JPH0435662B2 - - Google Patents

Info

Publication number
JPH0435662B2
JPH0435662B2 JP60156806A JP15680685A JPH0435662B2 JP H0435662 B2 JPH0435662 B2 JP H0435662B2 JP 60156806 A JP60156806 A JP 60156806A JP 15680685 A JP15680685 A JP 15680685A JP H0435662 B2 JPH0435662 B2 JP H0435662B2
Authority
JP
Japan
Prior art keywords
capacity
defrosting
compressor
control means
defrost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60156806A
Other languages
Japanese (ja)
Other versions
JPS6217572A (en
Inventor
Toshuki Momono
Takeo Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15680685A priority Critical patent/JPS6217572A/en
Publication of JPS6217572A publication Critical patent/JPS6217572A/en
Publication of JPH0435662B2 publication Critical patent/JPH0435662B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆サイクルによる除霜(デフロスト)
を行わせる機構を有する空冷ヒートポンプ冷凍機
において液戻りを防止して安全性に富む除霜装置
の構成に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides defrosting by reverse cycle.
The present invention relates to the configuration of a defrosting device that prevents liquid return and is highly safe in an air-cooled heat pump refrigerator having a mechanism for performing this.

(従来の技術) アンローダ機構を有する圧縮機を運転し、かつ
除霜サイクルに切換えて熱源側コイルに付着した
霜を融かす空冷ヒートポンプ式冷凍機において、
特に差圧式の四路切換弁を使用する場合に切換え
が速やかに行われるため、高圧側と低圧側の圧力
変動が激しくて圧縮機への液戻りが起るおそれが
ある。
(Prior Art) In an air-cooled heat pump type refrigerator that operates a compressor having an unloader mechanism and switches to a defrosting cycle to melt frost attached to a heat source side coil,
In particular, when a differential pressure type four-way switching valve is used, switching is performed quickly, so pressure fluctuations between the high pressure side and the low pressure side are severe, and there is a risk that liquid may return to the compressor.

かゝる液戻り現象を排除し得る除霜運転が行え
る装置としては、特公昭59−6345号公報等によつ
て公知のものが従来からあるが、これは、除霜開
始信号の発生時から一定時間アンローダ機構を作
動させて圧縮機を低能力運転させた後、高能力運
転に切換えるよう構成したものである。
As a device that can perform defrosting operation that can eliminate such liquid return phenomenon, there is a device known from Japanese Patent Publication No. 59-6345, etc. The compressor is configured to operate the compressor at low capacity by operating the unloader mechanism for a certain period of time, and then switch to high capacity operation.

(発明が解決しようとする問題点) 上述の従来装置は低能力運転の時間を長くする
とヒートポンプ式冷凍機の積算暖房能力の大巾な
低下をもたらして好ましくなく、逆に時間を短く
して急激に負荷率をあげると液戻りが完全に避け
られないおそれがあることから、低能力運転を行
わせる時間を適正値に設定することは可成り難か
しかつた。また、急激に負荷率をあげる切換え直
後にどうしても液戻りが生じ易いために、低能力
運転の時間を可成り長くせざるを得なくて積算暖
房能力の高率維持が難かしいのも問題であつた。
(Problems to be Solved by the Invention) With the above-mentioned conventional device, if the duration of low-capacity operation is prolonged, the integrated heating capacity of the heat pump type refrigerator will be drastically reduced, which is undesirable; If the load factor is increased, liquid return may not be completely avoided, so it has been quite difficult to set the time period for low capacity operation to an appropriate value. Another problem is that liquid returns tend to occur immediately after switching to a sudden increase in the load factor, which forces low-capacity operation to take a considerable length of time, making it difficult to maintain a high cumulative heating capacity. Ta.

本発明はかゝる従来の装置が有する欠陥を排除
しようとして成されたものであつて、除霜開始時
の圧縮機能力を低能力から段階的に漸増させるこ
とによつて、液戻りの排除と積算暖房能力の高率
維持とを併用させ果させようとする点を目的とす
る。
The present invention was developed in an attempt to eliminate the deficiencies of the conventional devices, and by gradually increasing the compression function from a low capacity at the start of defrosting, liquid return can be eliminated. The purpose of the present invention is to achieve both of this and the maintenance of a high rate of cumulative heating capacity.

(問題点を解決するための手段) しかして本発明は、複数段のアンローダ機構1
0を有する圧縮機1を運転し、かつ除霜サイクル
に切換えて、熱源側コイル3に付着した霜を融か
す除霜運転を除霜指令器26の除霜指令により行
わせる共に、熱源側コイル3に接続したガス管中
の圧力が所定の設定圧になつたとき、除霜完了指
令器12を作動させて、この指令にもとづき除霜
運転を停止せしめる空冷ヒートポンプ式冷凍機に
おいて、前記複数段アンローダ機構10は少なく
とも100%能力、中間能力及び中間能力よりも低
い最少能力に圧縮機1を制御可能とする一方、前
記除霜運転時、前記熱源側コイル3に接続したガ
ス管中の圧力が前記除霜完了指令器12の作動時
の圧力よりもやや低い所定設定圧力に達したと
き、融霜検知信号を発する融霜検知手段15を設
け、さらに前記除霜指令によつて作動し圧縮機1
が最小能力になるよう前記アンローダ機構10を
制御せしめると共にこの状態を所定短時間保持す
る第1能力制御手段13と、前記第1能力制御手
段13に続いて切り換わり作動し圧縮機1が中間
能力となるように前記アンローダ機構10を制御
せしめると共にこの状態を所定短時間保持し、そ
の後アンローダ機構10を不作動にする第2能力
制御手段14と、前記融霜検知手段15からの検
知信号を受信して前記第2能力制御手段14に続
いて切り換わり作動し、圧縮機1が中間能力とな
るように前記アンローダ機構10を制御せしめる
と共にこの状態を前記除霜完了指令器12の除霜
完了指令発令まで保持する第3能力制御手段16
とを具備せしめたことを特徴とする。
(Means for Solving the Problems) Accordingly, the present invention provides a multi-stage unloader mechanism 1
0, and switches to the defrosting cycle to perform a defrosting operation to melt the frost attached to the heat source side coil 3 according to the defrost command from the defrost command unit 26, and also to switch to the defrost cycle In the air-cooled heat pump refrigerator, the defrosting completion command unit 12 is activated when the pressure in the gas pipe connected to the gas pipe reaches a predetermined set pressure, and the defrosting operation is stopped based on this command. The unloader mechanism 10 is capable of controlling the compressor 1 to at least 100% capacity, intermediate capacity, and minimum capacity lower than the intermediate capacity, while at the same time, during the defrosting operation, the pressure in the gas pipe connected to the heat source coil 3 is A defrosting detection means 15 is provided which issues a defrosting detection signal when the pressure reaches a predetermined set pressure, which is slightly lower than the pressure at the time of activation of the defrosting completion command device 12, and the compressor is activated by the defrosting command. 1
a first capacity control means 13 that controls the unloader mechanism 10 so that the unloader mechanism 10 has the minimum capacity and maintains this state for a predetermined period of time; A second capacity control means 14 controls the unloader mechanism 10 so as to maintain this state for a predetermined period of time, and then deactivates the unloader mechanism 10, and receives a detection signal from the frost melting detection means 15. The second capacity control means 14 then switches and operates, and controls the unloader mechanism 10 so that the compressor 1 has an intermediate capacity. Third ability control means 16 held until issued
It is characterized by having the following.

(作用) 本発明は除霜開始時は液戻り防止のために圧縮
機1を栄小能力で運転し、つづいて短時間のうち
に中間能力まで増大させる除霜運転を行わせるこ
とにより、圧縮機1への液戻りを防止しながら可
及的に短時間で最大能力に至らせて効率の良い除
霜運転が可能となる。
(Function) The present invention operates the compressor 1 at a low capacity to prevent liquid return at the start of defrosting, and then performs a defrosting operation that increases the capacity to an intermediate capacity in a short period of time. It is possible to achieve efficient defrosting operation by reaching the maximum capacity in as short a time as possible while preventing liquid from returning to the machine 1.

(実施例) 以下、本発明の1実施例を添付図面にもとづい
て説明する。
(Example) Hereinafter, one example of the present invention will be described based on the accompanying drawings.

第1図は空冷ヒートポンプ式冷凍機であつて、
1はアンローダ機構10を有する圧縮機、2は四
路切換弁、3は熱源側対空気熱交換器(以下熱源
側コイルと称す)、4は冷媒調節器、5は冷房用
膨脹弁、6は利用側対水熱交換器(以下利用側コ
イルと称す)、7は暖房用膨脹弁、8A〜8Dは
整流用各逆止弁、9はアキユムレータであつて、
相互を図示した配管接続を行うことによつて密閉
回路となし、公知の可逆冷凍サイクルを形成せし
め、冷房サイクルは冷媒は実線矢示の流通となつ
て、熱源側コイル3が凝縮器、利用側コイル6が
蒸発器となつて、利用側コイル6において冷房用
の冷水が得られる。
Figure 1 shows an air-cooled heat pump type refrigerator.
1 is a compressor having an unloader mechanism 10, 2 is a four-way switching valve, 3 is a heat source side to air heat exchanger (hereinafter referred to as a heat source side coil), 4 is a refrigerant regulator, 5 is an expansion valve for cooling, and 6 is a cooling expansion valve. A user-side water heat exchanger (hereinafter referred to as a user-side coil), 7 is a heating expansion valve, 8A to 8D are check valves for rectification, 9 is an accumulator,
By connecting the pipes as shown in the diagram, a sealed circuit is formed, forming a known reversible refrigeration cycle. In the cooling cycle, the refrigerant flows as shown by the solid arrow, and the heat source side coil 3 is connected to the condenser, and the user side The coil 6 functions as an evaporator, and cold water for cooling is obtained in the user side coil 6.

また、暖房サイクルは冷媒が破線矢示の流通と
なつて、熱源側コイル3が蒸発器、利用側コイル
6が凝縮器となつて、利用側コイル6において暖
房用の温水が得られる。
Further, in the heating cycle, the refrigerant flows as indicated by the broken line arrow, the heat source side coil 3 acts as an evaporator, the user side coil 6 acts as a condenser, and hot water for heating is obtained in the user side coil 6.

圧縮機1におけるアンローダ機構10は、3個
のアンローダ制御弁11A〜11Cを有してい
て、それ等を全て非作動の閉弁状態とした場合に
は圧縮機1が100%能力となり、第1アンローダ
制御弁11Aを開弁作動させた場合には、70%能
力となり、また第2アンローダ制御弁11Bを開
弁作動させた場合には、40%能力となり、また、
第3アンローダ制御弁11Cを開弁作動させた場
合には、12%能力となるように設けられている。
The unloader mechanism 10 in the compressor 1 has three unloader control valves 11A to 11C, and when they are all inactive and closed, the compressor 1 has 100% capacity and the first When the unloader control valve 11A is opened, the capacity is 70%, and when the second unloader control valve 11B is opened, the capacity is 40%.
When the third unloader control valve 11C is opened, the capacity becomes 12%.

なお、このとき一つのアンロード弁が開のと
き、他の2つのアンロード弁は閉制御される。
Note that at this time, when one unload valve is open, the other two unload valves are controlled to be closed.

この場合の12%能力とは、通常の低負荷時にお
いて用いる小能力に比しさらに低い値であつて、
スクリユー形圧縮機を例にあげると、気体圧縮を
殆ど行わなくて単なるポンプ作用をなす如き極小
能力に相当するものである。
The 12% capacity in this case is a value that is lower than the small capacity normally used during low loads.
Taking a screw type compressor as an example, it has an extremely small capacity that hardly compresses gas and only performs a pumping action.

なお、アンローダ機構10としては、この他に
圧縮機1を駆動するモータの回転速度を無段階あ
るいは段階的に制御することにより圧縮能力の制
御を行い得るものであつてもよく、また、能力低
減率を前記例とは異ならしめたものでもよく、各
種の能力制御機構を総称してアンローダ機構と呼
んでいる。
In addition, the unloader mechanism 10 may be one that can control the compression capacity by steplessly or stepwise controlling the rotational speed of the motor that drives the compressor 1. The rate may be different from that in the above example, and various capacity control mechanisms are collectively referred to as an unloader mechanism.

上記冷凍機は暖房運転の際に、前記熱源側コイ
ル3の伝熱部分に着霜が生じるので、その場合に
は冷凍サイクルを冷房サイクルに切換えて自身の
冷媒が保有する熱によつて除霜を行わせるが、熱
源側コイル3には図示しないが着霜を検出して除
霜指令を発する除霜指令器、例えばコイル温度検
知器が設けられ、一方、四路切換弁2と熱源側コ
イル3とを接続するガス管の途中には第1高圧々
力開閉器12を介設せしめて、この開閉器12を
除霜が完了したことを圧力の上昇によつて検知し
除霜完了指令を発する除霜完了指令器12を利用
している。
When the refrigerator is in heating operation, frost forms on the heat transfer portion of the heat source coil 3, so in that case, the refrigeration cycle is switched to the cooling cycle and defrosted using the heat held by its own refrigerant. Although not shown, the heat source side coil 3 is provided with a defrost command device, such as a coil temperature sensor, which detects frost formation and issues a defrost command, while the four-way switching valve 2 and the heat source side coil A first high-pressure force switch 12 is interposed in the middle of the gas pipe connecting 3, and the switch 12 detects the completion of defrosting by the increase in pressure and issues a defrosting completion command. A defrosting completion command device 12 is used.

しかして上記冷凍機には、前記アンローダ機構
10に関連して、除霜運転時の圧縮機能力を制御
する除霜出力制御系を付設せしめており、該制御
系は第1能力制御手段13、第2能力制御手段1
4、融霜検知手段15及び第3能力制御手段16
から形成している。
Therefore, in connection with the unloader mechanism 10, the refrigerator is provided with a defrosting output control system that controls the compression function during defrosting operation, and the control system includes a first capacity control means 13, Second capacity control means 1
4. Frost melting detection means 15 and third ability control means 16
It is formed from

上記除霜出力制御系は、冷凍機の運転全般を集
中制御するマイクロ・コンピユータ中に機能の一
部として組込ませ、あるいは有接点方式による回
路で形成することも可能であるが、融霜検知手段
15については、例えば四路切換弁2と熱源側コ
イル3とを接続するガス管中に前記高圧々力開閉
器12と協調的な関係を存して介設した第2高
圧々力開閉器が利用されるものであつて、前記除
霜完了指令器としての第1高圧々力開閉器12が
完全除霜によつて高圧々力の上昇(18Kg/cm2
上)に伴い常開接点を閉成するのに対して、それ
よりも圧力が低く、例えば15Kg/cm2以上になると
常開接点を閉成して、霜の大部分が溶けて若干量
着霜した状態になつていることを圧力の変化で検
知し指令信号を発することができるように構成し
ている。
The above-mentioned defrosting output control system can be incorporated as part of the function in a microcomputer that centrally controls the overall operation of the refrigerator, or it can be formed as a circuit using a contact system. Regarding 15, for example, a second high pressure force switch is interposed in a gas pipe connecting the four-way switching valve 2 and the heat source side coil 3 in a cooperative relationship with the high pressure force switch 12. The first high pressure and force switch 12, which serves as the defrosting completion command, closes the normally open contact as the high pressure and force increases (18Kg/cm 2 or more) due to complete defrosting. On the other hand, if the pressure is lower than that, for example 15 kg/cm 2 or higher, the normally open contact will close, indicating that most of the frost has melted and a small amount of frost has formed. It is configured so that it can detect changes in pressure and issue a command signal.

次に第1能力制御手段13は、前記除霜指令器
の除霜指令を受けて作動し、第3アンローダ制御
弁11Cに開弁出力を発してアンローダ機構10
を制御せしめ、圧縮機1を12%能力の最小能力に
低下させると共に、これを所定時間例えば30秒程
度保持するよう構成している。
Next, the first capacity control means 13 operates in response to the defrosting command from the defrosting command device, and outputs a valve opening output to the third unloader control valve 11C to control the unloader mechanism 10.
The compressor 1 is controlled to reduce the capacity of the compressor 1 to a minimum capacity of 12% capacity, and is configured to maintain this for a predetermined period of time, for example, about 30 seconds.

また、第2能力制御手段14は、前記第1能力
制御手段13に続いて切り換り作動し、第3アン
ロード制御弁11Cを閉とし、第2アンロード制
御弁11Bを開とし、所定短時間例えば約30秒を
経過した後、第2アンローダ制御弁11Bを閉と
し、かつ第1アンローダ制御弁11Aの閉状態を
持続してアンローダ機構10を最大能力まで段階
的に逓増するよう段階的に制御せしめて最終段の
100能力では当然アンローダ機構を不作動にする
よう構成している。
Further, the second capacity control means 14 switches and operates following the first capacity control means 13, closes the third unload control valve 11C, opens the second unload control valve 11B, and operates for a predetermined period of time. After a period of time, for example, about 30 seconds, the second unloader control valve 11B is closed, and the first unloader control valve 11A is kept closed to gradually increase the unloader mechanism 10 to its maximum capacity. Control the final stage
100 capacity, the unloader mechanism is naturally configured to be inactive.

さらに第3能力制御手段16は、前記融霜検知
手段15としての第2高圧々力開閉器15が15
Kg/cm2の高圧々力を検知して指令信号を発する
と、これを受けて第2アンローダ制御弁11Bに
開出力を発し、圧縮機1を40%能力に低下させる
ためにアンロード機構10を制御せしめるよう構
成している。
Further, the third capacity control means 16 is configured such that the second high pressure force switch 15 as the frost melting detection means 15 is 15
When a high pressure force of Kg/cm 2 is detected and a command signal is issued, the unloading mechanism 10 receives this and issues a development force to the second unloader control valve 11B to reduce the compressor 1 to 40% capacity. It is configured to control the

叙上の各機能を有する除霜出力制御系において
各能力制御手段13,14,16は第2図に示す
シーケンスコントローラ17内に設けられてい
て、このシーケンスコントローラ17は入力端子
部18に対して、後記する除霜指令器26のリレ
ー25の接点25a、第1・2高圧々力開閉器1
2,15、運転用リレー、水循環ポンプ24用リ
レー、停止用リレー、冷暖切換リレー、冷温水温
度調節器等の各種指令器が入力指令を与える機器
として夫々接続され、一方、出力端子部19に対
しては、圧縮機1用電磁開閉器の電磁コイル2
0、四路切換弁2の電磁ソレノイド2S、熱源側
コイル3のフアン23モータ用電磁開閉器の電磁
コイル21、利用側コイル6水循環ポンプ24用
電磁開閉器の電磁コイル22、前記第1乃至第3
アンローダ制御弁11A〜11Cの電磁ソレノイ
ド11AS〜11CS、タイマサーモ方式の除霜指
令器26及びそのリレー25が駆動出力を与える
機器として夫々接続されている。
In the defrosting output control system having each of the functions described above, each capacity control means 13, 14, 16 is provided in a sequence controller 17 shown in FIG. , the contact 25a of the relay 25 of the defrosting command device 26 to be described later, the first and second high-pressure force switches 1
2, 15, various command devices such as an operation relay, a relay for the water circulation pump 24, a stop relay, a cooling/heating switching relay, and a cold/hot water temperature controller are respectively connected as devices for giving input commands; For the electromagnetic coil 2 of the electromagnetic switch for the compressor 1,
0, the electromagnetic solenoid 2S of the four-way switching valve 2, the fan 23 of the heat source side coil 3, the electromagnetic coil 21 of the electromagnetic switch for the motor, the electromagnetic coil 22 of the electromagnetic switch for the use side coil 6, the water circulation pump 24, the first to the first 3
The electromagnetic solenoids 11AS to 11CS of the unloader control valves 11A to 11C, a timer thermo-type defrosting command device 26, and its relay 25 are connected as devices for providing drive output, respectively.

しかしてシーケンスコントローラ17は周知の
マイクロコンピユータからなつていて、前記入・
出力端子部18,19、電源回路、入力回路、タ
イマ回路、出力回路、演算制御回路、プログラム
カウンタ、P−ROM、演算結果メモリを備えて
いて、冷温水設定温度、過電流、異常高圧々力、
熱源側コイル温度、圧力、外気温度、などの各基
本制御値や、リレーシーケンスの制御内容をP−
ROMに記憶させておいて、冷房、暖房各運転の
際における圧縮機1の発停、能力制御、暖房とデ
フロストとの間の運転切換え、ポンプダウン運転
などをP−ROMに書込まれたプログラム内容の
指示に基いて随時行わせるよう出力信号を発する
ものである。
The sequence controller 17 consists of a well-known microcomputer, and the
It is equipped with output terminal sections 18 and 19, a power supply circuit, an input circuit, a timer circuit, an output circuit, an arithmetic control circuit, a program counter, a P-ROM, and an arithmetic result memory. ,
Each basic control value such as heat source side coil temperature, pressure, outside air temperature, etc. and relay sequence control details are displayed on P-
Programs stored in the ROM and written in the P-ROM to control the start/stop of the compressor 1, capacity control, operation switching between heating and defrost, pump down operation, etc. during cooling and heating operations. It emits an output signal so that it can be performed at any time based on the content instructions.

以上説明した電気制御回路ならびに第3図のフ
ローチヤートによつて、暖房運転中の除霜運転と
の切換え制御について説明する。
The switching control between the heating operation and the defrosting operation will be explained using the electric control circuit described above and the flowchart shown in FIG.

暖房運転開始の指令を押釦スイツチの操作等に
よつて発せしめると、シーケンスコントローラ1
7は利用側コイル6の水温と設定温度とを比較し
て暖房運転の必要があると判断すれば、前記各電
磁コイル20,21,22に励磁のための出力を
発する。
When a command to start heating operation is issued by operating a push button switch, sequence controller 1
7 compares the water temperature of the user side coil 6 with a set temperature, and if it is determined that heating operation is necessary, outputs an output for excitation to each of the electromagnetic coils 20, 21, 22.

かくして圧縮機1、熱源側コイル3のフアン2
3、利用側コイル6の水循環用ポンプ24は夫々
付勢して第1図において冷媒が破線矢示方向に流
れる冷凍サイクルが形成され暖房運転が開始され
る。
Thus, the compressor 1, the fan 2 of the heat source side coil 3
3. The water circulation pumps 24 of the user-side coils 6 are energized to form a refrigeration cycle in which the refrigerant flows in the direction indicated by the dashed arrow in FIG. 1, and heating operation is started.

なお、圧縮機1の起動の際に前記各アンローダ
制御弁11A〜11Cの順序励磁を行わせて、小
能力運転から順次能力を増大せしめるアンローダ
運転を適宜行わせる。
In addition, when the compressor 1 is started, the unloader control valves 11A to 11C are sequentially energized to perform an unloader operation in which the capacity is sequentially increased from a low capacity operation as appropriate.

この暖房運転中に熱源側コイル3に着霜が進行
してくる除霜指令器26が作動して除霜指令を発
する(イ)ので、電磁ソレノイド2Sを励磁させて四
路切換弁2を冷房側に切換えると共に、電磁コイ
ル19を消磁させて熱源側コイル3のフアン23
を停止せしめると同時に、第1能力制御手段13
を作動せしめるようシーケンスコントローラ15
は指令を発する(ロ)。
During this heating operation, the defrost command device 26 operates as frost builds up on the heat source side coil 3 and issues a defrost command (a), so the electromagnetic solenoid 2S is energized and the four-way switching valve 2 is cooled. At the same time, the electromagnetic coil 19 is demagnetized and the fan 23 of the heat source side coil 3 is switched to the side.
At the same time, the first capacity control means 13
sequence controller 15 to operate
issues a command (b).

かくして冷凍機は除霜運転に切換つて高圧冷媒
が熱源側コイル3内に流れ込むことにより除霜が
開始されるが、この場合、第1能力制御手段13
の作動によつて電磁ソレノイド11CSを励磁さ
せてアンローダ制御弁11Cを開弁状態に保持さ
せる(ハ)。
In this way, the refrigerator switches to defrosting operation and the high-pressure refrigerant flows into the heat source side coil 3 to start defrosting. In this case, the first capacity control means 13
As a result, the electromagnetic solenoid 11CS is energized and the unloader control valve 11C is kept open (c).

従つて圧縮機1は12%の最小能力の下で運転さ
れることとなり、液戻りを起させない除霜への切
換えが成される。
Therefore, the compressor 1 is operated at a minimum capacity of 12%, and a switch is made to defrost that does not cause liquid return.

この最小能力による除霜運転が30秒経過したか
どうかのチエツク(ニ)を行つて30秒経過すると第1
能力制御手段13を非作動に転じさせると共に、
第2能力制御手段14を作動せしめる(ホ)。
Check (d) whether or not 30 seconds have elapsed in the defrosting operation at this minimum capacity, and if 30 seconds have elapsed, the first
While turning the capacity control means 13 into non-operation,
The second capacity control means 14 is activated (e).

第2能力制御手段14は作動と同時に電磁ソレ
ノイド11BSを励磁させ、かつ、電磁ソレノイ
ド11CSを非励磁にさせる出力を発するので、
アンローダ機構10は第3アンローダ制御弁11
C及び第1アンローダ制御弁11Aを閉弁に、第
2アンローダ制御弁11Bを開弁に夫々作動させ
る(ヘ)こととなつて圧縮機1は40%能力に段階的に
増加する。
Since the second capacity control means 14 emits an output that excites the electromagnetic solenoid 11BS and de-energizes the electromagnetic solenoid 11CS at the same time as the operation,
The unloader mechanism 10 has a third unloader control valve 11
C and the first unloader control valve 11A are closed, and the second unloader control valve 11B is opened, respectively (f), and the capacity of the compressor 1 is gradually increased to 40%.

この40%能力運転が例えば30秒経過したかどう
かのチエツク(ト)を行つて30秒が経過したとき、第
2能力制御手段14は励磁中の第2電磁ソレノイ
ド11BSを非励磁に転じさせる出力を発するの
で、アンローダ機構10は全てのアンローダ制御
弁11A,11B,11Cを閉弁に夫々作動させ
る(チ)こととなつて作動が解除される結果、圧縮機
1は100%能力に段階的に増加する。
A check is made to see if this 40% capacity operation has elapsed, for example, for 30 seconds, and when 30 seconds have elapsed, the second capacity control means 14 outputs an output that changes the energized second electromagnetic solenoid 11BS to de-energized state. As a result, the unloader mechanism 10 closes all the unloader control valves 11A, 11B, and 11C (H), and as a result, the compressor 1 gradually reaches 100% capacity. To increase.

以上のように除霜開始から1分を経過した時点
で第2能力制御手段14は作動完了し、以後は圧
縮機1が全能力で除霜のための圧縮運転を行い、
その運転態様は第4図に示す通りである。
As described above, the second capacity control means 14 completes its operation when one minute has passed from the start of defrosting, and from then on, the compressor 1 performs compression operation for defrosting at full capacity.
Its operating mode is as shown in FIG.

しかして除霜運転の開始と同時に第2高圧々力
開閉器15が圧力検出を行つているが、除霜が進
行して霜の大部分が融けた状態となつて高圧々力
が15Kg/m2となるのを検知し前記開閉部15が作
動したことをチエツク(リ)すると、第3能力制御手
段16を作動状態に保持せしめ(ヲ)て、電磁ソ
レノイド11BSを励磁させて第2アンローダ制
御弁11Bを開弁状態に保持させ(ワ)る。
However, at the same time as the defrosting operation starts, the second high pressure force switch 15 detects the pressure, but as the defrosting progresses and most of the frost melts, the high pressure force increases to 15 kg/m. 2 and checks that the opening/closing section 15 is activated, the third capacity control means 16 is held in the activated state, and the electromagnetic solenoid 11BS is energized to control the second unloader. The valve 11B is kept open.

かくして100%能力で運転していた圧縮機1は
アンローダ機構10の作動によつて40%能力に低
下し除霜運転を持続するために、除霜完了前の高
圧々力の上昇は第5図に示す如く緩やかになり、
除霜が完了する時点になると高圧々力が18Kg/cm2
に上昇するので第1高圧々力開閉器12が作動す
る。
In this way, the compressor 1, which was operating at 100% capacity, is reduced to 40% capacity by the operation of the unloader mechanism 10, and in order to continue defrosting operation, the increase in high pressure and pressure before the completion of defrosting is as shown in Fig. 5. As shown in
When defrosting is complete, the high pressure is 18Kg/cm 2
The first high-pressure force switch 12 is activated.

従つて、シーケンスコントローラ17は第1高
圧々力開閉器12の作動をチエツク(カ)して電磁ソ
レノイド2Sの励磁を解いて四路切換弁2を暖房
側に切換えると共に、電磁コイル21を励磁させ
て熱源側コイル3のフアン23を付勢せしめる
(ヨ)。
Therefore, the sequence controller 17 checks the operation of the first high-pressure force switch 12, de-energizes the electromagnetic solenoid 2S, switches the four-way selector valve 2 to the heating side, and energizes the electromagnetic coil 21. to energize the fan 23 of the heat source side coil 3 (Y).

つづいて除霜完了指令器としての第1高圧々力
開閉器12及び第2高圧々力開閉器15が最初の
状態に復することによつて第3能力制御手段16
はサーモ自動制御によるはじめの暖房運転に切換
えられる。
Subsequently, the first high pressure and pressure switch 12 and the second high pressure and pressure switch 15 as the defrosting completion command device return to their initial states, thereby controlling the third capacity control means 16.
is switched to the initial heating operation by automatic thermo control.

なお、デフロスト終了時の切換えによる暖房運
転の開始は冷凍サイクルの切換えが成されるので
圧縮機1への液戻りを防止するために除霜運転開
始時と同じく、第1能力制御手段13と第2能力
制御手段14を利用して圧縮機能力を小能力から
段階的に漸増するようにすることは好ましい態様
であり、この状態は第4図に示す通りである。
Note that when the heating operation is started by switching at the end of defrosting, the refrigeration cycle is switched, so in order to prevent the liquid from returning to the compressor 1, the first capacity control means 13 and the It is a preferable embodiment to use the two-capacity control means 14 to gradually increase the compression function power from a small capacity, and this state is as shown in FIG.

以上述べた実施例は除霜運転の開始時に圧縮機
1を最小能力から全能力まで段階的に漸増させる
よう制御しているので液戻りを確実に防止でき
る。
In the embodiment described above, since the compressor 1 is controlled to gradually increase the capacity from the minimum capacity to the full capacity at the start of the defrosting operation, liquid return can be reliably prevented.

また、除霜運転の際に霜の大部分が融けるまで
は圧縮機1を100%高能力で運転して除霜能力を
高く保持し、その後の除霜完了までは低能力で運
転して熱源側コイル3における圧力の上昇を緩や
かに制御するようにしているので除霜完了の誤検
出を起生させないで残留フロストを排除し、確実
な除霜を行わすことができる。
In addition, during defrosting operation, the compressor 1 is operated at 100% high capacity until most of the frost melts to maintain high defrosting capacity, and then operated at low capacity until the defrosting is completed. Since the rise in pressure in the side coil 3 is controlled slowly, residual frost can be removed without causing false detection of completion of defrosting, and reliable defrosting can be performed.

なお、以上の実施例では除霜開始時から圧縮機
1の能力12%→40%→100%と制御したが、これ
は12%→40%→70%→100%(第4図破線参照)
と制御してもよくこの場合いずれの能力制御運転
も例えば30秒ずつ行うようにすればよい。
In the above example, the capacity of the compressor 1 was controlled from 12% → 40% → 100% from the start of defrosting, but this is 12% → 40% → 70% → 100% (see the broken line in Figure 4).
In this case, each capacity control operation may be performed for 30 seconds each.

(発明の効果) 本発明は以上詳述した如く、除霜運転開始時に
アンローダ機構10を作動させて圧縮機1を最小
能力から最大能力まで短時間中に段階的に漸増す
るよう能力制御を行わせているので、圧縮機1の
吸入力が小さくなり液戻り量を極端に少くでき、
圧縮機での液圧縮を確実に防止し得る。
(Effects of the Invention) As described in detail above, the present invention operates the unloader mechanism 10 at the start of defrosting operation to control the capacity of the compressor 1 so that the capacity is gradually increased from the minimum capacity to the maximum capacity in a short period of time. Since the suction force of the compressor 1 is reduced, the amount of liquid returned can be extremely reduced.
Liquid compression in the compressor can be reliably prevented.

しかも最初の圧縮機1能力をアンローダ機構1
0で可能な最小能力に設定しているので、液戻り
を抑えながら短時間中に速やかに100%能力まで
移行できることから、デフロスト所要時間を短く
保持し得て積算暖房能力を高めることが可能であ
り、特にスクロール、スクリユーなどの回転圧縮
機を持つ冷凍機に使用して顕著な効果が奏され
る。
Moreover, the capacity of the first compressor is increased to 1 unloader mechanism.
Since the capacity is set to the minimum possible at 0, it is possible to quickly shift to 100% capacity in a short period of time while suppressing liquid return, making it possible to keep the time required for defrosting short and increase the cumulative heating capacity. It is especially effective when used in refrigerators with rotary compressors such as scrolls and screws.

また除霜完了前において、アンローダ機構10
を作動させて圧縮機1を100%能力から中間能力
に設定するので、除霜完了前の高圧圧力の上昇は
緩やかなものとなり、前記除霜完了指令器12に
おける除霜完了の誤検出を起生させないで残留フ
ロストを除去し、確実な除霜を行わせることがで
きる。
Also, before the defrosting is completed, the unloader mechanism 10
Since the compressor 1 is set from 100% capacity to intermediate capacity by activating the Reliable defrosting can be achieved by removing residual frost without causing frost to grow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例に係るヒートポンプ
冷凍機の装置回路図、第2図は同じくシーケンス
コントローラの概要図、第3図は本発明の1実施
例に係る除霜運転態様を説明するフロー線図、第
4図及び第5図は同じく除霜運転特性線図であ
る。 1……圧縮機、10……アンローダ機構、12
……除霜完了指令器、13……第1能力制御手
段、14……第2能力制御手段、26……除霜指
令器。
Fig. 1 is a device circuit diagram of a heat pump refrigerator according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a sequence controller, and Fig. 3 explains a defrosting operation mode according to an embodiment of the present invention. The flow diagrams, FIGS. 4 and 5, are also defrosting operation characteristic diagrams. 1... Compressor, 10... Unloader mechanism, 12
...Defrosting completion command device, 13...First capacity control means, 14...Second capacity control means, 26...Defrosting command device.

Claims (1)

【特許請求の範囲】[Claims] 1 複数段のアンローダ機構10を有する圧縮機
1を運転し、かつ除霜サイクルに切換えて、熱源
側コイル3に付着した霜を融かす除霜運転を除霜
指令器26の除霜指令により行わせる共に、熱源
側コイル3に接続したガス管中の圧力が所定の設
定圧になつたとき、除霜完了指令器12を作動さ
せて、この指令にもとづき除霜運転を停止せしめ
る空冷ヒートポンプ式冷凍機において、前記複数
段アンローダ機構10は少なくとも100%能力、
中間能力及び中間能力よりも低い最少能力に圧縮
機1を制御可能とする一方、前記除霜運転時、前
記熱源側コイル3に接続したガス管中の圧力が前
記除霜完了指令器12の作動時の圧力よりもやや
低い所定設定圧力に達したとき、融霜検知信号を
発する融霜検知手段15を設け、さらに前記除霜
指令によつて作動し圧縮機1が最小能力になるよ
う前記アンローダ機構10を制御せしめると共に
この状態を所定短時間保持する第1能力制御手段
13と、前記第1能力制御手段13に続いて切り
換わり作動し圧縮機1が中間能力となるように前
記アンローダ機構10を制御せしめると共にこの
状態を所定短時間保持し、その後アンローダ機構
10を不作動にする第2能力制御手段14と、前
記融霜検知手段15からの検知信号を受信して前
記第2能力制御手段14に続いて切り換わり作動
し、圧縮機1が中間能力となるように前記アンロ
ーダ機構10を制御せしめると共にこの状態を前
記除霜完了指令器12の除霜完了指令発令まで保
持する第3能力制御手段16とを具備せしめたこ
とを特徴とする空冷ヒートポンプ式冷凍器の除霜
装置。
1 Operate the compressor 1 having the multi-stage unloader mechanism 10, switch to the defrost cycle, and perform the defrost operation to melt the frost attached to the heat source side coil 3 according to the defrost command from the defrost command unit 26. At the same time, when the pressure in the gas pipe connected to the heat source side coil 3 reaches a predetermined set pressure, the defrosting completion command 12 is activated and the defrosting operation is stopped based on this command. In the machine, the multi-stage unloader mechanism 10 has at least 100% capacity;
While the compressor 1 can be controlled to an intermediate capacity and a minimum capacity lower than the intermediate capacity, during the defrosting operation, the pressure in the gas pipe connected to the heat source side coil 3 causes the defrosting completion command unit 12 to operate. A defrost detection means 15 is provided which issues a defrost detection signal when the pressure reaches a predetermined set pressure, which is slightly lower than the normal pressure. a first capacity control means 13 that controls the mechanism 10 and maintains this state for a predetermined period of time; and a first capacity control means 13 that switches and operates following the first capacity control means 13 so that the compressor 1 has an intermediate capacity. a second capacity control means 14 which controls the unloader mechanism 10 and maintains this state for a predetermined period of time and then deactivates the unloader mechanism 10; and a second capacity control means which receives a detection signal from the frost melting detection means 15 and 14, the unloader mechanism 10 is controlled so that the compressor 1 has an intermediate capacity, and this state is maintained until the defrosting completion command is issued by the defrosting completion command unit 12. 1. A defrosting device for an air-cooled heat pump type refrigerator, characterized in that it comprises means 16.
JP15680685A 1985-07-15 1985-07-15 Defroster for air-cooled heat pump type refrigerator Granted JPS6217572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15680685A JPS6217572A (en) 1985-07-15 1985-07-15 Defroster for air-cooled heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15680685A JPS6217572A (en) 1985-07-15 1985-07-15 Defroster for air-cooled heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS6217572A JPS6217572A (en) 1987-01-26
JPH0435662B2 true JPH0435662B2 (en) 1992-06-11

Family

ID=15635729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15680685A Granted JPS6217572A (en) 1985-07-15 1985-07-15 Defroster for air-cooled heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS6217572A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827083B2 (en) * 1989-08-11 1996-03-21 ダイキン工業株式会社 Refrigeration equipment
DE69703019T2 (en) * 1996-12-05 2001-01-11 Sumika Fine Chemical Co. Ltd., Osaka Process for the preparation of a 1,3-disubstituted urea
JP6381927B2 (en) * 2014-02-25 2018-08-29 三菱重工サーマルシステムズ株式会社 Heat pump system and operation method thereof
JP6428373B2 (en) * 2015-02-26 2018-11-28 株式会社富士通ゼネラル Heat pump type hot water heater
WO2018029763A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596345A (en) * 1982-06-30 1984-01-13 Res Inst Electric Magnetic Alloys Alloy reduced in change of electric resistance over wide temperature range and preparation thereof
JPS6069446A (en) * 1983-09-27 1985-04-20 Toshiba Corp Method for controlling operation of compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596345A (en) * 1982-06-30 1984-01-13 Res Inst Electric Magnetic Alloys Alloy reduced in change of electric resistance over wide temperature range and preparation thereof
JPS6069446A (en) * 1983-09-27 1985-04-20 Toshiba Corp Method for controlling operation of compressor

Also Published As

Publication number Publication date
JPS6217572A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
JPH0828969A (en) Cooling system
JPH07120121A (en) Drive controller for air conditioner
KR19990066854A (en) Control method of air conditioner and its control device
KR101954151B1 (en) Air conditioner and Method for controlling it
JP4327936B2 (en) Heat pump refrigeration system
JPH0435662B2 (en)
JP2008121918A (en) Air conditioner
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPH05264113A (en) Operation control device of air conditioner
JPH035506B2 (en)
JPS59138863A (en) Refrigerator
JPH04320753A (en) Air conditioner
JPH04288438A (en) Air conditioner
JPH05157431A (en) Control device for refrigerator
JPS6221889Y2 (en)
JPS6346350B2 (en)
JP2567710B2 (en) Cooling device operation control device
JPS6015849B2 (en) air conditioner
JPS61276649A (en) Defrosting controller of heat pump type air conditioner
JPH05322331A (en) Air conditioner
JPS6029561A (en) Defroster for air conditioner
JPS59217463A (en) Refrigeration cycle of air conditioner
JPS6252381A (en) Heat pump type air conditioner
JPS6021716Y2 (en) Refrigerator defrost device
JPH0395338A (en) Device for controlling defrosting in air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees