JP4417396B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP4417396B2
JP4417396B2 JP2007058390A JP2007058390A JP4417396B2 JP 4417396 B2 JP4417396 B2 JP 4417396B2 JP 2007058390 A JP2007058390 A JP 2007058390A JP 2007058390 A JP2007058390 A JP 2007058390A JP 4417396 B2 JP4417396 B2 JP 4417396B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat recovery
pressure
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007058390A
Other languages
Japanese (ja)
Other versions
JP2008224050A (en
Inventor
央平 加藤
多佳志 岡崎
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007058390A priority Critical patent/JP4417396B2/en
Publication of JP2008224050A publication Critical patent/JP2008224050A/en
Application granted granted Critical
Publication of JP4417396B2 publication Critical patent/JP4417396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Description

本発明はヒートポンプ装置、特に、冷凍サイクルを構成する冷媒回路と、該冷媒回路に熱的に接続された貯水回路とを有するヒートポンプ装置に関するものである。   The present invention relates to a heat pump device, and more particularly to a heat pump device having a refrigerant circuit constituting a refrigeration cycle and a water storage circuit thermally connected to the refrigerant circuit.

圧縮機と、放熱器と、膨張弁と、蒸発器と、冷媒容器と、を順次接続して冷凍サイクルを構成する冷媒回路と、放熱器において熱的に接続され、放熱器において昇温した水を蓄えるための貯湯槽と、水ポンプを順次接続してなる貯水回路と、によって構成されるヒートポンプ装置が知られている。
そして、ヒートポンプ装置における除霜方法として、除霜運転時に膨張弁開度を大きくし、かつ水ポンプを停止させることにより、除霜中の放熱器への放熱量を抑制して除霜を行う発明が開示されている(例えば、特許文献1参照)。
A compressor, a radiator, an expansion valve, an evaporator, and a refrigerant container are sequentially connected to form a refrigerant circuit that constitutes a refrigeration cycle, and water that is thermally connected in the radiator and heated in the radiator There is known a heat pump device that includes a hot water storage tank for storing water and a water storage circuit formed by sequentially connecting water pumps.
And as a defrosting method in the heat pump device, the defrosting is performed by increasing the expansion valve opening during the defrosting operation and stopping the water pump to suppress the heat radiation to the radiator during defrosting. Is disclosed (for example, see Patent Document 1).

また、二酸化炭素を冷媒として、圧縮機、放熱器、放熱器出口と吸入ラインとを熱交換する内部熱交換器、減圧器、蒸発器を有する主回路と、放熱器の入口と出口とを開閉弁を介してバイパスするバイパス回路と、蒸発器の温度を検出する蒸発温度検出手段と、圧縮機の吸入温度を検出する吸入温度検出手段と、を備えたヒートポンプ装置が開示されている。かかるヒートポンプ装置は、吸入温度が蒸発温度よりも低い場合に、バイパス弁を開いて内部熱交換器の入口温度を上昇させ、内部熱交換器における熱交換量を大きくすることにより、圧縮機吸入冷媒温度が上昇して、圧縮機への液バックを防止するものである(例えば、特許文献2参照)。   Also, using carbon dioxide as a refrigerant, the compressor, radiator, main circuit with internal heat exchanger, decompressor, and evaporator for exchanging heat between the radiator outlet and the suction line, and opening and closing the radiator inlet and outlet There is disclosed a heat pump device including a bypass circuit that bypasses through a valve, an evaporation temperature detection means that detects the temperature of the evaporator, and an intake temperature detection means that detects the intake temperature of the compressor. In such a heat pump device, when the intake temperature is lower than the evaporation temperature, the bypass valve is opened to increase the inlet temperature of the internal heat exchanger, and the heat exchange amount in the internal heat exchanger is increased, whereby the refrigerant sucked into the compressor The temperature rises to prevent liquid back to the compressor (see, for example, Patent Document 2).

特許第3297657号公報(第3―4頁、第1図)Japanese Patent No. 3297657 (page 3-4, Fig. 1) 特開2003−214713号公報(第3頁、第1図)JP 2003-214713 A (page 3, FIG. 1)

しかしながら、特許文献1に開示されたヒートポンプ装置は、膨張弁を全開近くまで開くことにより吐出温度の上昇を困難にするため、水ポンプを停止しても放熱器内の水は沸騰しにくいが、除霜に必要な熱源である圧縮機入力も増加しない。また、圧縮機への液バックを防止するために圧縮機の吸入側に冷媒容器が必要となり、冷媒容器追加に伴う製造コストがアップするという問題や、封入冷媒量が増加するという問題があった。   However, since the heat pump device disclosed in Patent Document 1 makes it difficult to raise the discharge temperature by opening the expansion valve almost fully open, the water in the radiator is less likely to boil even if the water pump is stopped. The compressor input, which is a heat source necessary for defrosting, does not increase. In addition, in order to prevent liquid back to the compressor, a refrigerant container is required on the suction side of the compressor, and there is a problem that the manufacturing cost increases due to the addition of the refrigerant container and the amount of enclosed refrigerant increases. .

また、特許文献2に開示されたヒートポンプ装置は、蒸発器へ霜が付着して蒸発器の性能が低下しても、吸入温度が蒸発温度以上であればバイパス弁を開かない場合が発生する。このため、除霜運転中に圧縮機の熱量が放熱器で放熱され、蒸発器に付着した霜を融かすための熱量が低下することにより、除霜時間が長くなり、ヒートポンプ装置の低外気における時間当りの運転効率が悪化するという問題があった。   Further, in the heat pump device disclosed in Patent Document 2, even if frost adheres to the evaporator and the performance of the evaporator decreases, the bypass valve may not be opened if the suction temperature is equal to or higher than the evaporation temperature. For this reason, the amount of heat of the compressor is dissipated by the radiator during the defrosting operation, and the amount of heat for melting the frost adhering to the evaporator is reduced, so that the defrosting time becomes longer and the heat pump device in the low outside air There was a problem that the operating efficiency per hour deteriorated.

本発明は、上記問題を解決するためになされたものであり、除霜運転時に余剰冷媒が発生しても、冷媒容器を用いずに圧縮機への液バックを抑制し、かつ放熱器内の水を沸騰させずに圧縮機入力を大きくして除霜時間を短くし、低外気における時間当りの運転効率を向上させることができるヒートポンプ装置を得ることを目的とする。   The present invention has been made to solve the above problem, and even if surplus refrigerant is generated during the defrosting operation, the liquid back to the compressor is suppressed without using the refrigerant container, and the inside of the radiator is An object of the present invention is to obtain a heat pump device that can increase the compressor input without boiling water to shorten the defrosting time and improve the operation efficiency per hour in low outside air.

本発明に係るヒートポンプ装置は、冷凍サイクルを形成する主回路と、該主回路の一部をバイパスする熱回収路と、を有するヒートポンプ装置であって、
前記主回路が、冷媒を圧縮する圧縮機と、
該圧縮機において圧縮された冷媒の温熱を放出させる、熱回収用熱交換器を構成する熱回収器高圧部と、
該熱回収器高圧部を経由した冷媒の温熱を放出させる放熱器と、
該放熱器を経由した冷媒の温熱を放出させる、高低圧熱交換器を構成する熱交換器高圧部と、
該熱交換器高圧部を経由した冷媒を減圧する減圧装置と、
該減圧装置において減圧された冷媒に温熱を受け渡す吸熱器と、
該吸熱器を経由した冷媒に前記熱交換器高圧部において放出された温熱を受け入れる、高低圧熱交換器を構成する熱交換器低圧部と、
前記圧縮機、前記熱回収器高圧部、前記放熱器、前記熱交換器高圧部、前記減圧装置、前記吸熱器、前記熱交換器低圧部、および前記圧縮機を順次接続する主配管と、を具備し、
前記熱回収路が、流入しようとする冷媒を通過または停止させる熱回収用開閉弁と、
該熱回収用開閉弁を通過した冷媒に前記熱回収器高圧部において放出された温熱を受け入れる、熱回収用熱交換器を構成する熱回収器低圧部と、
前記主回路の熱交換器高圧部と減圧装置との間、前記熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の減圧装置と吸熱器との間、を順次接続する熱回収用配管と、を具備する。
The heat pump device according to the present invention is a heat pump device having a main circuit that forms a refrigeration cycle, and a heat recovery path that bypasses a part of the main circuit,
The main circuit is a compressor for compressing refrigerant;
A heat recovery unit high-pressure part that constitutes a heat recovery heat exchanger that releases the heat of the refrigerant compressed in the compressor;
A radiator that releases the heat of the refrigerant via the high-pressure portion of the heat recovery unit;
A heat exchanger high-pressure section that constitutes a high-low pressure heat exchanger that discharges the heat of the refrigerant via the radiator, and
A decompression device that decompresses the refrigerant that has passed through the heat exchanger high-pressure section;
A heat absorber that transfers the heat to the refrigerant decompressed in the decompression device;
A heat exchanger low-pressure section constituting a high-low pressure heat exchanger that receives the heat released in the high-pressure section of the heat exchanger into the refrigerant passing through the heat absorber;
The compressor, the heat recovery unit high pressure section, the radiator, the heat exchanger high pressure section, the pressure reducing device, the heat absorber, the heat exchanger low pressure section, and a main pipe that sequentially connects the compressor, Equipped,
A heat recovery on-off valve for allowing the heat recovery path to pass or stop the refrigerant to be introduced; and
Accept heat which is Oite released to the heat recovery unit high-pressure part in the refrigerant passing through the heat recovery-off valve, and the heat recovery unit low pressure portion constituting the heat recovery heat exchanger,
Heat recovery sequentially connecting between the high pressure section of the heat exchanger of the main circuit and the decompressor, the on- off valve for heat recovery, the low pressure section of the heat recovery unit, and the decompressor of the main circuit and the heat absorber. Piping.

本発明に係るヒートポンプ装置は、前記熱回収路を有するため、蒸発器に付着した霜を融かすために行う除霜運転時において、余剰冷媒が発生しても冷媒容器を用いずに圧縮機への液バックを抑制することができると共に、放熱器内の水を沸騰させることなく圧縮機入力を大きくすることができるため、除霜時間が短くなり、ヒートポンプ装置の低外気における時間当りの運転効率が向上する。   Since the heat pump device according to the present invention has the heat recovery path, even when surplus refrigerant is generated during the defrosting operation performed to melt the frost adhering to the evaporator, the refrigerant pump is not used and the compressor is used. As the compressor input can be increased without boiling the water in the radiator, the defrosting time is shortened, and the operating efficiency per hour in the low outside air of the heat pump device Will improve.

[実施の形態1]
図1は本発明の実施形態1に係るヒートポンプ装置を示す構成図である。図1において、ヒートポンプ装置100は、二酸化炭素(以下CO2)を冷媒とした給湯機であって、主回路50mおよび熱回収路50sとを備えた熱源装置50と、熱源装置50から温熱を受け入れる貯湯装置60と、これらを制御する制御装置40と、から構成されている。
なお、本発明は給湯機に限定されるものではなく、たとえば、貯湯装置60に替えて空気を調和する空調装置を設置してもよい。
[Embodiment 1]
FIG. 1 is a configuration diagram illustrating a heat pump apparatus according to Embodiment 1 of the present invention. In FIG. 1, a heat pump device 100 is a hot water heater using carbon dioxide (hereinafter referred to as CO 2) as a refrigerant, and includes a heat source device 50 having a main circuit 50m and a heat recovery path 50s, and hot water storage that receives heat from the heat source device 50. The apparatus 60 is comprised from the control apparatus 40 which controls these.
In addition, this invention is not limited to a water heater, For example, it may replace with the hot water storage apparatus 60, and may install the air conditioning apparatus which harmonizes air.

(主回路)
主回路50mは、冷媒を圧縮する圧縮機1と、圧縮機1において圧縮された冷媒の温熱を放出させる熱回収用熱交換器6を構成する熱回収器高温部6aと、熱回収器高温部6aを経由した冷媒の温熱を放出させる放熱器(以下「水熱交換器」と称す)2を構成する放熱器高温部2aと、放熱器高温部2aを経由した冷媒の温熱を放出させる、高低圧熱交換器5を構成する熱交換器高温部5aと、熱交換器高温部5aを経由した冷媒を減圧する減圧装置(以下「膨張弁」と称す)3と、膨張弁3において減圧された冷媒に温熱を受け渡す吸熱器(以下「空気熱交換器」と称す)4と、空気熱交換器4を経由した冷媒に熱交換器高温部5aにおいて放出された温熱を受け入れる高低圧熱交換器5を構成する熱交換器低圧部5bと、を有している。
なお、空気熱交換器4では、ファン4fによって送られた大気から温熱を吸収(大気に冷熱を放出)している。
(Main circuit)
The main circuit 50m includes a compressor 1 that compresses the refrigerant, a heat recovery unit high-temperature unit 6a that constitutes a heat recovery heat exchanger 6 that releases the heat of the refrigerant compressed in the compressor 1, and a heat recovery unit high-temperature unit. A radiator high-temperature part 2a constituting a radiator (hereinafter referred to as a "water heat exchanger") 2 that releases the heat of the refrigerant that has passed through 6a, and a high temperature that releases the heat of the refrigerant that has passed through the radiator high-temperature part 2a. The heat exchanger high-temperature portion 5 a constituting the low-pressure heat exchanger 5, the pressure reducing device (hereinafter referred to as “expansion valve”) 3 for reducing the pressure of the refrigerant that has passed through the heat exchanger high-temperature portion 5 a, A heat absorber (hereinafter referred to as an “air heat exchanger”) 4 that transfers the heat to the refrigerant, and a high and low pressure heat exchanger that receives the heat released in the heat exchanger high-temperature portion 5a by the refrigerant that has passed through the air heat exchanger 4. The heat exchanger low-pressure part 5b which comprises 5 is provided.
The air heat exchanger 4 absorbs warm heat from the atmosphere sent by the fan 4f (releases cold heat to the atmosphere).

そして、圧縮機1、熱回収用熱交換器6の熱回収器高温部6a、水熱交換器2の放熱器高温部2a、高低圧熱交換器5の熱交換器高温部5a、膨張弁3、空気熱交換器4、高低圧熱交換器5の熱交換器低圧部5b、および圧縮機1を順次接続する主配管16、62、25、53、34、45、51と、を具備している。
なお、構成要素Jと構成要素Kとを連結する配管を「主配管JK」、たとえば、圧縮機1と熱回収用熱交換器6の熱回収器高温部6aとを連結する配管を「主配管16」としている。
The compressor 1, the heat recovery unit high temperature part 6 a of the heat recovery heat exchanger 6, the radiator high temperature part 2 a of the water heat exchanger 2, the heat exchanger high temperature part 5 a of the high and low pressure heat exchanger 5, and the expansion valve 3 , Air heat exchanger 4, heat exchanger low-pressure part 5 b of high-low pressure heat exchanger 5, and main pipes 16, 62, 25, 53, 34, 45, 51 for sequentially connecting compressor 1. Yes.
Note that the pipe connecting the component J and the component K is “main pipe JK”, for example, the pipe connecting the compressor 1 and the heat recovery unit high-temperature portion 6a of the heat recovery heat exchanger 6 is “main pipe”. 16 ”.

(熱回収路)
熱回収路50sは、流入しようとする冷媒を通過または停止させる熱回収用開閉弁57vと、熱回収用開閉弁57vを通過した冷媒を減圧する熱回収用減圧装置(以下「キャピラリ」と称す)7と、キャピラリ7において減圧された冷媒に熱回収器高温部6aにおいて放出された温熱を受け入れる熱回収用熱交換器6を構成する熱回収器低圧部6bと、を有している。
そして、主回路50mの主配管53(熱交換器高温部5aと膨張弁3とを連結している)に設けられた分岐部P53とキャピラリ7とを連結する熱回収用配管57と、キャピラリ7と熱回収器低圧部6bとを連結する熱回収用配管76と、熱回収器低圧部6bと主回路50mの主配管34(膨張弁3と空気熱交換器4とを連結している)に設けられた合流部P34とを連結する熱回収用配管64と、を有している。なお、熱回収用開閉弁57vは熱回収用配管57に設置されている。
(Heat recovery path)
The heat recovery path 50s includes a heat recovery on-off valve 57v that passes or stops the refrigerant that is about to flow in, and a heat recovery decompression device (hereinafter referred to as "capillary") that decompresses the refrigerant that has passed through the heat recovery on-off valve 57v. 7 and a heat recovery unit low-pressure part 6b constituting the heat recovery heat exchanger 6 that receives the heat released from the heat recovery unit high-temperature part 6a by the refrigerant decompressed in the capillary 7.
Then, a heat recovery pipe 57 for connecting the branch portion P53 provided in the main pipe 53 (connecting the heat exchanger high temperature section 5a and the expansion valve 3) and the capillary 7 of the main circuit 50m, and the capillary 7 And the heat recovery pipe low pressure section 6b and the main pipe 34 of the main circuit 50m (the expansion valve 3 and the air heat exchanger 4 are connected). And a heat recovery pipe 64 that connects the provided junction P34. The heat recovery on-off valve 57v is installed in the heat recovery pipe 57.

(貯湯装置)
貯湯装置60は、水熱交換器2の放熱器高温部2aにおいて放熱された温熱を受け入れる水熱交換器2を構成する放熱器低温部(以下「水加熱部」と称す)2bと、水熱交換器2において加熱された水を貯留する貯湯タンク9と、水熱交換器2へ送水する水ポンプ8とを有している。
そして、水加熱部2bと水ポンプ8とが水配管28によって連結され、水ポンプ8と貯湯タンク9とが水配管89によって連結され、貯湯タンク9と水加熱部2bとが水配管92によって連結され、貯水回路60mが形成されている。
また、水配管92には循環弁92vが設置されている。さらに、水配管92は、循環弁92vと水加熱部2bとの間において分岐し、該分岐部に給水弁92wが設置されている。
したがって、循環弁92vと給水弁92wとの開閉を切り替えることによって、貯湯タンク9内の湯量を増加させる貯湯運転(循環弁92v閉、給水弁92w開)と、貯湯タンク9内の水温を保つ保温運転(循環弁92v開、給水弁92w閉)とを、選択的に実行することができる。
(Hot water storage device)
The hot water storage device 60 includes a radiator low-temperature part (hereinafter referred to as “water heating part”) 2b that constitutes the water heat exchanger 2 that receives the heat radiated in the radiator high-temperature part 2a of the water heat exchanger 2; The hot water storage tank 9 which stores the water heated in the exchanger 2 and the water pump 8 which supplies water to the water heat exchanger 2 are provided.
The water heating unit 2 b and the water pump 8 are connected by a water pipe 28, the water pump 8 and the hot water storage tank 9 are connected by a water pipe 89, and the hot water storage tank 9 and the water heating unit 2 b are connected by a water pipe 92. Thus, a water storage circuit 60m is formed.
The water pipe 92 is provided with a circulation valve 92v. Further, the water pipe 92 branches between the circulation valve 92v and the water heating unit 2b, and a water supply valve 92w is installed at the branching portion.
Accordingly, by switching between opening and closing of the circulation valve 92v and the water supply valve 92w, a hot water storage operation (the circulation valve 92v is closed and the water supply valve 92w is opened) for increasing the amount of hot water in the hot water storage tank 9, and the heat retention for maintaining the water temperature in the hot water storage tank 9 are performed. The operation (circulation valve 92v open, water supply valve 92w closed) can be selectively executed.

(制御装置)
制御装置40は、熱源装置50内には、空気熱交換器4の入口冷媒温度を検知する蒸発温度検知手段30aと、空気熱交換器4の周囲空気温度を検知する外気温度検知手段30bと、熱回収用開閉弁57v、ファン4f、膨張弁3、圧縮機1、水ポンプ8、循環弁92vおよび給水弁92wを制御するものであって、運転状態に合わせて熱源装置50および貯湯装置60を制御できる機能を有する。
(Control device)
The control device 40 includes, in the heat source device 50, an evaporating temperature detecting means 30a for detecting an inlet refrigerant temperature of the air heat exchanger 4, an outside air temperature detecting means 30b for detecting the ambient air temperature of the air heat exchanger 4, and The heat recovery on-off valve 57v, the fan 4f, the expansion valve 3, the compressor 1, the water pump 8, the circulation valve 92v, and the water supply valve 92w are controlled, and the heat source device 50 and the hot water storage device 60 are provided in accordance with the operating state. Has controllable functions.

(貯湯運転)
図2は、図1に示すヒートポンプ装置における貯湯運転中のサイクル状態について説明するモリエル線図である。図2において、L301(実線)および1、2、3、4、5、6、7は貯湯運転における冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。貯湯運転時は、圧縮機1から吐出した高温高圧冷媒(2)は、熱回収用熱交換器6を通過して水熱交換器2へ流入する(3)。
水熱交換器2では、冷媒が貯湯回路60mを循環する水へ放熱(温熱を受け渡すに同じ)しながら温度低下することで貯湯装置60を循環する水を昇温する。
水熱交換器2から流出した冷媒(4)は、高低圧熱交換器5で放熱してさらに温度が低下し(5)、膨張弁3によって減圧され(6)、低温低圧冷媒となる。そして、かかる低温低圧冷媒は空気熱交換器4で空気から温熱を吸熱し蒸発する(7)。空気熱交換器4から流出した冷媒は、高低圧熱交換器5で加熱されてガス化し(1)、圧縮機1に吸引されサイクルを形成する。
(Hot water storage operation)
FIG. 2 is a Mollier diagram for explaining the cycle state during the hot water storage operation in the heat pump apparatus shown in FIG. 1. In FIG. 2, L301 (solid line) and 1, 2, 3, 4, 5, 6, 7 indicate refrigerant states in hot water storage operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. During the hot water storage operation, the high-temperature and high-pressure refrigerant (2) discharged from the compressor 1 passes through the heat recovery heat exchanger 6 and flows into the water heat exchanger 2 (3).
In the water heat exchanger 2, the temperature of the water circulating in the hot water storage device 60 is raised by decreasing the temperature while the refrigerant dissipates heat to the water circulating in the hot water storage circuit 60m (same as transferring the heat).
The refrigerant (4) flowing out of the water heat exchanger 2 dissipates heat in the high and low pressure heat exchanger 5 to further reduce the temperature (5), and is decompressed by the expansion valve 3 (6) to become a low temperature and low pressure refrigerant. The low-temperature and low-pressure refrigerant evaporates by absorbing heat from the air in the air heat exchanger 4 (7). The refrigerant flowing out of the air heat exchanger 4 is heated and gasified by the high and low pressure heat exchanger 5 (1) and sucked into the compressor 1 to form a cycle.

ところが、外気温度が低い場合、例えば0℃以下の条件における貯湯運転では、空気熱交換器4の表面温度が低下するため空気熱交換器4の表面に霜が付着して熱交換効率が低下し、空気熱交換器4の冷媒温度が低下する。
さらに、貯湯運転を続けると空気熱交換器4に付着した霜が成長し、水熱交換器2で効率良く加熱を行うための十分な熱量を外気から吸熱することができなくなる。そのため、蒸発温度検知手段30aで検知した蒸発温度が所定値以下になると、制御装置40によって熱回収用開閉弁57vが開けられ、熱源装置50は除霜準備運転の後、除霜運転を開始することになる。
However, when the outside air temperature is low, for example, in the hot water storage operation under the condition of 0 ° C. or less, the surface temperature of the air heat exchanger 4 is lowered, so that frost adheres to the surface of the air heat exchanger 4 and the heat exchange efficiency is lowered. The refrigerant temperature of the air heat exchanger 4 decreases.
Furthermore, if the hot water storage operation is continued, frost attached to the air heat exchanger 4 grows, and a sufficient amount of heat for efficiently heating the water heat exchanger 2 cannot be absorbed from the outside air. Therefore, when the evaporation temperature detected by the evaporation temperature detection means 30a becomes a predetermined value or less, the heat recovery on-off valve 57v is opened by the control device 40, and the heat source device 50 starts the defrosting operation after the defrosting preparation operation. It will be.

(除霜準備運転)
図3は、図1に示すヒートポンプ装置における除霜準備運転中のサイクル状態について説明するモリエル線図である。図3において、L301(実線)および1、2、3、4、5、6、6x、6y、7は除霜準備運転中の冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。除霜準備運転を開始し、熱回収用開閉弁57vを開くことにより、高低圧熱交換器5と膨張弁3の間の分岐部P53から冷媒の一部が分岐し、熱回収路50sへ冷媒が流れ、熱回収用開閉弁57vを通過しキャピラリ7で減圧された低温低圧冷媒(6x)が熱回収用熱交換器6へ流入する。
この時、圧縮機1から吐出した高温高圧冷媒(2)は、熱回収用熱交換器6へ流入し、熱回収用熱交換器6において熱回収路50s側の冷媒へ放熱し、圧縮機1から吐出した冷媒よりも温度の低い状態(3)で水熱交換器2へ流入する。その後、水熱交換器2に流入して貯水回路60mの水へ放熱し(4)、さらに高低圧熱交換器5で放熱して低温高圧冷媒(5)となり膨張弁3で減圧される(6x)。
(Defrost preparation operation)
FIG. 3 is a Mollier diagram illustrating the cycle state during the defrost preparation operation in the heat pump apparatus shown in FIG. 1. In FIG. 3, L301 (solid line) and 1, 2, 3, 4, 5, 6, 6x, 6y, and 7 indicate refrigerant states during the defrost preparation operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. Is shown. By starting the defrosting preparation operation and opening the heat recovery on-off valve 57v, a part of the refrigerant branches off from the branch portion P53 between the high / low pressure heat exchanger 5 and the expansion valve 3, and the refrigerant enters the heat recovery path 50s. Flows through the heat recovery on-off valve 57v, and the low-temperature low-pressure refrigerant (6x) decompressed by the capillary 7 flows into the heat recovery heat exchanger 6.
At this time, the high-temperature and high-pressure refrigerant (2) discharged from the compressor 1 flows into the heat recovery heat exchanger 6 and dissipates heat to the refrigerant on the heat recovery path 50s side in the heat recovery heat exchanger 6, and the compressor 1 It flows into the water heat exchanger 2 in a state (3) where the temperature is lower than that of the refrigerant discharged from the refrigerant. After that, it flows into the water heat exchanger 2 and dissipates heat to the water in the water storage circuit 60m (4), and further dissipates heat at the high and low pressure heat exchanger 5 to become a low-temperature high-pressure refrigerant (5) and is decompressed by the expansion valve 3 (6x ).

そして、膨張弁3と空気熱交換器4の間の合流部P34(分岐部に同じ)において、膨張弁3から流出する冷媒(6x) と、熱回収用熱交換器6で加熱された冷媒(6y)とが合流し、空気熱交換器4へ流入する(6)。
除霜準備運転中では、蒸発温度は上昇するが、外気温度よりも低いため空気熱交換器4で冷媒は蒸発する(7)。そして、空気熱交換器4から流出した冷媒は、高低圧熱交換器5で加熱され、ガス化した冷媒(1)が圧縮機1に吸引されサイクルを形成する。
Then, at the junction P34 between the expansion valve 3 and the air heat exchanger 4 (same as the branching portion), the refrigerant (6x) flowing out from the expansion valve 3 and the refrigerant heated by the heat recovery heat exchanger 6 ( 6y) joins and flows into the air heat exchanger 4 (6).
During the defrost preparation operation, the evaporation temperature rises, but since it is lower than the outside air temperature, the refrigerant evaporates in the air heat exchanger 4 (7). And the refrigerant | coolant which flowed out from the air heat exchanger 4 is heated by the high-low pressure heat exchanger 5, and the gasified refrigerant | coolant (1) is attracted | sucked by the compressor 1, and forms a cycle.

その後、水熱交換器2へ流入する冷媒(3)の温度はさらに低下し、水熱交換器2から流出する冷媒(4)の温度及び蒸発温度は上昇を続け、圧縮機1の入力よりも水熱交換器2の熱交換量が小さくなり、空気熱交換器4で冷媒から空気へ放熱が起こり、図4に示す除霜運転時のサイクル状態となり、除霜運転へ切り替わる。   Thereafter, the temperature of the refrigerant (3) flowing into the water heat exchanger 2 further decreases, the temperature and the evaporation temperature of the refrigerant (4) flowing out from the water heat exchanger 2 continue to rise, and are higher than the input of the compressor 1. The amount of heat exchange in the water heat exchanger 2 is reduced, heat is released from the refrigerant to the air in the air heat exchanger 4, and the cycle state at the time of the defrosting operation shown in FIG.

(除霜運転)
図4は、図1に示すヒートポンプ装置における除霜運転中のサイクル状態について説明するモリエル線図である。図4において、L301および1、2、3、4、5、6、6x、6y、7は除霜運転における冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。除霜運転中は、空気熱交換器4を流通する冷媒温度が外気温度L302以上となるため、冷媒の熱が空気側へ放熱されて、空気熱交換器4の出口における冷媒の乾き度が低下する(7)。
その結果、貯湯運転時よりも空気熱交換器4内に存在する冷媒量が増加することで余剰冷媒が処理され、圧縮機1から吐出する冷媒圧力上昇が抑制されることになる。そして、空気熱交換器4を流出した二相冷媒は高低圧熱交換器5の熱交換器低圧部5bにおいて、熱交換器高温部5aへ流入する高温高圧冷媒から温熱を受け入れて加熱され、ガス化し(1)、圧縮機1へ吸引されサイクルを形成する。
(Defrosting operation)
FIG. 4 is a Mollier diagram illustrating the cycle state during the defrosting operation in the heat pump apparatus shown in FIG. 1. In FIG. 4, L301, 1, 2, 3, 4, 5, 6, 6x, 6y, and 7 indicate refrigerant states in the defrosting operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. During the defrosting operation, since the temperature of the refrigerant flowing through the air heat exchanger 4 becomes the outside air temperature L302 or higher, the heat of the refrigerant is radiated to the air side, and the dryness of the refrigerant at the outlet of the air heat exchanger 4 is reduced. (7).
As a result, the amount of refrigerant existing in the air heat exchanger 4 is increased as compared with the hot water storage operation, so that surplus refrigerant is processed and the rise in refrigerant pressure discharged from the compressor 1 is suppressed. The two-phase refrigerant that has flowed out of the air heat exchanger 4 is heated by receiving heat from the high-temperature and high-pressure refrigerant flowing into the heat exchanger high-temperature part 5a in the heat exchanger low-pressure part 5b of the high-low pressure heat exchanger 5, (1) and sucked into the compressor 1 to form a cycle.

以上のように、貯湯運転と除霜運転とではサイクル状態が異なり、貯湯運転と除霜運転をつなぐ運転である除霜準備運転によって、サイクル状態を変えていく操作が必要となる。以下に、かかる運転の切り替え方法について説明する。   As described above, the cycle state is different between the hot water storage operation and the defrosting operation, and an operation for changing the cycle state is required by the defrost preparation operation which is an operation connecting the hot water storage operation and the defrosting operation. The operation switching method will be described below.

(運転切り替え方法)
図5は、図1に示すヒートポンプ装置における運転の切り替え方法について説明するためのフローチャートである。前述したように、貯湯運転時に空気熱交換器4に霜が付着すると、蒸発温度(Tei)が低下する。
よって、空気熱交換器4への着霜状態を蒸発温度で判定することができるため、蒸発温度検知手段30aで検知した蒸発温度(Tei)が所定値(T1)以下になると(S102)、制御装置40が除霜準備運転開始を判断し、熱回収用開閉弁57vを開いて除霜準備運転を開始する(S103)。
そして、蒸発温度(Tei)が所定値(Tx)以上になると(S104)、除霜運転へ切り替わる(S105)。除霜運転において空気熱交換器4に付着した霜が融けると蒸発温度(Tei)が上昇し、蒸発温度(Tei)が所定値(T2)以上になると(S106)、再び貯湯運転へ切り替わり(S107)、貯湯を開始する。
(Operation switching method)
FIG. 5 is a flowchart for explaining the operation switching method in the heat pump apparatus shown in FIG. 1. As described above, when frost adheres to the air heat exchanger 4 during the hot water storage operation, the evaporation temperature (Tei) decreases.
Therefore, since the frosting state on the air heat exchanger 4 can be determined by the evaporation temperature, the control is performed when the evaporation temperature (Tei) detected by the evaporation temperature detection means 30a is equal to or lower than the predetermined value (T1) (S102). The apparatus 40 determines the start of the defrost preparation operation, opens the heat recovery on-off valve 57v, and starts the defrost preparation operation (S103).
When the evaporation temperature (Tei) becomes equal to or higher than the predetermined value (Tx) (S104), the operation is switched to the defrosting operation (S105). When the frost adhering to the air heat exchanger 4 melts in the defrosting operation, the evaporation temperature (Tei) rises, and when the evaporation temperature (Tei) exceeds a predetermined value (T2) (S106), the operation is switched again to the hot water storage operation (S107). ) Start hot water storage.

除霜準備運転から除霜運転へ切り替わるための基準となる目標蒸発温度Txは、空気熱交換器4に付着した霜が融ける温度以上であればよく、外気が0℃以上の場合は、例えば氷の融点である0℃とする。もしくは、空気熱交換器4に付着した霜は外気温度に近づくため、外気が0℃以下の場合は外気温度でもよい。   The target evaporation temperature Tx that serves as a reference for switching from the defrost preparation operation to the defrost operation may be equal to or higher than the temperature at which the frost attached to the air heat exchanger 4 melts. When the outside air is 0 ° C. or higher, for example, ice The melting point is 0 ° C. Or since the frost adhering to the air heat exchanger 4 approaches the outside air temperature, the outside air temperature may be used when the outside air is 0 ° C. or less.

(アクチュエータ制御方法:除霜準備運転)
図6〜図8は、図1に示すヒートポンプ装置における各アクチュエータの制御方法について説明するためのものであって、図6はタイムチャート、図7および図8は圧縮機1および膨張弁3の具体的な制御例である。
図6において、除霜準備運転では、除霜運転時間短縮のため、早く蒸発温度を所定値以上にすることが重要である。そのために、熱源装置50内の圧縮機1、膨張弁3およびファン4fと、貯湯装置60内の水ポンプ8を、制御装置40を用いて制御する。
熱回収用開閉弁57vを開いて貯湯運転から除霜準備運転へ切り替わると(P1)、圧縮機1の回転数を低下させ、膨張弁3の開度を大きくすることにより、空気熱交換器4内の冷媒量が増加し、蒸発温度が上昇する。この時、ファン4fを稼動させておくことにより、空気熱交換器4の出口における冷媒乾き度が急激に低下して圧縮機1へ液バックしないようにする。
(Actuator control method: Defrost preparation operation)
6 to 8 are for explaining a control method of each actuator in the heat pump apparatus shown in FIG. 1, FIG. 6 is a time chart, and FIGS. 7 and 8 are specific examples of the compressor 1 and the expansion valve 3. This is a typical control example.
In FIG. 6, in the defrost preparation operation, it is important to quickly set the evaporation temperature to a predetermined value or more in order to shorten the defrost operation time. For this purpose, the compressor 1, the expansion valve 3 and the fan 4 f in the heat source device 50 and the water pump 8 in the hot water storage device 60 are controlled using the control device 40.
When the heat recovery on-off valve 57v is opened to switch from the hot water storage operation to the defrost preparation operation (P1), the air heat exchanger 4 is reduced by decreasing the rotational speed of the compressor 1 and increasing the opening of the expansion valve 3. The amount of refrigerant inside increases, and the evaporation temperature rises. At this time, by operating the fan 4f, the dryness of the refrigerant at the outlet of the air heat exchanger 4 is abruptly lowered so as not to be liquid-backed to the compressor 1.

図7において、圧縮機1の回転数および膨張弁3の開度を除霜運転開始と同時に大きく変化させると、空気熱交換器4内の冷媒量が急激に増加し、過渡的に圧縮機1の入口における冷媒乾き度が1以下(L304)となり、圧縮機1へ液バックする。
そこで、圧縮機1の回転数および膨張弁3の開度を所定の時間間隔で段階的に、例えば図8に示すように圧縮機1の回転数を20秒毎に20rps低下し、膨張弁3の開度を20秒毎に25pulse増加させる、といったように制御する。そうすると、圧縮機1の入口における冷媒乾き度は常に1以上となり、圧縮機1へ液バックすることなく、除霜準備運転から除霜運転へ切り替えることができる。
In FIG. 7, when the rotation speed of the compressor 1 and the opening degree of the expansion valve 3 are greatly changed simultaneously with the start of the defrosting operation, the amount of refrigerant in the air heat exchanger 4 increases rapidly, and the compressor 1 is transiently changed. The refrigerant dryness at the inlet becomes 1 or less (L304), and the liquid is returned to the compressor 1.
Therefore, the rotational speed of the compressor 1 and the opening degree of the expansion valve 3 are decreased stepwise at predetermined time intervals, for example, as shown in FIG. The degree of opening is increased by 25 pulses every 20 seconds. If it does so, the refrigerant | coolant dryness in the inlet_port | entrance of the compressor 1 will always be 1 or more, and it can switch from a defrost preparation operation to a defrost operation, without liquid back to the compressor 1. FIG.

(アクチュエータ制御方法:除霜運転)
次に、除霜運転における、各アクチュエータの制御方法について図6を用いて説明する。除霜運転に入ると(P2)、ファン4fを停止し、空気熱交換器4から放熱させることにより蒸発温度が上昇し、空気熱交換器4に付着した霜を融かすことができる。なお、膨張弁3の開度を小さくして圧縮機1の吐出温度を高くする、もしくは圧縮機1の回転数を増加させる、などにより圧縮機1の入力を増加させれば、除霜運転時間が短くなる。
(Actuator control method: defrosting operation)
Next, a method for controlling each actuator in the defrosting operation will be described with reference to FIG. When the defrosting operation is started (P2), the fan 4f is stopped and the air heat exchanger 4 dissipates heat, whereby the evaporation temperature rises and the frost attached to the air heat exchanger 4 can be melted. If the input of the compressor 1 is increased by decreasing the opening degree of the expansion valve 3 to increase the discharge temperature of the compressor 1 or increasing the rotational speed of the compressor 1, the defrosting operation time Becomes shorter.

除霜運転中に水ポンプを停止、もしくは流量を小さくすると、水熱交換器2内に水が沸騰することが懸念されるが、熱回収用熱交換器6によって水熱交換器2の入口における冷媒温度が100℃以下になるように熱回収用熱交換器6の放熱能力(たとえば、長さ等)を選定することで、水熱交換器2の水加熱部2bにおいて水が沸騰することを防止することができる。   If the water pump is stopped or the flow rate is reduced during the defrosting operation, there is a concern that water will boil in the water heat exchanger 2, but at the inlet of the water heat exchanger 2 by the heat recovery heat exchanger 6. By selecting the heat dissipating capability (for example, length) of the heat recovery heat exchanger 6 so that the refrigerant temperature becomes 100 ° C. or less, water is boiled in the water heating unit 2b of the water heat exchanger 2. Can be prevented.

そして、蒸発温度が予め設定された温度以上になると制御装置40は除霜終了(P3)を判断し、熱回収用開閉弁57vを閉じ、ファン4fを稼動させ、圧縮機1の回転数、水ポンプ8の流量、膨張弁3の開度を所定値として、貯湯運転を開始する。   When the evaporating temperature is equal to or higher than the preset temperature, the control device 40 determines the end of defrosting (P3), closes the heat recovery on-off valve 57v, operates the fan 4f, and sets the rotational speed of the compressor 1, water The hot water storage operation is started with the flow rate of the pump 8 and the opening degree of the expansion valve 3 as predetermined values.

以上説明したように、実施の形態1のヒートポンプ装置によれば、高低圧熱交換器5によって圧縮機1へ吸引される冷媒をガス化できるため圧縮機1への液バックを抑制でき、かつ水熱交換器2内の水の沸騰を防止しつつ圧縮機1の入力を増加できるため、除霜時間が短くなり、ヒートポンプ装置の低外気における時間当りの運転効率が向上する。   As described above, according to the heat pump device of the first embodiment, the refrigerant sucked into the compressor 1 by the high-low pressure heat exchanger 5 can be gasified, so that liquid back to the compressor 1 can be suppressed and water Since the input of the compressor 1 can be increased while preventing boiling of water in the heat exchanger 2, the defrosting time is shortened, and the operation efficiency per hour in the low outside air of the heat pump device is improved.

(高低圧熱交換器、熱回収用熱交換器)
図14〜図17は、図1に示す高低圧熱交換器および熱回収用熱交換器を説明するものであって、図14および図15は構造の一例を模式的に示す斜視図、図16および図17は熱特性を示す相関図である。なお、熱回収用熱交換器6の構成は高低圧熱交換器5の構成と同じであるため、熱回収用熱交換器6について説明する。
図14において例示する高低圧熱交換器は二重管タイプである。高低圧熱交換器5は高温冷媒と低温冷媒を熱交換させるもので、例えば外管(熱交換器高温部に同じ)5aに高温冷媒が流れ、内管(熱交換器低圧部に同じ)5bに低温冷媒が流れるものであって、高温冷媒と低温冷媒とは互いに反対方向に流れる「対向流」となるように構成されている。ここで、伝熱面積(A)は内管5bの外面の表面積(πD×L、D:内管5bの外径、L:内管5bの長さ)とする。
(High / low pressure heat exchanger, heat recovery heat exchanger)
14 to 17 explain the high-low pressure heat exchanger and the heat recovery heat exchanger shown in FIG. 1, and FIGS. 14 and 15 are perspective views schematically showing an example of the structure. FIG. 17 is a correlation diagram showing thermal characteristics. In addition, since the structure of the heat exchanger 6 for heat recovery is the same as the structure of the high-low pressure heat exchanger 5, the heat exchanger 6 for heat recovery is demonstrated.
The high-low pressure heat exchanger illustrated in FIG. 14 is a double tube type. The high-low pressure heat exchanger 5 exchanges heat between a high-temperature refrigerant and a low-temperature refrigerant. The high-temperature refrigerant and the low-temperature refrigerant are configured to be “counterflow” that flows in opposite directions. Here, the heat transfer area (A) is the surface area of the outer surface of the inner tube 5b (πD × L, D: outer diameter of the inner tube 5b, L: length of the inner tube 5b).

図16および図17に示すように、伝熱面積(A)の増加に伴い熱交換量Qが増加し、高低圧熱交換器5の外管(熱交換器高温部)5aの出口温度Thoは低下するが、内管(熱交換器低圧部)5bの高低圧熱交換器低温側入口温度Tliに近づくため、熱交換量Qの増加率が低下する。このように、所望する高低圧熱交換器高温側出口温度Thoによって必要な伝熱面積Aが異なる。つまり、管径が一定であれば、長さを調節することによって、高低圧熱交換器出口温度を所望の値にすることができる。   As shown in FIGS. 16 and 17, the heat exchange amount Q increases as the heat transfer area (A) increases, and the outlet temperature Tho of the outer pipe (heat exchanger high temperature portion) 5a of the high / low pressure heat exchanger 5 is Although it decreases, it approaches the high / low pressure heat exchanger low temperature side inlet temperature Tli of the inner pipe (heat exchanger low pressure part) 5b, so the rate of increase of the heat exchange amount Q decreases. Thus, the required heat transfer area A differs depending on the desired high / low pressure heat exchanger high temperature side outlet temperature Tho. That is, if the tube diameter is constant, the outlet temperature of the high / low pressure heat exchanger can be set to a desired value by adjusting the length.

また、図14に示した高低圧熱交換器5は二重管タイプのものであったが、外管5aの断面積を単管時と同じにするには、配管径を大きくする必要があり、高低圧熱交換器5自体が大きくなる。特に、CO2は圧力が高いため配管の肉厚を厚くする必要があり、高低圧熱交換器の重量も重くなり、コストも増える。
そこで、図15に示すように高温冷媒が流れる配管(熱交換器高温部に同じ)5aと低温冷媒が流れる配管(熱交換器低圧部に同じ)5bとを、それぞれ外面同士を当接して接合(たとえば、ロウ付け)するタイプにすれば、配管径を変えずに高低圧熱交換器5は簡単な構造となり、コスト増加を抑制することができる。
Moreover, although the high-low pressure heat exchanger 5 shown in FIG. 14 was a double pipe type, in order to make the cross-sectional area of the outer pipe 5a the same as that of the single pipe, it is necessary to increase the pipe diameter. The high / low pressure heat exchanger 5 itself becomes large. In particular, since CO2 has a high pressure, it is necessary to increase the thickness of the pipe, and the weight of the high / low pressure heat exchanger becomes heavy and the cost also increases.
Therefore, as shown in FIG. 15, a pipe (same as the heat exchanger high-temperature part) 5 a through which the high-temperature refrigerant flows and a pipe (same as the heat exchanger low-pressure part) 5 b through which the low-temperature refrigerant flows are joined with their outer surfaces in contact with each other. If the type (for example, brazing) is used, the high-low pressure heat exchanger 5 has a simple structure without changing the pipe diameter, and an increase in cost can be suppressed.

また、熱回収用熱交換器6において、熱回収路50sを構成する熱回収用配管36、67等の配管径を、主回路50mを構成する主配管12、25等の配管径よりも小さくすれば、配管が取り回しやすくなり熱回収路50sを全体的に小さくできるため、熱源装置50のサイズアップがなくなる。   Further, in the heat recovery heat exchanger 6, the pipe diameters of the heat recovery pipes 36 and 67 constituting the heat recovery path 50s are made smaller than the pipe diameters of the main pipes 12 and 25 constituting the main circuit 50m. In this case, the pipes can be easily routed and the heat recovery path 50s can be reduced as a whole, so that the heat source device 50 is not increased in size.

[実施の形態2]
図9は本発明の実施形態2に係るヒートポンプ装置を示す構成図である。図9において、ヒートポンプ装置200は、ヒートポンプ装置100(実施の形態1)における熱回収路50sの主回路50mとの接続形態を変更したものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
[Embodiment 2]
FIG. 9 is a block diagram showing a heat pump device according to Embodiment 2 of the present invention. In FIG. 9, the heat pump device 200 is obtained by changing the connection form of the heat recovery path 50s with the main circuit 50m in the heat pump device 100 (Embodiment 1). The same parts as those in the first embodiment are denoted by the same reference numerals, and a part of the description is omitted.

図9において、ヒートポンプ装置200における熱源装置250は、主回路50mと熱回収路250sとを有している。
熱回収路250sは、キャピラリ7と、熱回収用熱交換器6を構成する熱回収器低圧部6bと、主回路50mの主配管53(熱交換器高温部5aと膨張弁3とを連結している)に設けられた分岐部P53とキャピラリ7とを連結する熱回収用配管57と、キャピラリ7と熱回収器低圧部6bとを連結する熱回収用配管76と、熱回収器低圧部6bと主回路50mの主配管51(熱交換器低圧部5bと圧縮機1とを連結している)に設けられた合流部P51とを連結する熱回収用配管61と、を有している。そして、熱回収用配管57に熱回収用開閉弁57vが設置されている。
In FIG. 9, the heat source apparatus 250 in the heat pump apparatus 200 has a main circuit 50m and a heat recovery path 250s.
The heat recovery path 250 s connects the capillary 7, the heat recovery unit low-pressure unit 6 b constituting the heat recovery heat exchanger 6, and the main pipe 53 (the heat exchanger high-temperature unit 5 a and the expansion valve 3) of the main circuit 50 m. A heat recovery pipe 57 for connecting the branch portion P53 and the capillary 7 provided in FIG. 5; a heat recovery pipe 76 for connecting the capillary 7 and the heat recovery device low pressure portion 6b; and a heat recovery device low pressure portion 6b. And a heat recovery pipe 61 that connects the main pipe 51 of the main circuit 50m (which connects the heat exchanger low-pressure part 5b and the compressor 1) to a junction P51. The heat recovery pipe 57 is provided with a heat recovery on-off valve 57v.

(除霜運転動作)
除霜運転中の動作について、図18を用いて説明する。図18において、L301および1、1x、2、3、4、5、6、6x、6y、7は除霜運転における冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。除霜運転中は、熱回収用開閉弁57vを開くことにより、高低圧熱交換器5と膨張弁3との間の分岐点P53から冷媒の一部が分岐し、熱回収路50sへ流れ、熱回収用弁57vを通過してキャピラリ7で減圧された低温低圧冷媒(6x)が熱回収用熱交換器6へ流入する。
この時、圧縮機1から吐出した高温高圧冷媒(2)が熱回収用熱交換器6へ流入し熱回収用熱交換器6で熱回収路250s側の冷媒へ放熱し、圧縮機1から吐出した冷媒よりも温度が低い状態(3)で水熱交換器2へ流入する。その後、水熱交換器2の水へ放熱し(4)、さらに高低圧熱交換器5で放熱して低温高圧冷媒(5)となり、分岐点P53で分岐した冷媒の一部が膨張弁3で減圧され、室外熱交換器4へ流入する(6)。そして、高低圧熱変換器5と圧縮機1との間の合流部P51において、高低圧熱交換器5で加熱された冷媒(1x)と、熱回収用熱交換器6で加熱された冷媒(6y)とが合流し(1)、より過熱度の大きいガス冷媒となって、圧縮機1に吸引されサイクルが形成される。
(Defrosting operation)
The operation during the defrosting operation will be described with reference to FIG. In FIG. 18, L301 and 1, 1x, 2, 3, 4, 5, 6, 6x, 6y, 7 indicate refrigerant states in the defrosting operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. Yes. During the defrosting operation, by opening the heat recovery on-off valve 57v, a part of the refrigerant branches from the branch point P53 between the high / low pressure heat exchanger 5 and the expansion valve 3, and flows to the heat recovery path 50s. The low-temperature and low-pressure refrigerant (6x) decompressed by the capillary 7 through the heat recovery valve 57v flows into the heat recovery heat exchanger 6.
At this time, the high-temperature and high-pressure refrigerant (2) discharged from the compressor 1 flows into the heat recovery heat exchanger 6, dissipates heat to the refrigerant on the heat recovery path 250s side, and is discharged from the compressor 1. It flows into the water heat exchanger 2 in a state (3) where the temperature is lower than that of the refrigerant. Thereafter, heat is dissipated to the water of the water heat exchanger 2 (4), further dissipated by the high-low pressure heat exchanger 5 to become a low-temperature high-pressure refrigerant (5), and a part of the refrigerant branched at the branch point P53 is the expansion valve 3. The pressure is reduced and flows into the outdoor heat exchanger 4 (6). And in the junction P51 between the high-low pressure heat converter 5 and the compressor 1, the refrigerant (1x) heated by the high-low pressure heat exchanger 5 and the refrigerant heated by the heat recovery heat exchanger 6 ( 6y) join together (1) to form a gas refrigerant with a higher degree of superheat and is sucked into the compressor 1 to form a cycle.

すなわち、実施の形態1におけるヒートポンプ装置100では、熱回収路50sが空気熱交換器4の直前の合流部P34において主回路50mに合流するのに対し、実施の形態2におけるヒートポンプ装置200では、熱回収路250sが圧縮機1の直前の合流部P51において主回路50mに合流している。
したがって、熱回収路250sの熱回収器低圧部6bにおいて加熱された冷媒が、主回路50mの圧縮機1へ直接吸引されるため過熱ガスになりやすく、圧縮機1への液バック抑制効果が大きくなる。
That is, in the heat pump device 100 according to the first embodiment, the heat recovery path 50s merges with the main circuit 50m at the merge portion P34 just before the air heat exchanger 4, whereas in the heat pump device 200 according to the second embodiment, heat The recovery path 250s joins the main circuit 50m at the junction P51 just before the compressor 1.
Therefore, since the refrigerant heated in the heat recovery unit low-pressure part 6b of the heat recovery path 250s is directly sucked into the compressor 1 of the main circuit 50m, it easily becomes superheated gas, and the effect of suppressing liquid back to the compressor 1 is large. Become.

(除霜準備運転前)
また、除霜準備運転開始前が貯湯運転の場合、水熱交換器2内に低水温が貯留している状態となる。そこで、循環弁92vを開き、給水弁92wを閉じ、貯湯タンク9内の高温水を水熱交換器2へ給水することにより、水熱交換器2内が低温水から高温水へ入れ替わる。これにより、水熱交換器2の入口冷媒温度と給水温度の差が小さくなり、除霜準備運転及び除霜運転中での水熱交換器2における冷媒から水への放熱を抑制することができるため、除霜時間の短縮を図ることができる。
(Before defrost preparation operation)
Further, when the hot water storage operation is before the start of the defrost preparation operation, a low water temperature is stored in the water heat exchanger 2. Therefore, the circulation valve 92v is opened, the water supply valve 92w is closed, and the high temperature water in the hot water storage tank 9 is supplied to the water heat exchanger 2, whereby the inside of the water heat exchanger 2 is switched from low temperature water to high temperature water. Thereby, the difference of the inlet refrigerant temperature and water supply temperature of the water heat exchanger 2 becomes small, and the heat radiation from the refrigerant to the water in the water heat exchanger 2 during the defrost preparation operation and the defrost operation can be suppressed. Therefore, it is possible to shorten the defrosting time.

さらに、除霜準備運転前に高温水を水熱交換器2に給水し、水熱交換器2の入口における冷媒温度と給水した水温度の差が小さくなるように、熱回収用熱交換器6の能力(たとえば、長さ等)を選定すれば、水ポンプ8を停止もしくは水流量を低下させずに除霜運転が可能となる。   Furthermore, before the defrost preparation operation, high-temperature water is supplied to the water heat exchanger 2, and the heat recovery heat exchanger 6 is reduced so that the difference between the refrigerant temperature at the inlet of the water heat exchanger 2 and the supplied water temperature becomes small. If the capacity (for example, length) is selected, the defrosting operation can be performed without stopping the water pump 8 or reducing the water flow rate.

(除霜終了時)
また、除霜運転中は冷媒からの熱が水熱交換器2内の水へ蓄熱され、水熱交換器2内の水温が全体的に高くなり、貯湯運転へ復帰する際に冷媒の圧力(高圧)が上昇して熱源装置50が異常停止する場合がある。
そこで、除霜運転から貯湯運転へ復帰する前に低温水を給水することにより水熱交換器2内の水温を低下させる。これにより、貯湯運転へ切り替え後に圧縮機1の回転数を増加する、あるいは膨張弁3の開度を小さくしても圧縮機1の吐出温度及び吐出圧力の急上昇を抑制することができるため、熱源装置250の異常停止を防止し、信頼性が向上する。
(At the end of defrosting)
Further, during the defrosting operation, heat from the refrigerant is stored in the water in the water heat exchanger 2, and the water temperature in the water heat exchanger 2 increases as a whole, and the refrigerant pressure ( High pressure) may rise and the heat source device 50 may stop abnormally.
Therefore, the water temperature in the water heat exchanger 2 is lowered by supplying low-temperature water before returning from the defrosting operation to the hot water storage operation. Thereby, even if the rotation speed of the compressor 1 is increased after switching to the hot water storage operation or the opening degree of the expansion valve 3 is reduced, the rapid increase in the discharge temperature and discharge pressure of the compressor 1 can be suppressed. An abnormal stop of the device 250 is prevented, and the reliability is improved.

また、CO2を冷媒とした場合、CO2は気液の密度差が小さいため、空気熱交換器4側に多くの冷媒を貯留することができる。また、圧縮機1から吐出する冷媒温度が高いため、高低圧熱交換器5で空気熱交換器4から流出する二相冷媒を加熱しガス化しやすい。   Further, when CO2 is used as a refrigerant, since CO2 has a small gas-liquid density difference, a large amount of refrigerant can be stored on the air heat exchanger 4 side. Moreover, since the refrigerant temperature discharged from the compressor 1 is high, the two-phase refrigerant flowing out from the air heat exchanger 4 is easily heated and gasified by the high-low pressure heat exchanger 5.

また、蒸発温度は、空気熱交換器4を流通する配管の中間位置に蒸発温度検知手段30aを設けて検知しても良いし、膨張弁3出口から圧縮機1入口の間の低圧配管途中に設けた低圧圧力検知手段(図示しない)から算出した飽和温度としてもよい。   Further, the evaporating temperature may be detected by providing an evaporating temperature detecting means 30a at an intermediate position of the piping flowing through the air heat exchanger 4, or in the middle of the low pressure piping between the expansion valve 3 outlet and the compressor 1 inlet. It is good also as the saturation temperature computed from the provided low voltage | pressure pressure detection means (not shown).

また、空気熱交換器4への着霜を、外気温度と貯湯運転時間とから経験的に推定して検知するようにしてもよい。   Further, frost formation on the air heat exchanger 4 may be detected by empirically estimating from the outside air temperature and the hot water storage operation time.

[実施の形態3]
図10は本発明の実施形態3に係るヒートポンプ装置を示す構成図である。図10において、ヒートポンプ装置300は、ヒートポンプ装置200(実施の形態2)における熱回収路250sの主回路50mとの接続形態を変更したものである。なお、実施の形態2と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
[Embodiment 3]
FIG. 10 is a block diagram showing a heat pump device according to Embodiment 3 of the present invention. In FIG. 10, a heat pump device 300 is obtained by changing the connection form of the heat recovery path 250s with the main circuit 50m in the heat pump device 200 (Embodiment 2). The same parts as those in the second embodiment are denoted by the same reference numerals, and a part of the description is omitted.

(回路構成)
図10において、ヒートポンプ装置300における熱源装置350は主回路50mと熱回収路350sとを有している。
熱回収路350sは、キャピラリ7と、熱回収用熱交換器6を構成する熱回収器低圧部6bと、主回路50mの主配管34(膨張弁3と空気熱交換器4とを連結している)に設けられた分岐部P34とキャピラリ7とを連結する熱回収用配管37と、キャピラリ7と熱回収器低圧部6bとを連結する熱回収用配管76と、熱回収器低圧部6bと主回路50mの主配管51(熱交換器低圧部5bと圧縮機1とを連結している)に設けられた合流部P51とを連結する熱回収用配管61と、を有している。そして、熱回収用配管37に熱回収用開閉弁37vが設置されている。
(Circuit configuration)
In FIG. 10, the heat source device 350 in the heat pump device 300 has a main circuit 50m and a heat recovery path 350s.
The heat recovery path 350 s connects the capillary 7, the heat recovery unit low-pressure part 6 b constituting the heat recovery heat exchanger 6, and the main pipe 34 (the expansion valve 3 and the air heat exchanger 4) of the main circuit 50 m. And a heat recovery pipe 37 connecting the capillary 7 and the heat recovery unit low pressure part 6b, and a heat recovery unit low pressure part 6b. And a heat recovery pipe 61 that connects a merging section P51 provided in a main pipe 51 (connecting the heat exchanger low-pressure part 5b and the compressor 1) of the main circuit 50m. The heat recovery pipe 37 is provided with a heat recovery on-off valve 37v.

すなわち、実施の形態2におけるヒートポンプ装置200では、熱回収路250sが膨張弁3の上流の分岐部P53において主回路50mから分岐するのに対し、実施の形態3におけるヒートポンプ装置300では、熱回収路350sが膨張弁3の下流の分岐部P34において主回路50mから分岐している。
したがって、熱回収路350sには膨張弁3を通過した低温低圧冷媒が流入して、キャピラリ7において減圧されるものの、熱回収器低圧部6bにおいて加熱された冷媒が、主回路50mの圧縮機1へ吸引されるため過熱ガスになりやすく、圧縮機1への液バック抑制効果が大きくなる。
That is, in the heat pump device 200 in the second embodiment, the heat recovery path 250s branches from the main circuit 50m in the branch portion P53 upstream of the expansion valve 3, whereas in the heat pump device 300 in the third embodiment, the heat recovery path 350 s branches from the main circuit 50 m at the branch portion P <b> 34 downstream of the expansion valve 3.
Accordingly, the low-temperature and low-pressure refrigerant that has passed through the expansion valve 3 flows into the heat recovery passage 350s and is decompressed in the capillary 7, but the refrigerant heated in the heat recovery unit low-pressure part 6b is converted into the compressor 1 of the main circuit 50m. Since it is sucked into the compressor 1, it tends to become superheated gas, and the effect of suppressing liquid back to the compressor 1 is increased.

(除霜運転)
図11は、図10に示すヒートポンプ装置における除霜運転中のサイクル状態について説明するモリエル線図である。図11において、L301および1、1x、2、3、4、5、6、6x、6y、7は除霜運転における冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。除霜運転中は、熱回収用開閉弁37vを開くことにより、膨張弁3と空気熱交換器4との間の分岐部P34から冷媒の一部が分岐し、熱回収路350sへ冷媒が流れ、熱回収用開閉弁37vを通過しキャピラリ7で減圧された低温低圧冷媒(6x)が熱回収用熱交換器6へ流入する。
この時、圧縮機1から吐出した高温高圧冷媒(2)は熱回収用熱交換器6へ流入して熱回収路350s側の冷媒へ放熱し、圧縮機1から吐出した冷媒よりも温度が低い状態(3)で水熱交換器2へ流入する。その後、水熱交換器2の水へ放熱し(4)、さらに高低圧熱交換器5で放熱して低温高圧冷媒(5)となる。
(Defrosting operation)
FIG. 11 is a Mollier diagram illustrating the cycle state during the defrosting operation in the heat pump apparatus shown in FIG. 10. In FIG. 11, L301 and 1, 1x, 2, 3, 4, 5, 6, 6x, 6y, 7 indicate refrigerant states in the defrosting operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. Yes. During the defrosting operation, by opening the heat recovery on-off valve 37v, a part of the refrigerant branches off from the branch part P34 between the expansion valve 3 and the air heat exchanger 4, and the refrigerant flows into the heat recovery path 350s. Then, the low-temperature and low-pressure refrigerant (6x) having passed through the heat recovery on-off valve 37v and decompressed by the capillary 7 flows into the heat recovery heat exchanger 6.
At this time, the high-temperature and high-pressure refrigerant (2) discharged from the compressor 1 flows into the heat recovery heat exchanger 6 and dissipates heat to the refrigerant on the heat recovery path 350s, and the temperature is lower than that of the refrigerant discharged from the compressor 1. It flows into the water heat exchanger 2 in the state (3). Thereafter, heat is dissipated to the water of the water heat exchanger 2 (4), and further, heat is dissipated by the high and low pressure heat exchanger 5 to become a low temperature and high pressure refrigerant (5).

一方、分岐部P34で分岐した冷媒の一部を除く冷媒は、膨張弁3で減圧され、室外熱交換器4および高低圧熱交換器5へ流入する。
そして、高低圧熱交換器5と圧縮機1との間の合流部P51において、高低圧熱交換器5で加熱された冷媒(1x)と、熱回収用熱交換器6で加熱された冷媒(6y)とが合流し(1)、より過熱度の大きいガス冷媒となって、圧縮機1に吸引されサイクルが形成される。
On the other hand, the refrigerant excluding a part of the refrigerant branched at the branch portion P34 is decompressed by the expansion valve 3 and flows into the outdoor heat exchanger 4 and the high-low pressure heat exchanger 5.
And in the junction P51 between the high / low pressure heat exchanger 5 and the compressor 1, the refrigerant (1x) heated by the high / low pressure heat exchanger 5 and the refrigerant heated by the heat recovery heat exchanger 6 ( 6y) join together (1) to form a gas refrigerant with a higher degree of superheat and is sucked into the compressor 1 to form a cycle.

以上説明したように、実施の形態3のヒートポンプ装置300によれば、高低圧熱交換器5で加熱された冷媒と、熱回収用熱交換器6で加熱された冷媒が合流して圧縮機1へ吸引されるため、過熱ガスとなりやすく、圧縮機1への液バックを防止でき、ヒートポンプ装置の信頼性が向上する。   As described above, according to the heat pump device 300 of the third embodiment, the refrigerant heated by the high / low pressure heat exchanger 5 and the refrigerant heated by the heat recovery heat exchanger 6 merge to form the compressor 1. Therefore, it is easy to become superheated gas, liquid back to the compressor 1 can be prevented, and the reliability of the heat pump device is improved.

[実施の形態4]
図12は本発明の実施形態4に係るヒートポンプ装置を示す構成図である。図12において、ヒートポンプ装置400は、ヒートポンプ装置100(実施の形態1)における主回路50mの一部にバイパス配管を設置したものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
[Embodiment 4]
FIG. 12 is a configuration diagram showing a heat pump device according to Embodiment 4 of the present invention. In FIG. 12, heat pump apparatus 400 is one in which bypass piping is installed in a part of main circuit 50m in heat pump apparatus 100 (Embodiment 1). The same parts as those in the first embodiment are denoted by the same reference numerals, and a part of the description is omitted.

(回路構成)
図12において、ヒートポンプ装置400における熱源装置450は主回路450mと、熱回収路50sとを有している。
主回路450mには、主配管16(圧縮機1と熱回収用熱交換器6とを接続している)と、主配管25(水熱交換器2と高低圧熱交換器5とを接続している)とを連通させるバイパス配管15が設置されている。なお、バイパス配管15にはバイパス開閉弁15vが設置されている。したがって、バイパス開閉弁15vを開くことによって、圧縮機1において生成された高圧高温の冷媒の一部は、バイパス配管15を経由して高低圧熱交換器5に直接流入することになる。
(Circuit configuration)
In FIG. 12, the heat source device 450 in the heat pump device 400 has a main circuit 450m and a heat recovery path 50s.
A main pipe 16 (which connects the compressor 1 and the heat recovery heat exchanger 6) and a main pipe 25 (the water heat exchanger 2 and the high / low pressure heat exchanger 5) are connected to the main circuit 450m. A bypass pipe 15 is provided. The bypass pipe 15 is provided with a bypass opening / closing valve 15v. Therefore, a part of the high-pressure and high-temperature refrigerant generated in the compressor 1 directly flows into the high-low pressure heat exchanger 5 via the bypass pipe 15 by opening the bypass opening / closing valve 15v.

(除霜運転)
図13は、図12に示すヒートポンプ装置における除霜運転中のサイクル状態について説明するモリエル線図である。図13において、L301および1、2、3、3x、4、5、6、6x、6y、7は除霜運転における冷媒状態を示し、L302(一点鎖線)は外気温度相当の飽和圧力を示している。除霜準備運転及び除霜運転中は、熱回収用開閉弁57vとバイパス開閉弁15vを開く。熱回収用開閉弁57vを開くことにより、膨張弁3と空気熱交換器4の間の分岐部P34から冷媒が分岐し、熱回収路50sへ冷媒が流入する。
そして、熱回収用開閉弁57vを通過しキャピラリ7で減圧された低温低圧冷媒(6x)が熱回収用熱交換器6へ流入する。
(Defrosting operation)
FIG. 13 is a Mollier diagram for explaining the cycle state during the defrosting operation in the heat pump apparatus shown in FIG. 12. In FIG. 13, L301 and 1, 2, 3, 3x, 4, 5, 6, 6x, 6y, and 7 indicate refrigerant states in the defrosting operation, and L302 (dashed line) indicates a saturation pressure corresponding to the outside air temperature. Yes. During the defrost preparation operation and the defrost operation, the heat recovery on-off valve 57v and the bypass on-off valve 15v are opened. By opening the heat recovery on-off valve 57v, the refrigerant branches from the branch portion P34 between the expansion valve 3 and the air heat exchanger 4, and the refrigerant flows into the heat recovery path 50s.
Then, the low-temperature and low-pressure refrigerant (6x) having passed through the heat recovery on-off valve 57v and decompressed by the capillary 7 flows into the heat recovery heat exchanger 6.

一方、主回路450mでは圧縮機1から吐出した高温高圧冷媒(2)が熱回収用熱交換器6へ流入して熱回収用熱交換器6で熱回収路50s側の冷媒へ放熱し、圧縮機1から吐出した冷媒よりも温度が低い状態(3)で水熱交換器2へ流入する。
このとき、バイパス開閉弁15vを開くと、水熱交換器2の水へ放熱して温度が低下した冷媒(3x)と、バイパス配管15からの吐出冷媒とが合流し(4)、さらに高低圧熱交換器5で放熱して低温高圧冷媒(5)となり膨張弁3で減圧される(6x)。そして、熱回収用熱交換器6で加熱された冷媒(6y)と合流し、空気熱交換器4へ流入する(6)。
さらに、空気熱交換器4から流出した冷媒(7)は、高低圧熱交換器5で加熱されてガス化し(1)、が圧縮機1に吸引されサイクルが形成される。
On the other hand, in the main circuit 450m, the high-temperature and high-pressure refrigerant (2) discharged from the compressor 1 flows into the heat recovery heat exchanger 6 and dissipates heat to the heat recovery path 50s side refrigerant by the heat recovery heat exchanger 6. It flows into the water heat exchanger 2 in a state (3) where the temperature is lower than the refrigerant discharged from the machine 1.
At this time, when the bypass on-off valve 15v is opened, the refrigerant (3x) that has radiated heat to the water of the water heat exchanger 2 and the temperature has decreased (4) and the refrigerant discharged from the bypass pipe 15 merge (4). Heat is dissipated by the heat exchanger 5 to become a low-temperature high-pressure refrigerant (5), and the pressure is reduced by the expansion valve 3 (6x). And it merges with the refrigerant | coolant (6y) heated with the heat exchanger 6 for heat recovery, and flows in into the air heat exchanger 4 (6).
Further, the refrigerant (7) flowing out from the air heat exchanger 4 is heated and gasified by the high and low pressure heat exchanger 5 (1), and is sucked into the compressor 1 to form a cycle.

以上説明したように、実施の形態4のヒートポンプ装置によれば、バイパス配管15により、除霜準備運転および除霜運転中において、高低圧熱交換器5へ流入する冷媒の温度が上昇するため、高低圧熱交換器5の熱交換量が増加し、圧縮機1へ吸引される冷媒をガス化し易くなる。また、水熱交換器2へ流入する冷媒の流量が減少するため、水熱交換器2における水への放熱を抑制することができるため、空気熱交換器4における放熱量が増加し、除霜時間が短くなり、ヒートポンプ装置400の低外気における時間当りの運転効率が向上する。   As described above, according to the heat pump device of the fourth embodiment, the bypass pipe 15 increases the temperature of the refrigerant flowing into the high-low pressure heat exchanger 5 during the defrost preparation operation and the defrost operation. The amount of heat exchange in the high / low pressure heat exchanger 5 is increased, and the refrigerant sucked into the compressor 1 is easily gasified. Moreover, since the flow rate of the refrigerant flowing into the water heat exchanger 2 is reduced, the heat radiation to the water in the water heat exchanger 2 can be suppressed, so the heat radiation amount in the air heat exchanger 4 is increased, and defrosting is performed. The time is shortened, and the operation efficiency per hour in the low outside air of the heat pump device 400 is improved.

また、実施の形態1〜4において、圧縮機1を低圧シェルとした場合、仮に、圧縮機1へ過渡的な液バックが発生しても、圧縮機1内のモータからの発熱によって冷媒を加熱し、ガス化することができる。
また、実施の形態1〜4において、熱回収用開閉弁とキャピラリとを、開度が可変な膨張弁に置き換えた場合、膨張弁開度を変化させることによって熱回収路を流通する冷媒流量を調整できるため、運転条件によらず確実に圧縮機への液バックを防ぐことができる。
In Embodiments 1 to 4, when the compressor 1 is a low-pressure shell, even if a transient liquid back occurs in the compressor 1, the refrigerant is heated by heat generated from the motor in the compressor 1. And can be gasified.
In Embodiments 1 to 4, when the heat recovery on-off valve and the capillary are replaced with an expansion valve having a variable opening, the flow rate of the refrigerant flowing through the heat recovery path is changed by changing the expansion valve opening. Since it can be adjusted, liquid back to the compressor can be reliably prevented regardless of the operating conditions.

以上説明した実施の形態1〜4において、CO2と共沸性の高い炭化水素類、例えば、プロパン、シクロプロパン、イソブタン、ブタン等と混合し、臨界圧力をCO2単体よりも低い冷媒として用いたものを使用することができる。   In Embodiments 1 to 4 described above, hydrocarbons having high azeotropy with CO2, such as propane, cyclopropane, isobutane, butane, etc., are used as refrigerants whose critical pressure is lower than that of CO2 alone Can be used.

以上より、本発明のヒートポンプ装置は、除霜運転時における圧縮機への液バックを抑制し、かつ時間当りの運転効率を向上させることができるから、家庭用または事業用の各種熱機械に設置されるヒートポンプ装置として広く利用することができる。   As described above, the heat pump device of the present invention can suppress the liquid back to the compressor during the defrosting operation and can improve the operation efficiency per hour. Therefore, the heat pump device is installed in various household or business thermal machines. It can be widely used as a heat pump device.

本発明の実施形態1に係るヒートポンプ装置を示す構成図。The block diagram which shows the heat pump apparatus which concerns on Embodiment 1 of this invention. 図1に示すヒートポンプ装置における貯湯運転を説明するモリエル線図。The Mollier diagram explaining the hot water storage driving | operation in the heat pump apparatus shown in FIG. 図1に示すヒートポンプ装置における除霜準備を説明するモリエル線図。The Mollier diagram explaining the defrost preparation in the heat pump apparatus shown in FIG. 図1に示すヒートポンプ装置における除霜運転を説明するモリエル線図。The Mollier diagram explaining the defrost operation in the heat pump apparatus shown in FIG. 図1に示すヒートポンプ装置における運転を説明するフローチャート。The flowchart explaining the driving | operation in the heat pump apparatus shown in FIG. 各アクチュエータの制御方法について説明するタイムチャート。The time chart explaining the control method of each actuator. 各アクチュエータの制御方法について説明する具体的な制御例。The specific control example explaining the control method of each actuator. 各アクチュエータの制御方法について説明する具体的な制御例。The specific control example explaining the control method of each actuator. 本発明の実施形態2に係るヒートポンプ装置を示す構成図。The block diagram which shows the heat pump apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るヒートポンプ装置を示す構成図。The block diagram which shows the heat pump apparatus which concerns on Embodiment 3 of this invention. 図10に示すヒートポンプ装置の除霜運転を説明するモリエル線図。The Mollier diagram explaining the defrost operation of the heat pump apparatus shown in FIG. 本発明の実施形態4に係るヒートポンプ装置を示す構成図。The block diagram which shows the heat pump apparatus which concerns on Embodiment 4 of this invention. 図12に示すヒートポンプ装置の除霜運転を説明するモリエル線図。The Mollier diagram explaining the defrost operation of the heat pump apparatus shown in FIG. 図1に示す高低圧熱交換器を説明する構造の一例を示す斜視図。The perspective view which shows an example of the structure explaining the high-low pressure heat exchanger shown in FIG. 図1に示す高低圧熱交換器を説明する構造の一例を示す斜視図。The perspective view which shows an example of the structure explaining the high-low pressure heat exchanger shown in FIG. 図1に示す高低圧熱交換器を説明する熱特性を示す相関図。The correlation diagram which shows the thermal characteristic explaining the high-low pressure heat exchanger shown in FIG. 図1に示す高低圧熱交換器を説明する熱特性を示す相関図。The correlation diagram which shows the thermal characteristic explaining the high-low pressure heat exchanger shown in FIG. 図9に示すヒートポンプ装置の除霜運転を説明するモリエル線図。The Mollier diagram explaining the defrost operation of the heat pump apparatus shown in FIG.

符号の説明Explanation of symbols

1:圧縮機、2:水熱交換器、2a:放熱器高温部、2b:水加熱部(放熱器低温部)、3:膨張弁(減圧装置)、4:空気熱交換器、4f:ファン、5:高低圧熱交換器、5a:熱交換器高温部(外管)、5b:熱交換器低圧部(内管)、6:熱回収用熱交換器、6a:熱回収器高温部、6b:熱回収器低圧部、7:キャピラリ、8:水ポンプ、9:貯湯タンク、12:主配管、15:バイパス配管(実施の形態4)、15v:バイパス開閉弁(実施の形態4)、16:主配管、25:主配管、28:水配管、30a:蒸発温度検知手段、30b:外気温度検知手段、34:主配管、P34:合流部、36:熱回収用配管、37:熱回収用配管、40:制御装置、45:主配管、50:熱源装置、50m:主回路、50s:熱回収路、51:主配管、53:主配管、P53:分岐部、57:熱回収用配管、57v:熱回収用開閉弁、60:貯湯装置、60m:貯水回路、61:熱回収用配管、62:主配管、64:熱回収用配管、76:熱回収用配管、89:水配管、92:水配管、92v:循環弁、92w:給水弁、100:ヒートポンプ装置(実施の形態1)、200:ヒートポンプ装置(実施の形態2)、250:熱源装置、250s:熱回収路:300、ヒートポンプ装置(実施の形態3)、350:熱源装置、350s:熱回収路、400:ヒートポンプ装置(実施の形態4)、450:熱源装置、450m:主回路、P34:合流部(実施の形態1、4)、P34:分岐部(実施の形態3)、P51:合流部(実施の形態2、3)、P53:分岐部(実施の形態1、2、4)、Q:熱交換量、T:目標蒸発温度、Tho:高温側出口温度、Tho:高低圧熱交換器高温側出口温度、Tli:高低圧熱交換器低温側入口温度。   1: compressor, 2: water heat exchanger, 2a: radiator high temperature section, 2b: water heating section (radiator low temperature section), 3: expansion valve (pressure reduction device), 4: air heat exchanger, 4f: fan 5: High and low pressure heat exchanger, 5a: Heat exchanger high temperature section (outer pipe), 5b: Heat exchanger low pressure section (inner pipe), 6: Heat recovery heat exchanger, 6a: Heat recovery section high temperature section, 6b: low pressure section of heat recovery unit, 7: capillary, 8: water pump, 9: hot water storage tank, 12: main piping, 15: bypass piping (Embodiment 4), 15v: bypass opening / closing valve (Embodiment 4), 16: Main piping, 25: Main piping, 28: Water piping, 30a: Evaporation temperature detection means, 30b: Outside air temperature detection means, 34: Main piping, P34: Junction section, 36: Heat recovery piping, 37: Heat recovery Piping: 40: control device, 45: main piping, 50: heat source device, 50m: main circuit, 50s: heat recovery path, 51 Main piping, 53: Main piping, P53: Branch, 57: Heat recovery piping, 57v: Heat recovery on-off valve, 60: Hot water storage device, 60m: Water storage circuit, 61: Heat recovery piping, 62: Main piping, 64: heat recovery piping, 76: heat recovery piping, 89: water piping, 92: water piping, 92v: circulation valve, 92w: water supply valve, 100: heat pump device (Embodiment 1), 200: heat pump device ( Embodiment 2), 250: heat source device, 250s: heat recovery path: 300, heat pump device (third embodiment), 350: heat source device, 350s: heat recovery path, 400: heat pump device (fourth embodiment), 450: heat source device, 450 m: main circuit, P34: junction (Embodiments 1 and 4), P34: branch (Embodiment 3), P51: junction (Embodiments 2 and 3), P53: branch Part (Embodiment 1, , 4), Q: amount of heat exchange, T: target evaporation temperature, Tho: hot side outlet temperature, Tho: high and low pressure heat exchanger hot side outlet temperature, Tli: high and low pressure heat exchanger cold side inlet temperature.

Claims (12)

冷凍サイクルを形成する主回路と、該主回路の一部をバイパスする熱回収路と、を有するヒートポンプ装置であって、
前記主回路が、冷媒を圧縮する圧縮機と、
該圧縮機において圧縮された冷媒の温熱を放出させる、熱回収用熱交換器を構成する熱回収器高圧部と、
該熱回収器高圧部を経由した冷媒の温熱を放出させる放熱器と、
該放熱器を経由した冷媒の温熱を放出させる、高低圧熱交換器を構成する熱交換器高圧部と、
該熱交換器高圧部を経由した冷媒を減圧する減圧装置と、
該減圧装置において減圧された冷媒に温熱を受け渡す吸熱器と、
該吸熱器を経由した冷媒に前記熱交換器高圧部において放出された温熱を受け入れる、高低圧熱交換器を構成する熱交換器低圧部と、
前記圧縮機、前記熱回収器高圧部、前記放熱器、前記熱交換器高圧部、前記減圧装置、前記吸熱器、前記熱交換器低圧部、および前記圧縮機を順次接続する主配管と、を具備し、
前記熱回収路が、流入しようとする冷媒を通過または停止させる熱回収用開閉弁と、
該熱回収用開閉弁を通過した冷媒に前記熱回収器高圧部において放出された温熱を受け入れる、熱回収用熱交換器を構成する熱回収器低圧部と、
前記主回路の熱交換器高圧部と減圧装置との間、前記熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の減圧装置と吸熱器との間、を順次接続する熱回収用配管と、を具備するヒートポンプ装置。
A heat pump device having a main circuit that forms a refrigeration cycle, and a heat recovery path that bypasses a part of the main circuit,
The main circuit is a compressor for compressing refrigerant;
A heat recovery unit high-pressure part that constitutes a heat recovery heat exchanger that releases the heat of the refrigerant compressed in the compressor;
A radiator that releases the heat of the refrigerant via the high-pressure portion of the heat recovery unit;
A heat exchanger high-pressure section that constitutes a high-low pressure heat exchanger that discharges the heat of the refrigerant via the radiator, and
A decompression device that decompresses the refrigerant that has passed through the heat exchanger high-pressure section;
A heat absorber that transfers the heat to the refrigerant decompressed in the decompression device;
A heat exchanger low-pressure section constituting a high-low pressure heat exchanger that receives the heat released in the high-pressure section of the heat exchanger into the refrigerant passing through the heat absorber;
The compressor, the heat recovery unit high pressure section, the radiator, the heat exchanger high pressure section, the pressure reducing device, the heat absorber, the heat exchanger low pressure section, and a main pipe that sequentially connects the compressor, Equipped,
A heat recovery on-off valve for allowing the heat recovery path to pass or stop the refrigerant to be introduced; and
Accept heat which is Oite released to the heat recovery unit high-pressure part in the refrigerant passing through the heat recovery-off valve, and the heat recovery unit low pressure portion constituting the heat recovery heat exchanger,
Heat recovery sequentially connecting between the high pressure section of the heat exchanger of the main circuit and the decompressor, the on- off valve for heat recovery, the low pressure section of the heat recovery unit, and the decompressor of the main circuit and the heat absorber. And a heat pump device.
前記熱回収路が、前記主回路の熱交換器高圧部と減圧装置との間、熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の減圧装置と吸熱器との間、を順次接続する熱回収用配管に替えて、
前記主回路の熱交換器高圧部と減圧装置との間、前記熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の熱交換器低圧部と圧縮機との間、を順次接続する熱回収用配管を具備することを特徴とする請求項1記載のヒートポンプ装置。
The heat recovery path is between the heat exchanger high-pressure part of the main circuit and the pressure reducing device, the heat recovery on-off valve, the heat recovery unit low-pressure part , and the pressure reducing device of the main circuit and the heat absorber. Instead of heat recovery pipes that are connected sequentially,
The main circuit heat exchanger high-pressure section and the pressure reducing device, the heat recovery on-off valve, the heat recovery low-pressure section, and the main circuit heat exchanger low-pressure section and the compressor are sequentially connected. The heat pump device according to claim 1, further comprising a heat recovery pipe.
前記熱回収路が、前記主回路の熱交換器高圧部と減圧装置との間、熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の減圧装置と吸熱器との間、を順次接続する熱回収用配管に替えて、
前記主回路の減圧装置と吸熱器との間、熱回収用開閉弁、前記熱回収器低圧部、および前記主回路の熱交換器低圧部と圧縮機との間、を順次接続する熱回収用配管を具備することを特徴とする請求項1記載のヒートポンプ装置。
The heat recovery path is between the heat exchanger high-pressure part of the main circuit and the pressure reducing device, the heat recovery on-off valve, the heat recovery unit low-pressure part , and the pressure reducing device of the main circuit and the heat absorber. Instead of heat recovery pipes that are connected sequentially,
For heat recovery , sequentially connecting between the pressure reducing device of the main circuit and the heat absorber, a heat recovery on-off valve, the heat recovery unit low pressure part , and a heat exchanger low pressure part of the main circuit and the compressor The heat pump device according to claim 1, further comprising a pipe.
前記熱回収用開閉弁を制御し、前記吸熱器で放熱させるための除霜準備運転を行った後、前記吸熱器に付着した霜を融かす除霜運転を行うこと、を特徴とする請求項1乃至3の何れかに記載のヒートポンプ装置。   The defrosting operation for melting the frost adhering to the heat absorber is performed after performing the defrost preparation operation for controlling the heat recovery on-off valve and radiating heat with the heat absorber. The heat pump device according to any one of 1 to 3. 前記圧縮機と前記熱回収用熱交換器との間で分岐し、前記放熱器と前記高低圧熱交換器との間で合流する、バイパス開閉弁が設置されたバイパス路を備え、前記除霜準備運転時及び前記除霜運転時に前記バイパス開閉弁を開くこと、を特徴とする請求項4記載のヒートポンプ装置。  The defrosting is provided with a bypass passage having a bypass opening and closing valve that branches between the compressor and the heat recovery heat exchanger and joins between the radiator and the high-low pressure heat exchanger. The heat pump device according to claim 4, wherein the bypass on-off valve is opened during the preparation operation and the defrosting operation. 前記圧縮機の回転数および前記減圧装置の絞り開度が、それぞれ変更自在であって、
前記圧縮機の出口部から前記放熱器の入口部の間に、前記圧縮機の吐出圧力を検出する吐出圧力検出手段および前記圧縮機の吐出温度を検出する吐出温度検出手段が設けられ、
前記除霜準備運転時および前記除霜運転時に、前記吐出圧力検出手段および前記吐出温度検出手段が検知した検知情報に基づいて、前記圧縮機の回転数もしくは前記減圧装置の絞り開度の何れか一方または両方を変化させることにより、前記吐出圧力もしくは前記吐出温度の何れか一方または両方が所定値となるように制御すること、を特徴とする請求項4または5記載のヒートポンプ装置。
The rotational speed of the compressor and the throttle opening of the pressure reducing device can be changed, respectively.
Between the outlet portion of the compressor and the inlet portion of the radiator, a discharge pressure detecting means for detecting the discharge pressure of the compressor and a discharge temperature detecting means for detecting the discharge temperature of the compressor are provided,
Based on the detection information detected by the discharge pressure detection means and the discharge temperature detection means during the defrost preparation operation and the defrost operation, either the rotational speed of the compressor or the throttle opening of the pressure reducing device The heat pump device according to claim 4 or 5, wherein either or both of the discharge pressure and the discharge temperature are controlled to be a predetermined value by changing one or both.
前記放熱器が、前記主回路を構成する冷媒が通過する放熱器高温部と、該放熱器高温部から温熱を受け入れる水が通過する放熱器低温部と、を有する水熱交換器であって、
前記放熱器低温部において加熱された水を搬送する水ポンプと、
前記放熱器低温部において加熱された水を貯留する貯湯器と、
前記放熱器低温部と前記水ポンプと前記貯湯器とを順次接続する配管と、
を有してなる貯湯回路、を備えることを特徴とする請求項1乃至3の何れかに記載のヒートポンプ装置。
The radiator is a water heat exchanger having a radiator high-temperature part through which the refrigerant constituting the main circuit passes, and a radiator low-temperature part through which water that accepts heat from the radiator high-temperature part passes,
A water pump for transporting water heated in the radiator low-temperature part;
A hot water storage for storing water heated in the radiator low-temperature part;
Piping connecting the radiator low-temperature part, the water pump and the hot water storage in turn,
A heat pump device according to any one of claims 1 to 3, further comprising a hot water storage circuit including
前記放熱器が、前記主回路を構成する冷媒が通過する放熱器高温部と、該放熱器高温部から温熱を受け入れる水が通過する放熱器低温部と、を有する水熱交換器であって、
前記放熱器低温部において加熱された水を搬送する水ポンプと、
前記放熱器低温部において加熱された水を貯留する貯湯器と、
前記放熱器低温部と前記水ポンプと前記貯湯器とを順次接続する配管と、
を有してなる貯湯回路、を備えることを特徴とする請求項4乃至6の何れかに記載のヒートポンプ装置。
The radiator is a water heat exchanger having a radiator high-temperature part through which the refrigerant constituting the main circuit passes, and a radiator low-temperature part through which water that accepts heat from the radiator high-temperature part passes,
A water pump for transporting water heated in the radiator low-temperature part;
A hot water storage for storing water heated in the radiator low-temperature part;
Piping connecting the radiator low-temperature part, the water pump and the hot water storage in turn,
A heat pump device according to any one of claims 4 to 6, further comprising a hot water storage circuit including
前記除霜準備運転開始前に、前記貯湯器に貯留されている高温水を前記放熱器低温部へ流入させることを特徴とする請求項8に記載のヒートポンプ装置。   The heat pump device according to claim 8, wherein high-temperature water stored in the hot water storage device is caused to flow into the radiator low-temperature portion before the start of the defrost preparation operation. 前記除霜運転終了前に、前記放熱器低温部の水の温度よりも低い温度の水を、前記放熱器低温部へ流入させることを特徴とする請求項8または9記載のヒートポンプ装置。   10. The heat pump device according to claim 8, wherein water having a temperature lower than that of the water in the radiator low-temperature portion is allowed to flow into the radiator low-temperature portion before the defrosting operation is completed. 前記除霜準備運転時及び前記除霜運転時に、前記水ポンプの運転を停止させないことを特徴とする請求項8乃至10の何れかに記載のヒートポンプ装置。   The heat pump device according to any one of claims 8 to 10, wherein the operation of the water pump is not stopped during the defrost preparation operation and the defrost operation. 前記主回路を循環する冷媒が、二酸化炭素であることを特徴とする請求項1乃至11の何れかに記載のヒートポンプ装置。   The heat pump device according to any one of claims 1 to 11, wherein the refrigerant circulating in the main circuit is carbon dioxide.
JP2007058390A 2007-03-08 2007-03-08 Heat pump equipment Active JP4417396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058390A JP4417396B2 (en) 2007-03-08 2007-03-08 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058390A JP4417396B2 (en) 2007-03-08 2007-03-08 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2008224050A JP2008224050A (en) 2008-09-25
JP4417396B2 true JP4417396B2 (en) 2010-02-17

Family

ID=39842893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058390A Active JP4417396B2 (en) 2007-03-08 2007-03-08 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP4417396B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659560B2 (en) * 2010-05-28 2015-01-28 株式会社デンソー Refrigeration cycle equipment
JP5939764B2 (en) * 2011-11-02 2016-06-22 三菱電機株式会社 Heat pump device and heat pump water heater
KR20140115714A (en) * 2013-03-22 2014-10-01 (주) 지산에너텍 Hybrid Type Heat-Pump System using air heat

Also Published As

Publication number Publication date
JP2008224050A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP3801006B2 (en) Refrigerant circuit
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP4738293B2 (en) Heat pump device and heat pump water heater
JP4974714B2 (en) Water heater
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP5939764B2 (en) Heat pump device and heat pump water heater
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
EP2597381B1 (en) Cold/hot water supply apparatus
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
WO2010143373A1 (en) Heat pump system
JP2007503565A (en) Defrosting method for heat pump hot water system
JP2015064169A (en) Hot water generation device
JP5404761B2 (en) Refrigeration equipment
JP2013185808A (en) Heat pump
JP4417396B2 (en) Heat pump equipment
JP2009068771A (en) Refrigerating cycle device
JP2009002576A (en) Refrigerating cycle apparatus
JP2007071478A (en) Heat pump device
JP2008241176A (en) Refrigerating cycle device
JP4595546B2 (en) Heat pump equipment
JP2004308955A (en) Heat pump device
JP4444146B2 (en) Vending machine with cooling and heating system
RU2287119C2 (en) Method and device for defreezing in vapor compression system
JP2004218855A (en) Vapor compression type refrigerating machine
JP2014047954A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4417396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250