JPS591965A - Method of defrosting air heat-source heat pump type air conditioner - Google Patents

Method of defrosting air heat-source heat pump type air conditioner

Info

Publication number
JPS591965A
JPS591965A JP57109577A JP10957782A JPS591965A JP S591965 A JPS591965 A JP S591965A JP 57109577 A JP57109577 A JP 57109577A JP 10957782 A JP10957782 A JP 10957782A JP S591965 A JPS591965 A JP S591965A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
indoor
way valve
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57109577A
Other languages
Japanese (ja)
Inventor
敏彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57109577A priority Critical patent/JPS591965A/en
Publication of JPS591965A publication Critical patent/JPS591965A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気熱源ヒートポンプ式空気調和機の除霜方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defrosting method for an air source heat pump type air conditioner.

従来のこの種の空調機においては、例えば、第1図系統
図(ただし電磁弁30を除く)に示すように1暖房運転
時には、冷媒は実線矢印で示すよ与−に、圧縮機1から
切換弁2を通シ、室内に設けた利用側熱交換器3で凝縮
して高圧の液冷媒となり、逆止弁4を通シ、暖房用キャ
ピラリ5で減圧されて低圧の液ガスニ相流冷媒となり、
室外熱交換器6で蒸発し、低圧のガス冷媒となり、切換
弁2、アキー−ムレータ15を通り、圧縮機1に戻る。
In a conventional air conditioner of this kind, for example, as shown in the system diagram in Figure 1 (excluding the solenoid valve 30), during heating operation 1, the refrigerant is switched from the compressor 1 to the direction shown by the solid arrow. It passes through a valve 2, condenses in a user-side heat exchanger 3 installed indoors to become a high-pressure liquid refrigerant, passes through a check valve 4, is depressurized in a heating capillary 5, and becomes a low-pressure liquid-gas two-phase flow refrigerant. ,
It evaporates in the outdoor heat exchanger 6, becomes a low-pressure gas refrigerant, passes through the switching valve 2 and the achievable mulletator 15, and returns to the compressor 1.

また、デフロスト及び冷房運転時には、冷媒は切換4f
2を切換えることにより破線矢印で示すように、圧縮機
lから切換弁2を通り、室外熱交換器6、逆止弁7、冷
房用キャピラリ8、利用側熱交換器3、切換弁2、アキ
ー−ムレータ15を経て圧縮機1に戻る。
Also, during defrost and cooling operation, the refrigerant is switched to 4F.
2, as shown by the broken line arrow, the compressor 1 passes through the switching valve 2, the outdoor heat exchanger 6, the check valve 7, the cooling capillary 8, the user side heat exchanger 3, the switching valve 2, and the ackee. - returns to the compressor 1 via the mulleter 15;

このような空調機において、暖房運転時、室外熱交換器
6が着霜してくると、室外熱交換器6の入口冷媒温度が
低下し、室外熱交換器6の入口管壁についている温度検
出器11aが設定温度以下になると、第2図制御回路に
示すように、デフロスト用制御器接点11’が閉じタイ
マーTが入った時(約1時間周期)、デフロスト用電磁
接触器Aが励磁され、接点aが切換わシ、電磁接触器2
’ 、 10’が開となり、一方電磁接触器Bを励磁し
、従って室外ファンモータ10は止tb、切換弁2は励
磁が解かれて切換わシ、デフロスト運転となル、電磁接
触器Bが励磁するので接点すが開き、室内ファンモータ
9は停止する。室外熱交換器6の霜が溶は終わってデフ
ロスト用制御器接点J J’が開となるか、又はタイマ
ーTが切れた時、(デフロスト開始後約10分)電磁接
触器人は消磁し、接点aが切換わ夛、暖房運転になる。
In such an air conditioner, when the outdoor heat exchanger 6 becomes frosted during heating operation, the inlet refrigerant temperature of the outdoor heat exchanger 6 decreases, and the temperature detected on the inlet pipe wall of the outdoor heat exchanger 6 decreases. When the temperature of the defrost controller 11a falls below the set temperature, the defrost controller contact 11' closes and when the timer T starts (approximately 1 hour period), the defrost electromagnetic contactor A is energized, as shown in the control circuit in Figure 2. , contact a is switched, electromagnetic contactor 2
', 10' are opened, on the other hand, the electromagnetic contactor B is energized, so the outdoor fan motor 10 is stopped tb, the switching valve 2 is de-energized and switched, the defrost operation is started, and the electromagnetic contactor B is activated. Since it is energized, the contacts open and the indoor fan motor 9 stops. When the frost on the outdoor heat exchanger 6 has finished melting and the defrost controller contact JJ' is opened, or when the timer T has expired (approximately 10 minutes after the start of defrosting), the magnetic contactor demagnetizes. Contact a switches and heating operation begins.

温度検出器12mは、従来暖房運転時利用側熱交換器3
の出口接続管20の管壁の温度を検出し、暖房運転起動
時やデフロスト運転終了後の暖房運転再開時のように管
壁温度がまだ設定温度以下の時、室内ファンモータ制御
器接点12′は閉となり、電磁接触器Bが励磁して接点
すが開き、室内ファンモータ9を止め、冷風が吹き出さ
ないようにし、温度検出器12mが設定温度以上になる
と、室内ファンモータ制御器接点12′が開き、室内フ
ァンモータ9が運転される(冷風ストップ機能)。
The temperature detector 12m is the heat exchanger 3 on the user side during conventional heating operation.
detects the temperature of the pipe wall of the outlet connecting pipe 20, and when the pipe wall temperature is still below the set temperature, such as when starting heating operation or restarting heating operation after defrosting operation, indoor fan motor controller contact 12' is closed, the magnetic contactor B is energized, the contact 12 is opened, the indoor fan motor 9 is stopped, and cold air is not blown out, and when the temperature detector 12m reaches the set temperature or higher, the indoor fan motor controller contact 12 is closed. ' is opened and the indoor fan motor 9 is operated (cold air stop function).

しかしながら、最近冷房時の高KER化が進み、室外熱
交換器6が大きくなる傾向にあるため、着霜しにくいと
いう利点がある反面、着霜したり溶けにくい欠点も生じ
ている。その上、従来、デフロスト時室内ファンモータ
9を蜘しているが、デフロスト9時は室内熱交−器3(
クーラー)がエバポレータになるから室内ファンモータ
9を廻すと、冷風が室内に吹き出し、フィーリングが悪
くなるので、最近デフロスト時に室内ファンモータ9を
とめる傾向にあり、それ故デフロスト時の吸熱量も減り
、益々室外熱交換器6に付着した霜が溶けにくくな9、
ファンモータ9を廻す従来の最長の時間のデフロスト運
転を。
However, recently, KER during cooling has been increasing, and the outdoor heat exchanger 6 has tended to become larger, so while it has the advantage of being less prone to frosting, it also has the disadvantage of being less likely to frost or melt. Furthermore, conventionally, the indoor fan motor 9 is closed during defrosting, but when defrosting is performed at 9:00, the indoor heat exchanger 3 (
Since the air conditioner (cooler) becomes an evaporator, when the indoor fan motor 9 is turned, cold air is blown into the room and the feeling becomes bad.Therefore, recently there has been a tendency to stop the indoor fan motor 9 during defrosting, and therefore the amount of heat absorbed during defrosting is also reduced. , frost attached to the outdoor heat exchanger 6 is becoming increasingly difficult to melt 9,
The defrost operation takes the longest time compared to the conventional one that rotates the fan motor 9.

行雇っても、室外ユニットの霜を溶かすことが不可能と
なってきた。
It has become impossible to thaw the frost on the outdoor unit, no matter how hard you try.

本発明はこのような事情に鑑みて提案されたもので、フ
ィーリングを悪化することなく室外ユニットの着霜を完
全に除去する空気熱源ヒートポンプ式空気調和機の除霜
方法を提供することを目的とし、暖房運転時に圧縮機か
ら吐出された冷媒が四方弁、室内熱交換器、暖房用絞り
、室外熱交換器、四方弁をこの順に経て圧縮機に戻り、
冷房運転時に圧縮機から吐出された冷媒が四方弁、室外
熱交換器、冷房用絞り、室内熱交換器、四方弁をこの順
に経て圧縮機に戻るようにした空気熱源ヒートポンプ式
空気調和機において、除霜運転時に圧縮機から出た冷媒
を四方弁、室外熱交換器、上記冷房用絞りに対し並列に
介装した開閉弁、室内熱交換器、四方弁をこの順に経て
圧縮機に戻すとともに、上記室内熱交換器に送風するた
めの室内送風機の微速回転を継続し、上記室内熱交換器
の温度が設定値以下に低下した後は上記室内送風機を停
止させることを特徴とする。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide a defrosting method for an air source heat pump type air conditioner that completely removes frost on the outdoor unit without deteriorating the feeling. The refrigerant discharged from the compressor during heating operation passes through the four-way valve, the indoor heat exchanger, the heating throttle, the outdoor heat exchanger, and the four-way valve in this order, and returns to the compressor.
In an air heat source heat pump type air conditioner in which refrigerant discharged from the compressor during cooling operation passes through a four-way valve, an outdoor heat exchanger, a cooling throttle, an indoor heat exchanger, and a four-way valve in this order and returns to the compressor, The refrigerant discharged from the compressor during defrosting operation is returned to the compressor through a four-way valve, an outdoor heat exchanger, an on-off valve installed in parallel with the cooling throttle, an indoor heat exchanger, and a four-way valve in this order. The indoor blower continues to rotate at a very low speed for blowing air to the indoor heat exchanger, and after the temperature of the indoor heat exchanger falls below a set value, the indoor blower is stopped.

本発明の一実施例を図面について説明すると、第1図は
その系統図、第3図は第1図の制御回路図である。
An embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a system diagram thereof, and FIG. 3 is a control circuit diagram of FIG. 1.

上図において、Tはデフロスト用タイマー、tはその接
点、Aはデフロスト用電磁接触器、aとa−1はその接
点、Bは室内ファンモータ゛9の調速用電磁接触器、b
はその接点、30は逆止弁4.冷房用キャピラリ8と並
列接続された電磁弁、30′は電磁弁30用電磁接触器
、Dはデフロスト時の室内ファンモータ制御用電磁接触
器、dはその接点を示し、また2′は切換弁用電磁接触
器、9′は室内ファンモータ用電磁接触器、10′は室
外ファンモータ用電磁接触器、11′はデフロスト制御
器接点、12′は室内ファンモータ制御器接点である。
In the above diagram, T is the defrost timer, t is its contact, A is the defrost electromagnetic contactor, a and a-1 are its contacts, B is the speed regulating electromagnetic contactor of indoor fan motor 9, b
3 is the contact point, 30 is the check valve 4. A solenoid valve connected in parallel with the cooling capillary 8, 30' is an electromagnetic contactor for the solenoid valve 30, D is an electromagnetic contactor for controlling the indoor fan motor during defrosting, d is its contact point, and 2' is a switching valve. 9' is an indoor fan motor electromagnetic contactor, 10' is an outdoor fan motor electromagnetic contactor, 11' is a defrost controller contact, and 12' is an indoor fan motor controller contact.

このような空調機において、室外熱交換器6が着霜して
デフロスト制御器接点71’が閉となシ、タイマーTが
作動して電磁接触器Aが励磁されると、接点aが切換わ
りてデフロスト運転となり、接点a−1は同時に閉とな
る。この時、電磁弁用電磁接触器s o’が励磁し、電
磁弁3゜は開になるとともに、電磁接触器Bが励磁し、
接点すが切換わシ、室内ファンモータ9は微風運転とな
る。
In such an air conditioner, when the outdoor heat exchanger 6 is frosted and the defrost controller contact 71' is not closed, when the timer T is activated and the electromagnetic contactor A is excited, the contact a is switched. The defrost operation starts, and contact a-1 closes at the same time. At this time, the electromagnetic contactor s o' for the electromagnetic valve is energized, the electromagnetic valve 3° is opened, and the electromagnetic contactor B is energized.
The contact point is switched and the indoor fan motor 9 is operated with a slight breeze.

その後、接続管20の管壁の温度が設定値以下になシ、
室内ファンモータ制御器接点12′が閉じ、電磁接触器
りが励磁し、接点dが開き、室内ファンモータ9は止ま
る。
After that, if the temperature of the pipe wall of the connecting pipe 20 is below the set value,
Indoor fan motor controller contact 12' closes, the electromagnetic contactor is energized, contact d opens, and indoor fan motor 9 stops.

こうして、デフロストが終了すると、電磁接触器Aが消
磁し、微風の暖房運転となる。
In this way, when the defrost is completed, the electromagnetic contactor A is demagnetized, and the heating operation starts with a slight breeze.

その際、デフロスト終了直後では接続管2゜の管壁温度
がまだ設定値以下で、室内ファンモータ制御器接点J 
j’が閉のため、その後管壁温度が上昇し接点1 j’
が開き電磁弁30が閉となるとともに室内ファンは正常
暖房運転を始める。
At that time, immediately after the defrost is finished, the pipe wall temperature of connecting pipe 2° is still below the set value, and indoor fan motor controller contact J
Since j' is closed, the temperature of the tube wall increases and contact 1 j'
opens and the solenoid valve 30 closes, and the indoor fan starts normal heating operation.

このような空調機によれば、冷房時の絞シ機構と並列に
逆止弁を有する従来のヒートポング式空気調和機におい
て、逆止弁と並列に電磁弁30を挿入し、デフロスト運
転時にこの電磁弁を開として使用するとともに、デフロ
スト開始後に室内ファンモータ制御器12が作動する迄
の一定時間(約1分30秒)の間室内ファンモータ9を
微風で廻わすことにより、従来のものに比してデフロス
ト時間が半分以下に短縮され、デフロスト運転終了後の
霜の溶は残しがなくなる。
According to such an air conditioner, in a conventional heat pump type air conditioner that has a check valve in parallel with the throttling mechanism during cooling, a solenoid valve 30 is inserted in parallel with the check valve, and this solenoid valve 30 is inserted in parallel with the check valve. By opening the valve and rotating the indoor fan motor 9 with a breeze for a certain period of time (approximately 1 minute and 30 seconds) until the indoor fan motor controller 12 starts operating after defrosting starts, the The defrost time is reduced by more than half, and no frost remains after the defrost operation is completed.

これは、従来デフロスト運転時に絞シ機構8で流れなか
った冷媒が、電磁弁30を通り、室内熱交換器3での吸
熱量が増し、圧縮機1の消費動力も増え、(室内ファン
モータ9が微風の時は更に大となる。)その結果室外熱
交換器6の霜の溶ける時間が短縮され名ことによる。ま
た、冷媒が室内熱交換器3に流れるので、室外熱交換器
への溜り込みがなくなり、多サーキットの室外熱交換器
の場合、高温冷媒ガスが室外熱交換器へ均一に流れるよ
うになるから霜の溶は方も均一になる。
This is because the refrigerant that did not flow through the throttling mechanism 8 during conventional defrost operation passes through the solenoid valve 30, increasing the amount of heat absorbed by the indoor heat exchanger 3, and increasing the power consumption of the compressor 1 (indoor fan motor 9). becomes even larger when the wind is light.) As a result, the time required for the frost on the outdoor heat exchanger 6 to melt is shortened, which is a big deal. In addition, since the refrigerant flows to the indoor heat exchanger 3, there is no accumulation in the outdoor heat exchanger, and in the case of a multi-circuit outdoor heat exchanger, high-temperature refrigerant gas flows uniformly to the outdoor heat exchanger. The frost melts evenly.

デフロスト時の室内ファンモータ9の微風運転はフィー
リングを悪化させずに(冷風のため人体に不快感を与え
ずに)、室内ユニ、トの吹出空気温度を低下させるが、
この温度は温度検出器12mの設定温度で決める。
The gentle breeze operation of the indoor fan motor 9 during defrost reduces the temperature of the air blown from the indoor unit without deteriorating the feeling (without causing discomfort to the human body due to the cold air).
This temperature is determined by the set temperature of the temperature detector 12m.

要するに本発明によれば、暖房運転時に圧縮機から吐出
された冷媒が四方弁、室内熱交換器、暖房用絞り、室外
熱交換器、四方弁をこの順に経て圧縮機に戻シ、冷房運
転時に圧縮機から吐出された冷媒が四方弁、室外熱交換
器、冷房用絞り、室内熱交換器、四方弁をこの順に経て
圧縮機に戻るようにした空気熱源ヒートポング式空気調
和機において、除霜運転時に圧縮機から出た冷媒を四方
弁、室外熱交換器、上記冷房用絞りに対し並列に介装し
た開閉弁、室内熱交換器、四方弁をこの順に軽て圧縮機
に戻すとともに、上記室内熱交換器に送風するだめの室
内送風機の微速回転を継続し、上記室内熱交換器の温度
が設定値以下に低下した後は上記室内送風機を停止させ
ることによシ、フィーリングを悪化することなく、室外
熱交換器の完全除霜を行なう空気熱源ヒートポンプ式空
気調和機の除霜方法を得るから、本発明は産業上極めて
有益なものである。
In short, according to the present invention, the refrigerant discharged from the compressor during heating operation passes through the four-way valve, the indoor heat exchanger, the heating throttle, the outdoor heat exchanger, and the four-way valve in this order, and then returns to the compressor during cooling operation. Defrosting operation is performed in an air heat source heat pump type air conditioner in which the refrigerant discharged from the compressor passes through a four-way valve, an outdoor heat exchanger, a cooling throttle, an indoor heat exchanger, and a four-way valve in this order and returns to the compressor. At the same time, the refrigerant discharged from the compressor is returned to the compressor in this order through the four-way valve, the outdoor heat exchanger, the on-off valve installed in parallel with the above-mentioned cooling throttle, the indoor heat exchanger, and the four-way valve. The indoor blower that blows air to the heat exchanger continues to rotate at a very low speed, and after the temperature of the indoor heat exchanger falls below the set value, the indoor blower is stopped, thereby worsening the feeling. The present invention is industrially extremely useful because it provides a defrosting method for an air source heat pump type air conditioner that completely defrosts an outdoor heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は第1
図よシミ磁弁30を除去した公知の空気熱源ヒートIン
グ式空気調和機の制御回路図、第3図は第1図の制御回
路図である。 1・・・コンプレッサ、2・・・切換弁、2′・・・切
換弁用電磁接触器、3・・・利用側熱交換器、4・・・
逆止弁、5・・・キャピラリ、6・・・室外熱交換器、
7・・・逆止弁、8・・・冷房用キャピラリ、9・・・
室内ファンモータ、9′・・・室内ファンモータ用電磁
接触器、ノ0・・・室外ファンモータ、10′・・・室
外ファンモータ用電磁接触器、11・・・デフロスト制
御器、11′・・・デフロスト制御器接点、11a・・
・温度検出器、12・・・室内ファンモータ制御器、1
2′・・・室内ファンモータ制御器接点、12a・・・
温度検出器、16・・・アキエムレータ、20.21・
・・接絞管、30・・・電磁弁、so’・・・電磁弁用
電磁接触器、A・・・デフロスト用電磁接触器、a、a
−7・・・・接点、B・・・室内ファンモータ調速用電
磁接触器、b・・・接点、D・・・室内ファンモータ制
御用電磁接触器、d・・・接点、T・・・タイマー、t
・・・接点。 出願人復代理人  弁理士 鈴 江 武 彦第1図 刀 ( 第2図 第3図
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
FIG. 3 is a control circuit diagram of a known air heat source heat I type air conditioner with the stain magnetic valve 30 removed. FIG. 3 is a control circuit diagram of FIG. 1. 1...Compressor, 2...Switching valve, 2'...Magnetic contactor for switching valve, 3...Using side heat exchanger, 4...
Check valve, 5... Capillary, 6... Outdoor heat exchanger,
7...Check valve, 8...Cooling capillary, 9...
Indoor fan motor, 9'... Magnetic contactor for indoor fan motor, NO0... Outdoor fan motor, 10'... Magnetic contactor for outdoor fan motor, 11... Defrost controller, 11'. ...Defrost controller contact, 11a...
・Temperature detector, 12... Indoor fan motor controller, 1
2'... Indoor fan motor controller contact, 12a...
Temperature detector, 16... Akiemureta, 20.21.
・・Restricted pipe, 30 ・・Solenoid valve, so' ・・・Solenoid valve contactor, A ・・Defrost electromagnetic contactor, a, a
-7...Contact, B...Indoor fan motor speed regulating electromagnetic contactor, b...Contact, D...Indoor fan motor control electromagnetic contactor, d...Contact, T...・Timer, t
···contact. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Sword ( Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 暖房運転時に圧縮機から吐出された冷媒が四方弁、室内
熱交換器、暖房用絞シ、室外熱交換器、四方弁をこの順
に経て圧縮機に戻シ、冷房運転時に圧縮機から吐出され
た冷媒が四方弁、室外熱交換器、冷房用絞夛、室内熱交
換器、四方弁をこの順に軽て圧縮機に戻るようにした空
気熱源ヒートポンプ式空気調和機において、除霜運転時
に圧縮機から出た冷媒を四方弁、室外熱交換器、上記冷
房用絞シに対し並列に介装した開閉弁、室内熱交換器、
四方弁をこの順に経て圧縮機に戻すとともに、上記室内
熱交換器に送風するための室内送風機の微速回転を継続
し、上記室内熱交換器の温度が設定値以下に低下した後
は上記室内送風機を停止させることを特徴とする空気熱
源ヒートポンプ式空気調和機の除霜方法。
The refrigerant discharged from the compressor during heating operation passes through the four-way valve, the indoor heat exchanger, the heating throttle, the outdoor heat exchanger, and the four-way valve in this order, and then returns to the compressor.The refrigerant is then discharged from the compressor during cooling operation. In an air-source heat pump type air conditioner in which the refrigerant is returned to the compressor through a four-way valve, an outdoor heat exchanger, a cooling diaphragm, an indoor heat exchanger, and a four-way valve in this order, the refrigerant is returned to the compressor from the compressor during defrosting operation. A four-way valve, an outdoor heat exchanger, an on-off valve installed in parallel with the cooling throttle, an indoor heat exchanger,
The four-way valve is returned to the compressor in this order, and the indoor blower continues to rotate at a slow speed to blow air to the indoor heat exchanger, and after the temperature of the indoor heat exchanger falls below the set value, the indoor blower is turned off. A defrosting method for an air source heat pump type air conditioner, characterized by stopping the air source heat pump type air conditioner.
JP57109577A 1982-06-25 1982-06-25 Method of defrosting air heat-source heat pump type air conditioner Pending JPS591965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109577A JPS591965A (en) 1982-06-25 1982-06-25 Method of defrosting air heat-source heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109577A JPS591965A (en) 1982-06-25 1982-06-25 Method of defrosting air heat-source heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS591965A true JPS591965A (en) 1984-01-07

Family

ID=14513784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109577A Pending JPS591965A (en) 1982-06-25 1982-06-25 Method of defrosting air heat-source heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS591965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251360A (en) * 1984-05-29 1985-12-12 株式会社東芝 Air conditioner
JPS61211674A (en) * 1985-03-18 1986-09-19 株式会社日立製作所 Heat pump type air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238621A (en) * 1976-07-15 1977-03-25 Hiroshi Kumaoka Atomizer for fruit tree disinfection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238621A (en) * 1976-07-15 1977-03-25 Hiroshi Kumaoka Atomizer for fruit tree disinfection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251360A (en) * 1984-05-29 1985-12-12 株式会社東芝 Air conditioner
JPS61211674A (en) * 1985-03-18 1986-09-19 株式会社日立製作所 Heat pump type air conditioner

Similar Documents

Publication Publication Date Title
JPH079331B2 (en) Operation control method for heat pump type air conditioner
US4799363A (en) Room air conditioner
JPH11287538A (en) Air-conditioner
JPH10246525A (en) Air conditioner
JPH04340072A (en) Off-cycle defrosting device
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPS591965A (en) Method of defrosting air heat-source heat pump type air conditioner
JPH11257719A (en) Method of controlling air conditioner, and its device
JPH0620039Y2 (en) Air conditioner
JPH04356647A (en) Control device for air conditioner
JP2002147879A (en) Multi-zone air conditioner and defrosting control method for the same
JPH043843A (en) Method of controlling air conditioner
JPH0799298B2 (en) Defrosting method for heat pump type air conditioner
JPH0823427B2 (en) Defrost control device for heat pump type air conditioner
JPS6166037A (en) Defrosting control unit of air conditioner
JPH025294Y2 (en)
JPH10148428A (en) Heat pump system
JP2626158B2 (en) Operation control device for air conditioner
JPS6144103Y2 (en)
JPS6029561A (en) Defroster for air conditioner
JPH0429322Y2 (en)
JPS62125244A (en) Air conditioner
JPH0113978Y2 (en)
JP2002340388A (en) Air conditioner having function of dehumidifying operation
JPS6029562A (en) Defroster for air conditioner