JP2646914B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP2646914B2
JP2646914B2 JP3288391A JP28839191A JP2646914B2 JP 2646914 B2 JP2646914 B2 JP 2646914B2 JP 3288391 A JP3288391 A JP 3288391A JP 28839191 A JP28839191 A JP 28839191A JP 2646914 B2 JP2646914 B2 JP 2646914B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
control compressor
bypass valve
displacement control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3288391A
Other languages
Japanese (ja)
Other versions
JPH05126417A (en
Inventor
裕章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3288391A priority Critical patent/JP2646914B2/en
Publication of JPH05126417A publication Critical patent/JPH05126417A/en
Application granted granted Critical
Publication of JP2646914B2 publication Critical patent/JP2646914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は圧縮機の中間バイパス
弁を冷媒の圧力によって開閉制御し容量制御を行う冷凍
装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a refrigeration system for controlling the capacity of a compressor by controlling the opening and closing of an intermediate bypass valve of a compressor by the pressure of refrigerant.

【0002】[0002]

【従来の技術】図6は従来の冷凍装置の冷媒回路図であ
る。図6において、1は例えば「三菱コンデンシングユ
ニットスクロール圧縮機搭載テクニカルマニュアル」
(1991年1月発行)に示されたバイパスアンロード
方式の容量制御手段を有する容量制御圧縮機で、図7,
図8にその構造の概略の断面図を示す。5は圧縮室11内
の圧縮途中の中間圧力ガス冷媒の一部をバイパス路(図
示せず)を介し圧縮室入口(図示せず)へバイパスする
中間圧力バイパス弁であり、この中間圧力バイパス弁5
の弁外側にかかる冷媒圧力と、弁内側にかかる圧力との
圧力差によって開閉する。9は固定スクロール、10は揺
動スクロール、2は凝縮器、3は絞り装置、4は蒸発器
で、これらを冷媒配管8−1,8−2,8−3,8−4
で接続することで冷凍サイクルが構成されている。6は
容量制御圧縮機1の冷媒吐出側の冷媒配管8−1と中間
バイパス弁5とを接続する電磁弁、7は容量制御圧縮機
1の冷媒吸入側の冷媒配管8−4と中間バイパス弁5と
を接続する低圧電磁弁である。
2. Description of the Related Art FIG. 6 is a refrigerant circuit diagram of a conventional refrigeration system. In FIG. 6, reference numeral 1 denotes, for example, “Technical Manual for Mitsubishi Condensing Unit Scroll Compressor”
(Issued in January 1991), which is a displacement control compressor having a displacement control means of a bypass unloading method.
FIG. 8 shows a schematic sectional view of the structure. Reference numeral 5 denotes an intermediate pressure bypass valve for bypassing a part of the intermediate-pressure gaseous refrigerant in the middle of compression in the compression chamber 11 to a compression chamber inlet (not shown) via a bypass passage (not shown). 5
It opens and closes due to the pressure difference between the refrigerant pressure applied to the outside of the valve and the pressure applied to the inside of the valve. 9 is a fixed scroll, 10 is an orbiting scroll, 2 is a condenser, 3 is a throttle device, 4 is an evaporator, and these are refrigerant pipes 8-1, 8-2, 8-3, 8-4.
The refrigeration cycle is configured by connecting the refrigeration cycle. 6 is an electromagnetic valve connecting the refrigerant pipe 8-1 on the refrigerant discharge side of the displacement control compressor 1 and the intermediate bypass valve 5, and 7 is a refrigerant pipe 8-4 on the refrigerant suction side of the displacement control compressor 1 and an intermediate bypass valve. 5 is a low pressure solenoid valve.

【0003】次に動作について説明する。図6におい
て、通常時には冷媒は容量制御圧縮機1で圧縮され、高
温高圧ガス冷媒となり凝縮器2に入る。凝縮器2におい
て、冷却流体(例えば外気)に熱を放出する事によって
凝縮し、高圧液冷媒となり更に、絞り装置3で除々に減
圧され、絞り装置出口で低温低圧気液混合冷媒となった
後、蒸発器4へ送られる。そこで冷媒は熱源流体(例え
ば室内空気)より熱を吸収することにより蒸発し、低温
低圧ガス冷媒となり容量制御圧縮機1へ戻る。この時、
高圧電磁弁6を開き低圧電磁弁7を閉じることによりバ
イパス弁5の弁外側は高圧ガス冷媒が伝わり、図7及び
図8の中間圧力バイパス弁5が押さえられ、圧縮途中の
冷媒はバイパスせず圧縮される。これを繰り返すことに
より、熱源流体より冷却流体に熱を移動させることがで
きる。
Next, the operation will be described. In FIG. 6, the refrigerant is normally compressed by the displacement control compressor 1, becomes a high-temperature high-pressure gas refrigerant, and enters the condenser 2. After being condensed by releasing heat to a cooling fluid (for example, outside air) in the condenser 2, the refrigerant becomes a high-pressure liquid refrigerant, and is further gradually depressurized by the expansion device 3, and becomes a low-temperature, low-pressure gas-liquid mixed refrigerant at the expansion device outlet. To the evaporator 4. Then, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, indoor air), becomes a low-temperature low-pressure gas refrigerant, and returns to the capacity control compressor 1. At this time,
By opening the high-pressure solenoid valve 6 and closing the low-pressure solenoid valve 7, high-pressure gas refrigerant is transmitted to the outside of the bypass valve 5, and FIG.
The intermediate pressure bypass valve 5 in FIG. 8 is pressed, and the refrigerant being compressed is compressed without bypassing. By repeating this, heat can be transferred from the heat source fluid to the cooling fluid.

【0004】次に容量制御時について説明する。冷媒は
容量制御圧縮機1で圧縮され高温高圧ガス冷媒となり、
凝縮器2に入る。そこで冷媒は冷却流体(例えば外気)
に熱を放出する事によって凝縮し、高圧液冷媒となり、
更に、絞り装置3で徐々に減圧され絞り装置出口で低温
低圧気液混合冷媒となった後、蒸発器4へ送られる。こ
こで冷媒は熱源流体(例えば室内空気)より熱を吸収す
ることにより蒸発し、低温低圧ガス冷媒となり、容量制
御圧縮機1へ戻る。この時、高圧電磁弁6を閉じ低圧電
磁弁7を開くことにより中間圧力バイパス弁5の弁外側
は低圧ガス冷媒が伝わり、図7及び図8の固定スクロー
ル9及び揺動スクロール10間に形成される圧縮室11内の
冷媒は中間圧力バイパス弁5が容量制御圧縮機1で圧縮
される途中の中間圧力ガス冷媒によって押し開かれ、圧
縮室外へバイパス路(図示せず)を介し排出され低圧側
に戻され蒸発器4より戻ってくる低温低圧ガス冷媒と合
流し、再度容量制御圧縮機1の圧縮室低圧側に吸入され
る。この事により、バイパスしなかった残りの中間圧力
ガス冷媒のみ容量制御圧縮機1で圧縮され吐出される
為、冷凍サイクルを流れる冷媒が減少し、熱源流体より
冷却流体に熱を移動させる熱の容量を減少させることが
できる。
Next, a description will be given of the time of capacity control. The refrigerant is compressed by the capacity control compressor 1 to become a high-temperature high-pressure gas refrigerant,
Enter the condenser 2. The refrigerant is a cooling fluid (for example, outside air)
By condensing by releasing heat to a high-pressure liquid refrigerant,
Further, the pressure is gradually reduced by the expansion device 3 to become a low-temperature low-pressure gas-liquid mixed refrigerant at the expansion device outlet, and then sent to the evaporator 4. Here, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, indoor air), becomes a low-temperature low-pressure gas refrigerant, and returns to the displacement control compressor 1. At this time, by closing the high-pressure solenoid valve 6 and opening the low-pressure solenoid valve 7, the low-pressure gas refrigerant is transmitted to the outside of the intermediate pressure bypass valve 5 and is formed between the fixed scroll 9 and the orbiting scroll 10 in FIGS. The refrigerant in the compression chamber 11 is pushed open by the intermediate pressure gas refrigerant in the middle of compression of the intermediate pressure bypass valve 5 by the capacity control compressor 1, discharged to the outside of the compression chamber via a bypass (not shown), and discharged to the low pressure side. And is joined with the low-temperature low-pressure gas refrigerant returned from the evaporator 4, and is again sucked into the compression chamber low-pressure side of the displacement control compressor 1. As a result, only the remaining intermediate-pressure gas refrigerant that has not been bypassed is compressed and discharged by the displacement control compressor 1, so that the amount of refrigerant flowing through the refrigeration cycle decreases, and the heat capacity that transfers heat from the heat source fluid to the cooling fluid is reduced. Can be reduced.

【0005】[0005]

【発明が解決しようとする課題】従来の冷凍装置は以上
のように構成されているので、容量制御時に中間圧力バ
イパス弁に圧力を伝えるために電磁弁が2個必ず必要で
あり、容量制御が複雑になるという問題点があった。
Since the conventional refrigeration system is configured as described above, two solenoid valves are necessarily required to transmit pressure to the intermediate pressure bypass valve during capacity control, and capacity control is required. There was a problem that it became complicated.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、容量制御圧縮機の中間圧力バイ
パス弁の弁開閉制御が1個の電磁弁の制御により行なえ
る容量制御の簡単な冷凍装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a simple capacity control in which the opening / closing control of an intermediate pressure bypass valve of a capacity control compressor can be performed by controlling one solenoid valve. The purpose is to obtain a simple refrigeration system.

【0007】[0007]

【課題を解決するための手段】この発明に係る冷凍装置
は圧縮途中における中間圧力冷媒の一部を冷媒吸入側部
にバイパスする中間圧力バイパス弁を有する容量制御圧
縮機の吸入側冷媒と熱交換可能に熱交換器を設け、上記
容量制御圧縮機の冷媒吐出側部と上記中間バイパス弁と
を電磁弁と上記熱交換器とを介して接続したものであ
る。また、蒸発器の入口側冷媒と熱交換可能に熱交換器
を設け、中間圧力バイパス弁を有する容量制御圧縮機の
冷媒吐出側部と上記中間圧力バイパス弁とを電磁弁と上
記熱交換器とを介し接続したものである。
SUMMARY OF THE INVENTION A refrigerating apparatus according to the present invention exchanges heat with the suction side refrigerant of a displacement control compressor having an intermediate pressure bypass valve for bypassing a part of the intermediate pressure refrigerant during compression to a refrigerant suction side. Preferably, a heat exchanger is provided, and the refrigerant discharge side of the displacement control compressor and the intermediate bypass valve are connected via an electromagnetic valve and the heat exchanger. Further, a heat exchanger is provided so as to be able to exchange heat with the refrigerant on the inlet side of the evaporator, and the refrigerant discharge side of the displacement control compressor having the intermediate pressure bypass valve and the intermediate pressure bypass valve are connected to the solenoid valve and the heat exchanger. Are connected via a.

【0008】[0008]

【作用】この発明における冷凍装置は容量制御圧縮機の
冷媒吐出側部を中間圧力バイパス弁に接続する冷媒配管
に設けられた電磁弁が開かれると、上記電磁弁を介し容
量制御圧縮機の高温高圧の吐出冷媒の高圧圧力が中間圧
力バイパス弁にかかり、その弁が閉じられ、圧縮途中の
冷媒がバイパスされることなく圧縮される。また上記電
磁弁が閉じられると上記電磁弁と上記中間圧力バイパス
弁間に上記高圧高温の吐出冷媒が閉じ込められる。この
閉じ込められた高温高圧の吐出冷媒は上記電磁弁と上記
中間圧力バイパス弁間に設けられた熱交換器により冷却
され低温低圧の冷媒となり、この低圧圧力が中間圧力バ
イパス弁の弁外側にかかる。この中間バイパス弁の弁外
側にかかる圧力よりも弁内側にかかる圧縮途中の中間圧
力ガス冷媒の圧力の方が高いので、中間圧力バイパス弁
が開き、圧縮途中の冷媒は冷媒吸入側部に戻され容量制
御が行なわれる。
When the solenoid valve provided on the refrigerant pipe connecting the refrigerant discharge side of the displacement control compressor to the intermediate pressure bypass valve is opened, the temperature of the displacement control compressor is increased via the solenoid valve. The high pressure of the high-pressure discharge refrigerant is applied to the intermediate pressure bypass valve, the valve is closed, and the refrigerant being compressed is compressed without being bypassed. When the solenoid valve is closed, the high-pressure and high-temperature discharge refrigerant is trapped between the solenoid valve and the intermediate pressure bypass valve. The trapped high-temperature and high-pressure discharge refrigerant is cooled by a heat exchanger provided between the solenoid valve and the intermediate pressure bypass valve to become a low-temperature low-pressure refrigerant, and the low pressure is applied to the outside of the intermediate pressure bypass valve. Since the pressure of the intermediate-pressure gas refrigerant during compression applied to the inside of the intermediate bypass valve is higher than the pressure applied to the outside of the intermediate bypass valve, the intermediate-pressure bypass valve is opened, and the refrigerant being compressed is returned to the refrigerant suction side. Capacity control is performed.

【0009】[0009]

【実施例】【Example】

実施例1.以下、図1に示されるこの発明の一実施例に
よる冷凍装置について説明する。図1において、図6と
同一符号は相当部分を示すのでその説明を省略する。12
は容量制御圧縮機1の吸入側冷媒と熱交換可能に冷媒配
管8−4に配設された熱交換器であり、容量制御圧縮機
1の吐出側冷媒配管8−1へ電磁弁13を介し冷媒配管14
−1,14−2にて接続されると共に、容量制御圧縮機1
の中間圧力バイパス弁5へ冷媒配管14−3にて接続され
ており、かつ、熱交換器12と冷媒配管14−3との接続部
Aは、冷媒配管14−2との接続部Bよりも高い位置に、
また電磁弁13及び冷媒配管14−1,14−2は接続部Bの
高さと同じか、低い位置に配設されている。
Embodiment 1 FIG. Hereinafter, a refrigeration apparatus according to an embodiment of the present invention shown in FIG. 1 will be described. In FIG. 1, the same reference numerals as those in FIG. 12
Is a heat exchanger disposed in the refrigerant pipe 8-4 so as to be able to exchange heat with the suction-side refrigerant of the displacement control compressor 1, and to the discharge-side refrigerant pipe 8-1 of the displacement control compressor 1 via the electromagnetic valve 13. Refrigerant piping 14
-1, 14-2, and the capacity control compressor 1
Is connected to the intermediate pressure bypass valve 5 by a refrigerant pipe 14-3, and a connection part A between the heat exchanger 12 and the refrigerant pipe 14-3 is larger than a connection part B with the refrigerant pipe 14-2. In a high position,
Further, the solenoid valve 13 and the refrigerant pipes 14-1 and 14-2 are arranged at the same height as the connection portion B or at a lower position.

【0010】次に動作について、図2,図3に示される
モリエル線図を参照し説明する。図1,図2において通
常時には冷媒は容量制御圧縮機1で圧縮され高温高圧ガ
ス冷媒18aとなり、凝縮器2に入る。凝縮器2に入った
冷媒は冷却流体(例えば外気)に熱を放出する事によっ
て凝縮し、高圧液冷媒19aとなり更に、絞り装置3で除
々に減圧され、絞り装置3の出口で低温低圧気液混合冷
媒20aとなった後、蒸発器4へ送られる。そこで冷媒は
熱源流体(例えば室内空気)より熱を吸収することによ
り蒸発し、低温低圧ガス冷媒21aとなり圧縮機1へ戻
る。この時、電磁弁13を開くことにより容量制御圧縮機
1で圧縮された高温高圧ガス冷媒18aの一部は電磁弁
6、熱交換器12とそれを接続する冷媒配管14−1、14-
2、14−3を伝わる。この高温高圧ガス冷媒18aの一部は
容量制御圧縮機1の吸入側冷媒と熱交換する熱交換器12
により、図2の18aから22aの方へ移動するが容量制御
圧縮機1の出口側冷媒配管8−1と熱交換機12を接続す
る電磁弁13及び冷媒配管14−1,14−2は熱交換器12の
接続部Bの高さと同じか、低い位置に設けられている
為、凝縮した高圧液冷媒は高低差により再び高温高圧ガ
ス冷媒18aと合流し、高温高圧ガス冷媒となる。この事
により図7及び図8の中間圧力バイパス弁5外側の圧力
は、高温高圧ガス冷媒13aと同じ圧力22bが伝わり、こ
の圧力によって中間圧力バイパス弁5が押さえられ、圧
縮途中の冷媒はバイパスせず、圧縮され従来の実施例と
同様に、熱源流体より冷却流体に熱を移動させることが
できる。
Next, the operation will be described with reference to the Mollier diagrams shown in FIGS. In FIGS. 1 and 2, the refrigerant is normally compressed by the displacement control compressor 1 to become a high-temperature and high-pressure gas refrigerant 18 a and enters the condenser 2. The refrigerant that has entered the condenser 2 is condensed by releasing heat to a cooling fluid (for example, outside air) to become a high-pressure liquid refrigerant 19a, which is gradually depressurized by the expansion device 3, and is cooled by the low-temperature low-pressure gas-liquid at the outlet of the expansion device 3. After it becomes the mixed refrigerant 20a, it is sent to the evaporator 4. Then, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, indoor air) and returns to the compressor 1 as a low-temperature low-pressure gas refrigerant 21a. At this time, a part of the high-temperature and high-pressure gas refrigerant 18a compressed by the displacement control compressor 1 by opening the electromagnetic valve 13 causes the electromagnetic valve 6, the heat exchanger 12, and the refrigerant pipes 14-1 and 14-
Propagate 2, 14-3. A part of the high-temperature and high-pressure gas refrigerant 18a exchanges heat with the suction-side refrigerant of the displacement control compressor 1.
2 moves from 18a to 22a in FIG. 2, but the solenoid valve 13 connecting the outlet side refrigerant pipe 8-1 of the capacity control compressor 1 and the heat exchanger 12 and the refrigerant pipes 14-1 and 14-2 exchange heat. Since it is provided at the same or lower position as the height of the connecting portion B of the vessel 12, the condensed high-pressure liquid refrigerant merges again with the high-temperature and high-pressure gas refrigerant 18a due to the difference in height to become a high-temperature and high-pressure gas refrigerant. As a result, the same pressure 22b as that of the high-temperature and high-pressure gas refrigerant 13a is transmitted to the pressure outside the intermediate pressure bypass valve 5 in FIGS. 7 and 8, and the intermediate pressure bypass valve 5 is held down by this pressure, and the refrigerant being compressed is bypassed. Instead, heat can be transferred from the heat source fluid to the cooling fluid as in the conventional embodiment.

【0011】次に容量制御時について説明する。図1,
図3に於いて冷媒は容量制御圧縮器1で圧縮され高温高
圧ガス冷媒18bとなり、凝縮器2に入る。冷媒は冷却流
体(例えば外気)に熱を放出する事によって凝縮し、高
圧液冷媒19bとなり、更に、絞り装置3で徐々に減圧さ
れ、絞り装置3の出口で低温低圧気液混合冷媒20bとな
った後、蒸発器4へ送られる。ここで冷媒は熱源流体
(例えば室内空気)より熱を吸収することにより蒸発
し、低温低圧ガス冷媒21bとなり、容量制御圧縮機1へ
戻る。この時、電磁弁13を閉じるとことにより容量制御
圧縮機1で圧縮された高温高圧ガス冷媒18bの一部は中
間圧力バイパス弁5、電磁弁13・熱交換器12とそれを接
続する冷媒配管14−2,14−3による閉回路に閉じ込め
られる。この高圧高温ガス冷媒18bは容量制御圧縮器1
の入口冷媒と熱交換する熱交換器12により熱を放出する
事により凝縮し、図3の18bから24aへ移動し、温度及
び圧力は容量制御圧縮機1の入口冷媒温度24cとその冷
媒温度24cの飽和圧力24bとなる。この事により図7及
び図8の中間圧力バイパス弁5外側に容量制御圧縮機1
の入口冷媒温度24cに於ける飽和圧力24bが伝わり、固
定スクロール9及び揺動スクロール10間に形成される圧
縮室11内の冷媒は中間圧力バイパス弁5が容量制御圧縮
機1で圧縮される途中の中間圧力ガス冷媒に押し開かれ
ることにより、圧縮室外へバイパス路(図示せず)を介
し排出され低圧側に戻され蒸発器4より戻ってくる低温
低圧ガス冷媒と合流し、再度容量制御圧縮機1に吸入さ
れる。この事により、バイパスしなかった残りの中間圧
力ガス冷媒のみ容量制御圧縮機1で圧縮される為、冷媒
量冷凍サイクルを流れる冷媒が減少し、熱源流体より冷
却流体に移動する熱の容量が減少し容量制御が行なわれ
る。
Next, a description will be given of the time of the capacity control. Figure 1
In FIG. 3, the refrigerant is compressed by the displacement control compressor 1 to become a high-temperature high-pressure gas refrigerant 18 b and enters the condenser 2. The refrigerant is condensed by releasing heat to a cooling fluid (for example, outside air) to become a high-pressure liquid refrigerant 19b, and further decompressed gradually by the expansion device 3, and becomes a low-temperature low-pressure gas-liquid mixed refrigerant 20b at the outlet of the expansion device 3. After that, it is sent to the evaporator 4. Here, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, room air), becomes a low-temperature low-pressure gas refrigerant 21b, and returns to the displacement control compressor 1. At this time, when the solenoid valve 13 is closed, a part of the high-temperature and high-pressure gas refrigerant 18b compressed by the displacement control compressor 1 becomes part of the intermediate pressure bypass valve 5, the solenoid valve 13, the heat exchanger 12, and the refrigerant pipe connecting the same. It is confined in a closed circuit by 14-2 and 14-3. This high-pressure high-temperature gas refrigerant 18b is supplied to the displacement control compressor 1
The heat is condensed by releasing heat from the heat exchanger 12 which exchanges heat with the inlet refrigerant of the compressor, and moves from 18b to 24a in FIG. 3, and the temperature and pressure are changed to the inlet refrigerant temperature 24c of the displacement control compressor 1 and the refrigerant temperature 24c. Becomes the saturation pressure 24b. As a result, the displacement control compressor 1 is disposed outside the intermediate pressure bypass valve 5 shown in FIGS.
The saturated pressure 24b at the inlet refrigerant temperature 24c is transmitted, and the refrigerant in the compression chamber 11 formed between the fixed scroll 9 and the orbiting scroll 10 is compressed by the capacity control compressor 1 while the intermediate pressure bypass valve 5 is compressed. Of the intermediate-pressure gas refrigerant, the refrigerant is discharged to the outside of the compression chamber via a bypass (not shown), returned to the low-pressure side, merges with the low-temperature low-pressure gas refrigerant returned from the evaporator 4, and is subjected to capacity control compression again. Inhaled by machine 1. As a result, only the remaining intermediate-pressure gas refrigerant that has not been bypassed is compressed by the capacity control compressor 1, so that the amount of refrigerant flowing through the refrigeration cycle decreases, and the capacity of heat transferred from the heat source fluid to the cooling fluid decreases. Then, capacity control is performed.

【0012】実施例2.図4はこの発明の他の実施例に
よる冷凍装置を示すものであり、図4において、図6と
同一符号は相当部分を示すのでその説明を省略する。15
は容量制御圧縮機1の冷媒吐出側の冷媒配管8−1へ電
磁弁16を介し冷媒配管17−1,17−2で接続された熱交
換器11であり、電磁弁16を介し冷媒配管17−1,17−2
を伝ってきた容量制御圧縮機1の吐出ガス冷媒と蒸発器
4の入口側冷媒とを熱交換可能にその入口側の冷媒配管
8−3に配設されている。そして熱交換器12と冷媒配管
17−3との接続部Aは冷媒配管17−2との接続部Bより
も高い位置に、また電磁弁16及び冷媒配管17−1,17−
2は接続部Bの高さと同じか、低い位置に配設されてい
る。
Embodiment 2 FIG. FIG. 4 shows a refrigeration apparatus according to another embodiment of the present invention. In FIG. 4, the same reference numerals as in FIG. 6 denote corresponding parts, and a description thereof will be omitted. Fifteen
Is a heat exchanger 11 connected to a refrigerant pipe 8-1 on the refrigerant discharge side of the displacement control compressor 1 via an electromagnetic valve 16 via refrigerant pipes 17-1 and 17-2. -1, 17-2
The refrigerant is discharged from the capacity control compressor 1 and the refrigerant on the inlet side of the evaporator 4 is disposed in the refrigerant pipe 8-3 on the inlet side so as to exchange heat. And heat exchanger 12 and refrigerant pipe
The connection part A with 17-3 is higher than the connection part B with the refrigerant pipe 17-2, and the solenoid valve 16 and the refrigerant pipes 17-1, 17-
Reference numeral 2 is provided at a position equal to or lower than the height of the connection portion B.

【0013】次に動作について、図2,図5に示される
モリエル線図を参照し説明する。図4,図5において通
常時には冷媒は容量制御圧縮機1で圧縮された高温高圧
ガス冷媒18aとなり凝縮器2に入る。凝縮器2に入った
冷媒は冷却流体(例えば外気)に熱を放出する事によっ
て凝縮し、高圧液冷媒19aとなり更に、絞り装置3で徐
々に減圧され、絞り装置3の出口で低温低圧気液混合冷
媒20aとなった後、蒸発器4へ送られる。そこで冷媒は
熱源流体(例えば室内空気)より熱を吸収することによ
り蒸発し、低温低圧ガス冷媒21aとなり容量制御圧縮機
1へ戻る。この時、電磁弁16を開くことにより容量制御
圧縮機1で圧縮された高温高圧ガス冷媒18aの一部は電
磁弁16、熱交換器15とそれを接続する冷媒配管17−1,
17−2,17−3を伝わる。この高温高圧ガス冷媒13aの
一部は、冷却器4の入口冷媒と熱交換する熱交換器12に
より、図2の18aから22aの方へ移動するが容量制御圧
縮機1の出口側の冷媒配管8−1と熱交換器15を接続す
る電磁弁16及び冷媒配管17−1,17−2は、熱交換器15
の接続部Bの高さと同じか、低い位置に設けられている
為、凝縮した高圧液冷媒は高低差により再び高温高圧ガ
ス冷媒18aと合流し、高温高圧ガス冷媒となる。この事
により図7及び図8の中間圧力バイパス弁5の弁外側の
圧力は、高温高圧ガス冷媒18aと同じ圧力22bが伝わ
り、この圧力によって中間圧力バイパス弁5が押さえら
れ、圧縮途中の冷媒はバイパスせず、圧縮され従来の実
施例と同様に、熱源流体より冷却流体に熱を移動させる
ことができる。
Next, the operation will be described with reference to the Mollier diagrams shown in FIGS. In FIG. 4 and FIG. 5, the refrigerant normally becomes the high-temperature high-pressure gas refrigerant 18 a compressed by the displacement control compressor 1 and enters the condenser 2. The refrigerant that has entered the condenser 2 is condensed by releasing heat to a cooling fluid (for example, outside air), becomes a high-pressure liquid refrigerant 19a, and is gradually depressurized by the expansion device 3, and is cooled by the low-temperature low-pressure gas-liquid at the outlet of the expansion device 3. After it becomes the mixed refrigerant 20a, it is sent to the evaporator 4. Then, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, indoor air) and becomes a low-temperature low-pressure gas refrigerant 21a, and returns to the displacement control compressor 1. At this time, a part of the high-temperature and high-pressure gas refrigerant 18a compressed by the capacity control compressor 1 by opening the electromagnetic valve 16 is part of the electromagnetic valve 16, the heat exchanger 15, and the refrigerant pipes 17-1 and 17-1,
It travels on 17-2 and 17-3. A part of the high-temperature and high-pressure gas refrigerant 13a moves from 18a to 22a in FIG. 2 by the heat exchanger 12 which exchanges heat with the inlet refrigerant of the cooler 4, but the refrigerant pipe on the outlet side of the displacement control compressor 1 The solenoid valve 16 and the refrigerant pipes 17-1 and 17-2 for connecting the heat exchanger 15 to the heat exchanger 15
The high-pressure liquid refrigerant condensed with the high-temperature and high-pressure gas refrigerant 18a again due to the difference in height, and becomes a high-temperature and high-pressure gas refrigerant. 7 and 8, the same pressure 22b as that of the high-temperature and high-pressure gas refrigerant 18a is transmitted to the outside of the intermediate pressure bypass valve 5, and the intermediate pressure bypass valve 5 is pressed by this pressure. The heat can be transferred from the heat source fluid to the cooling fluid without being bypassed and compressed as in the conventional embodiment.

【0014】次に容量制御時について説明する。図4,
図5に於いて冷媒は容量制御圧縮機1で圧縮され高温高
圧ガス冷媒18bとなり凝縮器2に入る。凝縮器2に入っ
た冷媒は冷却流体(例えば外気)に熱を放出する事によ
って凝縮し、高圧液冷媒19bとなり、更に、絞り装置3
で徐々に減圧され、絞り装置3の出口で低温低圧気液混
合冷媒20bとなった後、蒸発器4へ送られる。ここで冷
媒は熱源流体(例えば室内空気)より熱を吸収すること
により蒸発し、低温低圧ガス冷媒21bとなり、容量制御
圧縮機1へ戻る。この時、高圧電磁弁16を閉じることに
より容量制御圧縮機1で圧縮された高温高圧ガス冷媒18
bの一部は中間圧力バイパス弁5、電磁弁16、熱交換器
15とそれを接続する冷媒配管17−2、17−3による閉回
路に閉じ込められる。この高圧高温ガス冷媒18bは冷却
器4の入口冷媒と熱交換する熱交換器15により熱を放出
する事により凝縮し、図15の18bから25aへ移動し、温
度及び圧力は蒸発器4の入口冷媒温度25cと蒸発圧力25
bとなる。この事により図7及び図8の中間圧力バイパ
ス弁5の弁外側に蒸発圧力25bが伝わり、中間圧力バイ
パス弁5が容量制御圧縮機1で圧縮される途中の中間圧
力ガス冷媒に押し開かれることにより、固定スクロール
9及び揺動スクロール10間に形成される圧縮室11内の冷
媒は圧縮室外へバイパス路(図示せず)を介し排出され
低圧側に戻され蒸発器4より戻ってくる低温低圧ガス冷
媒と合流し、再度容量制御圧縮機1に吸入される。この
事により、バイパスしなかった残りの中間圧力ガス冷媒
のみ容量制御圧縮器1で圧縮される為、冷凍サイクルを
流れる冷媒量が減少し、熱源流体より冷却流体に移動す
る熱の容量が減少し容量制御が行なわれる。
Next, a description will be given of the time of the capacity control. FIG.
In FIG. 5, the refrigerant is compressed by the displacement control compressor 1 to become a high-temperature high-pressure gas refrigerant 18b and enters the condenser 2. The refrigerant that has entered the condenser 2 is condensed by releasing heat to a cooling fluid (for example, outside air) to become a high-pressure liquid refrigerant 19b.
The pressure is gradually reduced at the outlet of the expansion device 3 to become the low-temperature low-pressure gas-liquid mixed refrigerant 20 b at the outlet of the expansion device 3, and then sent to the evaporator 4. Here, the refrigerant evaporates by absorbing heat from a heat source fluid (for example, room air), becomes a low-temperature low-pressure gas refrigerant 21b, and returns to the displacement control compressor 1. At this time, the high-pressure high-pressure gas refrigerant 18 compressed by the displacement control compressor 1 is closed by closing the high-pressure electromagnetic valve 16.
Part of b is intermediate pressure bypass valve 5, solenoid valve 16, heat exchanger
It is confined in a closed circuit by 15 and refrigerant pipes 17-2 and 17-3 connecting it. The high-pressure high-temperature gas refrigerant 18b is condensed by releasing heat from the heat exchanger 15 which exchanges heat with the refrigerant at the inlet of the cooler 4 and moves from 18b to 25a in FIG. Refrigerant temperature 25c and evaporation pressure 25
b. As a result, the evaporation pressure 25b is transmitted to the outside of the intermediate pressure bypass valve 5 shown in FIGS. 7 and 8, and the intermediate pressure bypass valve 5 is pushed open by the intermediate pressure gas refrigerant being compressed by the displacement control compressor 1. As a result, the refrigerant in the compression chamber 11 formed between the fixed scroll 9 and the orbiting scroll 10 is discharged out of the compression chamber via a bypass (not shown), returned to the low pressure side, and returned from the evaporator 4 to the low temperature and low pressure. It merges with the gas refrigerant and is sucked into the capacity control compressor 1 again. As a result, only the remaining intermediate-pressure gas refrigerant that has not been bypassed is compressed by the capacity control compressor 1, so that the amount of refrigerant flowing through the refrigeration cycle decreases, and the capacity of heat transferred from the heat source fluid to the cooling fluid decreases. Capacity control is performed.

【0015】実施例3.なお、以上の実施例1,2は何
れも、接続部Aの位置を接続部Bの位置よりも高くなる
よう配設すると共に、接続部Bに接続される冷媒配管14
−1,14−2,17−1,17−2、電磁弁13,16を接続部
Bの高さと同じか、低い位置に配設したものについて述
べたが、このような位置関係によることなく、例えば電
磁弁13(又は16) を介し熱交換器12(又は15)に流入冷
媒量に対して熱交換器12(又は15)の凝縮能力を小さく
設定するようにしても良く、この場合においても前述の
実施例1,2と同様に電磁弁13(又は16)を開けば中間
圧力バイパス弁5に係る圧力は容量制御圧縮機1の吐出
冷媒圧力とほぼ等しくなり中間圧力バイパス弁5が開か
ず、電磁弁13(又は16)を閉にすれば電磁弁13(又は1
6)と中間圧力バイパス弁5間に閉じ込められた冷媒は
熱交換器12(又は15)によって冷却され、温度及び圧力
が容量制御圧縮器1の中間圧力ガス冷媒の圧力よりも低
くなる。これにより中間圧力バイパス弁5が開き容量制
御運転が行なわれ、前述の実施例1、2と同様の作用・
効果が得られる。
Embodiment 3 FIG. In each of the first and second embodiments, the position of the connection portion A is higher than the position of the connection portion B, and the refrigerant pipe 14 connected to the connection portion B is provided.
-1, 14-2, 17-1, 17-2 and the solenoid valves 13, 16 are arranged at the same or lower position as the height of the connecting portion B. For example, the condensation capacity of the heat exchanger 12 (or 15) may be set to be smaller than the amount of refrigerant flowing into the heat exchanger 12 (or 15) via the solenoid valve 13 (or 16). In the same manner as in the first and second embodiments, if the solenoid valve 13 (or 16) is opened, the pressure applied to the intermediate pressure bypass valve 5 becomes substantially equal to the refrigerant pressure discharged from the displacement control compressor 1, and the intermediate pressure bypass valve 5 is opened. If the solenoid valve 13 (or 16) is closed, the solenoid valve 13 (or 1
The refrigerant confined between 6) and the intermediate pressure bypass valve 5 is cooled by the heat exchanger 12 (or 15), and the temperature and the pressure become lower than the pressure of the intermediate pressure gas refrigerant of the displacement control compressor 1. As a result, the intermediate pressure bypass valve 5 is opened, and the capacity control operation is performed.
The effect is obtained.

【0016】[0016]

【発明の効果】以上のように、この発明によれば、容量
制御圧縮機の冷媒吐出側部を、1個の電磁弁と、上記容
量制御圧縮機の吸入側冷媒又は蒸発器の入口側冷媒と熱
交換する熱交換器とを介し上記容量制御圧縮機の中間圧
力バイパス弁に接続しているので、上記中間圧力バイパ
ス弁への圧力制御が上記1個の電磁弁の弁開閉制御によ
り行なえ、容量制御が簡単になり、信頼性の高い冷凍装
置が得られる等の効果がある。
As described above, according to the present invention, the refrigerant discharge side of the displacement control compressor is provided with one solenoid valve and the suction side refrigerant of the displacement control compressor or the inlet side refrigerant of the evaporator. Connected to the intermediate pressure bypass valve of the displacement control compressor via a heat exchanger that exchanges heat with the pressure control valve, so that pressure control to the intermediate pressure bypass valve can be performed by valve opening / closing control of the one solenoid valve, There are effects such as simple capacity control and a highly reliable refrigeration system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による冷凍装置を示す冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram showing a refrigeration apparatus according to one embodiment of the present invention.

【図2】図1に示される冷凍装置の冷凍サイクルの各部
の状態を示すモリエル線図である。
FIG. 2 is a Mollier diagram showing states of respective parts of a refrigeration cycle of the refrigeration apparatus shown in FIG.

【図3】図1に示される冷凍装置の容量制御時における
冷凍サイクルの各部の状態を示すモリエル線図である。
FIG. 3 is a Mollier chart showing the state of each part of the refrigeration cycle during capacity control of the refrigeration apparatus shown in FIG.

【図4】この発明の他の実施例による冷凍装置を示す冷
媒回路図である。
FIG. 4 is a refrigerant circuit diagram showing a refrigeration apparatus according to another embodiment of the present invention.

【図5】図4に示される冷凍装置の冷凍サイクルの各部
の状態を示すモリエル線図である。
5 is a Mollier diagram showing a state of each part of a refrigeration cycle of the refrigeration apparatus shown in FIG.

【図6】従来の冷凍装置を示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram showing a conventional refrigeration apparatus.

【図7】図6に示される容量制御圧縮機の断面図であ
る。
FIG. 7 is a sectional view of the displacement control compressor shown in FIG. 6;

【図8】図6に示される容量制御圧縮機の断面図であ
る。
FIG. 8 is a sectional view of the displacement control compressor shown in FIG. 6;

【符号の説明】[Explanation of symbols]

1 容量制御圧縮機 2 凝縮器 3 絞り装置 4 蒸発器 5 中間圧力バイパス弁 12 熱交換器 13 電磁弁 14−1,14−2,14−3 冷媒配管DESCRIPTION OF SYMBOLS 1 Capacity control compressor 2 Condenser 3 Throttle device 4 Evaporator 5 Intermediate pressure bypass valve 12 Heat exchanger 13 Solenoid valve 14-1, 14-2, 14-3 Refrigerant piping

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒の圧力によって開閉制御され圧縮途
中における中間圧力冷媒の一部を冷媒吸入側部にバイパ
スする中間圧力バイパス弁を有する容量制御圧縮機と、
凝縮器と、絞り装置と、蒸発器とを冷媒配管にて順次接
続してなる冷凍サイクルを備えたものにおいて、上記容
量制御圧縮機の冷媒吐出側部を、電磁弁と、上記容量制
御圧縮機の吸入側冷媒と熱交換する熱交換器とを介し上
記中間圧力バイパス弁に接続したことを特徴とする冷凍
装置。
1. A displacement control compressor having an intermediate pressure bypass valve that is opened / closed by the pressure of the refrigerant and bypasses a part of the intermediate pressure refrigerant during compression to a refrigerant suction side,
In a device provided with a refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe, a refrigerant discharge side portion of the displacement control compressor includes an electromagnetic valve, and the displacement control compressor. A refrigeration unit connected to the intermediate pressure bypass valve via a heat exchanger that exchanges heat with the suction side refrigerant.
【請求項2】 冷媒の圧力によって開閉制御され圧縮途
中における中間圧力冷媒の一部を冷媒吸入側部にバイパ
スする中間圧力バイパス弁を有する容量制御圧縮機と、
凝縮器と、絞り装置と、蒸発器とを冷媒配管にて順次接
続してなる冷凍サイクルを備えたものにおいて、上記容
量制御圧縮機の冷媒吐出側部を、電磁弁と、上記蒸発器
の入口側冷媒と熱交換する熱交換器とを介し、上記中間
圧力バイパス弁へ接続したことを特徴とする冷凍装置。
2. A capacity control compressor having an intermediate pressure bypass valve which is controlled to open and close by a pressure of the refrigerant and bypasses a part of the intermediate pressure refrigerant during compression to a refrigerant suction side.
In a device provided with a refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe, a refrigerant discharge side of the displacement control compressor is provided with an electromagnetic valve, and an inlet of the evaporator. A refrigeration apparatus characterized by being connected to the intermediate pressure bypass valve via a heat exchanger that exchanges heat with the side refrigerant.
JP3288391A 1991-11-05 1991-11-05 Refrigeration equipment Expired - Lifetime JP2646914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288391A JP2646914B2 (en) 1991-11-05 1991-11-05 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288391A JP2646914B2 (en) 1991-11-05 1991-11-05 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05126417A JPH05126417A (en) 1993-05-21
JP2646914B2 true JP2646914B2 (en) 1997-08-27

Family

ID=17729599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288391A Expired - Lifetime JP2646914B2 (en) 1991-11-05 1991-11-05 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2646914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699176B2 (en) * 2005-11-01 2011-06-08 三菱重工業株式会社 Refrigeration circuit and refrigeration apparatus equipped with the same
US20200232683A1 (en) * 2017-03-29 2020-07-23 Mitsubishi Electric Corporation Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device

Also Published As

Publication number Publication date
JPH05126417A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US20090188265A1 (en) Air conditioning system
JP2002081767A (en) Air conditioner
JP2001235245A (en) Freezer
JP4320844B2 (en) Refrigeration equipment
JP2646914B2 (en) Refrigeration equipment
JP2944507B2 (en) Air conditioner
JPH10205933A (en) Air conditioner
JP2877552B2 (en) Air conditioner
JP2646894B2 (en) Refrigeration cycle device
JPH04313647A (en) Heat pump type air conditioner
JP2765970B2 (en) Air conditioner
JP2002213839A (en) Multichamber air conditioner
JPH03170758A (en) Air conditioner
JP3407867B2 (en) Operation control method of air conditioner
JPH02118365A (en) Air conditioner
JPH07167508A (en) Refrigerator
JPH0285660A (en) Heat pump type air conditioner
JP2664437B2 (en) Refrigeration equipment
JPH02247466A (en) Air conditioner
JPH04263742A (en) Refrigerator
JPH04347466A (en) Air conditioner
JPH04136470U (en) Refrigeration equipment
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH08226720A (en) Air conditioning equipment
JPH01123965A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees