JPH04136470U - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH04136470U
JPH04136470U JP4046791U JP4046791U JPH04136470U JP H04136470 U JPH04136470 U JP H04136470U JP 4046791 U JP4046791 U JP 4046791U JP 4046791 U JP4046791 U JP 4046791U JP H04136470 U JPH04136470 U JP H04136470U
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
bypass valve
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046791U
Other languages
Japanese (ja)
Inventor
裕章 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP4046791U priority Critical patent/JPH04136470U/en
Publication of JPH04136470U publication Critical patent/JPH04136470U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 圧縮途中冷媒の一部を圧縮室吸入側にバイパ
スし、上記バイパスの弁開閉を冷媒の圧力によって制御
する容量制御圧縮機によって構成される冷凍サイクルに
おいて、装置の簡略化とそれに伴い信頼性の高い冷凍装
置を得る。 【構成】 圧縮機1、凝縮器2、絞り装置3、蒸発器
4、冷媒配管8によって、構成される冷凍サイクルにお
いて、圧縮機出口とバイパス弁5を高圧電磁弁6を介し
て接続し、圧縮機入口とバイパス弁5を細管12を介して
接続する。
(57) [Summary] [Purpose] In a refrigeration cycle consisting of a capacity control compressor that bypasses a part of the refrigerant to the suction side of the compression chamber during compression and controls the opening and closing of the bypass valve according to the pressure of the refrigerant, To obtain a refrigeration system that is simplified and has high reliability accordingly. [Structure] In a refrigeration cycle composed of a compressor 1, a condenser 2, a throttle device 3, an evaporator 4, and a refrigerant pipe 8, the compressor outlet and a bypass valve 5 are connected via a high-pressure solenoid valve 6, and the compression The machine inlet and bypass valve 5 are connected via a thin tube 12.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、冷凍装置の容量制御に関するもので、冷凍装置の部品簡略化、信 頼性向上に関するものである。 This idea is related to capacity control of refrigeration equipment, and aims to simplify parts of refrigeration equipment and improve reliability. This is related to improving reliability.

【0002】0002

【従来の技術】[Conventional technology]

図5は従来の冷凍装置の冷媒回路図、図3、図4は例えば「三菱電機コンデン シングユニット スクロール圧縮機搭載 テクニカルマニュアル」(1991年1月 発行)に示された、従来から一般に用いられているバイパスアンロード方式の、 容量制御を有する圧縮機の内部構造図とその断面図である。図において、1は圧 縮機、2は凝縮器、3は絞り装置、4は蒸発器、5は圧縮途中の中間圧力ガス冷 媒の一部を圧縮室入口へバイパスする中間圧力バイパス弁、6は圧縮機出口と中 間圧力バイパス弁を接続する高圧電磁弁、7は圧縮機入口と中間圧力バイパス弁 を接続する低圧電磁弁であり、冷媒配管8によって上記1〜7を接続し、冷凍サ イクルを構成している。 Figure 5 is a refrigerant circuit diagram of a conventional refrigeration system, and Figures 3 and 4 are, for example, Mitsubishi Electric Condenser "Sing Unit with Scroll Compressor Technical Manual" (January 1991) The bypass unloading method, which has been commonly used in the past, is shown in FIG. 2 is an internal structural diagram and a sectional view of a compressor having capacity control. In the figure, 1 is pressure Compressor, 2 is a condenser, 3 is a throttle device, 4 is an evaporator, 5 is an intermediate pressure gas cooling unit during compression. An intermediate pressure bypass valve that bypasses a part of the medium to the compression chamber inlet; High pressure solenoid valve that connects the intermediate pressure bypass valve, 7 is the compressor inlet and intermediate pressure bypass valve This is a low-pressure solenoid valve that connects 1 to 7 above with refrigerant piping 8, and It makes up the cycle.

【0003】 次に動作について説明する。図5において通常時、冷媒は圧縮機1で圧縮され 高温高圧ガス冷媒となり、凝縮器2に入る。冷媒は冷却流体(例えば外気)に熱 を放出する事によって凝縮し、高圧液冷媒となり、更に、絞り装置3で徐々に減 圧され、絞り装置出口で低温低圧気液混合冷媒となった後、蒸発器4へ送られる 。 そこで冷媒は熱源流体(例えば室内空気)より熱を吸収することにより蒸発し 、低温低圧ガス冷媒となり圧縮機1へ戻る。 これを繰り返すことにより、熱源流体より冷却流体に熱を移動させることがで きる。0003 Next, the operation will be explained. In Fig. 5, under normal conditions, refrigerant is compressed by compressor 1. It becomes a high-temperature, high-pressure gas refrigerant and enters the condenser 2. The refrigerant imparts heat to the cooling fluid (e.g. outside air). It condenses and becomes a high-pressure liquid refrigerant, and is gradually reduced by the expansion device 3. After being compressed and turned into a low-temperature, low-pressure gas-liquid mixed refrigerant at the exit of the throttling device, it is sent to the evaporator 4. . Therefore, the refrigerant evaporates by absorbing heat from the heat source fluid (e.g. indoor air). , and returns to the compressor 1 as a low-temperature, low-pressure gas refrigerant. By repeating this process, heat can be transferred from the heat source fluid to the cooling fluid. Wear.

【0004】 通常時は高圧電磁弁6を開き低圧電磁弁7を閉じることにより、中間圧力バイ パス弁5外側は高圧ガス冷媒が伝わり、中間圧力バイパス弁5が押さえられ、圧 縮途中の冷媒はバイパスしない。0004 Under normal conditions, by opening the high-pressure solenoid valve 6 and closing the low-pressure solenoid valve 7, intermediate pressure is bypassed. High-pressure gas refrigerant is transmitted to the outside of the pass valve 5, and the intermediate pressure bypass valve 5 is held down, reducing the pressure. Refrigerant in the process of being compressed is not bypassed.

【0005】 次に容量制御時について説明する。 高圧電磁弁6を閉じ低圧電磁弁7を開くことにより、中間圧力バイパス弁5外 側は低圧ガス冷媒が伝わるが、固定スクロール9及び揺動スクロール10間で形成 される圧縮室11内の冷媒は、中間圧力バイパス弁5が圧縮機1で圧縮される途中 の中間圧力ガス冷媒に押し開かれることにより、低圧側に戻され、蒸発器4より 戻ってくる低温低圧ガス冷媒と合流し、再度圧縮機1に吸入される。[0005] Next, the time of capacity control will be explained. By closing the high pressure solenoid valve 6 and opening the low pressure solenoid valve 7, the intermediate pressure bypass valve 5 is removed. The low-pressure gas refrigerant is transmitted to the side, which is formed between the fixed scroll 9 and the oscillating scroll 10. The refrigerant in the compression chamber 11 is compressed by the intermediate pressure bypass valve 5 while being compressed by the compressor 1. By being pushed open by the intermediate pressure gas refrigerant, it is returned to the low pressure side and from the evaporator 4. It joins with the returning low-temperature, low-pressure gas refrigerant and is sucked into the compressor 1 again.

【0006】 この事により、バイパスしなかった残りの中間圧力ガス冷媒のみ圧縮機1で圧 縮される為、圧縮冷媒が減少し、熱源流体より冷却流体に熱を移動させる熱の容 量を減少させることができる。[0006] As a result, only the remaining intermediate pressure gas refrigerant that has not been bypassed is pressurized by compressor 1. Because the compressed refrigerant is compressed, the heat capacity that transfers heat from the heat source fluid to the cooling fluid decreases. The amount can be reduced.

【0007】[0007]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

従来の冷凍装置は以上のように構成されているので容量制御時は電磁弁が2個 必ず必要であり、装置が複雑になるという問題があった。 Conventional refrigeration equipment is configured as described above, so two solenoid valves are used to control capacity. This is always necessary, and there is a problem in that the device becomes complicated.

【0008】 この考案は上記のような問題点を解決する為になされたもので、冷凍装置の部 品簡略化とそれに伴う信頼性向上を目的とする。[0008] This idea was made to solve the problems mentioned above, and was designed to solve the problems mentioned above. The purpose is to simplify the product and improve reliability accordingly.

【0009】[0009]

【課題を解決するための手段】[Means to solve the problem]

この考案に係る冷凍装置は、圧縮途中冷媒の一部を圧縮室吸入側にバイパスし 、上記バイパスの弁開閉を冷媒の圧力で制御する容量制御圧縮機、凝縮器、絞り 装置、蒸発器、冷媒配管によって、構成される冷凍サイクルにおいて、圧縮機出 口と中間圧力バイパス弁を電磁弁を介して接続し、圧縮機入口とバイパス弁を細 管を介して接続したものである。 The refrigeration system according to this invention bypasses a part of the refrigerant during compression to the suction side of the compression chamber. , capacity control compressor, condenser, and throttle that control the opening and closing of the bypass valve using refrigerant pressure. In a refrigeration cycle consisting of a device, evaporator, and refrigerant piping, the compressor output Connect the compressor inlet and the intermediate pressure bypass valve via a solenoid valve, and connect the compressor inlet and the bypass valve to the It is connected via a pipe.

【0010】0010

【作用】[Effect]

この考案における冷凍装置は、通常時は、圧縮機出口と中間圧力バイパス弁の 間に設けられた電磁弁を開くことにより中間圧力バイパス弁外側に高圧圧力をか けてバイパス弁を閉じ、容量制御時は、圧縮機出口と中間圧力バイパス弁の間に 設けられた電磁弁を閉じることにより圧縮機入口から細管を通って伝わる低圧圧 力を中間圧力バイパス弁にかけるが、圧縮途中の中間圧力ガス冷媒にバイパス弁 が押し開かれることによって、冷媒が低圧側にバイパスされる。 Normally, the refrigeration system in this invention has a connection between the compressor outlet and the intermediate pressure bypass valve. By opening the solenoid valve installed in between, high pressure is applied to the outside of the intermediate pressure bypass valve. and close the bypass valve, and when controlling the capacity, connect the valve between the compressor outlet and the intermediate pressure bypass valve. Low pressure pressure is transmitted from the compressor inlet through the capillary by closing the provided solenoid valve. The power is applied to the intermediate pressure bypass valve, but the bypass valve is applied to the intermediate pressure gas refrigerant during compression. By pushing open the refrigerant, the refrigerant is bypassed to the low pressure side.

【0011】[0011]

【実施例】【Example】

実施例1. 以下、この考案における一実施例について説明する。図1はこの考案の一実施 例による冷凍装置の冷媒回路である。図1において1〜9は従来装置と全く同一 のものである。12は圧縮機入口と中間圧力バイパス弁を接続した細管であり、そ の冷媒流通抵抗値は高圧電磁弁6を開いた時に中間圧力バイパス弁5の外側圧力 が圧縮機中間圧縮室圧力以上となるよう十分大きく設定してある。 Example 1. An embodiment of this invention will be described below. Figure 1 shows one implementation of this idea. It is a refrigerant circuit of a refrigeration system by example. In Figure 1, 1 to 9 are exactly the same as the conventional device. belongs to. 12 is a thin tube connecting the compressor inlet and the intermediate pressure bypass valve; The refrigerant flow resistance value is the outside pressure of the intermediate pressure bypass valve 5 when the high pressure solenoid valve 6 is opened. is set sufficiently large so that the pressure is higher than the compressor intermediate compression chamber pressure.

【0012】 次に動作について説明する。通常時、冷媒は圧縮機1で圧縮され高温高圧ガス 冷媒となり、凝縮器2に入る。冷媒は冷却流体(例えば外気)に熱を放出する事 によって凝縮し、高圧液冷媒となり更に、絞り装置3で徐々に減圧され、絞り装 置出口で低温低圧気液混合冷媒となった後、蒸発器4へ送られる。そこで冷媒は 熱源流体(例えば室内空気)より熱を吸収することにより蒸発し、低温低圧ガス 冷媒となり圧縮機1へ戻る。0012 Next, the operation will be explained. Normally, the refrigerant is compressed by compressor 1 and becomes a high-temperature, high-pressure gas. It becomes a refrigerant and enters the condenser 2. The refrigerant releases heat to the cooling fluid (e.g. outside air). It condenses into a high-pressure liquid refrigerant, which is then gradually reduced in pressure by the throttling device 3. After becoming a low-temperature, low-pressure gas-liquid mixed refrigerant at the outlet, it is sent to the evaporator 4. So the refrigerant It evaporates by absorbing heat from the heat source fluid (e.g. indoor air) and becomes a low-temperature, low-pressure gas. It becomes a refrigerant and returns to the compressor 1.

【0013】 この時、高圧電磁弁6を開くことにより中間圧力バイパス弁5外側の圧力は細 管12の抵抗が大きい為に圧縮機1で圧縮された高温高圧ガス冷媒とほぼ同じ圧力 が伝わり、この圧力によって中間圧力バイパス弁5が押さえられ、圧縮途中の冷 媒はバイパスせず、圧縮される。 又、高温高圧ガス冷媒の一部は細管12を通り圧縮機入口に入るが細管12の抵抗 が大きい為に殆ど流れない。[0013] At this time, by opening the high pressure solenoid valve 6, the pressure outside the intermediate pressure bypass valve 5 is reduced. Because the resistance of pipe 12 is large, the pressure is almost the same as that of the high-temperature, high-pressure gas refrigerant compressed by compressor 1. is transmitted, and this pressure presses down the intermediate pressure bypass valve 5, preventing cooling during compression. The medium is not bypassed and is compressed. Also, a part of the high-temperature, high-pressure gas refrigerant passes through the capillary tube 12 and enters the compressor inlet, but due to the resistance of the capillary tube 12, Because it is large, there is almost no flow.

【0014】 次に容量制御時について説明する。 高圧電磁弁6を閉じると中間圧力バイパス弁5外側に低圧ガス冷媒が均圧配管 12を通り伝わるが、固定スクロール9及び揺動スクロール10間で形成される圧縮 室11内の冷媒は、中間圧力バイパス弁5が圧縮機1で圧縮される途中の中間圧力 ガス冷媒に押し開かれることにより、低圧側に戻され、蒸発器4より戻ってくる 低温低圧ガス冷媒と合流し、再度圧縮機1に吸入される。[0014] Next, the time of capacity control will be explained. When the high-pressure solenoid valve 6 is closed, the low-pressure gas refrigerant is distributed to the outside of the intermediate pressure bypass valve 5 in a pressure-equalizing pipe. 12, but the compression formed between the fixed scroll 9 and the oscillating scroll 10 The refrigerant in the chamber 11 is at an intermediate pressure when the intermediate pressure bypass valve 5 is in the middle of being compressed by the compressor 1. By being pushed open by the gas refrigerant, it is returned to the low pressure side and returned from the evaporator 4. It joins with the low-temperature, low-pressure gas refrigerant and is sucked into the compressor 1 again.

【0015】 この事により、バイパスしなかった残りの中間圧力ガス冷媒のみ圧縮機1で圧 縮される為、圧縮冷媒が減少し、熱源流体より冷却流体に熱を移動させる熱の容 量を減少させることができる。[0015] As a result, only the remaining intermediate pressure gas refrigerant that has not been bypassed is pressurized by compressor 1. Because the compressed refrigerant is compressed, the heat capacity that transfers heat from the heat source fluid to the cooling fluid decreases. The amount can be reduced.

【0016】 実施例2. 尚、図2の如く、高圧電磁弁6のかわりに低圧電磁弁7を用いて、細管12の接 続位置を高圧側と低圧側に逆に取付けたとしても同様の作用、動作が得られる。[0016] Example 2. As shown in Fig. 2, a low pressure solenoid valve 7 is used instead of the high pressure solenoid valve 6 to connect the thin tube 12 Even if the connecting positions are reversed to the high pressure side and low pressure side, the same effect and operation can be obtained.

【0017】[0017]

【考案の効果】[Effect of the idea]

この考案は、以上説明したように構成されているので、容量制御時に中間圧力 バイパス弁の開閉に要する電磁弁が1個でよく、装置が簡略化でき、それに伴い 信頼性の高い冷凍装置を得ることができる。 Since this device is configured as explained above, intermediate pressure is controlled during capacity control. Only one solenoid valve is required to open and close the bypass valve, which simplifies the equipment and reduces costs. A highly reliable refrigeration system can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この考案の一実施例による冷凍装置の冷媒回路
図を示す。
FIG. 1 shows a refrigerant circuit diagram of a refrigeration system according to an embodiment of this invention.

【図2】この考案の他の実施例による冷凍装置の冷媒回
路図を示す。
FIG. 2 shows a refrigerant circuit diagram of a refrigeration system according to another embodiment of the invention.

【図3】容量制御圧縮機内部構造図を示す。FIG. 3 shows a diagram of the internal structure of the capacity control compressor.

【図4】容量制御圧縮機断面図を示す。FIG. 4 shows a sectional view of a capacity control compressor.

【図5】従来の冷凍装置の冷媒回路を示す。FIG. 5 shows a refrigerant circuit of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 絞り装置 4 蒸発器 5 中間圧力バイパス弁 6 高圧電磁弁 7 低圧電磁弁 8 冷媒配管 12 細管 1 Compressor 2 Condenser 3 Squeezing device 4 Evaporator 5 Intermediate pressure bypass valve 6 High pressure solenoid valve 7 Low pressure solenoid valve 8 Refrigerant piping 12 tubules

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 圧縮途中冷媒の一部を圧縮室吸入側にバ
イパスし、上記バイパスの弁開閉を冷媒の圧力で制御す
る容量制御圧縮機、凝縮器、絞り装置、蒸発器、冷媒配
管によって、構成される冷凍サイクルにおいて、圧縮機
出口とバイパス弁を電磁弁を介して接続し、圧縮機入口
とバイパス弁を細管を介して接続したことを特徴とする
冷凍装置。
Claim 1: A capacity control compressor, a condenser, a throttle device, an evaporator, and a refrigerant pipe, which bypass a part of the refrigerant during compression to the suction side of the compression chamber and control the opening and closing of the bypass valve based on the pressure of the refrigerant. 1. A refrigeration system comprising a refrigeration cycle in which a compressor outlet and a bypass valve are connected via a solenoid valve, and a compressor inlet and a bypass valve are connected via a thin tube.
JP4046791U 1991-05-31 1991-05-31 Refrigeration equipment Pending JPH04136470U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046791U JPH04136470U (en) 1991-05-31 1991-05-31 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046791U JPH04136470U (en) 1991-05-31 1991-05-31 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JPH04136470U true JPH04136470U (en) 1992-12-18

Family

ID=31921503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046791U Pending JPH04136470U (en) 1991-05-31 1991-05-31 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH04136470U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143951A (en) * 2002-10-22 2004-05-20 Tokyo Gas Co Ltd Scroll compressor
JP4726573B2 (en) * 2005-08-11 2011-07-20 日立アプライアンス株式会社 Heat pump hot water floor heater
JP2012184750A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Scroll compressor and refrigeration cycle device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126207A (en) * 1979-03-20 1980-09-29 Hitachi Ltd Connector for photo reception
JPS5826971A (en) * 1981-08-11 1983-02-17 ダイキン工業株式会社 Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126207A (en) * 1979-03-20 1980-09-29 Hitachi Ltd Connector for photo reception
JPS5826971A (en) * 1981-08-11 1983-02-17 ダイキン工業株式会社 Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143951A (en) * 2002-10-22 2004-05-20 Tokyo Gas Co Ltd Scroll compressor
JP4726573B2 (en) * 2005-08-11 2011-07-20 日立アプライアンス株式会社 Heat pump hot water floor heater
JP2012184750A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Scroll compressor and refrigeration cycle device including the same

Similar Documents

Publication Publication Date Title
US6571576B1 (en) Injection of liquid and vapor refrigerant through economizer ports
JPH0232546B2 (en)
JPH04136470U (en) Refrigeration equipment
JPS5997462A (en) Defrosting circuit for heat pump
JP2646914B2 (en) Refrigeration equipment
KR200292744Y1 (en) Heat Pump
JPH07167508A (en) Refrigerator
JPH02203176A (en) Refrigerant recovery device
JPH03170758A (en) Air conditioner
JPH04263742A (en) Refrigerator
JPS58133571A (en) Refrigeration cycle of air conditioner
JPH0442682Y2 (en)
JPS62280548A (en) Separate type air conditioner
JPS58102067A (en) Air conditioner
JP2543182B2 (en) Cooling / heating hot water supply system
JPS5912513Y2 (en) refrigeration cycle
JPS5818138Y2 (en) refrigeration cycle
JPS60111851A (en) Heat pump type refrigerator
JPH0113971Y2 (en)
JPH04103967A (en) Double compression type freezing cycle device
JPS6038846Y2 (en) air conditioner
JPH0285660A (en) Heat pump type air conditioner
KR20040011115A (en) Heat pump
JPS6045341B2 (en) Multi-room air conditioner
CN114791178A (en) Air conditioner injection circulation system and control method thereof