JPS5826971A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5826971A
JPS5826971A JP56126286A JP12628681A JPS5826971A JP S5826971 A JPS5826971 A JP S5826971A JP 56126286 A JP56126286 A JP 56126286A JP 12628681 A JP12628681 A JP 12628681A JP S5826971 A JPS5826971 A JP S5826971A
Authority
JP
Japan
Prior art keywords
valve
capillary
pressure
compressor
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56126286A
Other languages
Japanese (ja)
Other versions
JPH026983B2 (en
Inventor
片山 能章
田口 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP56126286A priority Critical patent/JPS5826971A/en
Publication of JPS5826971A publication Critical patent/JPS5826971A/en
Publication of JPH026983B2 publication Critical patent/JPH026983B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍装置、詳しくは、圧縮機のシリンダ室にお
ける圧縮工程中間部と、圧縮機の吸入側とにバイパス通
路を設け、該バイパス通路に、該バイパス通路を開閉す
る開閉弁を設け、該開1■弁の背面室に冷凍装置の低圧
又は高圧を作用させることにより前記開閉弁を開又は閉
となして、前記圧41機の容置を制御するごとくした冷
凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system, and more specifically, a bypass passage is provided in the middle part of the compression process in the cylinder chamber of a compressor and on the suction side of the compressor, and the bypass passage is provided with a bypass passage that can be opened and closed. The refrigeration system is provided with an on-off valve to control the capacity of the pressure 41 machine by opening or closing the on-off valve by applying low pressure or high pressure of the refrigeration equipment to the back chamber of the opening 1 valve. It is related to the device.

榊来、この種冷凍装置において、冷凍負荷の減少に対応
して、前記開閉弁を開き前記圧縮工程中間部を圧縮機の
吸入側に連通させて圧縮機の8縁を小装置に制御するい
わゆるアンロード制るiを行なうものが提供されている
。しかして、前記冷媒回路の一部を構成する膨張装置を
一本のキャピラリーチューブにより形成する場合、該キ
ャビラリーチ=−ブの流通冷媒量は凝縮圧祿発圧力の圧
力差により定まるのであるが、全負荷運転、即ちいわゆ
るフルロード運転のとき適正過熱度になるような冷媒流
量とするキャピラリーチューブを選定すると、前記アン
ロード運転時にあっても前記圧力差は太き(変わらない
ため前記アンロード運転に必要な冷媒量以上の冷媒が前
記キャピラリーチューブを流通し、蒸発圧力が上昇し、
その結果熱交換器の熱交換効率の低下や、圧縮機への液
冷媒の流入に因る故障を生じさせる問題があった。また
前記アンロード運転のとき適正過熱度になるような冷媒
流量とするキャピラリーチューブを選定すると、前記フ
ルロード運転時に、その適正、運転に必要な冷媒量以下
の冷媒しか前記キャピラリーチューブを流通せず、蒸発
圧力が低下し、過熱度が高くなり、その結果蒸発器にお
ける熱交換が悪くなり、冷凍能力が低下するという問題
があったそこで、この問題の防止策として、前記膨張装
置を2個のキャピラリーチューブを並列に介設すること
により形成し、前記フルロード運転時には双方を、前記
アンロード運転時には一方を使用するごとく成し、冷凍
負荷に応じた冷媒の紘圧制碕を行うごとく成すことが考
えられる。ところか、このようにすると、圧縮佛の容量
を制御すへく前記開閉弁を開閉する電磁弁と前記2個の
キャピラリーチューブの一方への冷媒の流入を可又は不
可ならしめる制眞弁との2個の弁を必要とし、部品点数
が多くなって、冷媒回路が複雑になると共に、両弁を制
御する制御系も複雑化し、全体に故障個所が多くて信頼
性が低く、かつ不経済となる問題があった。
In this type of refrigeration system, in response to a decrease in the refrigeration load, the opening/closing valve is opened and the intermediate part of the compression process is communicated with the suction side of the compressor to control the eight edges of the compressor into a small device. An unload control is provided. Therefore, when the expansion device constituting a part of the refrigerant circuit is formed by a single capillary tube, the amount of refrigerant flowing through the capillary reach is determined by the pressure difference between the condensing pressure and the firing pressure. If a capillary tube is selected that has a refrigerant flow rate that will give an appropriate degree of superheat during load operation, that is, so-called full load operation, the pressure difference will be large even during unload operation (because it does not change) An amount of refrigerant greater than the required amount flows through the capillary tube, and the evaporation pressure increases.
As a result, there are problems in that the heat exchange efficiency of the heat exchanger decreases and failures occur due to the inflow of liquid refrigerant into the compressor. In addition, if a capillary tube is selected that has a refrigerant flow rate that provides the appropriate degree of superheat during the unload operation, only the amount of refrigerant that is less than the amount of refrigerant required for the proper operation will flow through the capillary tube during the full load operation. There was a problem in that the evaporation pressure decreased and the degree of superheating increased, resulting in poor heat exchange in the evaporator and a decrease in refrigerating capacity.Therefore, as a measure to prevent this problem, two expansion devices were installed. It is formed by interposing capillary tubes in parallel, and both are used during the full load operation, and one is used during the unload operation, so that the refrigerant can be controlled in accordance with the refrigeration load. Conceivable. However, by doing so, the capacity of the compressor can be controlled by using a solenoid valve that opens and closes the on-off valve and a control valve that allows or disables the refrigerant to flow into one of the two capillary tubes. Two valves are required, the number of parts increases, the refrigerant circuit becomes complicated, and the control system that controls both valves becomes complicated.There are many failure points throughout the system, making it unreliable and uneconomical. There was a problem.

不発明は以−ヒの問題を解決すべ〈発明したもので、目
的とするところは、1イにの電磁弁などの制御弁を用い
るだけで、Iモ砺機の各員制御用開閉弁の開閉制御と、
キャピラリーチューブによる冷媒の減圧制御とを、とも
に誤動作なく確実に行なえ、冷凍負荷の変動に応じた能
力制御と容量制卸を確実に行える冷凍装置を提供する点
にあるーすなわち、本発明は、圧縮機、凝縮器、膨張装
置、蒸発器を順次接続した冷媒回路を有し、前記圧縮機
のシリンダ室における圧縮工程中間部と、゛前記圧縮機
の吸入側とにバイパス通路を設け、該バイパス通路に、
該バイパス通路を開閉する開閉弁を設け、該開閉弁の背
面室に冷凍装置の低圧又は高圧を作用させることにより
、前記開閉弁を開又は閉となして、前記圧縮機の容置を
制御するごとくした冷凍装置において、前記膨張装置を
第1キヤピラリーチユーブと第2キヤピラリーチユーブ
を並列に介設することにより形成し、該第2キヤピラリ
ーチユーブの入口側に一つの制御弁を設け、該制御弁と
前記第2キヤピラリーチユーブとの間に前記開閉弁の背
面室に連通する連絡管の一方を接続し、該制御弁を開又
は閉となすことにより、前記背面室へ冷凍装置の高圧又
は低圧を選択的に作用させると共に、前記両キャピラリ
ーチューブ又は第1キヤピラリーチユーブを膨張装置と
して選択的に作用させるごとくしたことを特徴とするも
のである。
Non-invention is to solve the following problems.The purpose is to solve the following problems by simply using a control valve such as a solenoid valve in 1.A. opening/closing control,
It is an object of the present invention to provide a refrigeration system that can reliably perform pressure reduction control of refrigerant using a capillary tube without malfunction, and can reliably perform capacity control and capacity reduction in response to fluctuations in refrigeration load. The refrigerant circuit has a refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are sequentially connected, and a bypass passage is provided at an intermediate part of the compression process in the cylinder chamber of the compressor and at the suction side of the compressor, and the bypass passage To,
An on-off valve that opens and closes the bypass passage is provided, and low pressure or high pressure of a refrigeration system is applied to a rear chamber of the on-off valve to open or close the on-off valve to control the capacity of the compressor. In the refrigeration system, the expansion device is formed by interposing a first capillary reach tube and a second capillary reach tube in parallel, and one control valve is provided on the inlet side of the second capillary reach tube, and the expansion device is formed by interposing a first capillary reach tube and a second capillary reach tube in parallel. One side of a communication pipe communicating with the back chamber of the on-off valve is connected between the control valve and the second capillary reach tube, and by opening or closing the control valve, the high pressure of the refrigeration equipment is transferred to the back chamber. Alternatively, the low pressure may be selectively applied, and both capillary tubes or the first capillary reach tube may be selectively used as an expansion device.

以下、本発明冷凍装置の衷施例を図面に基ついて説明す
る。
Hereinafter, embodiments of the refrigeration system of the present invention will be described with reference to the drawings.

第1図に示したものは、本発明冷凍装置を概略的に示し
たものであり、第1図において、fi+は8董制御機構
(51をもったロータリ圧縮機で、該圧縮機(11には
、凝縮器(2)、膨張装置(3)、及び蒸発器(41を
直列に接続した冷媒回路(61を接続して、吐出ガスを
凝縮器(21で凝縮液化させ、また、膨張装置(31で
減圧し、さらに蒸発器(41で蒸発気化させて圧縮機(
1)に吸入させる冷媒回路を形成している。
What is shown in FIG. 1 is a schematic representation of the refrigeration system of the present invention. In FIG. A refrigerant circuit (61) is connected in which a condenser (2), an expansion device (3), and an evaporator (41) are connected in series, and the discharged gas is condensed and liquefied in the condenser (21). The pressure is reduced at 31, and then the evaporator is evaporated at 41, and then the compressor (
1) forms a refrigerant circuit that is sucked into the refrigerant.

前記ロータリ圧縮機11)は、第2図に示すごとく、円
筒形胴体(7a)の両端を上蓋(7b)、下蓋(7c)
により被冠して密閉状としたハウジング(7月ζモータ
(図示せず)とシリンダブロック(91とを上、下に配
設し、モータの駆動軸(81をシリンダブロック(91
に貫通させ、該シリンダブロック(91に内装するロー
タ(lO)を駆動するごとくしたものである。前記シリ
ンダブロック(91は、前記駆動軸(8)の軸心と同心
状壁面をもつシリンダ室(lla)を備えたシリンダボ
ディ(11)と、シリンダ室(lla)を閉鎖するフロ
ントヘッド(12)とりャヘッド(13)とから成り、
前記シリンダ室(lla)に前記駆動軸(81の細心に
対し偏心回転する前記ロータ(10)を内装するのであ
る。
As shown in FIG. 2, the rotary compressor 11) has a cylindrical body (7a) with both ends connected to an upper cover (7b) and a lower cover (7c).
A housing (7ζ motor (not shown) and a cylinder block (91) are arranged on top and bottom, and the motor drive shaft (81 is placed in a sealed housing) with a cylinder block (91
The cylinder block (91 has a cylinder chamber (91) having a wall surface concentric with the axis of the drive shaft (8). It consists of a cylinder body (11) with a cylinder chamber (lla), a front head (12) and a catcher head (13) that close the cylinder chamber (lla),
The rotor (10), which rotates eccentrically with respect to the drive shaft (81), is housed in the cylinder chamber (lla).

前記圧縮機山は、ステーショナリーブレード式としたも
のであって、前記ロータ(10)は、前記駆動軸(81
から一体に延び円筒状局面をもったカム(10a)と、
該カム(10a)の外周に嵌合するローラ(10b)と
から構成し、カム(10a)の軸心をシリンダ室(ll
a)の軸心に対し偏心させると共に、ローラ(10b)
は前記各ヘッド(12)、(13)間の長さと等しくし
、その外周面の′1個所をシリンダ壁に接触させるので
ある。
The compressor mountain is of a stationary blade type, and the rotor (10) is connected to the drive shaft (81).
a cam (10a) extending integrally from the cam and having a cylindrical curve;
A roller (10b) that fits around the outer periphery of the cam (10a), and the axis of the cam (10a) is aligned with the cylinder chamber (ll).
The roller (10b) is eccentric to the axis of the roller (10b).
is made equal to the length between the heads (12) and (13), and the outer circumferential surface is brought into contact with the cylinder wall at a location '1'.

そして、前記シリンダボディ(11)には、第1図のご
とく該ボディ(11)に形成する案内溝にブレード(1
4)を摺動自由に取付け、該ブレード(14)の背面に
バネ(15)を設けて、先端面を前記ローラ(10b)
の外周面と密封状に圧接するのである。また、このブレ
ード(14)を挾んで両側の近接した位置に、前記シリ
ンダ室(lla)に開口する吸入ボート(16)及び吐
出ボート(17)を設けるのであり、該吐出ボート(1
7)の前記ハウジング(7)への開口部には、一端を前
記フロントヘッド(12)に支持した吐出弁(18)を
設けている。そして、吸入ポート(16)には前記冷媒
回路(6)の蒸発器(41から伸びる吸入、管(6a)
を接続し、上蓋(7b)には、前記冷媒回路(61の凝
縮器(2:に通ずる吐出管(6b)を接続するのである
The cylinder body (11) is provided with a blade (1) in a guide groove formed in the body (11) as shown in FIG.
4) is slidably attached, a spring (15) is provided on the back of the blade (14), and the tip surface is attached to the roller (10b).
It is pressed into sealing contact with the outer circumferential surface of. In addition, a suction boat (16) and a discharge boat (17) that open into the cylinder chamber (lla) are provided at positions close to each other on both sides of the blade (14), and the discharge boat (1
7), a discharge valve (18) whose one end is supported by the front head (12) is provided at the opening to the housing (7). The suction port (16) has a suction pipe (6a) extending from the evaporator (41) of the refrigerant circuit (6).
A discharge pipe (6b) leading to the condenser (2:) of the refrigerant circuit (61) is connected to the upper lid (7b).

そして、前記圧縮機(1)に具備させる前記容置制御機
構(51は、前記シリンダ室(lla)における吸入、
t?−ト(16)の開口位置から吐出ボート(17)の
開口位置に亘る圧縮工程の中間部に中間圧ポート(19
)を開口すると共に、該ポート(19)に連通ずる弁室
(20)を設け、該弁室(20)から吸入ポート(16
)に連通ずるバイパス通路(21)を設け、前記弁室(
20)には、前記中間圧ポー)(19)とバイパス通路
(21)とを開閉する開閉弁(22)と、該開閉弁(2
2)を常時開放方向に付勢するスプリング(23)とを
内装し、前記開閉弁(22)の背面室(24)の圧力制
御により開閉弁(22)を開閉させて、前記圧縮機(1
1の容量を、小容量と全容量とに制御すべく成している
The capacity control mechanism (51) provided in the compressor (1) controls the suction in the cylinder chamber (lla);
T? - An intermediate pressure port (19) is located in the middle of the compression process from the opening position of the boat (16) to the opening position of the discharge boat (17).
) is opened and a valve chamber (20) communicating with the port (19) is provided, and the suction port (16) is opened from the valve chamber (20).
) is provided with a bypass passage (21) communicating with the valve chamber (
20) includes an on-off valve (22) that opens and closes the intermediate pressure port (19) and the bypass passage (21), and the on-off valve (20).
The compressor (1) is equipped with a spring (23) that always biases the compressor (2) in the opening direction, and the on-off valve (22) is opened and closed by controlling the pressure in the back chamber (24) of the on-off valve (22).
The capacity of 1 is controlled to be a small capacity and a full capacity.

しかして、第1図に示したものは、前記膨張装置(3)
を第1キヤピラリーチユーブ(3a)と第2キヤピラリ
ーチユーブ(3b)を並列に介設することにより形成し
たもので、該第2キヤピラリーチユーブ(3b)の入口
側に一つの制御弁■1を設け、該制御弁閉と前記第2キ
ヤピラリーチユーブ(3b)との間に前記開閉弁(22
)の背面室・(24)に連通ずる連絡管(25)の一方
を接続して、該背面室(24)に、前記制御弁■1を開
くことにより高圧液管(6c)の高圧冷媒を連通させて
前記開閉弁(22)を閉じ、また、前記制御弁■1を閉
じることにより、前記背面室(24)を、吸入側に連通
させて前記開閉弁(22)を開くごとく成すのである。
Therefore, what is shown in FIG. 1 is the expansion device (3).
is formed by interposing a first capillary reach tube (3a) and a second capillary reach tube (3b) in parallel, and one control valve 1 is provided on the inlet side of the second capillary reach tube (3b). is provided, and the on-off valve (22) is provided between the closed control valve and the second capillary reach tube (3b).
) by connecting one side of the connecting pipe (25) that communicates with the rear chamber (24), and opening the control valve (1) to supply high-pressure refrigerant from the high-pressure liquid pipe (6c) to the rear chamber (24). By communicating with the on-off valve (22) and closing the control valve (1), the back chamber (24) is communicated with the suction side and the on-off valve (22) is opened. .

そして、前記制御弁閉は、冷凍負荷が全負荷から所定の
中間負荷の大負荷範囲の時開動作させ、また冷凍負荷が
前記所定の中間負荷以下の小負荷範囲の時閉動作させる
ごとく成すのである。
The control valve is closed when the refrigeration load is in a large load range from full load to a predetermined intermediate load, and closed when the refrigeration load is in a small load range below the predetermined intermediate load. be.

尚、第2図において、(28)は吸入ボート(16)に
吸入管(6a)を接続するための接続管(29)は継手
管、(30)は連絡管(25)を接続する接続部材で、
前記開閉弁(22)か後退する時のストッパ作用を兼用
させるものであるしかして、以上の構成において、冷凍
運転時、冷凍負荷が前記大負荷範囲に、ある場合には、
njJ記制御弁■)が開状態に保持されるため、高圧液
管(6c)の高圧冷媒が@1分岐管(26)及び連絡管
(25)を介して前記開閉弁(22)の背面室(24)
に連通し、スプリング(23)の付勢力に抗して開閉弁
(22)を押圧し、中間圧ボート(19)を閉鎖し、前
記圧縮機(1)は、圧縮工程の全体で圧縮作用を成す全
暮計の運転状態となる。またこの場合、高圧液管(6c
)の高圧冷媒は、第1キヤピラリーチユーブ(3a )
iこより減圧されると共に、第1分岐管(26)及び第
2分岐管(27)を介して第2キヤピラリーチユーブ(
3b)に連通ずることにより該第2キヤピラリーチユー
ブ(3b)によっても減圧される。以上のことから前記
大負荷に対応して確実に冷凍運転を行えるのである。
In Fig. 2, (28) is a connecting pipe (29) for connecting the suction pipe (6a) to the suction boat (16), and (30) is a connecting member for connecting the connecting pipe (25). in,
The on-off valve (22) also serves as a stopper when retracting.However, in the above configuration, if the refrigeration load is in the large load range during refrigeration operation,
njJ control valve (■) is held open, the high-pressure refrigerant in the high-pressure liquid pipe (6c) flows through the @1 branch pipe (26) and the communication pipe (25) to the back chamber of the on-off valve (22). (24)
The compressor (1) presses the on-off valve (22) against the urging force of the spring (23) to close the intermediate pressure boat (19), and the compressor (1) performs a compression action during the entire compression process. It will be in the operating state of the Zenkaku-kei. In addition, in this case, the high pressure liquid pipe (6c
) high-pressure refrigerant is supplied to the first capillary reach tube (3a).
The pressure is reduced from this, and the second capillary reach tube (26) and the second branch pipe (27) are
3b), the pressure is also reduced by the second capillary reach tube (3b). From the above, refrigerating operation can be performed reliably in response to the above-mentioned large load.

また、冷凍負荷が前記小貝荷範囲に低下した場合、前記
制御弁■1が閉状態に切換えられる。その結果、前記開
閉弁(22)の背面室(24)は吸入側に連通されるの
で、開閉弁(22)は前記スプリング(23)の付勢力
及び中間圧ポート(19)の中間圧により押圧されて後
退する。そのため、中間圧ボー)(19)がバイパス通
路(21)を介して吸入ボー)(16)に連通され、圧
縮機+11は圧縮工程における中間圧ボート(19)以
降で部分的圧縮作用を成す小容量の運転状態となる。ま
た、この場合、高圧液管(6C)の高圧冷媒は、第1キ
ヤピラリーチユーブ(3a)のみにより減圧され、循環
冷媒量が派生する。以上のことから前記小負荷に対応し
て確実に冷凍運転を行えるのである。
Further, when the refrigeration load falls to the small shellfish load range, the control valve (1) is switched to the closed state. As a result, the back chamber (24) of the on-off valve (22) is communicated with the suction side, so the on-off valve (22) is pressed by the biasing force of the spring (23) and the intermediate pressure of the intermediate pressure port (19). and retreat. Therefore, the intermediate pressure boat (19) is communicated with the suction boat (16) via the bypass passage (21), and the compressor +11 is a small compressor that performs a partial compression action after the intermediate pressure boat (19) in the compression process. The capacity is in operation. Further, in this case, the pressure of the high-pressure refrigerant in the high-pressure liquid pipe (6C) is reduced only by the first capillary reach tube (3a), and the amount of circulating refrigerant is derived. As a result of the above, refrigerating operation can be performed reliably in response to the small load.

以上のごとく、この実施例によれば、膨張装置(31に
キャピラリーチューブを用いた場合であっても、1つの
前記制御弁■)を開閉制御するだけで、複雑な制御装置
を用いることなく、負荷の大小に応じて大容量と小容量
との冷凍運転を、常に効率良く確実に行えるのである。
As described above, according to this embodiment, by simply controlling the opening and closing of the expansion device (even if a capillary tube is used for 31, the one control valve (1)), without using a complicated control device. Large-capacity and small-capacity refrigeration operations can always be performed efficiently and reliably depending on the size of the load.

しかも、以上のごとく行なう冷凍装置の運転において、
前記圧縮機(1)の部外を停止する場合、前記制御弁■
)を閉じることにより、前記開閉弁(22)はスプリン
グの作用で自動的に開いて、前記バイパス通路(21)
が開くので、高低圧間が迅速に均圧されることになるの
であって、やはり複雑な制御装置を用いることなく、1
つの前記制御弁■1の制御によって均圧も併せて行える
のであるまた、起動時、一定時間前記制御弁閉を閉じて
モータ(81に加わる起動負荷を小さくすることにより
、起動電流少なく容易に起動できるのである。
Moreover, in operating the refrigeration equipment as described above,
When stopping the outside of the compressor (1), the control valve ■
), the on-off valve (22) is automatically opened by the action of a spring, and the bypass passage (21) is closed.
Since the opening of the valve opens, the pressure between high and low pressure is quickly equalized, and again without using a complicated control device, one
Pressure equalization can also be performed by controlling the two control valves (1).In addition, by closing the control valve for a certain period of time during startup and reducing the startup load applied to the motor (81), the startup can be started easily with less startup current. It can be done.

また、第3図に示したものは、第1図に示した冷媒回路
において、第3キヤビ、ラリ−チューブ(31)を有す
る補助連絡管(32)の1方を蒸発器(4)の出口側へ
、他方を連絡管(25)へ接続したものであるが、この
ように成すことにより前記大負荷時、制御弁■)が開か
れ、高圧液冷媒の一部が連絡管(25)及び補助連絡管
(32)を介して第3牛ヤビラリーチユーブに流入し、
該第3キヤピラリーチユーブにより減圧されて圧縮am
il+の吸入ボー)(16)内にインジェクションされ
、吐出ガスが過熱されることがなく圧縮機(1)のシリ
ンダブロック(9)及びモータ18+を適温に保持す′
るなお、この第3図の実施例のものは、制御弁■)が開
かれて全負荷運転をした場合に、吐出ガス温度ひいては
モータ18)のコイル温度が過度に昇温するような型式
の圧縮機に適用されるものである。
Furthermore, in the refrigerant circuit shown in FIG. 1, the one shown in FIG. By connecting one side to the connecting pipe (25), when the load is large, the control valve (2) is opened and a portion of the high-pressure liquid refrigerant flows through the connecting pipe (25) and the other side to the connecting pipe (25). Flows into the third cow Yabira reach tube via the auxiliary communication pipe (32),
The pressure is reduced by the third capillary reach tube to compress am
The exhaust gas is injected into the suction bow (16) of the compressor (1) and maintains the cylinder block (9) of the compressor (1) and motor 18+ at an appropriate temperature without overheating the discharge gas.
Note that the embodiment shown in Fig. 3 is a model in which the temperature of the discharged gas and the coil temperature of the motor 18) rise excessively when the control valve ①) is opened and the motor 18) is operated at full load. It is applied to compressors.

なお、第1図〜第3図で示した実施例において、第1キ
ヤピラリーチユーブ(3a)は、これと同等の減圧能力
を有するように、複数のキャピラリーチューブを直列あ
るいは並列に形成する場合を含むものである。
In the embodiments shown in FIGS. 1 to 3, the first capillary reach tube (3a) has a plurality of capillary tubes formed in series or in parallel so as to have the same depressurizing ability. It includes.

以上説明した本発明冷凍装置はヒートポンプ式として、
空調゛対象域の冷・暖房を行なうもの番こ適用できる。
The refrigeration system of the present invention described above is of a heat pump type,
Air conditioning can be applied to equipment that cools and heats the target area.

本発明は以上のごとく、前記膨張装fil +31を第
1+ヤビラリーチ二−ブ(3a)と第2キヤピラリーチ
ユーブ(3b)を並列に介設することにより形成し、該
第2キヤビラリーチニーブ(3b)の入口側に一つの制
御弁[Vlを設け、該制御弁IVIと前記第2キヤピラ
リーチユーブ(3b)との間に前記開閉弁(22)の背
面室(24)に連通ずる連絡管(25)の一方を接続し
、該制御弁■1を開又は閉となすことにより、前記背面
室(24)へ冷凍装置の高圧又は低圧を選択的に作用さ
せると共に、前記両キャピラリーチ二−ブ(3a)(3
b)又は第1キヤピラリーチユーブ(3a)を膨張装置
として選択的に作用させるごとくしたことにより、一つ
の制御弁IVIの開閉により、冷凍負荷の変動に応じ、
圧縮機(11による容量制御と、キャピラリーチューブ
(3a)(3b)による冷媒の減圧制御とを、ともに誤
動作なく確実に行える、構造簡単で信頼性の高い冷凍装
置を提供できるのである。
As described above, the present invention forms the expansion device fil +31 by interposing the first +cabinary reach tube (3a) and the second capillary reach tube (3b) in parallel, 3b), and a communication pipe communicating with the back chamber (24) of the on-off valve (22) is provided between the control valve IVI and the second capillary reach tube (3b). (25), and by opening or closing the control valve (1), the high pressure or low pressure of the refrigeration system is selectively applied to the back chamber (24), and both the capillary reach and Bu (3a) (3
b) Or, by selectively operating the first capillary reach tube (3a) as an expansion device, one control valve IVI can be opened and closed to respond to fluctuations in the refrigeration load.
It is possible to provide a refrigeration system with a simple structure and high reliability, which can reliably perform both the capacity control by the compressor (11) and the pressure reduction control of the refrigerant by the capillary tubes (3a) and (3b) without malfunction.

【図面の簡単な説明】[Brief explanation of drawings]

jJ1図は本発明実施例を示す冷媒回路図、第2図はロ
ータリ圧縮機の縦断面図、第3図は他の実施例を示す冷
媒向路図である。 (1)・・・・・・圧縮機、(2)・・・・・・凝縮器
、(31・・・・・・膨張装置、(3a)・・・・・・
第1キヤピラリーチユーブ、(3b)・・・・・・第2
牛ヤビラリーチユーブ、(4)・・・・・・蒸発器、(
lla)・・・・・・シリンダ室、(21)・・・・・
・バイパス通路、(22)・・・・・・開閉弁、(24
)・・・・・・背面室、(25)・・・・・・連絡管、
■1・・・・・・制御弁以上 特許出願人  ダイキン工業株式会社 第 1 図 1el14   1) 第3図 +1)   14  1コ
Fig. jJ1 is a refrigerant circuit diagram showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of a rotary compressor, and Fig. 3 is a refrigerant path diagram showing another embodiment. (1)...Compressor, (2)...Condenser, (31...Expansion device, (3a)...
1st capillary reach tube, (3b)...2nd
Beef Yabirari Yubu, (4)...Evaporator, (
lla)...Cylinder chamber, (21)...
・Bypass passage, (22)...On-off valve, (24
)... Back chamber, (25)... Communication pipe,
■1... Control valves and above Patent applicant Daikin Industries, Ltd. 1 Figure 1el14 1) Figure 3 + 1) 14 1 piece

Claims (1)

【特許請求の範囲】[Claims] 111  圧縮機(1)、凝縮器(2)、膨張装置(3
)、蒸発器(4)を順次接続した冷媒回路を有し、前記
圧縮159(1)のシリンダ室(lla)における圧縮
工程中間部と、前記圧縮機(1)の吸入側とにバイパス
通路(21)を設け、該バイパス通路(21)に、該バ
イパス通路(21)を開閉する開閉弁(22)を設け、
該開閉弁(22)の背面室(24)に冷凍装置の低圧又
は高圧を作用させることにより前記開閉弁(22)を開
又は閉となして、1jiJ記圧縮機(1)の各社を制御
するごとくした冷凍装置において、前記膨張装置(3)
を第1キヤピラリーチユーブ(3a)と第2キヤピラリ
ーチユーブ(3b)を並列に介設することにより形成し
、該第2キヤピラリーチユーブ(3b)の入口側に一つ
の制御弁■)を設け、該制御弁■)と前記第2牛中ピラ
リ−チューブ(3b)との間に11:1記開閉弁(22
)の背面室(24)に連通ずる連絡管(25)の一方を
接続し、該おj蝉弁IVIを開又は閉となすことにより
、前記背面室(24)へ冷凍装置の制圧又は低圧を選択
的に作用させると共に、前記両キャピラリーチューブ(
3a)(3b)又は第1キヤピラリーチユーブ(3a)
を膨張装置として選択的に作用させるごとくしたことを
特徴とする冷凍装置。
111 Compressor (1), condenser (2), expansion device (3
), an evaporator (4) connected in sequence, and a bypass passage ( 21), and the bypass passage (21) is provided with an on-off valve (22) for opening and closing the bypass passage (21),
The on-off valve (22) is opened or closed by applying low pressure or high pressure of the refrigeration system to the back chamber (24) of the on-off valve (22), thereby controlling each company of the compressor (1). In the refrigeration device, the expansion device (3)
is formed by interposing a first capillary reach tube (3a) and a second capillary reach tube (3b) in parallel, and one control valve (2) is provided on the inlet side of the second capillary reach tube (3b). , an 11:1 opening/closing valve (22
) by connecting one side of the communication pipe (25) that communicates with the rear chamber (24) and opening or closing the pressure valve IVI, the pressure of the refrigeration system or low pressure can be supplied to the rear chamber (24). In addition to selectively acting on both capillary tubes (
3a) (3b) or first capillary reach tube (3a)
A refrigeration device characterized in that the refrigeration device selectively acts as an expansion device.
JP56126286A 1981-08-11 1981-08-11 Refrigerator Granted JPS5826971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126286A JPS5826971A (en) 1981-08-11 1981-08-11 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126286A JPS5826971A (en) 1981-08-11 1981-08-11 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5826971A true JPS5826971A (en) 1983-02-17
JPH026983B2 JPH026983B2 (en) 1990-02-14

Family

ID=14931448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126286A Granted JPS5826971A (en) 1981-08-11 1981-08-11 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5826971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136470U (en) * 1991-05-31 1992-12-18 三菱電機株式会社 Refrigeration equipment
JPH0516325U (en) * 1991-08-26 1993-03-02 花王株式会社 Card holder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160341A (en) * 1984-08-31 1986-03-28 Toyoda Gosei Co Ltd Molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160341A (en) * 1984-08-31 1986-03-28 Toyoda Gosei Co Ltd Molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136470U (en) * 1991-05-31 1992-12-18 三菱電機株式会社 Refrigeration equipment
JPH0516325U (en) * 1991-08-26 1993-03-02 花王株式会社 Card holder

Also Published As

Publication number Publication date
JPH026983B2 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
US6925821B2 (en) Method for extracting carbon dioxide for use as a refrigerant in a vapor compression system
US6385981B1 (en) Capacity control of refrigeration systems
US8613193B2 (en) Vehicle waste heat recovery device
KR20010007233A (en) Transcritical vapor compression cycle
JP2001296066A (en) Refrigerating cycle
US4137726A (en) Capacity control system of compressor for heat-pump refrigeration unit
US4830582A (en) Rotary type compressing apparatus employing exhaust gas control valve
US5799497A (en) Refrigerating apparatus
JPS5826971A (en) Refrigerator
KR102017405B1 (en) Heat pump
JP2504416B2 (en) Refrigeration cycle
JPS61114058A (en) Heat pump type refrigerator
JPS6333093Y2 (en)
KR100716256B1 (en) Rotary compressor and refrigerant cycle system
JPS592454Y2 (en) Heat pump refrigeration equipment
JP2001280722A (en) Supercritical steam compression refrigerating cycle device and composite valve for supercritical steam compression refrigerating cycle device
JPS6325343Y2 (en)
CN114508874A (en) Compressor cooling system, cooling method and air conditioner
JPS6314269B2 (en)
JPH0113971Y2 (en)
JPH0229266Y2 (en)
KR100238985B1 (en) Cooling system and its control method
JPS60120155A (en) Refrigeration cycle device
JPS6354558A (en) Refrigeration cycle