JP4035871B2 - Refrigerant circuit - Google Patents

Refrigerant circuit Download PDF

Info

Publication number
JP4035871B2
JP4035871B2 JP28840397A JP28840397A JP4035871B2 JP 4035871 B2 JP4035871 B2 JP 4035871B2 JP 28840397 A JP28840397 A JP 28840397A JP 28840397 A JP28840397 A JP 28840397A JP 4035871 B2 JP4035871 B2 JP 4035871B2
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion valve
supercooling
receiver
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28840397A
Other languages
Japanese (ja)
Other versions
JPH11118266A (en
Inventor
武夫 植野
政樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP28840397A priority Critical patent/JP4035871B2/en
Publication of JPH11118266A publication Critical patent/JPH11118266A/en
Application granted granted Critical
Publication of JP4035871B2 publication Critical patent/JP4035871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷媒回路に関する。
【0002】
【従来の技術】
従来、冷媒回路としては、図4に示すものがある。この冷媒回路は、室内熱交換器101,閉鎖弁106,圧縮機102,室外熱交換器103,レシーバ104,主膨張弁105,閉鎖弁107が順に接続された主回路を備えている。また、この冷媒回路は、レシーバ104と主膨張弁105との間を流れる冷媒を過冷却する過冷却熱交換器108を備えた過冷却回路110を有している。この過冷却回路110は、主膨張弁105の上流から分岐して、過冷却膨張弁112,過冷却熱交換器108を経由して圧縮機102の吸入側に接続されている。
【0003】
この冷媒回路は、レシーバ104から室内熱交換器101に向かう冷媒を、上記過冷却熱交換器108で過冷却することによって、冷房能力の向上を図っている。
【0004】
【発明が解決しようとする課題】
ところで、一般に、このような冷媒回路を備えた冷凍機あるいは空気調和機は、出荷時には、閉鎖弁106,107が閉鎖されていて、主膨張弁105も閉まっている。このため、出荷から据付けて運転するまでの期間に、閉鎖弁107と主膨張弁105との間の冷媒配管において冷媒が液封状態になり、異常な圧力上昇を招く恐れがあるという問題がある。
【0005】
また、上記冷媒回路では、起動時に、レシーバ104から過冷却回路110を経由して圧縮機102に液冷媒が導入される液バック現象で圧縮機102を傷める恐れがある。
【0006】
そこで、この発明の目的は、液封や液バックを防止でき、信頼性の向上を図れる冷媒回路を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、一参考例の冷媒回路は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバの上部と上記主膨張弁の下流側とを連結するキャピラリを備えた。
【0008】
この一参考例の冷媒回路では、上記キャピラリがレシーバの上部と主膨張弁の下流側とを連絡するから、出荷時等において主膨張弁の下流側回路に封じられた液冷媒を上記キャピラリから上記レシーバの上部の気相空間に導入することができる。したがって、主膨張弁の下流で液封が発生することを防いで、信頼性を向上できる。
【0009】
また、一参考例の冷媒回路は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の下流側から分岐して上記圧縮機の吸入側に接続されている。
【0010】
この一参考例では、上記過冷却回路が主膨張弁の下流から分岐しているから、気相冷媒を過冷却回路に導入できる。したがって、過冷却し難い起動時や停止時に上記過冷却回路から圧縮機への過渡的な液バックを防止でき、圧縮機の信頼性を向上できる。
【0011】
また、一参考例の冷媒回路は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバの上部と上記主膨張弁の下流側とを連結するキャピラリを備え、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の下流側から分岐して上記圧縮機の吸入側に接続されていることを特徴としている。
【0012】
この一参考例では、上記キャピラリがレシーバの上部と主膨張弁の下流側とを連絡するから、出荷時等において主膨張弁の下流側回路に封じられた液冷媒を上記キャピラリから上記レシーバの上部の気相空間に導入することができる。したがって、主膨張弁の下流で液封が発生することを防いで、信頼性を向上できる。
【0013】
また、上記過冷却回路が主膨張弁の下流から分岐しているから、気相冷媒を過冷却回路に導入して、過冷却し難い起動時や停止時に過冷却回路から圧縮機への過渡的な液バックを防止でき、圧縮機の信頼性を向上できる。
【0014】
さらには、上記キャピラリと上記過冷却回路を経由して、上記レシーバ上部から上記圧縮機の吸入側にガス冷媒を供給できるから、圧縮機のガス欠を防止でき、信頼性を向上できる。
【0015】
また、一参考例の冷媒回路では、上記圧縮機の吐出側を室外熱交換器に接続し、上記圧縮機の吸入側を室内熱交換器に接続する冷房位置と、上記圧縮機の吐出側を室内熱交換器に接続し、上記圧縮機の吸入側を室外熱交換器に接続する暖房位置とに切り替えられる四路切換弁と、
上記室内熱交換器からの冷媒を上記レシーバに導き、上記レシーバ,主膨張弁を経由した冷媒を上記室外熱交換器に導く一方、上記室外熱交換器からの冷媒を上記レシーバに導き、上記レシーバ,主膨張弁を経由した冷媒を上記室内熱交換器に導く整流回路とを備えたことを特徴としている。
【0016】
この一参考例では、上記四路切換弁を冷房位置にすれば、冷媒を圧縮機から室外熱交換器,整流回路,レシーバ,主膨張弁,室内熱交換器の順に流して、冷房を行える一方、上記四路切換弁を暖房位置にすれば、冷媒を圧縮機から室内熱交換器,整流回路,レシーバ,主膨張弁,室外熱交換器の順に流して、暖房を行える。また、上記冷房時,暖房時の両方において、上記過冷却回路を働かせて、過冷却による能力向上を図れる。
【0017】
また、一参考例の冷媒回路では、上記過冷却膨張弁は、上記過冷却熱交換器の出口での過冷却回路の温度に応じて開度が変化する感温筒式膨張弁である。
【0018】
この一参考例では、上記感温筒式膨張弁でもって、過冷却熱交換器の出口での冷媒温度の高低に応じて、過冷却膨張弁の開度を大小に調節して、過冷却度を所定の値に維持できる。
【0019】
また、請求項の発明は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記圧縮機の吐出側を室外熱交換器に接続し、上記圧縮機の吸入側を室内熱交換器に接続する冷房位置と、上記圧縮機の吐出側を室内熱交換器に接続し、上記圧縮機の吸入側を室外熱交換器に接続する暖房位置とに切り替えられる四路切換弁と、
上記室内熱交換器に第2端が接続され、上記レシーバ上部の所定箇所に第3端が接続され、上記レシーバ上部の別の箇所に第4端が接続され、上記室外熱交換器に第5端が接続され、上記主膨張弁に第1端が接続されており、上記第2端と第3端との間に接続されたキャピラリと、上記第4端と第5端との間に接続されたキャピラリと、上記第5端と第1端との間に上記第1端から上記第5端に向かって順方向に接続された逆止弁と、上記第1端と上記第2端との間に上記第1端から第2端に向かって順方向に接続された逆止弁とを有する整流回路と、
上記主膨張弁の下流側から分岐して上記圧縮機の吸入側に接続されていて、上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の下流側に接続された過冷却膨張弁とを有した過冷却回路とを備えたことを特徴としている。
【0020】
この請求項の発明では、上記四路切換弁を冷房位置にすれば、順に、圧縮機,室外熱交換器,第5端,キャピラリ,第4端,レシーバ上部,主膨張弁,第1端,逆止弁,第2端,室内熱交換器に冷媒を流して、冷房を行える。一方、上記四路切換弁を暖房位置にすれば、順に、圧縮機,室内熱交換器,第2端,キャピラリ,レシーバ上部,主膨張弁,第1端,逆止弁,第5端,室外熱交換器に冷媒を流して暖房を行える。
【0021】
ここで、上記第2端と第3端との間のキャピラリと第4端と第5端との間のキャピラリとはレシーバ上部に接続されているので、一方のキャピラリと他方のキャピラリとの間には気相冷媒が存在していて両者間の圧損は液相の圧損に比べて数十倍になる。したがって、上記一方のキャピラリから他方のキャピラリに流れる冷媒は、上記一方のキャピラリからレシーバを経て主膨張弁に流れる冷媒に比べて非常に少なくなる。
【0022】
また、上記請求項の発明によれば、出荷時等に上記主膨張弁が閉じられていたときにも、上記2つのキャピラリが、室内熱交換器と主膨張弁との間の冷媒回路をレシーバ上部,室外熱交換器に連通させるから、液封を防いで故障を防ぎ、信頼性を高めることができる。
【0023】
さらには、上記過冷却回路を主膨張弁の下流から分岐させたから、主膨張弁で膨張させた冷媒を過冷却回路に導いて、この過冷却回路から圧縮機への液バックを招くことなく、過冷却を行い、信頼性および能力を向上できる。
【0024】
また、請求項の発明は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記圧縮機の吐出側を室外熱交換器に接続し、上記圧縮機の吸入側を室内熱交換器に接続する冷房位置と、上記圧縮機の吐出側を室内熱交換器に接続し、上記圧縮機の吸入側を室外熱交換器に接続する暖房位置とに切り替えられる四路切換弁と、
上記室内熱交換器に第2端が接続され、上記レシーバ上部の所定箇所に第3端が接続され、上記レシーバ上部の別の箇所に第4端が接続され、上記室外熱交換器に第5端が接続され、上記主膨張弁に第1端が接続されており、上記第2端と第3端との間に接続されたキャピラリと、上記第4端と第5端との間に接続されたキャピラリと、上記第5端と第1端との間に上記第1端から上記第5端に向かって順方向に接続された逆止弁と、上記第1端と上記第2端との間に上記第1端から第2端に向かって順方向に接続された逆止弁とを有する整流回路と、
上記主膨張弁の上流側から分岐して上記圧縮機の吸入側に接続されていて、上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路とを備えたことを特徴としている。
【0025】
この請求項の発明は、上記四路切換弁と上記キャピラリを含んだ整流回路でもって、冷房と暖房の両方を行え、かつ、冷房,暖房の両方において過冷却回路を働かせて、能力を向上できる点は上記請求項の発明と同じである。
【0026】
この請求項の発明が、請求項の発明と異なる点は、上記過冷却回路が主膨張弁の上流側から分岐している点である。これにより、主膨張弁の開度変化が過冷却回路の過冷却度に影響を与えることを抑制でき、制御性が良くなる。
また、請求項の発明は、請求項またはに記載の冷媒回路において、
上記レシーバ上部と上記過冷却熱交換器の下流側とを連絡する連絡キャピラリを備えたことを特徴としている。
【0027】
