JPS6066072A - Defroster for air conditioner - Google Patents
Defroster for air conditionerInfo
- Publication number
- JPS6066072A JPS6066072A JP17492083A JP17492083A JPS6066072A JP S6066072 A JPS6066072 A JP S6066072A JP 17492083 A JP17492083 A JP 17492083A JP 17492083 A JP17492083 A JP 17492083A JP S6066072 A JPS6066072 A JP S6066072A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- heat exchanger
- indoor heat
- compressor
- outdoor heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、空気調和槽・に使用される冷凍サイクルの除
霜装置に関するものである0
従来例の構成とその問題点
従来、圧縮機、四方弁、室内熱交換器、減圧器および室
外熱交換器を順次冷媒配管で連結して構成した冷凍サイ
クルにおける除霜方式としては、第1図に示すように四
方弁2により暖房サイクルから冷房サイクルに切換え、
暖房時に蒸発器となり低圧で着霜した室外熱交換器6を
凝縮器に変えることにより除霜を行なう手段が一般にと
られていた。なお、1はへ圧縮機、3は室内熱交換器、
4は減圧器、6はアキュームレータ、9は減圧器、10
は電磁弁、18は冷媒配管、19はバイパス回路、7.
8は送風機11は着霜検知器、20は温度検知器である
。しかし、このような従来の除霜方式では除霜運転時に
室内熱交換器3が蒸発器となるので、コールドドラフト
を防止するために補助ヒータ20&を設け、かつ室内熱
交換器3に流れる冷媒を極力抑えるために、バイパス回
路の電磁弁10を開状態とするような制御が行なわれて
いた。またこのような方式では除霜終了後、暖房サイク
ルに復帰し室内熱交換器3が凝縮器に変った時に、除霜
時に蒸発器となっていたために圧力および温度の立上り
が遅くなり定常に達するまでの時間がかかり、快適性に
欠けるといつ欠点を持っていた。なお、実線矢印は暖房
時の冷媒流れを示し、破線矢印は除霜時の冷媒流を示す
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting device for a refrigeration cycle used in an air conditioning tank. As a defrosting method in a refrigeration cycle configured by sequentially connecting an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger with refrigerant piping, the four-way valve 2 switches from the heating cycle to the cooling cycle, as shown in Figure 1. ,
Generally, defrosting is carried out by converting the outdoor heat exchanger 6, which acts as an evaporator during heating and forms frost at low pressure, into a condenser. In addition, 1 is a compressor, 3 is an indoor heat exchanger,
4 is a pressure reducer, 6 is an accumulator, 9 is a pressure reducer, 10
1 is a solenoid valve, 18 is a refrigerant pipe, 19 is a bypass circuit, 7.
8 is a blower 11 is a frost detector, and 20 is a temperature sensor. However, in such a conventional defrosting system, the indoor heat exchanger 3 becomes an evaporator during defrosting operation, so an auxiliary heater 20 & is provided to prevent cold draft, and the refrigerant flowing to the indoor heat exchanger 3 is In order to suppress this as much as possible, control has been performed to open the solenoid valve 10 of the bypass circuit. In addition, in this type of system, after the defrosting is completed, when the indoor heat exchanger 3 returns to the heating cycle and changes into a condenser, the rise in pressure and temperature becomes slower and reaches a steady state because it was acting as an evaporator during defrosting. It takes time, lacks comfort and has drawbacks. Note that solid line arrows indicate the refrigerant flow during heating, and broken line arrows indicate the refrigerant flow during defrosting.
発明の目的
本発明は、前記従来例の欠点に鑑みてなされたもので、
除霜終了後、暖房サイクルに復帰した時の暖房能力の立
上りを早くシ、快適性の向上を目的とするものである。Purpose of the Invention The present invention has been made in view of the drawbacks of the conventional example, and
The purpose of this is to quickly increase heating capacity when the heating cycle resumes after defrosting, thereby improving comfort.
発明の構成 上記目的を達成するだめに、本発明は、圧縮機。Composition of the invention In order to achieve the above object, the present invention provides a compressor.
四方弁、室内熱交換器、流量制御弁および室外熱交換器
を順次冷媒配管で連結して冷凍サイクルを構成し、前記
流量制御弁と前記室外熱交換器との間から分岐し前記圧
縮機の吸入側に接続した管路に第1の開閉弁を、また前
記四方弁と前記室内熱交換器とを連結する管路に第2の
開閉弁を設けるとともに、室外熱交換器着霜時に前記流
量制御弁および前記第2の開閉弁を閉状態に、また前記
第1の開閉弁を開状態にし、かつ前記四方弁を切換える
制御回路を設けたものである。A refrigeration cycle is constructed by sequentially connecting a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger with refrigerant piping, and a refrigeration cycle is constructed by connecting a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger in sequence, and a refrigeration cycle is formed between the flow rate control valve and the outdoor heat exchanger, and a refrigeration cycle is formed between the flow control valve and the outdoor heat exchanger. A first on-off valve is provided in the pipe line connected to the suction side, and a second on-off valve is provided on the pipe line connecting the four-way valve and the indoor heat exchanger. A control circuit is provided that closes the control valve and the second on-off valve, opens the first on-off valve, and switches the four-way valve.
この構成によって、除霜運転時に流量制御弁と第2の開
閉弁により室内熱交換器内に高温、高圧の液冷媒を封じ
込んで、除霜終了後の暖房能力の立上りを早くするもの
である。With this configuration, high-temperature, high-pressure liquid refrigerant is sealed inside the indoor heat exchanger by the flow control valve and the second on-off valve during defrosting operation, and heating capacity is quickly ramped up after defrosting is completed. .
実施例の説明
以下、第2図ないし第4図を参考に本発明の実施例を詳
細に説明する。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 2 to 4.
第2図は不発明の一実施例の冷凍サイクル、第3図はそ
の電気回路図、第4図はその暖房能力変化と制御方法を
示す図である。FIG. 2 is a refrigeration cycle according to an embodiment of the invention, FIG. 3 is an electric circuit diagram thereof, and FIG. 4 is a diagram showing changes in heating capacity and a control method thereof.
第2図において、1は圧縮機、2は四方弁、13は第2
の電磁弁、3は室内熱交換器、12は電動膨張弁、5は
室外熱交換器、6はアキュームレータで順次冷媒配管1
8で連結されて冷凍サイクルを構成している。また暖房
時におけ5電動膨張弁12の出口とアキュームレータ6
の入口との間が、第1の電磁弁10と減圧器9を介した
ノくイ)Zス回路19により連結されている。なお、2
0は温度検知器、7および8はそれぞれ室内熱変換器3
゜室外熱交換器5の送風機、11は着霜検知器でめp1
電動膨張弁12は絞り作用と、同時r管路を閉路とする
ような機能を兼ねそなえたものであるO第3図において
、14は電源で運転スイッチ16と、圧縮機1の運転・
停止のスイッチ18を介して圧縮機1のモータ1aが直
列に接続されている。In Fig. 2, 1 is a compressor, 2 is a four-way valve, and 13 is a second
1 is a solenoid valve, 3 is an indoor heat exchanger, 12 is an electric expansion valve, 5 is an outdoor heat exchanger, 6 is an accumulator, and the refrigerant pipe 1 is connected in sequence.
8 are connected to form a refrigeration cycle. Also, during heating, the outlet of 5 electric expansion valve 12 and the accumulator 6
The first electromagnetic valve 10 and the inlet of the valve are connected by a Z-circuit 19 via a pressure reducer 9. In addition, 2
0 is a temperature sensor, 7 and 8 are indoor heat converters 3, respectively.
゜The blower of the outdoor heat exchanger 5, 11 is the frost detector, and p1
The electric expansion valve 12 has a throttling action and a function of simultaneously closing the pipeline.
The motor 1a of the compressor 1 is connected in series via a stop switch 18.
16は温度検知器20および着霜検知器11からの信号
によシ圧縮機1の運転・停止および除霜を行なわせる制
御装置で、スイッチ1了により暖房運転と除霜運転を切
換える。スイッチ17の接点17aと17bには、四方
弁2駆動用の電磁コイ内熱交換器3用送風機了のモータ
了a1および室外熱交換器5用送風機8のモータ8aと
第1の電磁弁10駆動用の電磁コイル10aとがそれぞ
れ接続されている。そして、スイッチ17を切換えるこ
とにより、接点17&および17bがそれぞれ運転スイ
ッチ16を介して電源14に接続されるように構成され
ている。Reference numeral 16 denotes a control device which operates/stops the compressor 1 and defrosts it based on signals from the temperature detector 20 and the frost detector 11, and switches between the heating operation and the defrosting operation by turning on the switch 1. Contact points 17a and 17b of the switch 17 are connected to a motor 1 for the blower for the electromagnetic coil internal heat exchanger 3 for driving the four-way valve 2, a motor 8a for the blower 8 for the outdoor heat exchanger 5, and a motor 8a for driving the first electromagnetic valve 10. and electromagnetic coils 10a are connected to each other. By switching the switch 17, the contacts 17& and 17b are connected to the power source 14 via the operation switch 16, respectively.
次に、暖房能力の経時変化と除霜サイクルおよび各々の
弁制御との関係を示す第4図を参考に本実施例の動作を
説明する〇
まず、暖房時被空調室の温度が所望の設定温度よりも低
い時に運転スイッチ16を閉じると、温度検知器2oか
らの信号により制御装置16はスイッチ18が閉接する
ように動作させ、同時に、スイッチ17の接点17aが
閉接するように動作させる。その結果、モータ1a、7
aおよび8aと電磁コイル21L、12aおよび13a
が通電するため、四方弁2が暖房サイクルに、また、電
動膨張弁12および第2の電磁弁13が開状態となり、
圧縮機1.室内熱交換器3用送風機7および室外熱交換
器5用送風機8がそれぞれ起動する。Next, the operation of this embodiment will be explained with reference to Fig. 4, which shows the relationship between the change in heating capacity over time, the defrosting cycle, and each valve control.〇First, the temperature of the air-conditioned room during heating is set to the desired setting. When the operating switch 16 is closed when the temperature is lower than the temperature, the control device 16 operates the switch 18 to close based on the signal from the temperature detector 2o, and at the same time operates the contact 17a of the switch 17 to close the closed contact. As a result, motors 1a, 7
a and 8a and electromagnetic coils 21L, 12a and 13a
is energized, the four-way valve 2 enters the heating cycle, and the electric expansion valve 12 and the second solenoid valve 13 become open.
Compressor 1. The blower 7 for the indoor heat exchanger 3 and the blower 8 for the outdoor heat exchanger 5 are started.
このことにより圧縮機1で高温高圧に圧縮されたガス冷
媒は、実線矢印で示すように、室内熱交換器3で凝縮し
高温高圧の液冷媒とカリ、電動膨張弁12で減圧され低
温低圧のガスと液の二相冷媒となり、室外熱交換器5に
流入蒸発し、アキュームレータ6を通って再び圧縮機1
へと戻ってくる0この時、室内熱交換器3において周囲
室内空気と熱交換が行なわれ、室内熱交換器3用送風機
7により温風が被空調室の方へ吹き出されてくる。すな
わち、第4図において、時間Oで運転スイッチ15を閉
じて暖房を開始することにより、暖房能力は時間の経過
とともに増大し被空調室の温度は上昇してくる。その後
、ある一定時間は定常状態であるが、特に低外気温条件
においては、室外熱交換器5で結露した水分が霜を形成
し、吸熱能力が減少してくるだめ霜を除去してやる必要
がある。As a result, the gas refrigerant compressed to a high temperature and high pressure by the compressor 1 is condensed in the indoor heat exchanger 3 to form high temperature and high pressure liquid refrigerant and potash, as shown by the solid line arrow, and is depressurized by the electric expansion valve 12 to become low temperature and low pressure. It becomes a two-phase refrigerant of gas and liquid, flows into the outdoor heat exchanger 5, evaporates, passes through the accumulator 6, and returns to the compressor 1.
At this time, the indoor heat exchanger 3 exchanges heat with the surrounding indoor air, and the blower 7 for the indoor heat exchanger 3 blows warm air toward the air-conditioned room. That is, in FIG. 4, by closing the operation switch 15 at time O to start heating, the heating capacity increases over time and the temperature of the air-conditioned room rises. After that, it remains in a steady state for a certain period of time, but especially in low outside temperature conditions, the moisture condensed in the outdoor heat exchanger 5 forms frost, which reduces the heat absorption capacity, so it is necessary to remove the frost. .
そこで、着霜検知器11により霜の形成を検知し制御装
置16に信号を送って除霜運転が行なわれる○つ1す、
着霜検知器11からの信号により制御装置16は、スイ
ッチ17の接点17bが閉接するように動作させる。そ
の結果、モータ7aおよび8aと電磁コイル2a 、1
2aおよびi3aが非通電となるだめに、四方弁2が冷
房サイクルに、電動膨張弁12および第2の電磁弁13
が閉状態となり、室内熱交換器3用送風機7および室外
熱交換器5用送風機8が停止する。同時に、電磁コイル
ICJ&が通電するため、第1の電磁弁1oが開状態と
なる。こうして、圧縮機1から吐出された高温高圧のガ
ス冷媒が破線矢印で示すように室外熱交換器6で凝縮し
高温高圧の液冷媒となる過程における放熱効果によって
、室外熱交換器5に形成された霜を融解する。室外熱交
換器5から流出した冷媒は、バイパス回路19に設けら
れた減圧器9を通過してアキュームレータ6から圧縮機
1へと戻ってくる。この時、電動膨張弁12・と第2の
電磁弁13とによって、室内熱交換器3内に暖房運転時
に高温高圧であった液冷媒が封じ込められている。ある
時間経過後、着霜検知器11により除霜終了の信号が送
られると、制御装置16はスイッチ1了の接点17aが
閉接するように動作させる。こうして、四方弁2が暖房
サイクルに切換わ島第1の電磁弁1oが閉状態に電動膨
張弁12および第2の膨張弁13が開状態となり、送風
機アおよび8が起動して暖房運転が再開される。Therefore, the formation of frost is detected by the frost detector 11 and a signal is sent to the control device 16 to perform defrosting operation.
The control device 16 operates in response to the signal from the frost detector 11 so that the contact 17b of the switch 17 is closed. As a result, motors 7a and 8a and electromagnetic coils 2a, 1
2a and i3a are de-energized, the four-way valve 2 enters the cooling cycle, and the electric expansion valve 12 and the second solenoid valve 13
is in a closed state, and the blower 7 for the indoor heat exchanger 3 and the blower 8 for the outdoor heat exchanger 5 are stopped. At the same time, since the electromagnetic coil ICJ& is energized, the first electromagnetic valve 1o is in an open state. In this way, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 6 as shown by the broken line arrow, and is formed in the outdoor heat exchanger 5 due to the heat radiation effect in the process of becoming a high-temperature, high-pressure liquid refrigerant. Thaw the frost. The refrigerant flowing out from the outdoor heat exchanger 5 passes through a pressure reducer 9 provided in a bypass circuit 19 and returns to the compressor 1 from the accumulator 6. At this time, the electric expansion valve 12 and the second electromagnetic valve 13 confine the liquid refrigerant, which was at high temperature and high pressure during the heating operation, in the indoor heat exchanger 3. After a certain period of time has elapsed, when a signal indicating the end of defrosting is sent by the frost detector 11, the control device 16 operates so that the contact 17a of the switch 1 closes. In this way, the four-way valve 2 is switched to the heating cycle, the first solenoid valve 1o is closed, the electric expansion valve 12 and the second expansion valve 13 are opened, and the blowers A and 8 are started to resume heating operation. be done.
このように、本発明においては従来に比べて室内熱交換
器3が除霜時に電動膨張弁12と第2の電磁弁13によ
り、暖房定常時に近い冷媒状態、つまり室内熱交換器3
が高温高圧に保たれていることと、液冷媒を封じ込んで
くることにより、除霜復帰時に室内熱交換器3を高温高
圧にするまでの熱容量が少なくてすみ、また、液冷媒が
即座に電動膨張弁12を通過して、室外熱交換器へ流入
し吸熱効果を発揮するために、暖房能力の立上りが早く
なる。As described above, in the present invention, when the indoor heat exchanger 3 is defrosted, the electric expansion valve 12 and the second solenoid valve 13 are used to maintain the refrigerant state close to that during steady heating, that is, the indoor heat exchanger 3
By keeping the indoor heat exchanger 3 at high temperature and high pressure and by sealing in the liquid refrigerant, the heat capacity required to raise the indoor heat exchanger 3 to high temperature and high pressure when defrosting is restored is small, and the liquid refrigerant is immediately Since the heat passes through the electric expansion valve 12 and flows into the outdoor heat exchanger to exert an endothermic effect, the heating capacity increases quickly.
また、冷凍サイクル中に充てんされている全冷媒量のう
ち何割かが除霜運転時に2つの弁によって室内熱交換器
3内に閉じ込められているので、従来ならば除霜時に蒸
発できなかっだ液冷媒がアキュームレータ6に溜まりオ
ーバーフローして圧縮機1に吸入され液圧縮を引き起こ
すという問題が起きていだが、前述のような制御方法に
よりこのような問題も発生しないと考えられる。In addition, some percentage of the total amount of refrigerant charged in the refrigeration cycle is confined within the indoor heat exchanger 3 by two valves during defrosting operation, so the liquid that could not be evaporated during defrosting in the past Although there has been a problem in which refrigerant accumulates in the accumulator 6 and overflows, being sucked into the compressor 1 and causing liquid compression, it is thought that such a problem will not occur with the control method described above.
なお、本実施例では絞り作用と閉路作用を兼ねそ々えた
電動膨張弁12を用いて除霜運転時に主回路を閉路とし
たが、この電動膨張弁12の代わりにキャピラリーチュ
ーブと電磁弁との組み合わせのように前記電動膨張弁1
2と同等の機能を有するものであれば何ら差しつかえな
い。また、バイパス回路の減圧器は、主回路の減圧器と
共用できるものであれば、特に必要はない。In this embodiment, the main circuit is closed during the defrosting operation by using an electric expansion valve 12 that has both a throttling function and a circuit closing function, but instead of the electric expansion valve 12, a capillary tube and a solenoid valve The electric expansion valve 1 as a combination
There is no problem with anything that has the same functionality as 2. Further, the pressure reducer of the bypass circuit is not particularly necessary as long as it can be used in common with the pressure reducer of the main circuit.
1だ、本実施例では、四方弁2の切換えと他の弁の制御
を同期させているが、これらの制御はある程度の時間差
があってもよい。しかし、四方弁2の切換えと同時か、
あるいは少し以前に流量制御弁12と第2の電磁弁13
を閉じる方が効果が大である。1. In this embodiment, the switching of the four-way valve 2 and the control of the other valves are synchronized, but these controls may have a certain degree of time difference. However, at the same time as switching four-way valve 2,
Or, some time ago, the flow control valve 12 and the second solenoid valve 13
It is more effective to close it.
発明の詳細
な説明したように、本発明の空気調和機の除霜装置は、
圧縮機、四方弁、室内熱交換器、流量制御弁および室外
熱交換器を順次冷媒配管で連結して冷凍サイクルを構成
し、前記流量制御弁と前記室外熱交換器との間から分岐
し、前記圧縮機の吸入側に接続した管路に第1の開閉弁
を、また前記四方弁と前記室内熱交換器とを連結する管
路に第2の開閉弁を設けるどともに、室外熱交換器着霜
時に前記流量制御弁および前記第2の開閉、弁を閉状態
に、また前記第1の開閉弁を開状態にし、かつ前記四方
弁を切換える制御回路を設けた空気調和機の除霜装置で
あり、このように除霜運転時に室内熱交換器内に暖房定
常時に近い冷媒状態を保持することにより、除箱終了後
における暖房能力の立上りを早くシ、快適性の向上を図
るものである。また、液圧縮を防止することができる等
、浸れた効果を発揮するものである。As described in detail, the air conditioner defrosting device of the present invention has the following features:
A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a flow control valve, and an outdoor heat exchanger with refrigerant piping, and branching from between the flow control valve and the outdoor heat exchanger, A first on-off valve is provided in a conduit connected to the suction side of the compressor, and a second on-off valve is provided in a conduit connecting the four-way valve and the indoor heat exchanger. A defrosting device for an air conditioner, comprising a control circuit that closes the flow rate control valve and the second opening/closing valve, opens the first opening/closing valve, and switches the four-way valve during frost formation. In this way, by maintaining a refrigerant state close to that of steady heating in the indoor heat exchanger during defrosting operation, the heating capacity can be increased quickly after the removal of the box, and comfort can be improved. . In addition, it exhibits a soaking effect, such as being able to prevent liquid compression.
第1図は、従来例を示す空気調和機の冷凍サイクル図、
第2図は本発明の一実施例を示す除霜装置を有する空気
調和機の冷凍ザイクル図、第3図は本発明の一実施例に
おける空気調和機の除霜装置の電気回路図、第4図は同
空気調和機の暖房能力の経時変化と各々の弁制御を示す
図である。
1・・・・圧縮機、2・・・・・・四方弁、3・・・・
・室内熱交換器、12・・・・・・流量制御弁、5・・
・・・・室外熱交換器、10・・・・・・第1の開閉弁
、13・・・・・・第2の開閉弁、16・・・・・・制
御回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
第4図Fig. 1 is a refrigeration cycle diagram of an air conditioner showing a conventional example;
FIG. 2 is a refrigeration cycle diagram of an air conditioner having a defrosting device according to an embodiment of the present invention, FIG. 3 is an electric circuit diagram of the defrosting device of an air conditioner according to an embodiment of the present invention, and FIG. The figure shows changes over time in the heating capacity of the air conditioner and the control of each valve. 1... Compressor, 2... Four-way valve, 3...
・Indoor heat exchanger, 12...Flow rate control valve, 5...
...Outdoor heat exchanger, 10...First on-off valve, 13...Second on-off valve, 16...Control circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4
Claims (1)
熱交換器を順次冷媒配管で連結して冷凍サイクルを構成
し、前記流量制御弁と前記室外熱交換器との間から分岐
し前記圧縮機の吸入側に接続した管路に第1の開閉弁を
、また前記四方弁と前記室内熱交換器とを連結する管路
に第2の開閉弁を設けるとともに、室外熱交換器着霜時
に前記流量制御弁および前記第2の開閉弁を閉状態に、
また前記第1の開閉弁を開状態にし、かつ前記四方弁を
切換える制御回路を設けた空気調和機の除霜装置。A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger with refrigerant piping, and a refrigeration cycle is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a flow rate control valve, and an outdoor heat exchanger, and branching from between the flow rate control valve and the outdoor heat exchanger to A first on-off valve is provided in the pipe line connected to the suction side of the compressor, and a second on-off valve is provided on the pipe line connecting the four-way valve and the indoor heat exchanger. when the flow control valve and the second on-off valve are in a closed state,
The defrosting device for an air conditioner is further provided with a control circuit for opening the first on-off valve and switching the four-way valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17492083A JPS6066072A (en) | 1983-09-20 | 1983-09-20 | Defroster for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17492083A JPS6066072A (en) | 1983-09-20 | 1983-09-20 | Defroster for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6066072A true JPS6066072A (en) | 1985-04-16 |
Family
ID=15987020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17492083A Pending JPS6066072A (en) | 1983-09-20 | 1983-09-20 | Defroster for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6066072A (en) |
-
1983
- 1983-09-20 JP JP17492083A patent/JPS6066072A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2522919B2 (en) | Air conditioner | |
KR900008853B1 (en) | Room air conditioner | |
JPH0527018B2 (en) | ||
JP3324420B2 (en) | Refrigeration equipment | |
JP2526716B2 (en) | Air conditioner | |
JPS6066072A (en) | Defroster for air conditioner | |
JPS6029562A (en) | Defroster for air conditioner | |
JPH03211380A (en) | Air conditioner | |
JPS6346350B2 (en) | ||
JPS6029561A (en) | Defroster for air conditioner | |
JPS62237260A (en) | Defrostation control method of heat pump type air conditioner | |
JPS6340763Y2 (en) | ||
JPH086203Y2 (en) | Air conditioner | |
JPS5849006Y2 (en) | Hot water supply and cooling equipment | |
JPS62158951A (en) | Heat pump type air conditioner | |
JPH0656274B2 (en) | Refrigeration cycle equipment | |
JPH0120709B2 (en) | ||
JPS5971963A (en) | Heat pump type refrigeration cycle | |
JPS62272048A (en) | Air conditioner | |
JPS58124174A (en) | Refrigeration cycle of air conditioner | |
JPH01123965A (en) | Air conditioner | |
JPS5833067A (en) | Refrigerator | |
JPS62106267A (en) | Defroster for heat pump air conditioner | |
JPS6146863A (en) | Controller for defrostation operation of air conditioner | |
JPS60169062A (en) | Defroster for air conditioner |