operating, the refrigerant pressure on the high pressure side is guided to the pressure equalizing chamber by the first actuation signal of the low pressure switch and the expansion valve is activated until the timer issues a count-up signal. Close and perform pump down operation. When the refrigerant pressure on the low pressure side decreases from the upper limit set value of the low pressure switch to below the lower limit set value, the low pressure side refrigerant pressure is introduced to the pressure equalizing chamber by a second actuation signal. Then, the expansion valve starts superheat degree control and performs normal refrigeration operation. At this time, if the low pressure decreases quickly, the expansion valve opens excessively because the temperature decrease of the refrigerant in the temperature-sensitive cylinder cannot follow the decrease in the temperature of the refrigerant in the low-pressure gas pipe. Because this excessive opening occurs and the upper limit set value is usually set about 1 kg/ cm2 higher than the lower limit set value, the refrigerant pressure on the low pressure side increases from the lower limit set value to the upper limit set value or higher. Rise. Therefore, the control valve device is controlled by the first actuation signal so as to introduce the refrigerant pressure on the high pressure side to the pressure equalizing chamber again. Therefore, pump down operation is started again. In this way, until the timer issues a count-up signal, the first
The temperature drop of the refrigerant in the temperature sensing cylinder follows the temperature drop of the refrigerant in the low pressure gas pipe while the pump down operation and the normal refrigeration operation are performed by the actuation signal and the second actuation signal. Incidentally, even if the expansion valve opens excessively, it closes immediately again, so that no liquid back up occurs.
Further, when the low pressure decrease is slow, there is no problem with the following point.

そして、前記タイマーがカウントアツプ信号を
発すると前記低圧スイツチの第1、第2作動信号
にかかわらず前記均圧チヤンバーに低圧側の冷媒
圧力を導くように前記制御弁装置が制御され、以
後は通常の冷凍運転が続行される。
When the timer issues a count-up signal, the control valve device is controlled so as to introduce the low-pressure side refrigerant pressure to the pressure equalization chamber regardless of the first and second actuation signals of the low-pressure switch. Refrigeration operation continues.

尚、前記制御弁装置を三方電磁弁とすれば、1
個の弁で形成できるので、制御および構造が簡単
となる利点がある。
Incidentally, if the control valve device is a three-way solenoid valve, 1
Since it can be formed with individual valves, it has the advantage of simple control and structure.

以下、本考案の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に示したものは、熱回収式冷温水機であ
つて、第1図において1は圧縮機、2は水加熱用
凝縮器、3は水冷却用蒸発器、4は空気側熱交換
器、5は受液器、6はアキユムレータであつて、
これら機器は冷媒配管7によつて各連絡されてい
る。
The device shown in FIG. 1 is a heat recovery type hot and cold water machine. In FIG. 1, 1 is a compressor, 2 is a water heating condenser, 3 is a water cooling evaporator, 4 is an air side heat exchanger, 5 is a receiver, and 6 is an accumulator.
These devices are connected to each other by refrigerant piping 7.

前記圧縮機1は、アンローダ機構をもつてお
り、前記凝縮器2における温水入口温度を検出す
る温水入口サーモと、前記蒸発器3の冷水入口温
度を検出する冷水入口サーモとにより例えば75
%、50%、25%能力の3段階にその圧縮機能力を
制御されるようになつている。
The compressor 1 has an unloader mechanism, and has a hot water inlet thermometer that detects the hot water inlet temperature of the condenser 2 and a cold water inlet thermometer that detects the cold water inlet temperature of the evaporator 3.
Its compression capacity can be controlled in three levels: %, 50%, and 25% capacity.

又、8は四路切換弁、9は三方弁であつて、こ
れら四路切換弁8及び三方弁9により、前記圧縮
機1から吐出する冷媒の流れを制御し、前記空気
側熱交換器4を凝縮器としたり、蒸発器としたり
或いは冷媒を流さなかつたりするのであり、冷房
専用運転、冷房優先運転、暖房専用運転、暖房優
先運転、冷暖房平衡運転、及びデフロスト運転が
行なえるようにするのである。
Further, 8 is a four-way switching valve, and 9 is a three-way valve.The four-way switching valve 8 and the three-way valve 9 control the flow of refrigerant discharged from the compressor 1, and the air-side heat exchanger 4 The cooling-only operation, cooling-priority operation, heating-only operation, heating-priority operation, cooling/heating balanced operation, and defrost operation are possible. be.

前記四路切換弁8は、高圧側ポート81と、低
圧側ポート82と、二つの第1及び第2切換ポー
ト83,84との四つのポートをもつた既存の四
路切換弁を用いるのであり、また前記三方弁9
は、一つの固定ポート91と、二つの第1及び第
2制御ポート92,93とをもち、これら制御ポ
ート92,93の開度を調整可能に構成するので
あつて、前記四路切換弁8の前記高圧側ポート8
1を、前記圧縮機1の吐出口に、低圧側ポート8
2を、前記アキユムレータ6にそれぞれ接続する
と共に、前記第1切換ポート83を、前記三方弁
9の固定ポート91に、第2切換ポート84を前
記凝縮器2と蒸発器3との何れか一方と選択的に
接続するのであり、また前記三方弁9の第1制御
ポート92を、前記蒸発器3と凝縮器2との何れ
か一方と選択的に接続し、第2制御ポート93を
前記空気側熱交換器4に接続するのである。
The four-way switching valve 8 uses an existing four-way switching valve having four ports: a high-pressure side port 81, a low-pressure side port 82, and two first and second switching ports 83 and 84. , and the three-way valve 9
The four-way switching valve 8 has one fixed port 91 and two first and second control ports 92, 93, and is configured to be able to adjust the opening degrees of these control ports 92, 93. The high pressure side port 8 of
1 to the discharge port of the compressor 1, and the low pressure side port 8
2 to the accumulator 6, the first switching port 83 to the fixed port 91 of the three-way valve 9, and the second switching port 84 to either the condenser 2 or the evaporator 3. The first control port 92 of the three-way valve 9 is selectively connected to either the evaporator 3 or the condenser 2, and the second control port 93 is connected to the air side. It is connected to the heat exchanger 4.

前記三方弁9は、コントロールモータにより前
記制御ポート92,93の開度を0〜100%制御
するもので、前記四路切換弁8の切換えにより高
圧ガス冷媒を前記凝縮器2と空気側熱交換器4と
に所定比率で流す高圧側制御弁となつたり、前記
蒸発器3と空気側熱交換器4とで蒸発した低圧ガ
ス冷媒を所定比率で流す低圧側制御弁となつたり
するものである。
The three-way valve 9 controls the opening degrees of the control ports 92 and 93 from 0 to 100% by a control motor, and the high-pressure gas refrigerant is exchanged with the condenser 2 on the air side by switching the four-way switching valve 8. It serves as a high-pressure side control valve that allows the low-pressure gas refrigerant evaporated in the evaporator 3 and air-side heat exchanger 4 to flow at a predetermined ratio. .

しかして、高圧側制御弁として働らく場合、前
記凝縮器2への開度即ち第1制御ポート92の開
度が100%〜0%のとき、空気側熱交換器4への
開度即ち第2制御ポート93の開度は0〜100%
となり、第1制御ポート92の開度が100%で高
圧ガス冷媒の全量が凝縮器2に流れるとき、空気
側熱交換器4には流れない。また逆の場合凝縮器
2には流れない。
Therefore, when working as a high pressure side control valve, when the opening degree to the condenser 2, that is, the opening degree of the first control port 92 is between 100% and 0%, the opening degree to the air side heat exchanger 4, that is, the opening degree of the first control port 92 is between 100% and 0%. The opening degree of 2 control port 93 is 0 to 100%.
Therefore, when the opening degree of the first control port 92 is 100% and the entire amount of high-pressure gas refrigerant flows to the condenser 2, it does not flow to the air side heat exchanger 4. In the opposite case, it does not flow to the condenser 2.

又、低圧側制御弁として働く場合も同様で蒸発
器3に通ずる第1制御ポート92の開度が100〜
0%のときには、空気側熱交換器4に通ずる第2
制御ポート93の開度は0〜100%となり、第1
制御ポート92の開度が100%で、低圧ガス冷媒
が全量蒸発器3から流れるとき、第2制御ポート
93は閉じ、空気側熱交換器4に液冷媒が流れる
ことはない。
Similarly, when working as a low pressure side control valve, the opening degree of the first control port 92 leading to the evaporator 3 is 100~
When it is 0%, the second
The opening degree of the control port 93 is 0 to 100%, and the first
When the opening degree of the control port 92 is 100% and low-pressure gas refrigerant flows from the full-volume evaporator 3, the second control port 93 is closed and no liquid refrigerant flows into the air-side heat exchanger 4.

又、以上の構成において、四路切換弁8の第2
切換ポート84を、前記凝縮器2と蒸発器3との
何れか一方に選択的に接続すると共に、三方弁9
の第1制御ポート92を、前記凝縮器2と蒸発器
3との何れか一方に選択的に接続し、しかも前記
第2切換ポート84と第1制御ポート92とは、
前記凝縮器2と蒸発器3とに可逆的に接続するの
であつて、この接続方法は、四つの逆止弁10a
〜10bを組合せた四方チヤツキ弁や、四路切換
弁のごとき四ポート弁10を用いるのである。
Moreover, in the above configuration, the second
The switching port 84 is selectively connected to either the condenser 2 or the evaporator 3, and the three-way valve 9
selectively connects the first control port 92 to either the condenser 2 or the evaporator 3, and the second switching port 84 and the first control port 92,
The condenser 2 and the evaporator 3 are reversibly connected, and this connection method uses four check valves 10a.
A four-port valve 10 such as a four-way check valve or a four-way switching valve is used.

しかして第1図に示したものは、以上の如く構
成する熱回収式冷温水機において、前記受液器5
と前記蒸発器3との間を結ぶ液管71の途中に、
外部均圧管13をもつた感温式膨脹弁11を介装
すると共に前記受液器5と空気側熱交換器4との
間を結ぶ液管72の途中に、前記熱交換器4が蒸
発器となるときに作動する外部均圧管14をもつ
た感温式膨脹弁12を介装し、前記均圧管13
を、前記蒸発器3と前記四ポート弁10との間を
結ぶ低圧ガス管73に、また前記均圧管14を、
前記三方弁9と、空気側熱交換器4との間を連絡
する連絡管74にそれぞれ接続し、前記各均圧管
13,14に、高圧側冷媒配管となる前記各液管
71,72と連絡する各連絡管13a,14aを
接続し、前記各均圧管13,14および各連絡管
13a,14aに、前記膨脹弁11,12の均圧
チヤンバー(図示せず)へ高圧側の冷媒圧力およ
び低圧側の冷媒圧力を選択的に導く三方電磁弁か
ら成る制御弁装置15,16を介装したものであ
る。
However, in the heat recovery type water chiller/heater constructed as described above, the liquid receiver 5 shown in FIG.
In the middle of the liquid pipe 71 connecting between the evaporator 3 and the evaporator 3,
A temperature-sensitive expansion valve 11 having an external pressure equalizing pipe 13 is interposed, and the heat exchanger 4 is connected to an evaporator in the middle of a liquid pipe 72 connecting the liquid receiver 5 and the air side heat exchanger 4. A temperature-sensitive expansion valve 12 having an external pressure equalizing pipe 14 that operates when the pressure equalizing pipe 13
to the low-pressure gas pipe 73 connecting the evaporator 3 and the four-port valve 10, and the pressure equalization pipe 14,
The three-way valve 9 and the air-side heat exchanger 4 are connected to communication pipes 74, and the pressure-equalizing pipes 13 and 14 are connected to the liquid pipes 71 and 72, which serve as high-pressure refrigerant pipes. The communication pipes 13a, 14a are connected to the pressure equalization pipes 13, 14 and the communication pipes 13a, 14a, and the refrigerant pressure on the high pressure side and the low pressure are connected to the pressure equalization chambers (not shown) of the expansion valves 11, 12. Control valve devices 15 and 16, which are three-way solenoid valves that selectively guide the side refrigerant pressure, are installed.

第1図に示した構成において、前記均圧管1
3,14の接続位置は、前記低圧ガス管73、連
絡管74に特定されるものではなく、吸入管75
でもよい。また制御弁装置15,16として1個
の三方電磁弁を用いる他、2個の二方電磁弁でも
よい。三方電磁弁の場合該電磁弁の一ポートを、
高圧側冷媒配管となる前記液管71,72に連通
させ、この電磁弁の切換時高圧側の冷媒圧力すな
わち高圧液冷媒を均圧チヤンバーに導入できるの
で、膨脹弁11,12の閉鎖をより確実に行なえ
る点で有利である。
In the configuration shown in FIG. 1, the pressure equalizing pipe 1
The connection positions of 3 and 14 are not limited to the low pressure gas pipe 73 and the communication pipe 74, but are connected to the suction pipe 75.
But that's fine. Further, instead of using one three-way solenoid valve as the control valve devices 15 and 16, two two-way solenoid valves may be used. In the case of a three-way solenoid valve, one port of the solenoid valve is
The expansion valves 11 and 12 can be closed more reliably by communicating with the liquid pipes 71 and 72, which serve as the high-pressure side refrigerant pipes, so that when this solenoid valve is switched, the refrigerant pressure on the high-pressure side, that is, the high-pressure liquid refrigerant, can be introduced into the pressure equalization chamber. It is advantageous in that it can be carried out.

又、以上の如く構成する前記制御弁装置15,
16による均圧管13,14の開閉制御は、起動
時、及び冷房優先運転から暖房優先運転に切換わ
り、凝縮器として作用していた空気側熱交換器4
が蒸発器になる場合であつて、低圧側の冷媒圧力
を検知して後記するように行なうのであつて、通
電されたとき前記均圧管13,14を開き、非通
電で閉じ、前記膨脹弁11,12を閉じるように
するのである。
Further, the control valve device 15 configured as above,
The opening/closing control of the pressure equalizing pipes 13 and 14 by 16 is performed at startup and when switching from cooling priority operation to heating priority operation, and the air side heat exchanger 4, which was acting as a condenser,
is an evaporator, and the pressure of the refrigerant on the low pressure side is detected as described below. , 12 are closed.

更らに第2図に示した電気回路により詳記す
る。
Further details will be given using the electric circuit shown in FIG.

第2図に示したものは、前記制御弁装置15,
16の制御回路で、圧縮機1の駆動時閉じる接点
52cに、タイマーT10と2つの制御弁装置1
5,16との三者並列回路を直列に接続して形成
されている。
What is shown in FIG. 2 is the control valve device 15,
16 control circuit, a timer T 10 and two control valve devices 1 are connected to the contact 52c that closes when the compressor 1 is driven.
It is formed by connecting three parallel circuits of 5 and 16 in series.

前記タイマーT10は、圧縮機運転開始からカウ
ントを開始し数分以内(例えば3分間)の予じめ
設定された所定時間経過時に閉成する接点により
カウントアツプの信号を発し非通電により自動復
帰するものである。尚、前記所定時間は、膨脹弁
の感温筒内の冷媒の温度降下が低圧ガス管内の冷
媒の温度低下に追随でき液バツクしない程度の安
全性を見込んで設定すればよいものである。
The timer T10 starts counting from the start of compressor operation, and issues a count-up signal by a contact that closes when a preset period of time within several minutes (for example, 3 minutes) has elapsed, and automatically resets when the power is turned off. It is something to do. It should be noted that the predetermined time may be set in consideration of safety to the extent that the temperature drop of the refrigerant in the temperature sensing cylinder of the expansion valve can follow the temperature drop of the refrigerant in the low pressure gas pipe and that the liquid does not back up.

又、前記2個の制御弁装置15,16の二者並
列回路には、上限設定値とこれより低い下限設定
値とをもち、冷凍サイクルの低圧側の冷媒圧力が
前記上限設定値から前記下限設定値以下に低下し
たとき第1作動信号から切換つて第2作動信号を
発し、前記下限設定値から前記上限設定値以上に
上昇したとき第2作動信号から切換つて第1作動
信号を発する低圧スイツチLPSと前記タイマー
T10の前記接点とが並列に介設されている。
Further, the two-way parallel circuit of the two control valve devices 15 and 16 has an upper limit setting value and a lower limit setting value lower than this, and the refrigerant pressure on the low pressure side of the refrigeration cycle varies from the upper limit setting value to the lower limit setting value. A low pressure switch that switches from the first actuation signal and issues a second actuation signal when the voltage drops below a set value, and switches from the second actuation signal and issues the first actuation signal when the lower limit setting value increases to or above the upper limit set value. LPS and said timer
A contact point T10 is provided in parallel.

前記制御弁装置15,16は通電時低圧側の冷
媒圧力を前記均圧チヤンバーに導き、非通電時高
圧側の冷媒圧力を前記均圧チヤンバーに導くよう
に作動するものである。
The control valve devices 15 and 16 operate to guide the refrigerant pressure on the low pressure side to the pressure equalizing chamber when energized, and to guide the refrigerant pressure on the high pressure side to the pressure equalizing chamber when not energized.

尚、図中R1は四路切換弁8を切換え冷房優先
運転と暖房優先運転とに切換えるリレーの常開接
点で、該リレーが励磁されたとき、四路切換弁8
を第1図点線のごとく切換えて暖房優先運転と
し、前記接点R1を閉じるものである。
In the figure, R1 is a normally open contact of a relay that switches the four-way switching valve 8 between cooling priority operation and heating priority operation, and when the relay is energized, the four-way switching valve 8
is switched as shown by the dotted line in Figure 1 to set heating priority operation, and the contact R1 is closed.

又、64は、暖房専用運転時のみ開く接点、6
3は冷暖房負荷が等しくバランス運転していると
きのみ開く接点である。
In addition, 64 is a contact that opens only during heating-only operation, 6
3 is a contact that opens only when the heating and cooling loads are equal and balanced operation is performed.

又、T11はタイマーで、前記リレーの常開接点
R1と直列に接続するのであつて、通電後例えば
5秒で開き、非通電で閉じる接点をもつている。
Also, T11 is a timer, which is the normally open contact of the relay.
It is connected in series with R 1 and has a contact that opens, for example, 5 seconds after energization and closes when no energization occurs.

又、R10は、前記タイマーT11の接点を介して前
記リレーの常開接点R1と直列に接続するリレー
で、その常閉接点を、前記接点52Cとタイマー
T10との直列回路に介装している。
Further, R10 is a relay connected in series with the normally open contact R1 of the relay through the contact of the timer T11 , and the normally closed contact is connected to the contact 52C and the timer.
It is inserted in a series circuit with T10 .

又、23Dは、デフロスト時開き、デフロスト
終了時閉じる接点である。
Further, 23D is a contact that opens during defrosting and closes when defrosting ends.

しかして第1,2図の構成において、前記四路
切換弁8は、非通電においては第1図実線のごと
く位置し、通電されると第1図点線のごとく切換
えられるのであつて、第1図実線位置では前記三
方弁9に圧縮機1から高圧ガス冷媒が導かれ、こ
の三方弁9が高圧側制御弁となつて、前記高圧ガ
ス冷媒を、前記凝縮器2と前記熱交換器4とに所
定比率で流すように作用するのであり、第1図点
線位置では、前記熱交換器4を蒸発器とし、三方
弁9が低圧側制御弁となつて前記蒸発器3と前記
熱交換器4とで蒸発した低圧ガス冷媒を所定比率
で流すように作用するのである。
In the configuration shown in FIGS. 1 and 2, the four-way switching valve 8 is positioned as shown by the solid line in FIG. 1 when not energized, and is switched as shown by the dotted line in FIG. 1 when energized. At the solid line position in the diagram, high pressure gas refrigerant is introduced from the compressor 1 to the three-way valve 9, and this three-way valve 9 serves as a high-pressure side control valve to direct the high-pressure gas refrigerant to the condenser 2 and the heat exchanger 4. At the dotted line position in Figure 1, the heat exchanger 4 is used as an evaporator, and the three-way valve 9 is a low-pressure side control valve, so that the evaporator 3 and the heat exchanger 4 The evaporated low-pressure gas refrigerant flows at a predetermined ratio.

そして前記四路切換弁8の切換判断は、冷水入
口又は温水入口温度により能力制御をする圧縮機
1の能力と、冷水出口又は温水出口温度により第
1制御ポート92の開度を制御する三方弁9の開
度との関連において行なうのである。即ち冷房優
先運転においては、圧縮機1の能力制御を冷水入
口温度により、三方弁9の前記開度を温水出口温
度により制御し、暖房優先運転では、圧縮機1の
能力制御を温水入口温度で、三方弁9の開度制御
を冷水出口温度で行なうようにし、三方弁9の前
記開度100%で、圧縮機1の能力が制御されたと
き、つまり、冷房優先運転において、温水出口温
度が設定温度(42℃)より低く、三方弁9の開度
が100%で、高圧ガス冷媒の全量が水加熱用凝縮
器2に送られているとき、冷房負荷が減少し冷水
入口温度が設定温度(10℃)より低くなつて圧縮
機1の能力が例えば75%に制御されるとき、前記
四路切換弁8に通電して切換え暖房優先運転とす
るのであり、また暖房優先運転において冷水出口
温度が設定温度(10℃)よりも高く三方弁9の前
記開度が100%で水冷却用蒸発器3から低圧ガス
冷媒の全量を流しているとき、暖房負荷が減少し
温水入口温度が設定温度(42℃)より高くなつ
て、圧縮機1の能力が例えば75%に制御されると
き、前記四路切換弁8の通電を遮つて、冷房優先
運転に切換えるのである。
The switching judgment of the four-way switching valve 8 is based on the capacity of the compressor 1, which controls the capacity based on the cold water inlet or hot water inlet temperature, and the three-way valve that controls the opening degree of the first control port 92 based on the cold water outlet or hot water outlet temperature. This is done in relation to the opening degree of 9. That is, in the cooling priority operation, the capacity of the compressor 1 is controlled by the cold water inlet temperature, and the opening degree of the three-way valve 9 is controlled by the hot water outlet temperature, and in the heating priority operation, the capacity of the compressor 1 is controlled by the hot water inlet temperature. , the opening degree of the three-way valve 9 is controlled by the cold water outlet temperature, and when the capacity of the compressor 1 is controlled with the opening degree of the three-way valve 9 at 100%, that is, in cooling priority operation, the hot water outlet temperature is When the temperature is lower than the set temperature (42°C), the opening degree of the three-way valve 9 is 100%, and the entire amount of high-pressure gas refrigerant is sent to the water heating condenser 2, the cooling load decreases and the cold water inlet temperature reaches the set temperature. (10°C) and the capacity of the compressor 1 is controlled to, for example, 75%, the four-way switching valve 8 is energized to switch over to the heating priority operation, and in the heating priority operation, the cold water outlet temperature is higher than the set temperature (10°C) and the opening degree of the three-way valve 9 is 100% and the entire amount of low-pressure gas refrigerant is flowing from the water cooling evaporator 3, the heating load decreases and the hot water inlet temperature becomes the set temperature. (42°C) and the capacity of the compressor 1 is controlled to, for example, 75%, the four-way selector valve 8 is de-energized and switched to cooling priority operation.

しかして起動時、冷水温度が設定温度(10℃)
より高く、温水温度が設定温度(42℃)より低い
場合には、四路切換弁8に通電することなく、第
1図のごとく位置させて、冷房優先運転で起動す
るのである。
However, at startup, the cold water temperature is the set temperature (10℃)
If the hot water temperature is lower than the set temperature (42° C.), the four-way selector valve 8 is not energized, but is positioned as shown in FIG. 1, and the cooling priority operation is started.

従つて、先ずこの起動時、運転スイツチ(図示
せず)を入れると、圧縮機1が駆動を始めると同
時に、前記接点52Cが閉じるのでタイマーT10
がカウントを開始するのである。
Therefore, when starting up, when the operation switch (not shown) is turned on, the compressor 1 starts to drive and at the same time the contact point 52C closes, so the timer T 10 starts.
starts counting.

そしてこの起動時、第2図における接点63,
64は、閉じているが、接点R1は、開いている
から、制御弁装置16には通電されず、均圧管1
4は閉じ、連絡管14aは開いているので、前記
均圧チヤンバーに高圧側の冷媒圧力が導かれて前
記膨脹弁12は閉じるのである。
At this startup, the contact 63 in FIG.
64 is closed, but contact R1 is open, so the control valve device 16 is not energized and the pressure equalizing pipe 1
4 is closed, and the communication pipe 14a is open, so that the refrigerant pressure on the high pressure side is introduced into the pressure equalizing chamber, and the expansion valve 12 is closed.

そして、制御弁装置15は、低圧スイツチLPS
の開閉により制御されるのであつて、前記低圧ス
イツチLPSは低圧側の冷媒圧力が例えばフロン2
2を冷媒とした場合下限設定値である2Kg/cm2
下で閉じ(第1作動信号から切換つて第2作動信
号を発した状態)、上限設定値である3Kg/cm2
上で開く(第2作動信号から切換つて第1作動信
号を発した状態)ように両設定値の差が小さくセ
ツトされることにより低圧側の冷媒圧力が3Kg/
cm2以上で制御弁装置15への通電を断ち、均圧管
13を閉じ連絡管13aを開き前記均圧チヤンバ
ーに高圧側の冷媒圧力を導いて、前記膨脹弁11
を閉じ、前記液管71を閉鎖するのである。これ
によつてポンプダウン運転が行われ、あらかじめ
蒸発器内に残存している冷媒は大部分ガス化され
圧縮機1に吸込まれるので液バツクが防止され
る。そして低圧側の冷媒圧力が2Kg/cm2以下に低
くなれば、前記スイツチLPSが閉成作動し、前記
制御弁装置15が通電されるので、前記連絡管1
3aを閉じ前記均圧管13を開き、前記低圧側の
冷媒圧力を前記均圧チヤンバーに導き、膨脹弁1
1は正常に作動するのである。
The control valve device 15 is a low pressure switch LPS.
The low pressure switch LPS is controlled by the opening and closing of the low pressure switch LPS.
When 2 is used as a refrigerant, it closes when the lower limit set value is 2 Kg/cm 2 or less (the state in which the second operating signal is issued after switching from the first operating signal), and opens when the upper limit set value is 3 Kg/cm 2 or higher (the state where the second operating signal is issued after switching from the first operating signal). By setting the difference between the two setting values small, the refrigerant pressure on the low pressure side is reduced to 3 kg/kg.
cm 2 or more, the power to the control valve device 15 is cut off, the pressure equalization pipe 13 is closed, and the communication pipe 13a is opened to guide the refrigerant pressure on the high pressure side to the pressure equalization chamber, and the expansion valve 11
, and the liquid pipe 71 is closed. As a result, pump-down operation is performed, and most of the refrigerant remaining in the evaporator is gasified and sucked into the compressor 1, thereby preventing liquid back up. When the refrigerant pressure on the low pressure side drops to 2 kg/cm 2 or less, the switch LPS is closed and the control valve device 15 is energized, so that the connecting pipe 1
3a is closed and the pressure equalization pipe 13 is opened, the refrigerant pressure on the low pressure side is guided to the pressure equalization chamber, and the expansion valve 1 is opened.
1 works normally.

そして、前記タイマーT10の接点が開放してい
る間は、前記制御弁装置15は低圧スイツチLPS
のみで制御されるので、最初のポンプダウン運転
によつて低圧側の冷媒圧力が早く2Kg/cm2以下と
なつて、通常の冷凍運転すなわち、冷房優先運転
に移行した場合に、前記膨脹弁11が過度に開く
ことにより大量の冷媒が流通しはじめても、これ
により低圧側の冷媒圧力が前記3Kg/cm2以上に再
び上昇するので、前記低圧スイツチLPSが開放
し、これにより膨脹弁11が閉じるので再びポン
プダウン運転が開始されることになり、従つて、
液バツク防止が図れるのである。このようにポン
プダウン運転と通常の冷凍運転を繰り返すことが
できるようにしたのは、蒸発器内の圧力低下が早
い場合における感温筒内の冷媒の温度降下の遅れ
をとりもどすためである。すなわち、前記繰り返
しによる時間経過に伴い、感温筒及び低圧ガス管
が低圧ガス管中を流れる冷媒によつて冷却され、
感温筒が低圧ガス管中の冷媒温度と同じ温度を検
知できるようにするためである。
Then, while the contact point of the timer T10 is open, the control valve device 15 is switched to the low pressure switch LPS.
Therefore, when the refrigerant pressure on the low pressure side quickly drops to 2 kg/cm 2 or less due to the first pump-down operation and shifts to normal refrigeration operation, that is, cooling priority operation, the expansion valve 11 Even if a large amount of refrigerant begins to flow due to opening excessively, the refrigerant pressure on the low pressure side rises again to the above 3 kg/cm 2 or more, so the low pressure switch LPS opens and the expansion valve 11 closes. Therefore, pump down operation will start again, and therefore,
This helps prevent liquid back-up. The reason why the pump-down operation and the normal refrigeration operation can be repeated in this way is to recover from the delay in the temperature drop of the refrigerant in the temperature-sensitive cylinder when the pressure in the evaporator drops quickly. That is, as time passes due to the repetition, the temperature sensing tube and the low pressure gas pipe are cooled by the refrigerant flowing through the low pressure gas pipe,
This is to enable the temperature sensing tube to detect the same temperature as the refrigerant temperature in the low pressure gas pipe.

なお、上記繰り返し運転中はほとんど冷凍能力
を発揮しないが、この運転時間はタイマーT10
所定時間であり、数分であるので冷凍運転に支障
はない。
Although the refrigerating capacity is hardly exhibited during the above-mentioned repeated operation, this operation time is the predetermined time of the timer T10 and is several minutes, so there is no problem with the refrigerating operation.

以上の低圧スイツチLPSによる制御は、前記タ
イマーT10がカウントアツプ信号を発するまでな
される。
The above control by the low pressure switch LPS is performed until the timer T10 issues a count-up signal.

そして、前記タイマーT10がカウントアツプ信
号を発するとタイマーT10の接点が閉成し、以後
は低圧スイツチLPSの開閉状態のいかんにかかわ
らず(すなわち、第1作動信号又は第2作動信号
の状態のいかんにかかわらず)制御弁装置15は
通電状態となり、均圧チヤンバーには低圧側の冷
媒圧力が導かれるとともに、タイマーT10の所定
時間経過により時間遅れなく感温筒は低圧ガス管
中の冷媒温度を検知できるので、膨脹弁11が正
常に作動し、通常の冷媒運転がなされるのであ
る。
Then, when the timer T 10 issues a count-up signal, the contact of the timer T 10 is closed, and from then on, regardless of whether the low pressure switch LPS is open or closed (i.e., the state of the first actuation signal or the second actuation signal The control valve device 15 becomes energized, the refrigerant pressure on the low pressure side is introduced to the pressure equalizing chamber, and the temperature sensing tube is activated immediately after the predetermined time of the timer T10 in the low pressure gas pipe. Since the refrigerant temperature can be detected, the expansion valve 11 operates normally and normal refrigerant operation is performed.

なお、前記ポンプダウン運転にもかかわらず低
圧側の冷媒圧力が2Kg/cm2以下に下がらない場合
でも前記タイマーT10の所定時間経過時前記接点
が閉成するので、上記と同様膨脹弁11は正常通
り作動する。
Note that even if the refrigerant pressure on the low-pressure side does not fall below 2 kg/cm 2 despite the pump-down operation, the contact closes when the predetermined time of the timer T 10 has elapsed, so the expansion valve 11 operates as described above. It works normally.

次に起動後冷房優先運転から暖房優先運転に切
換わるとき、即ち前記リレーが働らいて四路切換
弁8が第1図点線位置に切換えられ、凝縮器とし
て作用していた空気側熱交換器4が蒸発器になる
ときには、前記リレーの接点R1が閉じるので、
タイマーT11が作動し、リレーR10を励磁してタイ
マーT10をオフにする。そして例えば5秒後前記
タイマーT11の接点が開き、リレーR10を消磁する
ので、前記タイマーT10はカウントを開始する。
このとき接点63,64は閉じているので、低圧
側の冷媒圧力が前記した3Kg/cm2より高いと、前
記制御弁装置15,16には、何れも通電され
ず、均圧管13,14は何れも閉じ、連絡管13
a,14aは何れも開き、膨脹弁11,12はと
もに閉鎖される。従つて、凝縮器として働いてい
た空気側熱交換器4内の液冷媒が圧縮機1に多量
に吸引されることはなく、従つて所謂液バツクが
生ずることはない。そして低圧側の冷媒圧力が前
記2Kg/cm2以下に低下した場合及びタイマーT10
により所定時間経過時にはタイマー接点が閉じ前
記制御弁装置15,16は通電され、連絡管13
a,14aが閉じ、均圧管13,14が開いて、
膨脹弁11,12は正常通り作動するのである。
Next, when switching from cooling priority operation to heating priority operation after startup, the relay is activated and the four-way selector valve 8 is switched to the dotted line position in Figure 1, and the air side heat exchanger that was acting as a condenser When 4 becomes an evaporator, contact R1 of the relay closes, so
Timer T 11 is activated, energizing relay R 10 and turning off timer T 10 . Then, for example, after 5 seconds, the contacts of the timer T11 open and demagnetize the relay R10 , so that the timer T10 starts counting.
Since the contacts 63 and 64 are closed at this time, if the refrigerant pressure on the low pressure side is higher than the above-mentioned 3 kg/cm 2 , neither of the control valve devices 15 and 16 is energized, and the pressure equalizing pipes 13 and 14 are All closed, connecting pipe 13
a, 14a are both opened, and both expansion valves 11, 12 are closed. Therefore, a large amount of the liquid refrigerant in the air-side heat exchanger 4, which was working as a condenser, is not sucked into the compressor 1, so that so-called liquid backlog does not occur. When the refrigerant pressure on the low pressure side drops below the above 2 kg/cm 2 and the timer T 10
When a predetermined period of time has elapsed, the timer contact closes and the control valve devices 15 and 16 are energized, and the communication pipe 13
a, 14a are closed, pressure equalizing pipes 13, 14 are open,
The expansion valves 11 and 12 operate normally.

尚、第2図に示した回路においては、低圧側の
冷媒圧力の低下時閉成する低圧スイツチLPSおよ
び所定時間経過時閉成するタイマーT10の接点を
並列に組み合わせたが、低圧側の冷媒圧力の低下
時開放する低圧スイツチおよび所定時間経過時開
放するタイマーの接点の場合には両者直列に組み
あわせればよいことはいうまでもない。この場合
には、前記制御弁装置15,16は、前記とは逆
に通電を遮断したとき連絡管13a,14aが閉
じ、均圧管13,14が開くように作動するもの
を用いる必要がある。
In the circuit shown in Figure 2, the contacts of the low pressure switch LPS, which closes when the refrigerant pressure on the low pressure side decreases, and the timer T10 , which closes when a predetermined time elapses, are combined in parallel. Needless to say, in the case of a low pressure switch that opens when the pressure decreases and a timer contact that opens when a predetermined time has elapsed, both may be combined in series. In this case, the control valve devices 15 and 16 need to be operated in such a way that, contrary to the above, when the power supply is cut off, the communication pipes 13a and 14a are closed and the pressure equalization pipes 13 and 14 are opened.

又、第1図において、デフロスト運転を行なう
場合、空気側熱交換器4を凝縮器とするのであつ
て、このデフロスト運転開始と同時に接点23D
が開くがこの接点23Dは終了と同時に閉じるの
でデフロスト運転終了後暖房優先運転を行なうと
きも、前記同様、膨脹弁12を所定時間内閉鎖で
きる。
In addition, in FIG. 1, when performing defrost operation, the air side heat exchanger 4 is used as a condenser, and at the same time as the start of this defrost operation, contact 23D
opens, but this contact point 23D closes at the same time as the defrost operation ends, so even when the heating priority operation is performed after the defrost operation ends, the expansion valve 12 can be closed within a predetermined period of time as described above.

尚、第1図において17は、前記均圧管14
と、前記液管72で、空気側熱交換器4が凝縮器
となるときの高圧液管部分との間に介装するバイ
パス管であり、このバイパス管17には前記高圧
液管部分への流れのみを許する逆止弁18と高圧
調整弁19とを介装し、前記空気側熱交換器4を
凝縮器として運転する場合高圧側の冷媒圧力が、
前記調整弁19の設定値より低い場合、前記バイ
パス管17を開いて未凝縮ガスを受液器5に送る
と共に、空気側熱交換器4内に凝縮液を溜めてこ
の熱交換器4の凝縮圧力を上昇させるのである。
In addition, in FIG. 1, 17 is the pressure equalizing pipe 14.
This is a bypass pipe that is interposed between the liquid pipe 72 and the high pressure liquid pipe section when the air side heat exchanger 4 becomes a condenser. When the air-side heat exchanger 4 is operated as a condenser with a check valve 18 that only allows flow and a high-pressure regulating valve 19, the refrigerant pressure on the high-pressure side is
If the value is lower than the set value of the regulating valve 19, the bypass pipe 17 is opened to send the uncondensed gas to the liquid receiver 5, and the condensed liquid is stored in the air side heat exchanger 4 to be condensed in the heat exchanger 4. It increases the pressure.

又、21は、前記凝縮器2の出口と受液器5と
を連結する液管76に介装する逆止弁であり、2
2は、前記空気側熱交換器4と受液器5との間を
結ぶ液管77に介装する逆止弁である。尚前記液
管77は、前記膨脹弁12を介装した液管72と
は、並列に接続されており、前記液管72を流れ
る液冷媒の流れ方向は、受液器5から前記空気側
熱交換器4の方向であり、前記液管77を流れる
液冷媒の流れ方向は、空気側熱交換器4から受液
器5の方向である。即ち前記四路切換弁8の切換
えにより、前記空気側熱交換器4が蒸発器となる
暖房優先運転及び暖房専用運転においては、受液
器5から液冷媒が前記液管72を介して前記空気
側熱交換器4に流れ、また蒸発器となる冷房優先
運転及び冷房専用運転においては、前記熱交換器
4から液冷媒が前記液管77を介して受液器5に
流れるのである。
Further, 21 is a check valve installed in a liquid pipe 76 connecting the outlet of the condenser 2 and the liquid receiver 5;
Reference numeral 2 denotes a check valve installed in a liquid pipe 77 connecting the air-side heat exchanger 4 and the liquid receiver 5. The liquid pipe 77 is connected in parallel with the liquid pipe 72 in which the expansion valve 12 is interposed, and the flow direction of the liquid refrigerant flowing through the liquid pipe 72 is from the liquid receiver 5 to the air side heat. The flow direction of the liquid refrigerant flowing through the liquid pipe 77 is the direction from the air side heat exchanger 4 to the liquid receiver 5. That is, in heating-priority operation and heating-only operation in which the air side heat exchanger 4 becomes an evaporator by switching the four-way switching valve 8, liquid refrigerant flows from the liquid receiver 5 through the liquid pipe 72 to the air. In cooling-priority operation and cooling-only operation, the liquid refrigerant flows to the side heat exchanger 4 and serves as an evaporator.The liquid refrigerant flows from the heat exchanger 4 to the liquid receiver 5 via the liquid pipe 77.

又、23は、前記受液器5と凝縮器2の出口と
の間に、前記逆止弁21を側路するバイパス管
で、途中にはデフロスト時開き、膨脹機構として
作用する電磁弁24を介装している。
Further, 23 is a bypass pipe that bypasses the check valve 21 between the liquid receiver 5 and the outlet of the condenser 2, and a solenoid valve 24 that opens during defrosting and acts as an expansion mechanism is installed in the middle. I am intervening.

又、25は、前記四ポート弁10と四路切換弁
8の第2切換ポート84とを結ぶ連絡管78と、
前記凝縮器2の入口側との間に設けるバイパス管
で、このバイパス管25の途中にはデフロスト時
開く電磁弁26を介装している。
Further, 25 is a communication pipe 78 connecting the four-port valve 10 and the second switching port 84 of the four-way switching valve 8;
A bypass pipe is provided between the inlet side of the condenser 2 and a solenoid valve 26 that opens during defrosting is interposed in the middle of the bypass pipe 25.

又、27,28は、一端が前記凝縮器2及び空
気側熱交換器4に連通し、他端が前記蒸発器3
と、前記膨脹弁11との間の低圧液管に連通する
冷媒回収用バイパス管で、途中には、前記凝縮器
2を用いない場合及び凝縮器として作用していた
空気側熱交換器4を用いない場合に開き、膨脹弁
として作用する電磁弁29,30を介装してい
る。
Further, 27 and 28 have one end communicating with the condenser 2 and the air side heat exchanger 4, and the other end communicating with the evaporator 3.
A bypass pipe for refrigerant recovery that communicates with the low-pressure liquid pipe between the expansion valve 11 and the expansion valve 11. In the case where the condenser 2 is not used, and the air side heat exchanger 4 that functions as a condenser is installed in the middle. Electromagnetic valves 29 and 30 are interposed which open when not in use and act as expansion valves.

以上説明した実施例は熱回収式冷温水機である
が、本考案は第3図のごとくヒートポンプ式冷暖
房機や、図示していないが冷房専用機の場合でも
同様に適用できる。
Although the embodiment described above is a heat recovery type water chiller/heater, the present invention can be similarly applied to a heat pump type air conditioner/heater as shown in FIG. 3 or a cooling only machine (not shown).

第3図において、31は圧縮機、32は四路切
換弁、33は冷房時蒸発器、暖房時凝縮器となる
室内コイル、34は冷房時凝縮器、暖房時蒸発器
となる室外コイル、35は受液器、36は冷房用
膨脹弁、37は暖房用膨脹弁で、これら膨脹弁3
6,37は外部均圧管38,39をもつた感温式
膨脹弁を用い、前記均圧管38,39に前例と同
様連絡管38a,39aおよび制御弁装置40,
41を設けている。また42,43は逆止弁であ
る。
In FIG. 3, 31 is a compressor, 32 is a four-way switching valve, 33 is an indoor coil that serves as an evaporator for cooling and a condenser for heating, 34 is an outdoor coil that serves as a condenser for cooling and an evaporator for heating, and 35 3 is a liquid receiver, 36 is an expansion valve for cooling, and 37 is an expansion valve for heating.
6 and 37 use temperature-sensitive expansion valves with external pressure equalization pipes 38 and 39, and the pressure equalization pipes 38 and 39 are equipped with communication pipes 38a and 39a and control valve devices 40 and 40, respectively, as in the previous example.
There are 41. Further, 42 and 43 are check valves.

第3図に示した冷暖房機は、一般的なもので、
冷凍サイクルは既知の通りである。そして起動時
及びデフロストの開始及び終了時並びに冷暖房切
換時には、均圧管38,39を閉じ連絡管38
a,39aを開き、膨脹弁36,37を閉じるの
であつて、この動作は前例と同様である。
The air conditioner/heater shown in Figure 3 is a general type.
Refrigeration cycles are well known. Then, at the time of startup, the start and end of defrost, and the time of switching between air conditioning and heating, the pressure equalizing pipes 38 and 39 are closed, and the connecting pipe 38
a, 39a are opened and the expansion valves 36, 37 are closed, and this operation is the same as in the previous example.

叙上のごとく、本考案は、外部均圧管をもつた
感温式膨脹弁の前記均圧管に、高圧側冷媒配管と
連絡する連絡管を接続し、前記均圧管および連絡
管に、前記膨脹弁の均圧チヤンバーに高圧側の冷
媒圧力および低圧側の冷媒圧力を選択的に導く制
御弁装置を配設する一方、上限設定値とこれより
低い下限設定値とをもち、冷凍サイクルの低圧側
の冷媒圧力が前記上限設定値から前記下限設定値
以下に低下したとき第1作動信号から切換つて第
2作動信号を発し、前記下限設定値から前記上限
設定値以上に上昇したとき第2作動信号から切換
つて第1作動信号を発する低圧スイツチと、圧縮
機運転開始からカウントを開始し数分以内の予じ
め設定された所定時間経過時にカウントアツプ信
号を発する自動復帰型のタイマーとを、前記タイ
マーがカウントアツプ信号を発するまでは、前記
均圧チヤンバーに前記低圧スイツチの第1作動信
号により高圧側の冷媒圧力を導き、第2作動信号
により低圧側の冷媒圧力を導き、前記タイマーが
カウントアツプ信号を発したときは前記低圧スイ
ツチの第1、第2作動信号にかかわらず前記タイ
マーのカウントアツプ信号により前記均圧チヤン
バーに低圧側の冷媒圧力を導くように前記制御弁
装置の制御回路に介設したことにより、下記効果
を奏する。
As described above, the present invention provides a temperature-sensitive expansion valve having an external pressure equalizing pipe, in which a communicating pipe that communicates with the high pressure side refrigerant pipe is connected to the pressure equalizing pipe, and the expansion valve is connected to the pressure equalizing pipe and the communicating pipe. A control valve device is installed in the equalizing chamber of the refrigeration cycle to selectively guide the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side. Switching from the first actuation signal to issue a second actuation signal when the refrigerant pressure decreases from the upper limit set value to below the lower limit set value, and from the second actuating signal when the refrigerant pressure increases from the lower limit set value to the upper limit set value or more. The timer includes a low-pressure switch that issues a first operation signal upon switching, and an automatic reset timer that starts counting from the start of compressor operation and issues a count-up signal when a preset time period within several minutes has elapsed. until the timer issues a count-up signal, the high pressure side refrigerant pressure is introduced into the pressure equalizing chamber by the first actuation signal of the low pressure switch, and the low pressure side refrigerant pressure is induced by the second actuation signal, until the timer issues a count-up signal. is interposed in the control circuit of the control valve device so as to guide the refrigerant pressure on the low pressure side to the pressure equalization chamber by the count-up signal of the timer regardless of the first and second actuation signals of the low pressure switch. By doing so, the following effects are achieved.

本考案は、圧縮機運転開始から数分以内の予
じめ設定された所定時間内においては、低圧ス
イツチにより、低圧側の冷媒圧力が上限設定値
から下限設定値以下に低下したときポンプダウ
ン運転から通常の冷凍運転となり、下限設定値
から上限設定値以上に上昇したとき通常の冷凍
運転からポンプダウン運転になるので、低圧低
下が早い場合でもこのポンプダウン運転と通常
の冷凍運転との繰り返しにより、感温筒内の冷
媒の温度降下を低圧ガス管内の冷媒温度の低下
に追随させることができる。従つて、タイマー
のカウントアツプ信号によつて通常の冷凍運転
に移行しても膨脹弁は実際の過熱度を検知して
作動することとなり、液バツクは生じない。
In this invention, within a preset time period of several minutes after the start of compressor operation, the low pressure switch activates the pump down operation when the refrigerant pressure on the low pressure side drops from the upper limit setting value to the lower limit setting value. When the lower limit set value rises to or above the upper limit set value, normal refrigeration operation switches to pump-down operation, so even if the low pressure decreases quickly, this pump-down operation and normal refrigeration operation can be repeated. , it is possible to cause the temperature drop of the refrigerant in the temperature-sensitive cylinder to follow the drop in refrigerant temperature in the low-pressure gas pipe. Therefore, even if normal refrigeration operation is initiated by the count-up signal of the timer, the expansion valve will operate upon detecting the actual degree of superheat, and no liquid back up will occur.

本考案は、低圧側の冷媒圧力が上限設定値か
ら下限設定値以下に低下するとポンプダウン運
転から通常の冷凍運転をするようにしているの
で、タイマーの前記所定時間にかかわらず、ポ
ンプダウン運転時、低圧側の冷媒圧力が過度に
低下することがない。従つて、低圧側の冷媒圧
力が低下しすぎることのため、すなわち、ガス
欠運転のため、潤滑油が圧縮機にもどらず、油
膜切れなどによる圧縮機損傷の問題がない。
In this invention, when the refrigerant pressure on the low pressure side drops from the upper limit set value to the lower limit set value, the pump down operation is changed to normal refrigeration operation, so regardless of the predetermined time of the timer, the pump down operation , the refrigerant pressure on the low pressure side does not drop excessively. Therefore, since the refrigerant pressure on the low pressure side is too low, that is, due to gas starvation operation, lubricating oil does not return to the compressor, and there is no problem of damage to the compressor due to lack of oil film.

本考案は、前記所定時間経過時タイマーのカ
ウントアツプ信号によつて、低圧スイツチの第
1、第2作動信号にかかわらず通常の冷凍運転
へ確実に移行するようにしたので、従来の低圧
スイツチのみのものであれば前記膨脹弁のゴミ
かみによつて低圧側の冷媒圧力が設定値まで低
下せず通常の冷凍運転へ移行できないというこ
とがない。
The present invention uses the count-up signal of the timer when the predetermined time elapses to ensure a transition to normal refrigeration operation regardless of the first and second activation signals of the low pressure switch. If this is the case, the refrigerant pressure on the low pressure side will not drop to the set value due to dirt in the expansion valve, and normal refrigeration operation will not be possible.

なお、制御弁装置を三方電磁弁とすれば、制御
および構造が簡単となる。
Note that if the control valve device is a three-way solenoid valve, the control and structure will be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示すもので第1図は熱
回収式冷温水機に適用した場合の冷媒配管系統
図、第2図は制御弁装置を制御する電気回路図、
第3図はヒートポンプ式冷暖房機に適用した場合
の冷媒配管系統図である。 11,12,36,37……感温式膨脹弁、1
3,14,38,39……外部均圧管、13a,
14a,38a,39a……連絡管、15,1
6,40,41……制御弁装置、T10……タイマ
ー、LPS……低圧スイツチ。
The drawings show an embodiment of the present invention; Fig. 1 is a refrigerant piping system diagram when applied to a heat recovery type water chiller/heater; Fig. 2 is an electric circuit diagram for controlling a control valve device;
FIG. 3 is a refrigerant piping system diagram when applied to a heat pump air conditioner. 11, 12, 36, 37...temperature-sensitive expansion valve, 1
3, 14, 38, 39...External pressure equalization pipe, 13a,
14a, 38a, 39a... connecting pipe, 15, 1
6, 40, 41... Control valve device, T 10 ... Timer, LPS... Low pressure switch.

Claims (1)

【実用新案登録請求の範囲】 (1) 外部均圧管をもつた感温式膨脹弁の前記均圧
管に、高圧側冷媒配管と連絡する連絡管を接続
し、前記均圧管および連絡管に、前記膨脹弁の
均圧チヤンバーに高圧側の冷媒圧力および低圧
側の冷媒圧力を選択的に導く制御弁装置を配設
する一方、上限設定値とこれより低い下限設定
値とをもち、冷凍サイクルの低圧側の冷媒圧力
が前記上限設定値から前記下限設定値以下に低
下したとき第1作動信号から切換つて第2作動
信号を発し、前記下限設定値から前記上限設定
値以上に上昇したとき第2作動信号から切換つ
て第1作動信号を発する低圧スイツチと、圧縮
機運転開始からカウントを開始し数分以内の予
じめ設定された所定時間経過時にカウントアツ
プ信号を発する自動復帰型のタイマーとを、前
記タイマーがカウントアツプ信号を発するまで
は、前記均圧チヤンバーに前記低圧スイツチの
第1作動信号により高圧側の冷媒圧力を導き、
第2作動信号により低圧側の冷媒圧力を導き、
前記タイマーがカウントアツプ信号を発したと
きは前記低圧スイツチの第1、第2作動信号に
かかわらず前記タイマーのカウントアツプ信号
により前記均圧チヤンバーに低圧側の冷媒圧力
を導くように前記制御弁装置の制御回路に介設
したことを特徴とする空気調和装置。 (2) 制御弁装置を三方電磁弁とした実用新案登録
請求の範囲第1項記載の空気調和装置。
[Claims for Utility Model Registration] (1) A connecting pipe that communicates with the high pressure side refrigerant pipe is connected to the pressure equalizing pipe of a temperature-sensitive expansion valve having an external pressure equalizing pipe, and the pressure equalizing pipe and the connecting pipe are connected to the A control valve device is installed in the pressure equalization chamber of the expansion valve to selectively guide the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side. When the refrigerant pressure on the side decreases from the upper limit set value to below the lower limit set value, the first actuation signal is switched and a second actuation signal is issued, and when the refrigerant pressure increases from the lower limit set value to the upper limit set value or more, the second actuation signal is activated. A low pressure switch that issues a first operation signal by switching from a signal, and an automatic reset timer that starts counting from the start of compressor operation and issues a count-up signal when a preset predetermined time within several minutes has elapsed. until the timer issues a count-up signal, the refrigerant pressure on the high pressure side is introduced into the pressure equalization chamber by a first actuation signal of the low pressure switch;
Guide the refrigerant pressure on the low pressure side by the second actuation signal,
The control valve device is configured to guide refrigerant pressure on the low pressure side to the pressure equalizing chamber by the count-up signal of the timer regardless of the first and second actuation signals of the low-pressure switch when the timer issues a count-up signal. An air conditioner characterized by being installed in a control circuit. (2) The air conditioner according to claim 1, in which the control valve device is a three-way solenoid valve.
JP1978060622U 1978-05-04 1978-05-04 Expired JPS6221889Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978060622U JPS6221889Y2 (en) 1978-05-04 1978-05-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978060622U JPS6221889Y2 (en) 1978-05-04 1978-05-04

Publications (2)

Publication Number Publication Date
JPS54162964U JPS54162964U (en) 1979-11-14
JPS6221889Y2 true JPS6221889Y2 (en) 1987-06-03

Family

ID=28961288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978060622U Expired JPS6221889Y2 (en) 1978-05-04 1978-05-04

Country Status (1)

Country Link
JP (1) JPS6221889Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691929B2 (en) * 1989-07-07 1997-12-17 株式会社日立製作所 Heat recovery type cold / hot water device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629654Y2 (en) * 1976-07-14 1981-07-14

Also Published As

Publication number Publication date
JPS54162964U (en) 1979-11-14

Similar Documents

Publication Publication Date Title
AU2005277189A1 (en) Compressor loading control
JPH0529830B2 (en)
JPH04222353A (en) Operation controller for air conditioner
JPS6221889Y2 (en)
JPH05264113A (en) Operation control device of air conditioner
JP3584514B2 (en) Refrigeration equipment
JPH0694954B2 (en) Refrigerator superheat control device
JPH0519724Y2 (en)
EP0077414A1 (en) Air temperature conditioning system
JPH0435662B2 (en)
JP2555779B2 (en) Operation control device for air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPH03122460A (en) Operating controller for refrigerating machine
JPH0213908Y2 (en)
JPS6346350B2 (en)
JPH0921556A (en) Air conditioner
JPS5856529Y2 (en) Refrigeration equipment
JPS6045345B2 (en) Heat recovery air conditioner
JPH0217370A (en) Operation control device for air conditioning device
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPH0334614Y2 (en)
JPH01179876A (en) Refrigerating device
JPS5926221B2 (en) Heat recovery air conditioner
JPH0333993B2 (en)
JP4023385B2 (en) Refrigeration equipment