この請求項の発明によれば、上記連絡キャピラリによって、上記レシーバ上部のガス冷媒を上記過冷却熱交換器の下流側に導入できるから、圧縮機への液バックを抑えることができる。
【0028】
また、一参考例は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバの上部と上記主膨張弁の下流側とを連結するキャピラリを備え、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の上流側から分岐して上記圧縮機の吸入側に接続されている。
【0029】
この一参考例では、上記キャピラリでもって、レシーバの上部を主膨張弁の下流側に連通させることによって、出荷時等において、主膨張弁の下流側回路に封じられた液冷媒を上記キャピラリから上記レシーバの上部の気相空間に導入することができる。したがって、主膨張弁の下流で液封が発生することを防いで、信頼性を向上できる。
また、上記過冷却回路が主膨張弁の上流側から分岐しているから、主膨張弁の開度変化が過冷却回路の過冷却度に影響を与えることを抑制でき、制御性が良くなる。
【0030】
また、請求項の発明は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の上流側から分岐して上記圧縮機の吸入側に接続されていて、
上記レシーバの上部を、上記過冷却膨張弁と上記過冷却熱交換器との間に連結する連絡キャピラリとを備えたことを特徴としている。
【0031】
この請求項の発明では、上記連絡キャピラリから過冷却膨張弁の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路から圧縮機へ液バックすることを防止できる。
【0032】
また、請求項の発明は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の下流側から分岐して上記圧縮機の吸入側に接続されていて、
上記レシーバの上部を、上記過冷却膨張弁と上記過冷却熱交換器との間に連結する連絡キャピラリとを備えたことを特徴としている。
【0033】
この請求項の発明では、上記過冷却回路が主膨張弁の下流側で分岐していることによって、過冷却回路による過冷却の増大を図って、能力の向上を図れる。
【0034】
また、この請求項の発明では、前記した請求項と同様に、上記連絡キャピラリから過冷却膨張弁の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路から圧縮機へ液バックすることを防止でき、圧縮機の信頼性を向上できる。
【0035】
また、請求項の発明は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、
上記レシーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交換器の上流側に接続された過冷却膨張弁とを有した過冷却回路が、上記主膨張弁の下流側から分岐して上記圧縮機の吸入側に接続されていて、
上記レシーバの上部を、上記過冷却熱交換器の下流側に連結する連絡キャピラリを備えたことを特徴としている。
【0036】
この請求項の発明では、過冷却回路が主膨張弁の下流側から分岐しているから、過冷却回路による過冷却の増大を図って、能力の向上を図れる。また、上記連絡キャピラリによって、上記レシーバ上部のガス冷媒を上記過冷却熱交換器の下流側に導入できるから、圧縮機への液バックを抑えることができる。
【0037】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0038】
〔第1参考例
図1に、この発明の冷媒回路の第1参考例を示す。この参考例は、室内熱交換器1,閉鎖弁2,四路切換弁3,圧縮機5,室外熱交換器6,ブリッジ整流回路7,レシーバ8,主膨張弁10,閉鎖弁11を備えている。
上記閉鎖弁2は、室内熱交換器1と四路切換弁3との間に接続されている。また、上記室外熱交換器6は、上記四路切換弁3とブリッジ整流回路7との間に接続されている。また、上記閉鎖弁11はブリッジ整流回路7と室内熱交換器1との間に接続されている。
【0039】
そして、上記圧縮機5は、吸入側5Aが四路切換弁3の第1端3Aに接続されており、吐出側5Bが四路切換弁3の第3端3Cに接続されている。また、上記レシーバ8は、その上部8Aが上記ブリッジ整流回路7の第3端7Cに接続されており、その底部8Bが過冷却熱交換器15の被冷却配管15Aに接続されている。この被冷却配管15Aは、主膨張弁10に接続されている。また、この主膨張弁10は、ブリッジ整流回路7の第1端7Aに接続されている。そして、この主膨張弁10と上記第1端7Aとの接続配管17と上記レシーバ8の上部8Aとの間には連絡キャピラリ20が接続されている。また、上記接続配管17には、過冷却用の感温筒式膨張弁21が接続され、この膨張弁21は過冷却熱交換器15の冷却配管15Bに接続されている。そして、この冷却配管15Bは、圧縮機5の吸入側5Aに接続されている。上記過冷却熱交換器15と感温筒式膨張弁21とが過冷却回路30を構成している。
【0040】
上記ブリッジ整流回路7は、その第1端7Aから第2端7Bに向かって順方向の逆止弁25と、第2端7Bから第3端7Cに向かって順方向の逆止弁26と、第3端7Cから第4端7Dに向かって逆方向の逆止弁27と、第4端7Dから第1端7Aに向かって逆方向の逆止弁28とで構成されている。
【0041】
上記構成の冷媒回路によれば、上記四路切換弁3が図1の実線経路を形成しているときには、冷房動作を行う。すなわち、圧縮機5が吐出した冷媒は、四路切換弁3を経由して室外熱交換器6に送出され、この室外熱交換器6で放熱する。次に、上記室外熱交換器6で冷やされた冷媒は、ブリッジ整流回路7の第4端7Dから逆止弁27に流入し、第3端7Cからレシーバ8の上部8Aに流入する。そして、このレシーバ8を経て液相となった冷媒は、過冷却熱交換器15の被冷却配管15Aに流入して、冷却配管15Bを流れる冷えた冷媒によってさらに冷やされて過冷却される。次に、この過冷却された冷媒は、主膨張弁10で膨張してから、接続配管17の分岐点17Aで、ブリッジ整流回路7の第1端7Aに向かうメイン流と過冷却用の感温筒式膨張弁21に向かう過冷却流とに分岐する。この過冷却流は、上記感温筒式膨張弁21で膨張されてから過冷却熱交換器15の冷却配管15Bに流入して、被冷却配管15Aを流れる冷媒から熱を奪ってから、圧縮機5の吸入側5Aに流入する。
【0042】
一方、上記メイン流は、ブリッジ整流回路7の第1端7Aから流入して逆止弁25を経て第2端7Bから流出し、さらに閉鎖弁11を経て室内熱交換器1に達し、この室内熱交換器1で吸熱してから、閉鎖弁2を経由して、四路切換弁3の第2端3B,第1端3Aを経て、圧縮機5の吸入側に流入する。
【0043】
また、上記四路切換弁3が図1の破線経路を形成しているときには、暖房動作を行う。すなわち、圧縮機5が吐出した冷媒は、四路切換弁3を経由して室内熱交換器1に送出され、この室内熱交換器1で放熱する。次に、上記室内熱交換器1で冷やされた冷媒は、ブリッジ整流回路7の第2端7Bから逆止弁26に流入し、第3端7Cからレシーバ8の上部8Aに流入する。そして、このレシーバ8を経て液相となった冷媒は、過冷却熱交換器15の被冷却配管15Aに流入して、冷却配管15Bを流れる冷えた冷媒によってさらに冷やされて過冷却される。次に、この過冷却された冷媒は、主膨張弁10で膨張してから、接続配管17の分岐点17Aで、ブリッジ整流回路7の第1端7Aに向かうメイン流と過冷却用の感温筒式膨張弁21に向かう過冷却流とに分岐する。この過冷却流は、上記感温筒式膨張弁21で膨張されてから過冷却熱交換器15の冷却配管15Bに流入して、被冷却配管15Aを流れる冷媒から熱を奪ってから、圧縮機5の吸入側5Aに流入する。
【0044】
一方、上記メイン流は、ブリッジ整流回路7の第1端7Aから流入して逆止弁28を経て第4端7Bから流出し、室外熱交換器6に達し、この室外熱交換器6で吸熱してから、四路切換弁3の第4端3D,第1端3Aを経て、圧縮機5の吸入側に流入する。
この参考例では、連絡キャピラリ20がレシーバ8の上部8Aと主膨張弁10の下流側とを連絡する。したがって、出荷時等に、閉じた閉鎖弁2,逆止弁26,レシーバ8,被冷却配管15A,主膨張弁10の間に封じられた液冷媒を、レシーバ8の上部8Aから連絡キャピラリ20を経由して主膨張弁10の下流の回路に導入できる。したがって、冷媒の液封を防いで、異常な圧力上昇による故障を防ぎ、信頼性の向上を図れる。
【0045】
また、この参考例では、上記過冷却回路30が主膨張弁10の下流から分岐しているから、主膨張弁10で膨張した気相冷媒を過冷却回路30に導入できる。したがって、過冷却しにくい起動時や停止時に上記過冷却回路30から圧縮機5への過渡的な液バックを防止でき、圧縮機5の故障を防いで信頼性を向上できる。
【0046】
また、この参考例では、四路切換弁3を冷房位置(実線)にすれば、冷媒を圧縮機5から室外熱交換器6,整流回路7,レシーバ8,主膨張弁10,室内熱交換器2の順に流して、冷房を行える。一方、四路切換弁3を暖房位置(破線)にすれば、冷媒を圧縮機5から室内熱交換器6,整流回路7,レシーバ8,主膨張弁10,室外熱交換器6の順に流して暖房を行える。さらに、上記冷房時,暖房時の両方において、上記過冷却回路30を働かせて、過冷却による能力向上を図れる。
また、この参考例では、上記感温筒式膨張弁21の感温筒21Aでもって、過冷却熱交換器15の出口での冷媒温度を検出し、この冷媒温度の高低に応じて、感温筒式膨張弁21の開度を大小に調節して、過冷却度を所定の値に維持できる。
【0047】
〔第実施形態〕
次に、図2(A)に、この発明の第実施形態を示す。この第実施形態は、ブリッジ整流回路の構成だけが、上記第1参考例と異なる。したがって、この第実施形態では、第1参考例と異なる点について重点的に説明する。
【0048】
すなわち、この第実施形態では、ブリッジ整流回路41の第2端41Bとレシーバ8の上部8Aの所定箇所8A−1との間に、逆止弁に換えてキャピラリ42が接続されている。この所定箇所8A−1が第3端41Cをなす。また、上記所定箇所8A−1と所定距離だけ離れたレシーバ上部箇所8A−2(第4端41D)と第4端41Eとの間にキャピラリ43が接続されている。そして、逆止弁25,キャピラリ42,キャピラリ43,逆止弁28がブリッジ整流回路41を構成している。
【0049】
この第実施形態では、第1端41Aと第2端41Bとの間のキャピラリ42と第4端41Dと第5端41Eとの間のキャピラリ43とはレシーバ上部8Aの異なる箇所8A−1,8A−2に接続されているので、一方のキャピラリ42と他方のキャピラリ43との間には気相冷媒が存在していて両者間の圧損は液相の圧損に比べて数十倍になる。したがって、上記キャピラリ42,43からキャピラリ43,42に流れる冷媒は、上記キャピラリ42,43からレシーバ8を経て主膨張弁10に流れる冷媒に比べて非常に少なくなる。これにより、上記ブリッジ整流回路41は第1参考例の整流回路7と略同等の整流動作を果たせるのである。
また、この第実施形態によれば、キャピラリ43がレシーバ上部8Aを主膨張弁10の下流側の回路に連通させるから、この実施の形態では、したがって、出荷時等に、主膨張弁10が閉じられていて、閉じた閉鎖弁2,キャピラリ42,レシーバ8,被冷却配管15A,主膨張弁10の間に封じられた液冷媒を、レシーバ8の上部8Aからキャピラリ43を経由して主膨張弁10の下流の回路に導入できる。したがって、冷媒の液封を防いで、異常な圧力上昇による故障を防ぎ、信頼性の向上を図れる。
【0050】
尚、この第実施形態において、ブリッジ整流回路41の第2端41Bから第3端41Cに向かって順方向の逆止弁をキャピラリ42と並列に接続し、第4端41Dから第5端41Eに向かって逆方向の逆止弁をキャピラリ43と並列に接続した場合には、上記逆止弁もしくはキャピラリのいずれかが故障した場合にも整流回路の機能を維持でき、信頼性を向上できる。
【0051】
〔第実施形態〕
次に、図2(B)に、この発明の第実施形態を示す。この第実施形態は、主膨張弁10の上流側から過冷却回路30が分岐している点だけが、第実施形態と異なる。したがって、この第実施形態では、第実施形態と異なる点だけを重点的に説明する。
【0052】
この第実施形態では、主膨張弁10の開度変化が過冷却回路30の過冷却度に影響を与えることを抑制でき、制御性が良くなる。
【0053】
尚、この第実施形態において、ブリッジ整流回路41の第2端41Bから第3端41Cに向かって順方向の逆止弁をキャピラリ42と並列に接続し、第4端41Dから第5端41Eに向かって逆方向の逆止弁をキャピラリ43と並列に接続した場合には、上記逆止弁もしくはキャピラリのいずれかが故障した場合にも整流回路の機能を維持でき、信頼性を向上できる。
【0054】
〔第実施形態〕
次に、図2(C)に、この発明の第実施形態を示す。この第実施形態が、先述の第1参考例と異なる点は、主膨張弁10の上流側から過冷却回路30が分岐している点と、連絡キャピラリ51がレシーバ8上部8Aと過冷却熱交換器冷却配管15Bと感温筒21Aとの間の冷媒配管52に接続されている点の2点だけである。
【0055】
この第実施形態によれば、レシーバ8上部8Aのガス冷媒を連絡キャピラリ51から冷媒配管52に供給することで、感温筒21Aが検知する温度を高くして、感温筒式膨張弁21の開度を大き目にすることができる。これにより、過冷却回路30による過冷却度を増大させて、能力の向上を図れる。
【0056】
また、上記連絡キャピラリ51から過冷却熱交換器15の下流側に温度の高いガス冷媒を導入することで、圧縮機5の吸入側への液バックを抑えることができる。
【0057】
〔第実施形態〕
次に、図3(A)に、この発明の第実施形態を示す。この第実施形態は、連絡キャピラリ61が、レシーバ上部8Aから、過冷却用の膨張弁21と過冷却配管15Bとの間の冷媒配管62に接続されている点だけが第実施形態と異なる。
【0058】
この第実施形態では、連絡キャピラリ61から過冷却用の膨張弁21の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路30から圧縮機5へ液バックすることを防止できる。
【0059】
〔第2参考例
次に、図3(B)に、この発明の第2参考例を示す。この第2参考例は、主膨張弁10の上流側から過冷却回路30が分岐している点だけが、第1参考例と異なる。この第2参考例では、主膨張弁10の開度変化が過冷却回路30の過冷却度に影響を与えることを抑制できる。
【0060】
〔第実施形態〕
次に、図3(C)に、この発明の第実施形態を示す。この第実施形態は、連絡キャピラリ71がレシーバ上部8Aを過冷却用の膨張弁21と過冷却配管15Bとの間の冷媒配管72に接続している点だけが、上述の第1実施形態と異なる。
【0061】
この第実施形態では、連絡キャピラリ71から過冷却用の膨張弁21の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路30から圧縮機5へ液バックすることを防止できる。したがって、圧縮機5の信頼性を向上させることができる。
【0062】
尚、上記第1参考例〜第実施形態において、圧縮機3を停止させる10秒〜20秒前から主電動弁10を全閉にしてレシーバ8にポンプダウンすることによって、過渡時の圧縮機3への液バックを防止できる。また、起動時には、レシーバ8に液冷媒が溜まっているので、主電動弁10を徐々に開いて、圧縮機3に液バックしないようにすれば良い。
【0063】
また、デフロスト(除霜)運転に入る10秒〜20秒前に主電動弁10を全閉(もしくは小開度)にすると共に、デフロスト中には主電動弁10の開度を一定の開度に保つことによって、デフロスト開始時の圧縮機5への過渡的な液バックを防止できる。
【0064】
また、上記実施の形態では、冷媒としてR407Cを用いたが、R22等他の冷媒を使用しても良い。もっとも、R407Cを用いた場合には、R407C(非共沸混合冷媒)の特徴を最大限に生かして、過渡時の信頼性を飛躍的に向上できると共に、能力とCOPを向上できる。
【0065】
【発明の効果】
以上より明らかなように、一参考例の冷媒回路は、室内熱交換器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒回路であって、上記レシーバの上部と上記主膨張弁の下流側とを連結するキャピラリを備えている。
【0066】
この一参考例の冷媒回路では、上記キャピラリがレシーバの上部と主膨張弁の下流側とを連絡するから、出荷時等において主膨張弁の下流で液封が発生することを防いで、信頼性を向上できる。
【0067】
また、一参考例の冷媒回路は、過冷却回路が、主膨張弁の下流側から分岐して圧縮機の吸入側に接続されている。この一参考例では、上記過冷却回路が主膨張弁の下流から分岐しているから、主膨張弁で膨張した気相冷媒を過冷却回路に導入できる。したがって、過冷却し難い起動時や停止時に過冷却回路から圧縮機への過渡的な液バックを防止でき、圧縮機の信頼性を向上できる。
【0068】
また、一参考例の冷媒回路は、レシーバの上部と主膨張弁の下流側とを連結するキャピラリでもって、出荷時等において、主膨張弁の下流側に封じられた液冷媒を、レシーバの上部の気相空間に導入することができ、冷媒の液封を防いで、信頼性を向上できる。
【0069】
また、この一参考例は、過冷却回路が主膨張弁の下流から分岐しているから、主膨張弁で膨張した気相冷媒を過冷却回路に導入して、過冷却し難い起動時や停止時に過冷却回路から圧縮機への過渡的な液バックを防止でき、圧縮機の信頼性を向上できる。
【0070】
さらには、上記キャピラリと上記過冷却回路を経由して、上記レシーバ上部から上記圧縮機の吸入側にガス冷媒を供給できるから、圧縮機のガス欠を防止でき、信頼性を向上できる。
【0071】
また、一参考例の冷媒回路は、四路切換弁と、整流回路とを備え、上記四路切換弁を冷房位置にすれば、冷媒を圧縮機から室外熱交換器,整流回路,レシーバ,主膨張弁,室内熱交換器の順に流して、冷房を行える。一方、上記四路切換弁を暖房位置にすれば、冷媒を圧縮機から室内熱交換器,整流回路,レシーバ,主膨張弁,室外熱交換器の順に流して、暖房を行える。また、上記冷房時,暖房時の両方において、過冷却回路を働かせて、過冷却による能力向上を図れる。
【0072】
また、一参考例の冷媒回路は、過冷却膨張弁は、過冷却熱交換器の出口での過冷却回路の温度に応じて開度が変化する感温筒式膨張弁である。この一参考例では、感温筒式膨張弁でもって、過冷却熱交換器の出口での冷媒温度の高低に応じて、過冷却膨張弁の開度を大小に調節して、過冷却度を所定の値に維持できる。
【0073】
また、請求項の発明は、四路切換弁を冷房位置にすれば、順に、圧縮機,室外熱交換器,整流回路の第5端,整流回路のキャピラリ,整流回路の第4端,レシーバ上部,主膨張弁,整流回路の第1端,整流回路の逆止弁,整流回路の第2端,室内熱交換器に冷媒を流して冷房を行える。一方、四路切換弁を暖房位置にすれば、順に、圧縮機,室内熱交換器,第2端,キャピラリ,レシーバ上部,主膨張弁,第1端,逆止弁,第5端,室外熱交換器に冷媒を流して、暖房を行える。ここで、第2端と第3端との間のキャピラリと第4端と第5端との間のキャピラリとはレシーバ上部に接続されているので、一方のキャピラリと他方のキャピラリとの間には気相冷媒が存在していて両者間の圧損は液相の圧損に比べて数十倍になる。したがって、上記一方のキャピラリから他方のキャピラリに流れる冷媒は、一方のキャピラリからレシーバを経て主膨張弁に流れる冷媒に比べて非常に少なくなる。
【0074】
また、この請求項の発明によれば、出荷時等に上記主膨張弁が閉じられていたときにも、上記2つのキャピラリが、主膨張弁の下流側の回路をレシーバ上部に連通させるから、液封を防いで故障を防ぎ、信頼性を高めることができる。さらには、過冷却回路を主膨張弁の下流から分岐させたから、この過冷却回路から圧縮機への液バックを招くことなく、過冷却を行って、信頼性および能力を向上させることができる。
【0075】
また、請求項の発明は、上記四路切換弁と上記キャピラリを含んだ整流回路でもって、冷房と暖房の両方を行え、かつ、冷房,暖房の両方において過冷却回路を働かせて、能力を向上できる点は上記請求項6の発明と同じである。
【0076】
この請求項の発明が、請求項の発明と異なる点は、上記過冷却回路が主膨張弁の上流側から分岐している点である。これにより、主膨張弁の開度変化が過冷却回路の過冷却度に影響を与えることが抑えられ、制御性が良くなる。
【0077】
また、請求項の発明の冷媒回路は、レシーバ上部と過冷却熱交換器の下流側とを連絡する連絡キャピラリを備えた。
【0078】
この請求項の発明によれば、連絡キャピラリによって、レシーバ上部のガス冷媒を過冷却熱交換器の下流側に導入できるから、圧縮機への液バックを抑えることができ、信頼性を向上できる。
【0079】
また、一参考例は、レシーバの上部と主膨張弁の下流側とを連結するキャピラリを備え、過冷却回路が主膨張弁の上流側から分岐して圧縮機の吸入側に接続されている。この一参考例では、キャピラリでもって、レシーバの上部を主膨張弁の下流側に連通させることによって、出荷時等において、主膨張弁の下流側冷媒回路に封じられた液冷媒をレシーバ上部の気相空間に導入することができ、液封を防止できる。また、上記過冷却回路が主膨張弁の上流側から分岐しているから、過冷却回路が主膨張弁の下流側から分岐している場合に比べて、最大過冷却度を大きく設定できる。
【0080】
また、請求項の発明は、レシーバ上部を過冷却膨張弁と過冷却熱交換器との間に連結する連絡キャピラリとを備えた。この請求項の発明では、連絡キャピラリから過冷却膨張弁の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路から圧縮機へ液バックすることを防止できる。
【0081】
また、請求項の発明は、過冷却回路が、主膨張弁の下流側から分岐して圧縮機の吸入側に接続されていて、レシーバの上部を過冷却膨張弁と過冷却熱交換器との間に連結する連絡キャピラリとを備えた。この請求項の発明では、過冷却回路が主膨張弁の下流側で分岐していることによって、過冷却回路による過冷却の増大を図って、能力の向上を図れる。
【0082】
また、この請求項の発明では、前記請求項と同様に、連絡キャピラリから過冷却膨張弁の下流にガス冷媒を導入して、過冷却熱交換し難い起動時や停止時に過冷却回路から圧縮機へ液バックすることを防止でき、圧縮機の信頼性を向上できる。
【0083】
また、請求項の発明は、過冷却回路が、主膨張弁の下流側から分岐して圧縮機の吸入側に接続されていて、レシーバの上部を過冷却熱交換器の下流側に連結する連絡キャピラリを備えている。
【0084】
この請求項の発明では、過冷却回路が主膨張弁の下流側から分岐しているから、過冷却回路による過冷却の増大を図って、能力の向上を図れる。また、連絡キャピラリによって、レシーバ上部のガス冷媒を過冷却熱交換器の下流側に導入できるから、圧縮機への液バックを抑えて、信頼性を向上できる。
【図面の簡単な説明】
【図1】 この発明の冷媒回路の第1参考例を示す回路図である。
【図2】 図2(A)はこの発明の第実施形態を示す回路図であり、図2(B)は第実施形態を示す回路図であり、図2(C)は第実施形態を示す回路図である。
【図3】 図3(A)はこの発明の第実施形態を示す回路図であり、図3(B)は第2参考例を示す回路図であり、図3(C)は第実施形態を示す回路図である。
【図4】 従来の冷媒回路を示す回路図である。
【符号の説明】
1…室内熱交換器、2…閉鎖弁、3…四路切換弁、5…圧縮機、
6…室外熱交換器、7…ブリッジ整流回路、8…レシーバ、
8A…レシーバ上部、10…主膨張弁、11…閉鎖弁、
15…過冷却熱交換器、15A…被冷却配管、15B…冷却配管、
17…接続配管、20…連絡キャピラリ、21…感温筒式膨張弁、
30…過冷却回路、41…ブリッジ整流回路、42…キャピラリ、
43…キャピラリ、61,71…連絡キャピラリ。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a refrigerant circuit.
[0002]
[Prior art]
  Conventionally, there is a refrigerant circuit shown in FIG. This refrigerant circuit includes a main circuit in which an indoor heat exchanger 101, a closing valve 106, a compressor 102, an outdoor heat exchanger 103, a receiver 104, a main expansion valve 105, and a closing valve 107 are sequentially connected. The refrigerant circuit also includes a supercooling circuit 110 including a supercooling heat exchanger 108 that supercools the refrigerant flowing between the receiver 104 and the main expansion valve 105. The supercooling circuit 110 branches from the upstream side of the main expansion valve 105 and is connected to the suction side of the compressor 102 via the supercooling expansion valve 112 and the supercooling heat exchanger 108.
[0003]
  In this refrigerant circuit, the refrigerant that goes from the receiver 104 to the indoor heat exchanger 101 is supercooled by the supercooling heat exchanger 108 to improve the cooling capacity.
[0004]
[Problems to be solved by the invention]
  By the way, generally, in a refrigerator or an air conditioner equipped with such a refrigerant circuit, the closing valves 106 and 107 are closed and the main expansion valve 105 is also closed at the time of shipment. For this reason, there is a problem that the refrigerant may be in a liquid-sealed state in the refrigerant pipe between the closing valve 107 and the main expansion valve 105 during the period from shipment to installation and operation, which may cause an abnormal pressure increase. .
[0005]
  In the above refrigerant circuit, the compressor 102 may be damaged by a liquid back phenomenon in which the liquid refrigerant is introduced from the receiver 104 into the compressor 102 via the supercooling circuit 110 at the time of startup.
[0006]
  Accordingly, an object of the present invention is to provide a refrigerant circuit that can prevent liquid sealing and liquid back and can improve reliability.
[0007]
[Means for Solving the Problems]
  To achieve the above objective,One reference exampleThe refrigerant circuit of is a refrigerant circuit that connects an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
A capillary for connecting the upper part of the receiver and the downstream side of the main expansion valve;It was.
[0008]
  thisOne reference exampleIn this refrigerant circuit, since the capillary communicates the upper part of the receiver with the downstream side of the main expansion valve, the liquid refrigerant sealed in the downstream circuit of the main expansion valve at the time of shipment or the like is transferred from the capillary to the upper part of the receiver. It can be introduced into the gas phase space. Therefore, it is possible to prevent liquid sealing from occurring downstream of the main expansion valve and improve reliability.
[0009]
  Also,One reference exampleThe refrigerant circuit of is a refrigerant circuit that connects an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided downstream of the main expansion valve. Branch from the side and connected to the suction side of the compressorThe
[0010]
  thisOne reference exampleThen, since the said supercooling circuit has branched from the downstream of the main expansion valve, a gaseous-phase refrigerant | coolant can be introduce | transduced into a supercooling circuit. Therefore, it is possible to prevent a transient liquid back from the supercooling circuit to the compressor during start-up or stop, which is difficult to supercool, and to improve the reliability of the compressor.
[0011]
  Also,One reference exampleThe refrigerant circuit of is a refrigerant circuit that connects an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A capillary for connecting the upper part of the receiver and the downstream side of the main expansion valve;
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided downstream of the main expansion valve. It branches from the side and is connected to the suction side of the compressor.
[0012]
  thisOne reference exampleThen, since the capillary communicates with the upper part of the receiver and the downstream side of the main expansion valve, the liquid refrigerant sealed in the downstream circuit of the main expansion valve at the time of shipment or the like is transferred from the capillary to the gas phase space above the receiver. Can be introduced. Therefore, it is possible to prevent liquid sealing from occurring downstream of the main expansion valve and improve reliability.
[0013]
  In addition, since the supercooling circuit is branched from the downstream of the main expansion valve, the gas-phase refrigerant is introduced into the supercooling circuit, and the transition from the supercooling circuit to the compressor is difficult at the time of start-up or stop, which is difficult to supercool. Liquid back can be prevented and the reliability of the compressor can be improved.
[0014]
  Furthermore, since the gas refrigerant can be supplied from the upper part of the receiver to the suction side of the compressor via the capillary and the supercooling circuit, the lack of gas in the compressor can be prevented and the reliability can be improved.
[0015]
  Also,One reference exampleRefrigerant circuitThenThe discharge side of the compressor is connected to the outdoor heat exchanger, the cooling position where the suction side of the compressor is connected to the indoor heat exchanger, and the discharge side of the compressor is connected to the indoor heat exchanger, A four-way switching valve that can be switched to a heating position that connects the suction side of the compressor to the outdoor heat exchanger;
  The refrigerant from the indoor heat exchanger is guided to the receiver, the refrigerant that has passed through the receiver and the main expansion valve is guided to the outdoor heat exchanger, while the refrigerant from the outdoor heat exchanger is guided to the receiver, and the receiver And a rectifier circuit for guiding the refrigerant that has passed through the main expansion valve to the indoor heat exchanger.
[0016]
  thisOne reference exampleThen, if the four-way switching valve is set to the cooling position, cooling can be performed by flowing the refrigerant in order from the compressor to the outdoor heat exchanger, the rectifier circuit, the receiver, the main expansion valve, and the indoor heat exchanger. If the switching valve is set to the heating position, heating can be performed by flowing refrigerant from the compressor in the order of the indoor heat exchanger, the rectifier circuit, the receiver, the main expansion valve, and the outdoor heat exchanger. Also, the capacity can be improved by supercooling by using the supercooling circuit both during cooling and during heating.
[0017]
  Also,One reference exampleRefrigerant circuitThenThe supercooling expansion valve is a temperature-sensitive cylindrical expansion valve whose opening degree changes according to the temperature of the supercooling circuit at the outlet of the supercooling heat exchanger.The
[0018]
  thisOne reference exampleThen, with the above-mentioned temperature sensitive cylinder type expansion valve, the degree of supercooling is adjusted to a predetermined value by adjusting the degree of opening of the supercooling expansion valve according to the level of the refrigerant temperature at the outlet of the supercooling heat exchanger. Can be maintained.
[0019]
  Claims1The invention of the invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  Connect the discharge side of the compressor to an outdoor heat exchanger, connect the suction side of the compressor to an indoor heat exchanger, connect the discharge side of the compressor to an indoor heat exchanger, and A four-way switching valve that can be switched to a heating position that connects the suction side of the machine to the outdoor heat exchanger;
  A second end is connected to the indoor heat exchanger, a third end is connected to a predetermined location on the receiver upper portion, a fourth end is connected to another location on the receiver upper portion, and a fifth end is connected to the outdoor heat exchanger. An end connected, a first end connected to the main expansion valve, a capillary connected between the second end and the third end, and a connection between the fourth end and the fifth end A non-return valve connected in a forward direction from the first end toward the fifth end between the fifth end and the first end, and the first end and the second end A check valve having a check valve connected in a forward direction from the first end toward the second end between the first end and the second end;
  A subcooling heat exchanger that branches from the downstream side of the main expansion valve and is connected to the suction side of the compressor and cools the refrigerant flowing from the receiver to the main expansion valve, and the downstream side of the subcooling heat exchanger And a supercooling circuit having a supercooling expansion valve connected to.
[0020]
  This claim1In this invention, when the four-way switching valve is in the cooling position, the compressor, the outdoor heat exchanger, the fifth end, the capillary, the fourth end, the receiver upper part, the main expansion valve, the first end, and the check valve are sequentially arranged. The second end, the indoor heat exchanger can be cooled by flowing the refrigerant. On the other hand, if the four-way switching valve is set to the heating position, the compressor, the indoor heat exchanger, the second end, the capillary, the upper part of the receiver, the main expansion valve, the first end, the check valve, the fifth end, the outdoor Heating can be performed by flowing refrigerant through the heat exchanger.
[0021]
  Here, the capillary between the second end and the third end and the capillary between the fourth end and the fifth end are connected to the upper part of the receiver, and therefore, between one capillary and the other capillary. There is a gas phase refrigerant, and the pressure loss between them is several tens of times the pressure loss in the liquid phase. Therefore, the refrigerant flowing from the one capillary to the other capillary is much less than the refrigerant flowing from the one capillary to the main expansion valve via the receiver.
[0022]
  In addition, the above claims1According to the invention, even when the main expansion valve is closed at the time of shipment or the like, the two capillaries serve as a refrigerant circuit between the indoor heat exchanger and the main expansion valve in the upper part of the receiver and outdoor heat exchange. Because it communicates with the vessel, it can prevent liquid sealing, prevent failure, and improve reliability.
[0023]
  Furthermore, since the supercooling circuit is branched from the downstream of the main expansion valve, the refrigerant expanded by the main expansion valve is guided to the supercooling circuit, and without causing a liquid back from the supercooling circuit to the compressor, Supercooling can improve reliability and capacity.
[0024]
  Claims2The invention of the invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  Connect the discharge side of the compressor to an outdoor heat exchanger, connect the suction side of the compressor to an indoor heat exchanger, connect the discharge side of the compressor to an indoor heat exchanger, and A four-way switching valve that can be switched to a heating position that connects the suction side of the machine to the outdoor heat exchanger;
  A second end is connected to the indoor heat exchanger, a third end is connected to a predetermined location on the receiver upper portion, a fourth end is connected to another location on the receiver upper portion, and a fifth end is connected to the outdoor heat exchanger. An end connected, a first end connected to the main expansion valve, a capillary connected between the second end and the third end, and a connection between the fourth end and the fifth end A non-return valve connected in a forward direction from the first end toward the fifth end between the fifth end and the first end, and the first end and the second end A check valve having a check valve connected in a forward direction from the first end toward the second end between the first end and the second end;
  A subcooling heat exchanger that branches from the upstream side of the main expansion valve and is connected to the suction side of the compressor and cools the refrigerant flowing from the receiver to the main expansion valve, and the upstream side of the subcooling heat exchanger And a supercooling circuit having a supercooling expansion valve connected to.
[0025]
  This claim2In the invention of the above, the rectifier circuit including the four-way switching valve and the capillary can perform both cooling and heating, and the point that the capacity can be improved by operating the subcooling circuit in both cooling and heating. Claim1This is the same as the invention.
[0026]
  This claim2The invention of claim1The difference from this invention is that the supercooling circuit is branched from the upstream side of the main expansion valve. Thereby, it can suppress that the opening degree change of a main expansion valve affects the supercooling degree of a supercooling circuit, and controllability improves.
  Claims3The invention of claim1Or2In the refrigerant circuit described in
  A communication capillary that communicates between the upper part of the receiver and the downstream side of the supercooling heat exchanger is provided.
[0027]
  This claim3According to this invention, since the gas refrigerant in the upper part of the receiver can be introduced to the downstream side of the supercooling heat exchanger by the communication capillary, liquid back to the compressor can be suppressed.
[0028]
  Also,One reference exampleIs a refrigerant circuit that connects an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A capillary for connecting the upper part of the receiver and the downstream side of the main expansion valve;
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided upstream of the main expansion valve. Branch from the side and connected to the suction side of the compressorThe
[0029]
  thisOne reference exampleThen, by connecting the upper part of the receiver to the downstream side of the main expansion valve with the capillary, the liquid refrigerant sealed in the downstream circuit of the main expansion valve at the time of shipment or the like is transferred from the capillary to the upper part of the receiver. It can be introduced into the gas phase space. Therefore, it is possible to prevent liquid sealing from occurring downstream of the main expansion valve and improve reliability.
  Further, since the supercooling circuit is branched from the upstream side of the main expansion valve, it is possible to suppress the change in the opening degree of the main expansion valve from affecting the degree of supercooling of the supercooling circuit, and the controllability is improved.
[0030]
  Claims4The invention of the invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided upstream of the main expansion valve. Branched from the side and connected to the suction side of the compressor,
  The upper part of the receiver is provided with a communication capillary connected between the supercooling expansion valve and the supercooling heat exchanger.
[0031]
  This claim4In this invention, the gas refrigerant is introduced from the communication capillary to the downstream of the supercooling expansion valve, so that it is possible to prevent liquid back from the supercooling circuit to the compressor at the time of start-up or stop when it is difficult to exchange supercooling heat.
[0032]
  Claims5The invention of the invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided downstream of the main expansion valve. Branched from the side and connected to the suction side of the compressor,
  The upper part of the receiver is provided with a communication capillary connected between the supercooling expansion valve and the supercooling heat exchanger.
[0033]
  This claim5In this invention, since the supercooling circuit is branched on the downstream side of the main expansion valve, the supercooling by the supercooling circuit can be increased and the capacity can be improved.
[0034]
  And this claim5In the invention of the above,4In the same way as above, the gas refrigerant is introduced from the communication capillary to the downstream of the supercooling expansion valve, and it is possible to prevent liquid back from the supercooling circuit to the compressor at the time of start-up or stop, where it is difficult to exchange supercooling heat. Can improve the reliability.
[0035]
  Claims6The invention of the invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve,
  A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger is provided downstream of the main expansion valve. Branched from the side and connected to the suction side of the compressor,
It is characterized in that a communication capillary for connecting the upper part of the receiver to the downstream side of the supercooling heat exchanger is provided.
[0036]
  This claim6In this invention, since the supercooling circuit is branched from the downstream side of the main expansion valve, the supercooling by the supercooling circuit can be increased to improve the capacity. Further, since the gas refrigerant in the upper part of the receiver can be introduced to the downstream side of the supercooling heat exchanger by the communication capillary, liquid back to the compressor can be suppressed.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0038]
    [FirstReference example]
  FIG. 1 shows the first refrigerant circuit of the present invention.Reference exampleIndicates. thisReference exampleIncludes an indoor heat exchanger 1, a closing valve 2, a four-way switching valve 3, a compressor 5, an outdoor heat exchanger 6, a bridge rectifier circuit 7, a receiver 8, a main expansion valve 10, and a closing valve 11.
  The closing valve 2 is connected between the indoor heat exchanger 1 and the four-way switching valve 3. The outdoor heat exchanger 6 is connected between the four-way switching valve 3 and the bridge rectifier circuit 7. The shut-off valve 11 is connected between the bridge rectifier circuit 7 and the indoor heat exchanger 1.
[0039]
  In the compressor 5, the suction side 5 </ b> A is connected to the first end 3 </ b> A of the four-way switching valve 3, and the discharge side 5 </ b> B is connected to the third end 3 </ b> C of the four-way switching valve 3. The receiver 8 has an upper portion 8 </ b> A connected to the third end 7 </ b> C of the bridge rectifier circuit 7, and a bottom portion 8 </ b> B connected to a cooled pipe 15 </ b> A of the supercooling heat exchanger 15. This cooled pipe 15 </ b> A is connected to the main expansion valve 10. The main expansion valve 10 is connected to the first end 7 </ b> A of the bridge rectifier circuit 7. A connecting capillary 20 is connected between the connecting pipe 17 between the main expansion valve 10 and the first end 7A and the upper part 8A of the receiver 8. The connecting pipe 17 is connected to a temperature-sensing cylindrical expansion valve 21 for supercooling, and the expansion valve 21 is connected to a cooling pipe 15B of the supercooling heat exchanger 15. The cooling pipe 15B is connected to the suction side 5A of the compressor 5. The supercooling heat exchanger 15 and the temperature sensitive cylinder type expansion valve 21 constitute a supercooling circuit 30.
[0040]
  The bridge rectifier circuit 7 includes a check valve 25 in the forward direction from the first end 7A to the second end 7B, a check valve 26 in the forward direction from the second end 7B to the third end 7C, A check valve 27 in the reverse direction from the third end 7C to the fourth end 7D and a check valve 28 in the reverse direction from the fourth end 7D to the first end 7A are configured.
[0041]
  According to the refrigerant circuit having the above configuration, the cooling operation is performed when the four-way switching valve 3 forms the solid line path of FIG. That is, the refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 6 through the four-way switching valve 3 and radiates heat in the outdoor heat exchanger 6. Next, the refrigerant cooled in the outdoor heat exchanger 6 flows into the check valve 27 from the fourth end 7D of the bridge rectifier circuit 7, and flows into the upper portion 8A of the receiver 8 from the third end 7C. And the refrigerant | coolant which became the liquid phase through this receiver 8 flows in into the to-be-cooled piping 15A of the supercooling heat exchanger 15, and is further cooled by the cooled refrigerant | coolant which flows through the cooling piping 15B, and is supercooled. Next, the supercooled refrigerant is expanded by the main expansion valve 10 and then at the branching point 17A of the connection pipe 17, the main flow toward the first end 7A of the bridge rectifier circuit 7 and the temperature sensitivity for supercooling. It branches into the supercooled flow toward the tubular expansion valve 21. The supercooled flow is expanded by the temperature-sensing cylindrical expansion valve 21 and then flows into the cooling pipe 15B of the supercooling heat exchanger 15, and after taking heat from the refrigerant flowing through the cooled pipe 15A, the compressor 5 flows into the suction side 5A.
[0042]
  On the other hand, the main flow flows in from the first end 7A of the bridge rectifier circuit 7, flows out from the second end 7B through the check valve 25, and further reaches the indoor heat exchanger 1 through the closing valve 11, After the heat is absorbed by the heat exchanger 1, it flows into the suction side of the compressor 5 through the closing valve 2, the second end 3 </ b> B and the first end 3 </ b> A of the four-way switching valve 3.
[0043]
  Further, when the four-way switching valve 3 forms the broken line path of FIG. 1, a heating operation is performed. That is, the refrigerant discharged from the compressor 5 is sent to the indoor heat exchanger 1 through the four-way switching valve 3 and radiates heat in the indoor heat exchanger 1. Next, the refrigerant cooled in the indoor heat exchanger 1 flows into the check valve 26 from the second end 7B of the bridge rectifier circuit 7 and flows into the upper portion 8A of the receiver 8 from the third end 7C. And the refrigerant | coolant which became the liquid phase through this receiver 8 flows in into the to-be-cooled piping 15A of the supercooling heat exchanger 15, and is further cooled by the cooled refrigerant | coolant which flows through the cooling piping 15B, and is supercooled. Next, the supercooled refrigerant is expanded by the main expansion valve 10 and then at the branching point 17A of the connection pipe 17, the main flow toward the first end 7A of the bridge rectifier circuit 7 and the temperature sensitivity for supercooling. It branches into the supercooled flow toward the tubular expansion valve 21. The supercooled flow is expanded by the temperature-sensing cylindrical expansion valve 21 and then flows into the cooling pipe 15B of the supercooling heat exchanger 15, and after taking heat from the refrigerant flowing through the cooled pipe 15A, the compressor 5 flows into the suction side 5A.
[0044]
  On the other hand, the main flow flows in from the first end 7A of the bridge rectifier circuit 7 and flows out from the fourth end 7B through the check valve 28, reaches the outdoor heat exchanger 6, and absorbs heat in the outdoor heat exchanger 6. Then, it flows into the suction side of the compressor 5 through the fourth end 3D and the first end 3A of the four-way switching valve 3.
  thisReference exampleThen, the communication capillary 20 communicates the upper part 8 </ b> A of the receiver 8 with the downstream side of the main expansion valve 10. Accordingly, the liquid refrigerant sealed between the closed closing valve 2, the check valve 26, the receiver 8, the cooled pipe 15A, and the main expansion valve 10 is transferred from the upper part 8A of the receiver 8 to the connecting capillary 20 at the time of shipment or the like. To the downstream circuit of the main expansion valve 10. Therefore, the liquid sealing of the refrigerant can be prevented, the failure due to the abnormal pressure rise can be prevented, and the reliability can be improved.
[0045]
  Also thisReference exampleThen, since the supercooling circuit 30 is branched from the downstream side of the main expansion valve 10, the gas-phase refrigerant expanded by the main expansion valve 10 can be introduced into the supercooling circuit 30. Therefore, it is possible to prevent a transient liquid back from the supercooling circuit 30 to the compressor 5 at the time of starting or stopping that is difficult to supercool, and it is possible to prevent failure of the compressor 5 and improve reliability.
[0046]
  Also thisReference exampleThen, if the four-way switching valve 3 is set to the cooling position (solid line), the refrigerant flows from the compressor 5 to the outdoor heat exchanger 6, the rectifier circuit 7, the receiver 8, the main expansion valve 10, and the indoor heat exchanger 2 in this order. Can be cooled. On the other hand, if the four-way selector valve 3 is set to the heating position (broken line), the refrigerant flows from the compressor 5 to the indoor heat exchanger 6, the rectifier circuit 7, the receiver 8, the main expansion valve 10, and the outdoor heat exchanger 6 in this order. Can be heated. In addition, the supercooling circuit 30 can be operated during both cooling and heating to improve the capacity by supercooling.
  Also thisReference exampleThen, the temperature sensing cylinder 21A of the temperature sensing cylinder expansion valve 21 detects the refrigerant temperature at the outlet of the supercooling heat exchanger 15, and the temperature sensing cylinder expansion valve 21 according to the level of the refrigerant temperature. It is possible to maintain the degree of supercooling at a predetermined value by adjusting the opening degree of.
[0047]
    [No.1Embodiment)
  Next, FIG.1An embodiment is shown. This first1In the embodiment, only the configuration of the bridge rectifier circuit is the firstReference exampleAnd different. So this second1In the embodiment, the firstReference exampleI will focus on the differences.
[0048]
  That is, this1In the embodiment, a capillary 42 is connected between the second end 41B of the bridge rectifier circuit 41 and the predetermined portion 8A-1 of the upper portion 8A of the receiver 8 instead of the check valve. The predetermined portion 8A-1 forms the third end 41C. Further, a capillary 43 is connected between the receiver upper portion 8A-2 (fourth end 41D) and the fourth end 41E which are separated from the predetermined portion 8A-1 by a predetermined distance. The check valve 25, the capillary 42, the capillary 43, and the check valve 28 constitute a bridge rectifier circuit 41.
[0049]
  This first1In the embodiment, the capillaries 42 between the first end 41A and the second end 41B and the capillaries 43 between the fourth end 41D and the fifth end 41E are different portions 8A-1 and 8A-2 on the receiver upper portion 8A. Since the gas phase refrigerant exists between one capillary 42 and the other capillary 43, the pressure loss between the two capillaries is several tens of times the pressure loss in the liquid phase. Therefore, the refrigerant flowing from the capillaries 42 and 43 to the capillaries 43 and 42 is much less than the refrigerant flowing from the capillaries 42 and 43 to the main expansion valve 10 via the receiver 8. As a result, the bridge rectifier circuit 41 has the firstReference exampleThus, the rectifying operation substantially equivalent to that of the rectifier circuit 7 can be performed.
  This second1According to the embodiment, since the capillary 43 communicates the receiver upper part 8A with a circuit on the downstream side of the main expansion valve 10, in this embodiment, therefore, the main expansion valve 10 is closed at the time of shipment or the like. Liquid refrigerant sealed between the closed closing valve 2, the capillary 42, the receiver 8, the cooled pipe 15 </ b> A, and the main expansion valve 10 passes from the upper part 8 </ b> A of the receiver 8 through the capillary 43 to the downstream of the main expansion valve 10. Can be introduced into the circuit. Therefore, the liquid sealing of the refrigerant can be prevented, the failure due to the abnormal pressure rise can be prevented, and the reliability can be improved.
[0050]
  This number1In the embodiment, a check valve in the forward direction is connected in parallel with the capillary 42 from the second end 41B to the third end 41C of the bridge rectifier circuit 41, and the reverse direction is directed from the fourth end 41D to the fifth end 41E. When the check valve is connected in parallel with the capillary 43, the function of the rectifier circuit can be maintained even when either the check valve or the capillary fails, and the reliability can be improved.
[0051]
    [No.2Embodiment)
  Next, FIG.2An embodiment is shown. This first2In the embodiment, only the point that the supercooling circuit 30 branches from the upstream side of the main expansion valve 10 is the first.1Different from the embodiment. So this second2In the embodiment,1Only points different from the embodiment will be described mainly.
[0052]
  This first2In the embodiment, it is possible to suppress the change in the opening degree of the main expansion valve 10 from affecting the degree of supercooling of the supercooling circuit 30, and the controllability is improved.
[0053]
  This number2In the embodiment, a check valve in the forward direction is connected in parallel with the capillary 42 from the second end 41B to the third end 41C of the bridge rectifier circuit 41, and the reverse direction is directed from the fourth end 41D to the fifth end 41E. When the check valve is connected in parallel with the capillary 43, the function of the rectifier circuit can be maintained even when either the check valve or the capillary fails, and the reliability can be improved.
[0054]
    [No.3Embodiment)
  Next, FIG.3An embodiment is shown. This first3The embodiment is the first described above.Reference exampleThe difference is that the supercooling circuit 30 is branched from the upstream side of the main expansion valve 10, and the connecting capillary 51 is located between the upper part 8A of the receiver 8, the supercooling heat exchanger cooling pipe 15B, and the temperature sensing cylinder 21A. There are only two points connected to the refrigerant pipe 52.
[0055]
  This first3According to the embodiment, the temperature detected by the temperature sensing cylinder 21A is increased by supplying the gas refrigerant in the upper part 8A of the receiver 8 from the communication capillary 51 to the refrigerant pipe 52, and the opening degree of the temperature sensing cylinder expansion valve 21 is increased. Can be enlarged. Thereby, the supercooling degree by the supercooling circuit 30 can be increased and the capability can be improved.
[0056]
  Further, by introducing a high-temperature gas refrigerant from the communication capillary 51 to the downstream side of the supercooling heat exchanger 15, liquid back to the suction side of the compressor 5 can be suppressed.
[0057]
    [No.4Embodiment)
  Next, FIG.4An embodiment is shown. This first4In the embodiment, only the communication capillary 61 is connected from the receiver upper part 8A to the refrigerant pipe 62 between the supercooling expansion valve 21 and the supercooling pipe 15B.3Different from the embodiment.
[0058]
  This first4In the embodiment, a gas refrigerant is introduced from the communication capillary 61 to the downstream of the expansion valve 21 for supercooling, and the liquid is returned from the supercooling circuit 30 to the compressor 5 at the time of start-up or stop when it is difficult to exchange heat of the supercooling. Can be prevented.
[0059]
    [No.2 Reference examples]
  Next, FIG.2 Reference examplesIndicates. This first2 Reference examplesThe first point is that the supercooling circuit 30 is branched from the upstream side of the main expansion valve 10.Reference exampleAnd different. This first2 Reference examplesThen, it can suppress that the opening degree change of the main expansion valve 10 influences the supercooling degree of the supercooling circuit 30. FIG.
[0060]
    [No.5Embodiment)
  Next, FIG.5An embodiment is shown. This first5The embodiment is different from the first embodiment described above only in that the connecting capillary 71 connects the receiver upper part 8A to the refrigerant pipe 72 between the supercooling expansion valve 21 and the supercooling pipe 15B.
[0061]
  This first5In the embodiment, a gas refrigerant is introduced from the communication capillary 71 to the downstream of the expansion valve 21 for supercooling, and the liquid is returned from the supercooling circuit 30 to the compressor 5 at the time of starting or stopping where it is difficult to exchange heat of the supercooling. Can be prevented. Therefore, the reliability of the compressor 5 can be improved.
[0062]
  The firstReference example~5In the embodiment, liquid back to the compressor 3 at the time of transition can be prevented by fully closing the main electric valve 10 and pumping down to the receiver 8 from 10 seconds to 20 seconds before the compressor 3 is stopped. Further, at the time of start-up, since the liquid refrigerant is accumulated in the receiver 8, the main motor-operated valve 10 may be gradually opened so as not to be liquid-backed to the compressor 3.
[0063]
  Further, the main motor-operated valve 10 is fully closed (or a small opening) 10 to 20 seconds before the defrost (defrosting) operation is started, and the opening of the main motor-operated valve 10 is kept constant during the defrost. By maintaining the pressure at a constant value, a transient liquid back to the compressor 5 at the start of defrosting can be prevented.
[0064]
  Moreover, in the said embodiment, although R407C was used as a refrigerant | coolant, you may use other refrigerant | coolants, such as R22. However, when R407C is used, the characteristics of R407C (non-azeotropic refrigerant mixture) can be utilized to the maximum, so that the reliability at the time of transition can be dramatically improved, and the capacity and COP can be improved.
[0065]
【The invention's effect】
  As is clear from the above,One reference exampleThe refrigerant circuit is a refrigerant circuit that connects an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, and includes a capillary that connects the upper part of the receiver and the downstream side of the main expansion valve. I have.
[0066]
  thisOne reference exampleIn this refrigerant circuit, since the capillary connects the upper part of the receiver and the downstream side of the main expansion valve, it is possible to prevent liquid sealing from occurring downstream of the main expansion valve at the time of shipment and improve reliability.
[0067]
  Also,One reference exampleIn this refrigerant circuit, the supercooling circuit branches from the downstream side of the main expansion valve and is connected to the suction side of the compressor. thisOne reference exampleThen, since the said supercooling circuit has branched from the downstream of the main expansion valve, the gaseous-phase refrigerant | coolant expanded with the main expansion valve can be introduce | transduced into a supercooling circuit. Therefore, it is possible to prevent a transient liquid back from the supercooling circuit to the compressor during start-up or stop, which is difficult to supercool, and to improve the reliability of the compressor.
[0068]
  Also,One reference exampleThis refrigerant circuit is a capillary that connects the upper part of the receiver and the downstream side of the main expansion valve, and at the time of shipment, the liquid refrigerant sealed on the downstream side of the main expansion valve is transferred to the gas phase space above the receiver. It can be introduced, prevents liquid sealing of the refrigerant, and can improve reliability.
[0069]
  Also thisOne reference exampleSince the supercooling circuit is branched from the downstream of the main expansion valve, the gas-phase refrigerant expanded by the main expansion valve is introduced into the supercooling circuit and compressed from the supercooling circuit during start-up or when it is difficult to overcool. Transient liquid back to the machine can be prevented, and the reliability of the compressor can be improved.
[0070]
  Furthermore, since the gas refrigerant can be supplied from the upper part of the receiver to the suction side of the compressor via the capillary and the supercooling circuit, the lack of gas in the compressor can be prevented and the reliability can be improved.
[0071]
  Also,One reference exampleRefrigerant circuitIsIf a four-way switching valve and a rectifying circuit are provided, and the four-way switching valve is in the cooling position, the refrigerant flows from the compressor to the outdoor heat exchanger, the rectifier circuit, the receiver, the main expansion valve, and the indoor heat exchanger in this order. Can be cooled. On the other hand, if the four-way switching valve is set to the heating position, heating can be performed by flowing refrigerant from the compressor in the order of the indoor heat exchanger, the rectifier circuit, the receiver, the main expansion valve, and the outdoor heat exchanger. In addition, in both the cooling and heating, the supercooling circuit can be operated to improve the capacity by supercooling.
[0072]
  Also,One reference exampleRefrigerant circuitIsThe supercooling expansion valve is a temperature-sensitive cylindrical expansion valve whose opening degree changes according to the temperature of the supercooling circuit at the outlet of the supercooling heat exchanger. thisOne reference exampleThen, with the temperature-sensitive cylindrical expansion valve, the degree of supercooling is adjusted to a predetermined value by adjusting the degree of opening of the supercooling expansion valve according to the level of the refrigerant temperature at the outlet of the supercooling heat exchanger. Can be maintained.
[0073]
  Claims1If the four-way switching valve is in the cooling position, the compressor, the outdoor heat exchanger, the fifth end of the rectifier circuit, the capillary of the rectifier circuit, the fourth end of the rectifier circuit, the upper part of the receiver, the main expansion valve Cooling can be performed by flowing a refrigerant through the first end of the rectifier circuit, the check valve of the rectifier circuit, the second end of the rectifier circuit, and the indoor heat exchanger. On the other hand, if the four-way switching valve is set to the heating position, the compressor, the indoor heat exchanger, the second end, the capillary, the upper part of the receiver, the main expansion valve, the first end, the check valve, the fifth end, the outdoor heat Heating can be done by flowing refrigerant through the exchanger. Here, the capillary between the second end and the third end and the capillary between the fourth end and the fifth end are connected to the upper part of the receiver, so that the gap between one capillary and the other capillary is between There is a gas phase refrigerant, and the pressure loss between them is several tens of times the pressure loss in the liquid phase. Therefore, the refrigerant flowing from the one capillary to the other capillary is much less than the refrigerant flowing from the one capillary through the receiver to the main expansion valve.
[0074]
  And this claim1According to the invention, even when the main expansion valve is closed at the time of shipment or the like, the two capillaries communicate the circuit on the downstream side of the main expansion valve with the upper part of the receiver, so that liquid sealing is prevented. Failure can be prevented and reliability can be improved. Furthermore, since the supercooling circuit is branched from the downstream side of the main expansion valve, the supercooling can be performed without increasing the liquid back from the supercooling circuit to the compressor, thereby improving the reliability and capacity.
[0075]
  Claims2In the invention of the above, the rectifier circuit including the four-way switching valve and the capillary can perform both cooling and heating, and the point that the capacity can be improved by operating the subcooling circuit in both cooling and heating. This is the same as the invention of claim 6.
[0076]
  This claim2The invention of claim1The difference from this invention is that the supercooling circuit is branched from the upstream side of the main expansion valve. Thereby, it is suppressed that the change in the opening degree of the main expansion valve affects the degree of supercooling of the supercooling circuit, and the controllability is improved.
[0077]
  Claims3InventionColdMedium circuitIsA communication capillary connecting the upper part of the receiver and the downstream side of the supercooling heat exchanger was provided.
[0078]
  This claim3According to this invention, since the gas refrigerant in the upper part of the receiver can be introduced to the downstream side of the supercooling heat exchanger by the connecting capillary, the liquid back to the compressor can be suppressed and the reliability can be improved.
[0079]
  Also,One reference exampleIncludes a capillary that connects the upper part of the receiver and the downstream side of the main expansion valve, and a supercooling circuit branches from the upstream side of the main expansion valve and is connected to the suction side of the compressor. thisOne reference exampleThen, by connecting the upper part of the receiver to the downstream side of the main expansion valve with a capillary, the liquid refrigerant sealed in the refrigerant circuit on the downstream side of the main expansion valve is introduced into the gas phase space above the receiver at the time of shipment or the like. This can prevent liquid sealing. Further, since the supercooling circuit is branched from the upstream side of the main expansion valve, the maximum degree of supercooling can be set larger than when the supercooling circuit is branched from the downstream side of the main expansion valve.
[0080]
  Claims4The invention includes a communication capillary that connects an upper part of the receiver between the supercooling expansion valve and the supercooling heat exchanger. This claim4In this invention, the gas refrigerant is introduced from the communication capillary to the downstream of the supercooling expansion valve, and it is possible to prevent liquid back from the supercooling circuit to the compressor at the time of start-up or stop when it is difficult to exchange the supercooling heat.
[0081]
  Claims5In this invention, the supercooling circuit is branched from the downstream side of the main expansion valve and connected to the suction side of the compressor, and the upper part of the receiver is connected between the supercooling expansion valve and the supercooling heat exchanger. And a communication capillary. This claim5In this invention, since the supercooling circuit is branched on the downstream side of the main expansion valve, it is possible to increase the supercooling by the supercooling circuit and improve the capacity.
[0082]
  And this claim5In the invention of claim4In the same way as above, gas refrigerant is introduced from the connecting capillary to the downstream of the supercooling expansion valve, and it is possible to prevent liquid back from the supercooling circuit to the compressor at the start and stop when it is difficult to exchange the supercooling heat. Reliability can be improved.
[0083]
  Claims6In this invention, the supercooling circuit is branched from the downstream side of the main expansion valve and connected to the suction side of the compressor, and includes a communication capillary that connects the upper part of the receiver to the downstream side of the supercooling heat exchanger. Yes.
[0084]
  This claim6In this invention, since the supercooling circuit is branched from the downstream side of the main expansion valve, the supercooling by the supercooling circuit can be increased to improve the capacity. Further, since the gas refrigerant in the upper part of the receiver can be introduced to the downstream side of the supercooling heat exchanger by the communication capillary, the liquid back to the compressor can be suppressed and the reliability can be improved.
[Brief description of the drawings]
FIG. 1 shows a first refrigerant circuit according to the present invention.Reference exampleFIG.
FIG. 2 (A) shows the first aspect of the present invention.1FIG. 2B is a circuit diagram showing the embodiment, and FIG.2FIG. 2C is a circuit diagram showing the embodiment, and FIG.3It is a circuit diagram showing an embodiment.
FIG. 3 (A) shows the first aspect of the present invention.4FIG. 3B is a circuit diagram showing the embodiment, and FIG.2 Reference examplesFIG. 3C is a circuit diagram showing5It is a circuit diagram showing an embodiment.
FIG. 4 is a circuit diagram showing a conventional refrigerant circuit.
[Explanation of symbols]
  DESCRIPTION OF SYMBOLS 1 ... Indoor heat exchanger, 2 ... Shut-off valve, 3 ... Four-way switching valve, 5 ... Compressor,
  6 ... outdoor heat exchanger, 7 ... bridge rectifier circuit, 8 ... receiver,
  8A ... upper part of receiver, 10 ... main expansion valve, 11 ... closing valve,
  15 ... Supercooling heat exchanger, 15A ... Cooled pipe, 15B ... Cooling pipe,
  17 ... Connection piping, 20 ... Communication capillary, 21 ... Temperature-sensing cylinder expansion valve,
  30 ... Supercooling circuit, 41 ... Bridge rectification circuit, 42 ... Capillary,
  43 ... capillary, 61, 71 ... communication capillary.

Claims (6)

室内熱交換器(1),圧縮機(5),室外熱交換器(6),レシーバ(8),主膨張弁(10)を接続する冷媒回路であって、
上記圧縮機 ( ) の吐出側を室外熱交換器 ( ) に接続し、上記圧縮機 ( ) の吸入側を室内熱交換器 ( ) に接続する冷房位置と、上記圧縮機 ( ) の吐出側を室内熱交換器 ( ) に接続し、上記圧縮機 ( ) の吸入側を室外熱交換器 ( ) に接続する暖房位置とに切り替えられる四路切換弁 ( ) と、
上記室内熱交換器 ( ) に第2端 ( 41B ) が接続され、上記レシーバ ( ) 上部 ( 8A ) の所定箇所 ( 8A−1 ) に第3端 ( 41C ) が接続され、上記レシーバ ( ) 上部 ( 8A ) の別の箇所 ( 8A−2 ) に第4端 ( 41D ) が接続され、上記室外熱交換器 ( ) に第5端 ( 41E ) が接続され、上記主膨張弁 ( 10 ) に第1端 ( 41A ) が接続されており、上記第2端 ( 41B ) と第3端 ( 41C ) との間に接続されたキャピラリ ( 42 ) と、上記第4端 ( 41D ) と第5端 ( 41E ) との間に接続されたキャピラリ ( 43 ) と、上記第5端 ( 41E ) と第1端 ( 41A ) との間に上記第1端 ( 41A ) から上記第5端 ( 41E ) に向かって順方向に接続された逆止弁 ( 25 ) と、上記第1端 ( 41A ) と上記第2端 ( 41B ) との間に上記第1端 ( 41A ) から第2端 ( 41B ) に向かって順方向に接続された逆止弁 ( 28 ) とを有する整流回路 ( 41 ) と、
上記主膨張弁 ( 10 ) の下流側から分岐して上記圧縮機 ( ) の吸入側に接続されていて、上記レシーバ ( ) から上記主膨張弁 ( 10 ) に流れる冷媒を冷やす過冷却熱交換器 ( 15 ) とこの過冷却熱交換器 ( 15 ) の下流側に接続された過冷却膨張弁 ( 21 ) とを有した過冷却回路 ( 30 ) とを備えたことを特徴とする冷媒回路。
A refrigerant circuit connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10),
A cooling position where the discharge side of the compressor ( 5 ) is connected to the outdoor heat exchanger ( 6 ) and the suction side of the compressor ( 5 ) is connected to the indoor heat exchanger ( 1 ) , and the compressor ( 5 the discharge side of) to the indoor heat exchanger (1), the compressor (outdoor heat exchanger suction side of 5) (four-way switching valve is switched to the heating position to connect to 6) (3) ,
A second end ( 41B ) is connected to the indoor heat exchanger ( 1 ) , a third end ( 41C ) is connected to a predetermined location ( 8A-1 ) in the upper part ( 8A ) of the receiver ( 8 ) , and the receiver ( 8 ) The fourth end ( 41D ) is connected to another part ( 8A-2 ) of the upper part ( 8A ) , the fifth end ( 41E ) is connected to the outdoor heat exchanger ( 6 ), and the main expansion valve ( 10) has a first end (41A) is connected, said second end and (41B) and the capillary (42) connected between the third end (41C), said fourth end and (41D) with the connected capillary (43) between the fifth end (41E), the fifth end (41E) and the fifth end from the first end (41A) between the first end (41A) ( a check valve connected in the forward direction toward 41E) (25), the second end from the first end (41A) between the first end (41A) and said second end (41B) ( 41B A rectifier circuit (41) having a check valve (28) connected in the forward direction toward)
It is connected by branching from the downstream side of the main expansion valve (10) to the suction side of the compressor (5), the supercooling heat to cool the refrigerant flowing from the receiver (8) to the main expansion valve (10) exchanger (15) refrigerant circuit, characterized in that a subcooling circuit (30) having a subcooling expansion valve connected to the downstream side (21) of Toko of supercooling heat exchanger (15) .
室内熱交換器(1),圧縮機(5),室外熱交換器(6),レシーバ(8),主膨張弁(10)を接続する冷媒回路であって、
上記圧縮機 ( ) の吐出側を室外熱交換器 ( ) に接続し、上記圧縮機 ( ) の吸入側を室内熱交換器 ( ) に接続する冷房位置と、上記圧縮機 ( ) の吐出側を室内熱交換器 ( ) に接続し、上記圧縮機 ( ) の吸入側を室外熱交換器 ( ) に接続する暖房位置とに切り替えられる四路切換弁 ( ) と、
上記室内熱交換器 ( ) に第2端 ( 41B ) が接続され、上記レシーバ ( ) 上部 ( 8A ) の所定箇所 ( 8A−1 ) に第3端 ( 41C ) が接続され、上記レシーバ ( ) 上部 ( 8A ) の別の箇所 ( 8A−2 ) に第4端 ( 41D ) が接続され、上記室外熱交換器 ( ) に第5端 ( 41E ) が接続され、上記主膨張弁 ( 10 ) に第1端 ( 41A ) が接続されており、上記第2端 ( 41B ) と第3端 ( 41C ) との間に接続されたキャピラリ ( 42 ) と、上記第4端 ( 41D ) と第5端 ( 41E ) との間に接続されたキャピラリ ( 43 ) と、上記第5端 ( 41E ) と第1端 ( 41A ) との間に上記第1端 ( 41A ) から上記第5端 ( 41E ) に向かって順方向に接続された逆止弁 ( 28 ) と、上記第1端 ( 41A ) と上記第2端 ( 41B ) との間に上記第1端 ( 41A ) から第2端 ( 41B ) に向かって順方向に接続された逆止弁 ( 25 ) とを有する整流回路 ( 41 ) と、
上記主膨張弁 ( 10 ) の上流側から分岐して上記圧縮機 ( ) の吸入側に接続されていて、上記レシーバ ( ) から上記主膨張弁 ( 10 ) に流れる冷媒を冷やす過冷却熱交換器 ( 15 ) とこの過冷却熱交換器 ( 15 ) の上流側に接続された過冷却膨張弁 ( 21 ) とを有した過冷却回路 ( 30 ) とを備えたことを特徴とする冷媒回路。
A refrigerant circuit connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10),
A cooling position where the discharge side of the compressor ( 5 ) is connected to the outdoor heat exchanger ( 6 ) and the suction side of the compressor ( 5 ) is connected to the indoor heat exchanger ( 1 ) , and the compressor ( 5 the discharge side of) to the indoor heat exchanger (1), the compressor (outdoor heat exchanger suction side of 5) (four-way switching valve is switched to the heating position to connect to 6) (3) ,
A second end ( 41B ) is connected to the indoor heat exchanger ( 1 ) , a third end ( 41C ) is connected to a predetermined location ( 8A-1 ) in the upper part ( 8A ) of the receiver ( 8 ) , and the receiver ( 8 ) The fourth end ( 41D ) is connected to another part ( 8A-2 ) of the upper part ( 8A ) , the fifth end ( 41E ) is connected to the outdoor heat exchanger ( 6 ), and the main expansion valve ( 10) has a first end (41A) is connected, said second end and (41B) and the capillary (42) connected between the third end (41C), said fourth end and (41D) with the connected capillary (43) between the fifth end (41E), the fifth end (41E) and the fifth end from the first end (41A) between the first end (41A) ( with the connected non-return valve (28) in a forward direction toward 41E), the second end from the first end (41A) between the first end (41A) and said second end (41B) ( 41B A rectifier circuit (41) and a check valve connected in the forward direction (25) towards the)
Subcooling heat that cools the refrigerant flowing from the receiver ( 8 ) to the main expansion valve ( 10 ) , branched from the upstream side of the main expansion valve ( 10 ) and connected to the suction side of the compressor ( 5 ) exchanger (15) refrigerant circuit, characterized in that a subcooling circuit (30) having a connected subcooling expansion valve on the upstream side (21) of Toko of supercooling heat exchanger (15) .
請求項1または2に記載の冷媒回路において、
上記レシーバ ( ) 上部 ( 8A ) と上記過冷却熱交換器 ( 15 ) の下流側とを連絡する連絡キャピラリ ( 51 ) を備えたことを特徴とする冷媒回路。
The refrigerant circuit according to claim 1 or 2,
A refrigerant circuit comprising a communication capillary ( 51 ) for connecting the upper part ( 8A ) of the receiver ( 8 ) and the downstream side of the supercooling heat exchanger ( 15 ) .
室内熱交換器 ( ) ,圧縮機 ( ) ,室外熱交換器 ( ) ,レシーバ ( ) ,主膨張弁 ( 10 ) を接続する冷媒回路であって、
上記レシーバ ( ) から上記主膨張弁 ( 10 ) に流れる冷媒を冷やす過冷却熱交換器 ( 15 ) とこの過冷却熱交換器 ( 15 ) の上流側に接続された過冷却膨張弁 ( 21 ) とを有した過冷却回路 ( 30 ) が、上記主膨張弁 ( 10 ) の上流側から分岐して上記圧縮機 ( ) の吸入側に接続されていて、
上記レシーバ ( ) の上部 ( 8A ) を、上記過冷却膨張弁 ( 21 ) と上記過冷却熱交換器 ( 15 ) との間に連結する連絡キャピラリ ( 61 ) とを備えたことを特徴とする冷媒回路。
A refrigerant circuit for connecting an indoor heat exchanger ( 1 ) , a compressor ( 5 ) , an outdoor heat exchanger ( 6 ) , a receiver ( 8 ) , and a main expansion valve ( 10 ) ;
The main expansion valve from the receiver (8) subcooling heat exchanger to cool the refrigerant flowing through (10) (15) Toko of supercooling heat exchanger (15) subcooling expansion valve connected to the upstream side of (21) A supercooling circuit ( 30 ) having a branch from the upstream side of the main expansion valve ( 10 ) and connected to the suction side of the compressor ( 5 ) ,
The upper part ( 8A ) of the receiver ( 8 ) is provided with a connecting capillary ( 61 ) connected between the supercooling expansion valve ( 21 ) and the supercooling heat exchanger ( 15 ). Refrigerant circuit.
室内熱交換器 ( ) ,圧縮機 ( ) ,室外熱交換器 ( ) ,レシーバ ( ) ,主膨張弁 ( 10 ) を接続する冷媒回路であって、
上記レシーバ ( ) から上記主膨張弁 ( 10 ) に流れる冷媒を冷やす過冷却熱交換器 ( 15 ) とこの過冷却熱交換器 ( 15 ) の上流側に接続された過冷却膨張弁 ( 21 ) とを有した過冷却回路 ( 30 ) が、上記主膨張弁 ( 10 ) の下流側から分岐して上記圧縮機 ( ) の吸入側に接続されていて、
上記レシーバ ( ) の上部 ( 8A ) を、上記過冷却膨張弁 ( 21 ) と上記過冷却熱交換器 ( 15 ) との間に連結する連絡キャピラリ ( 61 ) とを備えたことを特徴とする冷媒回路。
A refrigerant circuit for connecting an indoor heat exchanger ( 1 ) , a compressor ( 5 ) , an outdoor heat exchanger ( 6 ) , a receiver ( 8 ) , and a main expansion valve ( 10 ) ;
The main expansion valve from the receiver (8) subcooling heat exchanger to cool the refrigerant flowing through (10) (15) Toko of supercooling heat exchanger (15) subcooling expansion valve connected to the upstream side of (21) A subcooling circuit ( 30 ) having a branch from the downstream side of the main expansion valve ( 10 ) and connected to the suction side of the compressor ( 5 ) ,
The upper part ( 8A ) of the receiver ( 8 ) is provided with a connecting capillary ( 61 ) connected between the supercooling expansion valve ( 21 ) and the supercooling heat exchanger ( 15 ). Refrigerant circuit.
室内熱交換器(1),圧縮機(5),室外熱交換器(6),レシーバ(8),主膨張弁(10)を接続する冷媒回路であって、
上記レシーバ ( ) から上記主膨張弁 ( 10 ) に流れる冷媒を冷やす過冷却熱交換器 ( 15 ) とこの過冷却熱交換器 ( 15 ) の上流側に接続された過冷却膨張弁 ( 21 ) とを有した過冷却回路 ( 30 ) が、上記主膨張弁 ( 10 ) の下流側から分岐して上記圧縮機 ( ) の吸入側に接続されていて、
上記レシーバ ( ) の上部 ( 8A ) を、上記過冷却熱交換器 ( 15 ) の下流側に連結する連絡キャピラリ ( 51 ) を備えたことを特徴とする冷媒回路。
A refrigerant circuit connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10),
The main expansion valve from the receiver (8) subcooling heat exchanger to cool the refrigerant flowing through (10) (15) Toko of supercooling heat exchanger (15) subcooling expansion valve connected to the upstream side of (21) A subcooling circuit ( 30 ) having a branch from the downstream side of the main expansion valve ( 10 ) and connected to the suction side of the compressor ( 5 ) ,
Refrigerant circuit top (8A), characterized by comprising contacting capillary (51) connecting the downstream side of the subcooling heat exchanger (15) of the receiver (8).
JP28840397A 1997-10-21 1997-10-21 Refrigerant circuit Expired - Fee Related JP4035871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28840397A JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28840397A JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Publications (2)

Publication Number Publication Date
JPH11118266A JPH11118266A (en) 1999-04-30
JP4035871B2 true JP4035871B2 (en) 2008-01-23

Family

ID=17729765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28840397A Expired - Fee Related JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Country Status (1)

Country Link
JP (1) JP4035871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413421B1 (en) * 2014-01-28 2014-07-01 주식회사삼원기연 Energy saving freezer and refrigerator by supplying supercooled refrigerant

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074991A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating unit
ES2353864T3 (en) 2002-08-02 2011-03-07 Daikin Industries, Ltd. REFRIGERATION EQUIPMENT.
JP3940840B2 (en) * 2002-11-22 2007-07-04 ダイキン工業株式会社 Air conditioner
JP3719246B2 (en) * 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
JP4462436B2 (en) * 2005-11-16 2010-05-12 株式会社富士通ゼネラル Refrigeration equipment
JP4715561B2 (en) * 2006-03-06 2011-07-06 ダイキン工業株式会社 Refrigeration equipment
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
JP2009139037A (en) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
JP2009222348A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JPWO2010086954A1 (en) * 2009-01-27 2012-07-26 三菱電機株式会社 Air conditioner and refrigerating machine oil return method
CN103090579B (en) * 2011-10-31 2015-10-28 中国科学院理化技术研究所 The air conditioner heat pump system of electric automobile
CN103147983A (en) * 2011-12-07 2013-06-12 中国科学院理化技术研究所 Scroll compressor having second vapor injection function
JP5429310B2 (en) * 2012-01-30 2014-02-26 ダイキン工業株式会社 Refrigeration equipment
JP6064744B2 (en) * 2013-03-29 2017-01-25 株式会社富士通ゼネラル Refrigeration cycle equipment
JP5839084B2 (en) * 2013-10-07 2016-01-06 ダイキン工業株式会社 Refrigeration equipment
JP2015083894A (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration unit
CN105135760B (en) * 2015-09-28 2017-05-24 江苏宝奥兰空调设备有限公司 Refrigerating system and control method
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
JP2020101324A (en) * 2018-12-21 2020-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2020130756A1 (en) 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Air conditioner
CN114322369B (en) * 2021-12-17 2024-03-12 深圳市深蓝电子股份有限公司 Air source heat pump system, control method, computer device, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413421B1 (en) * 2014-01-28 2014-07-01 주식회사삼원기연 Energy saving freezer and refrigerator by supplying supercooled refrigerant

Also Published As

Publication number Publication date
JPH11118266A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
JP4035871B2 (en) Refrigerant circuit
EP2787305B1 (en) Refrigerating/air-conditioning device
KR100332532B1 (en) Air conditioner
JP4989511B2 (en) Air conditioner
JP4781390B2 (en) Refrigeration cycle equipment
US20070022777A1 (en) Supercooling apparatus
JP4036288B2 (en) Air conditioner
JP2008096033A (en) Refrigerating device
EP1526345B1 (en) Refrigeration equipment
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
JP5418253B2 (en) Refrigeration cycle equipment
JP4407012B2 (en) Refrigeration equipment
EP1541938A1 (en) Refrigeration equipment
JP2005083704A (en) Refrigerating cycle and air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP2009293887A (en) Refrigerating device
JP4417396B2 (en) Heat pump equipment
JPH10220880A (en) Air conditioner
JP5927502B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP3070223B2 (en) Refrigerant heating air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH08166183A (en) Air-conditioning equipment
JPH07151413A (en) Separate type air conditioner
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JP2019066088A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees