JPS6333092Y2 - - Google Patents

Info

Publication number
JPS6333092Y2
JPS6333092Y2 JP10240481U JP10240481U JPS6333092Y2 JP S6333092 Y2 JPS6333092 Y2 JP S6333092Y2 JP 10240481 U JP10240481 U JP 10240481U JP 10240481 U JP10240481 U JP 10240481U JP S6333092 Y2 JPS6333092 Y2 JP S6333092Y2
Authority
JP
Japan
Prior art keywords
temperature
compressor
control
way valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10240481U
Other languages
Japanese (ja)
Other versions
JPS588778U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10240481U priority Critical patent/JPS588778U/en
Publication of JPS588778U publication Critical patent/JPS588778U/en
Application granted granted Critical
Publication of JPS6333092Y2 publication Critical patent/JPS6333092Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は能力制御機構を備えた空気調和機に関
する。 空気調和機には冷房専用タイプのものあるいは
冷暖房運転可能なものとがあり、その能力を制御
できるようにしたものがある。この能力制御機構
としては圧縮機のシリンダと圧縮機の吸込側とを
レリース管を介して接続し、このレリース管の中
途部に二方弁を装着してなるものが知られてい
る。 しかして、たとえば冷房運転時において室温を
温度T1に制御しようとする場合には制御温度T1
よりΔTだけ高い温度T2(暖房運転時の場合には
ΔTだけ低い温度)で第1図(暖房運転時の場合
には第2図)で示すように二方弁を開放してシリ
ンダ内の圧縮冷媒ガスの一部をレリースし、圧縮
機をセーブ運転に切換えている。これにより、制
御温度T1に達すると、圧縮機の運転が停止され
るとともに二方弁が閉塞され、以後同様にして二
方弁が開閉されて圧縮機のセーブ運転と停止が繰
り返され、室温が所定温度に継続されるようにな
つている。 しかしながら、従来においては制御温度T1
り冷房運転時には高い温度、暖房運転時には低い
温度で圧縮機をセーブ運転に切換えていたため、
室温が希望する温度に到達するまでの時間が長く
なる欠点があつた。また、室温のプルダウン時に
二方弁を切換えるため、二方弁としては作動圧力
差の大きいものが必要とされ、その分二方弁のコ
イルのパワーを大としなければならず、消費電力
量が増大して不経済的なものとなつていた。 本考案は上記事情に着目してなされたもので、
その目的とするところは、短時間で室温を希望す
る温度とし、また、制御弁の消費電力を小とし、
その小形化を計ることができるようにした空気調
和機を提供しようとするものである。 以下、本考案の一実施例を第3図乃至第6図に
もとづいて説明する。図中1は圧縮機で、この圧
縮機1には順次凝縮器2、キヤピラリチユーブ3
および蒸発器4が接続されて冷凍サイクルAが構
成されている。また、上記圧縮機1のシリンダと
圧縮機1の切込側とはレリース管5を介して接続
され、このレリース管5の中途部には制御弁とし
ての電磁二方弁6が装着されている。この電磁二
方弁6は、いわゆる通電開放型のもので、第4図
に示すようにその弁本体7に流入口8および流出
口9を有し、内部には前記流出口9を開閉する弁
棒10を有している。 第5図は制御回路である。30は空気調和機全
般にわたる制御を行なう制御部で、たとえばマイ
クロコンピユータおよびその周辺回路などからな
り、外部には運転操作部31、室内温度検知器3
2、室内フアンモータ33M、室外フアンモータ
34M、圧縮機モータ1M、電磁二方弁6が接続
されている。運転操作部31は、運転開始操作や
制御温度設定操作などを行なうためのものであ
る。室内温度検知器32は、室内温度を検知する
ものである。室内フアンモータ33Mは、蒸発器
4に対して室内空気を循環させる室内フアン(図
示しない)の駆動モータである。室外フアンモー
タ34Mは、凝縮器2に対して室外空気を循環さ
せる室外フアン(図示しない)の駆動モータであ
る。 つぎに、上記のような構成において動作を説明
する。運転操作部21で制御温度T1を設定し、
かつ運転開始操作を行なう。すると、制御部20
は、室内温度検知器22の検知温度と制御温度
T1とを比較し、検知温度が制御温度T1より高け
れば圧縮機1を運転オンさせる。圧縮機1が運転
オンすると、その吐出冷媒が凝縮器2に送られて
液化される。液化冷媒は凝縮器2から流出された
のちキヤピラリチユーブ3で減圧されて蒸発器4
に送られ、ここで蒸発して室内の冷房を行なう。
蒸発器4から流出されたガス冷媒は再び圧縮機1
に吸込まれる。この冷房運転により、室内温度
(検知温度)が低下して制御温度T1に到達する
と、制御部20は圧縮機1の運転をオフする。こ
の運転オフから所定時間経過すると(検知温度が
制御温度T1よりもわずかに高い値になると)、制
御部20は二方弁6に対する通電を行なうととも
に、圧縮機1を再び運転オンする。二方弁6が通
電されると、その弁棒10がスプリング11の押
圧力に抗して上昇し、流出口9が開放されて圧縮
機1のシリンダ内の圧縮ガス冷媒の一部がレリー
ス管5を介して圧縮機1の吸込側にレリースさ
れ、セーブ運転が行なわれる。そして、所定時間
経過すると(検知温度が制御温度T1に達する
と)、制御部20は圧縮機1を運転オフするとと
もに、二方弁6に対する通電も停止して二方弁6
を閉塞させる。以後、同様に、制御部20は圧縮
機1のオン、オフに同期して二方弁6を開閉し、
冷房運転を継続する。 上述したように、冷房運転の開始時において室
温が制御温度T1に達するまで、圧縮機1の運転
を停止させないため、従来のように制御温度T1
に達する前に圧縮機1をセーブ運転に切換える場
合と比較し短時間で室温を希望する温度にするこ
とができる。 また、二方弁6は圧縮機1の運転を一旦停止さ
せたのち、切換動作させるため、弁本体7の流出
入口8,9の圧力差が小となり、二方弁6のコイ
ル12を小としても充分に動作させることが可能
となる。 なお、二方弁6の動作圧力差と消費電力とを従
来と比較して示すとたとえば下表の如くなる。
The present invention relates to an air conditioner equipped with a capacity control mechanism. There are air conditioners that are only for cooling or those that can perform cooling and heating operations, and there are also those that allow control of their performance. As this capacity control mechanism, one is known in which the cylinder of the compressor and the suction side of the compressor are connected through a release pipe, and a two-way valve is installed in the middle of the release pipe. For example, when trying to control the room temperature to temperature T 1 during cooling operation, the control temperature T 1
At a temperature ΔT higher than T 2 (temperature lower by ΔT during heating operation), the two-way valve is opened as shown in Figure 1 (Figure 2 during heating operation), and the inside of the cylinder is Some of the compressed refrigerant gas is released and the compressor is switched to save operation. As a result, when the control temperature T 1 is reached, the compressor operation is stopped and the two-way valve is closed, and thereafter the two-way valve is opened and closed in the same way, and the compressor save operation and stop are repeated, and the room temperature is is maintained at a predetermined temperature. However, in the past, the compressor was switched to save operation at a temperature higher than the control temperature T 1 during cooling operation and lower during heating operation.
The drawback was that it took a long time for the room temperature to reach the desired temperature. In addition, since the two-way valve is switched when the room temperature is pulled down, a two-way valve with a large operating pressure difference is required, and the power of the two-way valve coil must be increased accordingly, reducing power consumption. It had grown and become uneconomical. This invention was made with attention to the above circumstances,
The purpose of this is to bring the room temperature to the desired temperature in a short time, and to reduce the power consumption of the control valve.
The present invention aims to provide an air conditioner that can be made smaller. Hereinafter, one embodiment of the present invention will be described based on FIGS. 3 to 6. 1 in the figure is a compressor, and this compressor 1 has a condenser 2, a capillary tube 3,
and an evaporator 4 are connected to constitute a refrigeration cycle A. Further, the cylinder of the compressor 1 and the cut side of the compressor 1 are connected via a release pipe 5, and an electromagnetic two-way valve 6 as a control valve is installed in the middle of the release pipe 5. . This electromagnetic two-way valve 6 is of a so-called energized open type, and has an inlet 8 and an outlet 9 in its valve body 7, as shown in FIG. It has a rod 10. FIG. 5 shows the control circuit. Reference numeral 30 denotes a control unit that performs overall control of the air conditioner, and includes, for example, a microcomputer and its peripheral circuits.
2. An indoor fan motor 33M, an outdoor fan motor 34M, a compressor motor 1M, and an electromagnetic two-way valve 6 are connected. The operation section 31 is used to perform operations such as starting operation and setting control temperature. The indoor temperature detector 32 detects the indoor temperature. The indoor fan motor 33M is a drive motor for an indoor fan (not shown) that circulates indoor air to the evaporator 4. The outdoor fan motor 34M is a drive motor for an outdoor fan (not shown) that circulates outdoor air to the condenser 2. Next, the operation in the above configuration will be explained. Set the control temperature T 1 with the operation unit 21,
And perform operation start operation. Then, the control section 20
are the detected temperature and control temperature of the indoor temperature detector 22.
T1 is compared, and if the detected temperature is higher than the control temperature T1 , the compressor 1 is turned on. When the compressor 1 is turned on, the discharged refrigerant is sent to the condenser 2 and liquefied. After the liquefied refrigerant flows out from the condenser 2, it is depressurized in the capillary tube 3 and flows into the evaporator 4.
The air is sent to the room where it evaporates and cools the room.
The gas refrigerant flowing out from the evaporator 4 is returned to the compressor 1.
be sucked into. As a result of this cooling operation, when the indoor temperature (sensed temperature) decreases and reaches the control temperature T1 , the control unit 20 turns off the operation of the compressor 1. When a predetermined period of time has elapsed since the operation was turned off (when the detected temperature reaches a value slightly higher than the control temperature T1 ), the control section 20 energizes the two-way valve 6 and turns on the compressor 1 again. When the two-way valve 6 is energized, its valve stem 10 rises against the pressing force of the spring 11, the outlet 9 is opened, and a part of the compressed gas refrigerant in the cylinder of the compressor 1 is released into the release pipe. 5 to the suction side of the compressor 1, and a save operation is performed. Then, when a predetermined period of time has elapsed (when the detected temperature reaches the control temperature T 1 ), the control unit 20 turns off the compressor 1 and also stops energizing the two-way valve 6 .
occlusion. Thereafter, similarly, the control unit 20 opens and closes the two-way valve 6 in synchronization with turning on and off the compressor 1.
Continue cooling operation. As described above, since the operation of the compressor 1 is not stopped until the room temperature reaches the control temperature T 1 at the start of cooling operation, the control temperature T 1 is
Compared to the case where the compressor 1 is switched to save operation before reaching the desired temperature, the room temperature can be brought to the desired temperature in a shorter time. In addition, since the two-way valve 6 is switched after the operation of the compressor 1 is temporarily stopped, the pressure difference between the inlet and outlet ports 8 and 9 of the valve body 7 becomes small, and the coil 12 of the two-way valve 6 is made small. can also be operated satisfactorily. Note that the operating pressure difference and power consumption of the two-way valve 6 are compared with those of the prior art as shown in the table below.

【表】 また、本考案は上記一実施例に限られるもので
はなく、第7図に示すように圧縮機21に順次四
方切換弁22、室外側熱交換器23、キヤピラリ
チユーブ24,25、室内側熱交換器26を接続
し、かつ上記キヤピラリチユーブ24,25間と
上記圧縮機1のシリンダとをインジエクシヨン管
27を介して接続し、このインジエクシヨン管2
7と上記圧縮機21の吸込側とをレリース管28
を介して接続し、このレリース管28の中途部に
制御弁としての二方弁29を装置してなるヒート
ポンプ式冷凍サイクルBの暖房運転時に用いるよ
うにしても同様な効果を奏する。 この場合における制御は第7図に示す如くな
る。 本発明は以上説明したように、冷凍サイクルの
運転開始後室温が制御温度に到達したとき圧縮機
の作動を停止させるようにしたから、従来のよう
に、室温から制御温度に到達する前にセーブ運転
に切換える場合と比較し、短時間で室温を希望温
度にすることができる。また、室温が制御温度に
到達して圧縮機の作動を停止させたのち制御弁と
圧縮機の作動を同期させてセーブ運転に切換える
から、制御弁の作動時の圧力差を軽減でき、省電
力化を計れ経済的であるとともに制御弁を小形化
できコストの低減を計ることができるという効果
を奏するものである。
[Table] Furthermore, the present invention is not limited to the above-mentioned embodiment; as shown in FIG. The indoor heat exchanger 26 is connected, and the capillary tubes 24 and 25 are connected to the cylinder of the compressor 1 via an injection extension pipe 27.
7 and the suction side of the compressor 21 are connected to the release pipe 28
The same effect can be obtained even if the heat pump type refrigeration cycle B is connected through the release pipe 28 and a two-way valve 29 as a control valve is installed in the middle of the release pipe 28 for use during heating operation. Control in this case is as shown in FIG. As explained above, the present invention is configured to stop the operation of the compressor when the room temperature reaches the control temperature after the start of operation of the refrigeration cycle. Compared to switching to operation, the room temperature can be brought to the desired temperature in a shorter time. In addition, after the room temperature reaches the control temperature and the compressor operation is stopped, the control valve and compressor operation are synchronized and switched to save operation, which reduces the pressure difference when the control valve operates and saves power. This is advantageous in that it is economical and the control valve can be made smaller and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来例を示すもので、第
1図は冷房運転時における室温特性および圧縮
機、二方弁の運転状態を示すグラフ図、第2図は
暖房運転時における室温特性および圧縮機、二方
弁の運転状態を示すグラフ図、第3図乃至第6図
は本考案の一実施例を示すもので、第3図は冷凍
サイクルを示す構成図、第4図は二方弁を示す側
断面図、第5図は制御回路を示す構成図、第6図
は冷房運転時における室温特性および圧縮機、二
方弁の運転状態を示すグラフ図、第7図および第
8図は他の実施例を示すもので、第7図はヒート
ポンプ式冷凍サイクルを示す構構成図、第8図は
その運転時における室温特性および圧縮機、二方
弁の運転状態を示すグラフ図である。 1,21……圧縮機、A,B……冷凍サイク
ル、5,28……レリース管、6,29……制御
弁(二方弁)。
Figures 1 and 2 show conventional examples; Figure 1 is a graph showing the room temperature characteristics during cooling operation and the operating status of the compressor and two-way valve; Figure 2 is a graph showing the room temperature characteristics during heating operation. 3 to 6 show an embodiment of the present invention, FIG. 3 is a configuration diagram showing a refrigeration cycle, and FIG. FIG. 5 is a configuration diagram showing the control circuit; FIG. 6 is a graph showing the room temperature characteristics during cooling operation, the compressor, and the operating status of the two-way valve; FIGS. 7 and 8 The figures show other embodiments; Fig. 7 is a structural diagram showing a heat pump type refrigeration cycle, and Fig. 8 is a graph showing the room temperature characteristics and the operating status of the compressor and two-way valve during its operation. be. 1, 21... Compressor, A, B... Refrigeration cycle, 5, 28... Release pipe, 6, 29... Control valve (two-way valve).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機を備えた冷凍サイクルと、前記圧縮機の
シリンダと圧縮機の吸込側とを接続するレリース
管と、このレリース管を開閉し冷凍能力を制御す
る制御弁と、室内温度を検知する室内温度検知器
と、運転時、前記室内温度検知器の検知温度と制
御温度とを比較する手段と、この比較結果に応じ
て前記圧縮機をオン、オフする手段と、運転開始
時、前記室内温度検知器の検知温度が制御温度に
達するまでは前記制御弁を閉成する手段と、前記
室内温度検知器の検知温度が制御温度に達した後
は前記圧縮機のオン、オフに同期して前記制御弁
を開閉する手段とを具備したことを特徴とする空
気調和機。
A refrigeration cycle equipped with a compressor, a release pipe that connects the cylinder of the compressor and the suction side of the compressor, a control valve that opens and closes this release pipe to control the refrigeration capacity, and an indoor temperature that detects the indoor temperature. a detector, means for comparing the temperature detected by the indoor temperature sensor and a control temperature during operation, means for turning on and off the compressor according to the comparison result, and means for detecting the indoor temperature at the start of operation. means for closing the control valve until the temperature detected by the indoor temperature detector reaches the control temperature; and after the temperature detected by the room temperature detector reaches the control temperature, the control valve is controlled in synchronization with turning on and off the compressor. An air conditioner characterized by comprising means for opening and closing a valve.
JP10240481U 1981-07-10 1981-07-10 air conditioner Granted JPS588778U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240481U JPS588778U (en) 1981-07-10 1981-07-10 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240481U JPS588778U (en) 1981-07-10 1981-07-10 air conditioner

Publications (2)

Publication Number Publication Date
JPS588778U JPS588778U (en) 1983-01-20
JPS6333092Y2 true JPS6333092Y2 (en) 1988-09-05

Family

ID=29897042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240481U Granted JPS588778U (en) 1981-07-10 1981-07-10 air conditioner

Country Status (1)

Country Link
JP (1) JPS588778U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951708A1 (en) * 1979-12-19 1981-07-02 Schering Ag Berlin Und Bergkamen, 1000 Berlin METHOD AND DEVICE FOR AUTOMATICALLY CONTROLLING PARTIAL CURRENTS OF A RECTIFIER

Also Published As

Publication number Publication date
JPS588778U (en) 1983-01-20

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
JPS6325471A (en) Air conditioner
JPH0527018B2 (en)
JPS6333092Y2 (en)
EP0077414B1 (en) Air temperature conditioning system
JPH0620039Y2 (en) Air conditioner
JPH0236059Y2 (en)
JPH0820149B2 (en) Defrost control method during heating in an air conditioner
JPS6071838A (en) Air conditioner
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPS6346350B2 (en)
JP2669069B2 (en) Heating and cooling machine
JPH0623886Y2 (en) Heat pump air conditioner
JP2002061994A (en) Air conditioner
JPS5852458Y2 (en) Defrost device
JPS6340758Y2 (en)
JPS5912517Y2 (en) air conditioner
JPS6015084Y2 (en) Refrigeration equipment
JPS6139584B2 (en)
JPS6144103Y2 (en)
JPH0328678B2 (en)
JPH0213905Y2 (en)
JPS6032090B2 (en) air conditioner
JPH0429102Y2 (en)
JPH01136864U (en)