JP2007071478A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2007071478A
JP2007071478A JP2005260923A JP2005260923A JP2007071478A JP 2007071478 A JP2007071478 A JP 2007071478A JP 2005260923 A JP2005260923 A JP 2005260923A JP 2005260923 A JP2005260923 A JP 2005260923A JP 2007071478 A JP2007071478 A JP 2007071478A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature side
defrosting
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005260923A
Other languages
Japanese (ja)
Inventor
Isao Kato
功 加藤
Hideyasu Kamioka
秀康 上岡
Hirotaka Kado
浩隆 門
Yasushi Murakoshi
康司 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005260923A priority Critical patent/JP2007071478A/en
Publication of JP2007071478A publication Critical patent/JP2007071478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device capable of performing a heating operation even during a defrosting operation. <P>SOLUTION: As this heat pump device comprises a second evaporator 8 mounted between a first evaporator 5 and a refrigerant suction side of a compressor 1, and exchanging heat between a refrigerant flowing out from the first evaporator 5 and the air, a second expansion means 7 mounted at a refrigerant inflow side of the second evaporator 8, and a second opening/closing valve 6 capable of opening and closing a flow channel bypassing the second expansion means 7, the heat of refrigerant radiating heat in a gas cooler 2 and the first evaporator 5 can be absorbed by the second evaporator 8, thus the hot water can be supplied in the gas cooler 2 even when the first evaporator 5 is defrosted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、給湯や暖房に用いられるヒートポンプ装置に関するものである。   The present invention relates to a heat pump device used for hot water supply or heating.

従来、この種のヒートポンプ装置としては、圧縮機、高温側熱交換器、膨張手段及び低温側熱交換器に順次冷媒を流通可能な冷媒回路と、圧縮機から吐出される冷媒の一部を、高温側熱交換器及び膨張手段に流通させることなく低温側熱交換器に流通させることにより、低温側熱交換器を除霜可能な除霜用回路とを備え、除霜用回路を介して圧縮機から吐出される高温の冷媒の一部を低温側熱交換器に流入させる除霜運転を行うことにより、通常の加熱運転によって低温側熱交換器に付着した霜を高温の冷媒によって融解するようにしたものが知られている(例えば、特許文献1参照)。
特開2004−294059号公報
Conventionally, as this type of heat pump device, a refrigerant circuit capable of sequentially circulating a refrigerant to a compressor, a high temperature side heat exchanger, an expansion means, and a low temperature side heat exchanger, and a part of the refrigerant discharged from the compressor, The low-temperature side heat exchanger can be defrosted by passing through the high-temperature side heat exchanger and the expansion means without being passed through the expansion means, and is compressed through the defrosting circuit. By performing a defrosting operation in which a part of the high-temperature refrigerant discharged from the machine flows into the low-temperature side heat exchanger, the frost adhering to the low-temperature side heat exchanger by the normal heating operation is melted by the high-temperature refrigerant. What was made into is known (for example, refer patent document 1).
JP 2004-294059 A

しかしながら、従来のヒートポンプ装置において、除霜用回路を介して圧縮機から吐出された冷媒の一部を低温側熱交換器に流通させる場合には、ヒートポンプサイクルを構成することができないため、除霜運転中には加熱運転を停止しなければならず、例えば深夜電力を利用して湯を沸かす貯湯式の給湯器としてヒートポンプ装置を用いる場合には、除霜運転が繰り返し行なわれると、時間内に湯の沸き上げを完了することができないという問題点があった。   However, in the conventional heat pump apparatus, when a part of the refrigerant discharged from the compressor through the defrosting circuit is circulated to the low temperature side heat exchanger, the heat pump cycle cannot be configured. During operation, the heating operation must be stopped. For example, when a heat pump device is used as a hot water storage water heater that uses hot water at night to boil hot water, if the defrosting operation is repeated, There was a problem that boiling water could not be completed.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、除霜運転中においても加熱運転を行なうことのできるヒートポンプ装置を提供することにある。   This invention is made | formed in view of the said problem, The place made into the objective is to provide the heat pump apparatus which can perform a heating operation also during a defrost operation.

本発明は前記目的を達成するために、圧縮機、高温側熱交換器、膨張手段及び低温側熱交換器に順次冷媒を流通可能な冷媒回路と、圧縮機から吐出される冷媒の一部を、高温側熱交換器及び膨張手段に流通させることなく低温側熱交換器に流通させることにより、低温側熱交換器を除霜可能な除霜用回路とを備えたヒートポンプ装置において、前記低温側熱交換器と圧縮機の冷媒吸入側との間に設けられ、低温側熱交換器から流出する冷媒と空気とを熱交換可能な除霜加熱用熱交換器と、除霜加熱用熱交換器に流入する冷媒の圧力を所定の圧力に減圧可能な除霜加熱用膨張手段とを備えている。   In order to achieve the above object, the present invention provides a refrigerant circuit capable of sequentially circulating a refrigerant through a compressor, a high temperature side heat exchanger, an expansion means, and a low temperature side heat exchanger, and a part of the refrigerant discharged from the compressor. In the heat pump device comprising the defrosting circuit capable of defrosting the low-temperature side heat exchanger by circulating the low-temperature side heat exchanger without passing through the high-temperature side heat exchanger and the expansion means, the low-temperature side A heat exchanger for defrost heating, which is provided between the heat exchanger and the refrigerant suction side of the compressor, and capable of exchanging heat between the refrigerant flowing out from the low temperature side heat exchanger and the air, and a heat exchanger for defrost heating And a defrosting heating expansion means capable of reducing the pressure of the refrigerant flowing into the tank to a predetermined pressure.

これにより、圧縮機から吐出される冷媒の一部が除霜用回路を流通して低温側熱交換器に流入し、低温側熱交換器から流出する冷媒が除霜加熱用膨張手段によって減圧されて除霜加熱用熱交換器に流入することから、高温側熱交換器及び低温側熱交換器において放熱した冷媒が除霜加熱用熱交換器において吸熱可能となる。   Thereby, a part of the refrigerant discharged from the compressor flows through the defrosting circuit and flows into the low temperature side heat exchanger, and the refrigerant flowing out from the low temperature side heat exchanger is decompressed by the defrosting heating expansion means. Therefore, the refrigerant that has radiated heat in the high-temperature side heat exchanger and the low-temperature side heat exchanger can absorb heat in the defrost-heating heat exchanger.

本発明によれば、高温側熱交換器及び低温側熱交換器において放熱した冷媒は除霜加熱用熱交換器において吸熱可能となるので、低温側熱交換器を除霜する場合においても、高温側熱交換器において給湯などの加熱運転を行なうことが可能となる。   According to the present invention, the refrigerant that has dissipated heat in the high temperature side heat exchanger and the low temperature side heat exchanger can absorb heat in the heat exchanger for defrost heating. Therefore, even when the low temperature side heat exchanger is defrosted, It becomes possible to perform heating operations such as hot water supply in the side heat exchanger.

図1乃至図3は本発明の一実施形態を示すもので、図1はヒートポンプ装置の回路図、図2は給湯運転を示すヒートポンプ装置の回路図、図3は除霜給湯運転を示すヒートポンプ装置の回路図である。   1 to 3 show an embodiment of the present invention, FIG. 1 is a circuit diagram of a heat pump device, FIG. 2 is a circuit diagram of a heat pump device showing a hot water supply operation, and FIG. 3 is a heat pump device showing a defrosting hot water operation. FIG.

このヒートポンプ装置は、ヒートポンプ式給湯器のヒートポンプユニットに用いられるものであり、ヒートポンプサイクルを構成する冷媒回路10と、ヒートポンプユニットの運転を制御する制御部20とを備えている。   This heat pump device is used for a heat pump unit of a heat pump type hot water heater, and includes a refrigerant circuit 10 that constitutes a heat pump cycle, and a control unit 20 that controls the operation of the heat pump unit.

冷媒回路10は、圧縮機1、高温側熱交換器としてのガスクーラ2、膨張手段としての第1の膨張弁3、冷媒流通手段としての第1の開閉弁4、低温側熱交換器としての第1の蒸発器5、バイパス開閉弁としての第2の開閉弁6、除霜加熱用膨張手段としての第2の膨張弁7、除霜加熱用熱交換器としての第2の蒸発器8、除霜用開閉弁としての第3の開閉弁9を備え、これらは銅またはステンレス等からなる冷媒流通用の配管によって接続されている。即ち、圧縮機1の冷媒吐出側にはガスクーラ2の冷媒流入側が接続され、ガスクーラ2の冷媒流出側には第1の蒸発器4の冷媒流入側が接続されている。また、ガスクーラ2の冷媒流出側と第1の蒸発器4の冷媒流入側との間には、第1の膨張弁3及び第1の開閉弁4が互いに並列に設けられている。第1の蒸発器5の冷媒流出側には第2の蒸発器8の冷媒流入側が接続され、第1の蒸発器5の冷媒流出側と第2の蒸発器8の冷媒流入側との間には第2の開閉弁6及び第2の膨張弁7が互いに並列に設けられている。第2の蒸発器8の冷媒流出側には圧縮機1の冷媒吸入側が接続されている。また、圧縮機1の後述する低段側圧縮部の冷媒吐出側には、ガスクーラ2、第1の膨張弁3及び第1の電磁弁4をバイパスして第1の蒸発器5の冷媒流入側に冷媒を流通させるための除霜用回路9aが接続され、除霜用回路9aには第2の開閉弁9が設けられている。更に、ここでは冷媒として、高圧側が超臨界状態となる二酸化炭素が用いられている。   The refrigerant circuit 10 includes a compressor 1, a gas cooler 2 as a high temperature side heat exchanger, a first expansion valve 3 as expansion means, a first on-off valve 4 as refrigerant circulation means, and a first as a low temperature side heat exchanger. 1 evaporator 5, second on-off valve 6 as a bypass on-off valve, second expansion valve 7 as a defrost heating expansion means, second evaporator 8 as a defrost heating heat exchanger, removal A third on-off valve 9 is provided as a frost on-off valve, and these are connected by a refrigerant distribution pipe made of copper or stainless steel. That is, the refrigerant inflow side of the gas cooler 2 is connected to the refrigerant discharge side of the compressor 1, and the refrigerant inflow side of the first evaporator 4 is connected to the refrigerant outflow side of the gas cooler 2. A first expansion valve 3 and a first on-off valve 4 are provided in parallel between the refrigerant outflow side of the gas cooler 2 and the refrigerant inflow side of the first evaporator 4. The refrigerant inflow side of the second evaporator 8 is connected to the refrigerant outflow side of the first evaporator 5, and is between the refrigerant outflow side of the first evaporator 5 and the refrigerant inflow side of the second evaporator 8. The second on-off valve 6 and the second expansion valve 7 are provided in parallel with each other. The refrigerant suction side of the compressor 1 is connected to the refrigerant outflow side of the second evaporator 8. Further, on the refrigerant discharge side of the low-stage compression section (to be described later) of the compressor 1, the gas cooler 2, the first expansion valve 3, and the first electromagnetic valve 4 are bypassed, and the refrigerant inflow side of the first evaporator 5. A defrosting circuit 9a for circulating the refrigerant is connected to the defrosting circuit 9a, and a second on-off valve 9 is provided in the defrosting circuit 9a. Furthermore, here, carbon dioxide whose high pressure side is in a supercritical state is used as the refrigerant.

圧縮機1は、低段側圧縮部1aと高段側圧縮部1bを有する二段圧縮機が用いられ、圧縮機1の吸入側から吸入した冷媒を低段側圧縮部1aにおいて所定の中間圧力に圧縮し、中間圧力に圧縮した冷媒を高段側圧縮部1bにおいて中間圧力よりも高い所定の高圧に圧縮可能となっている。また、圧縮機1の低段側圧縮部1aと高段側圧縮部1bとの間の冷媒通路には前述した除霜用回路9aの冷媒流入側が接続されている。   As the compressor 1, a two-stage compressor having a low-stage compression section 1a and a high-stage compression section 1b is used, and the refrigerant sucked from the suction side of the compressor 1 is given a predetermined intermediate pressure in the low-stage compression section 1a. The refrigerant compressed to the intermediate pressure and compressed to the intermediate pressure can be compressed to a predetermined high pressure higher than the intermediate pressure in the high-stage compression section 1b. Moreover, the refrigerant | coolant inflow side of the circuit 9a for defrost mentioned above is connected to the refrigerant path between the low stage side compression part 1a of the compressor 1, and the high stage side compression part 1b.

ガスクーラ2は、冷媒流通路2aと被加熱媒体流通路2bを有し、冷媒と被加熱媒体とを熱交換するようになっている。被加熱媒体流通路2bには、給湯配管2cによって図示しない貯湯タンクが接続され、貯湯タンク内の水をガスクーラ2に流通させることにより加熱して貯湯タンク内に貯えるようになっている。   The gas cooler 2 has a refrigerant flow path 2a and a heated medium flow path 2b, and exchanges heat between the refrigerant and the heated medium. A hot water storage tank (not shown) is connected to the heated medium flow passage 2b by a hot water supply pipe 2c, and water in the hot water storage tank is circulated through the gas cooler 2 to be heated and stored in the hot water storage tank.

第1及び第2の蒸発器5,8は、それぞれフィンチューブ型の熱交換器からなり、冷媒と空気とを熱交換するようになっている。また、第1及び第2の蒸発器5,8には、冷媒と熱交換する空気を流通させるための第1及び第2の蒸発器用送風機5a,8aがそれぞれ設けられている。   Each of the first and second evaporators 5 and 8 is a fin tube type heat exchanger, and exchanges heat between the refrigerant and the air. The first and second evaporators 5 and 8 are provided with first and second evaporator fans 5a and 8a, respectively, for circulating air that exchanges heat with the refrigerant.

第1及び第2の膨張弁3,7には、それぞれ手動膨張弁が用いられ、流通する冷媒を所定の圧力に減圧するようになっている。また、第1及び第2の膨張弁3,7は、手動膨張弁の代りにキャピラリチューブを用いるようにしてもよい。   A manual expansion valve is used for each of the first and second expansion valves 3 and 7, and the circulating refrigerant is reduced to a predetermined pressure. The first and second expansion valves 3 and 7 may be capillary tubes instead of manual expansion valves.

第1乃至第3の開閉弁4,6,9には、それぞれ電磁弁が用いられ、それぞれの開閉弁4,6,9の開閉によって給湯運転と除霜給湯運転の切換を行なうようになっている。   A solenoid valve is used for each of the first to third on-off valves 4, 6, 9. Switching between the hot water supply operation and the defrosting hot water supply operation is performed by opening / closing the respective on-off valves 4, 6, 9. Yes.

制御部20は、マイクロコンピュータによって構成され、そのメモリには給湯運転と除霜給湯運転との切換制御に関するプログラムが記憶されている。また、制御部20には、第1の開閉弁4、第1の蒸発器用送風機5a、第1の蒸発器5の温度を検出する温度検出器5b、第2の開閉弁6、第3の開閉弁9が接続されている。   The control unit 20 is configured by a microcomputer, and a program related to switching control between the hot water supply operation and the defrosting hot water supply operation is stored in the memory. Further, the control unit 20 includes a first on-off valve 4, a first evaporator blower 5a, a temperature detector 5b for detecting the temperature of the first evaporator 5, a second on-off valve 6, and a third on-off valve. A valve 9 is connected.

以上のように構成されたヒートポンプ装置において、通常の給湯運転を行なう場合には、第2の開閉弁6を開放するとともに、第1及び第3の開閉弁4,9を閉鎖し、圧縮機1、第1の蒸発器用送風機5a及び第2の蒸発器用送風機8aを運転する。これにより、図2に示すように、圧縮機1から吐出された冷媒は、ガスクーラ2を流通した後、第1の膨張弁3を介して第1の蒸発器5に流入する。また、第1の蒸発器5を流通した冷媒は、第2の開閉弁6を介して第2の蒸発器8を流通した後、圧縮機1に吸入される。このとき、第2の蒸発器7の流入側には第2の開閉弁6と第2の膨張弁7が並列に設けられているが、開放された第2の開閉弁6と比較して第2の膨張弁7の流通抵抗は著しく高いため、ほぼ全ての冷媒が第2の開閉弁6を介して第2の蒸発器8に流入する。このような冷媒の循環によって、圧縮機1から吐出された冷媒は、ガスクーラ2において放熱し、ガスクーラ2を流通する水を加熱する。また、第1及び第2の蒸発器5,8を流通する冷媒は、第1の蒸発器5において吸熱して蒸発し、第2の蒸発器8において吸熱して過熱度が増大する。   In the heat pump device configured as described above, when performing a normal hot water supply operation, the second on-off valve 6 is opened, the first and third on-off valves 4 and 9 are closed, and the compressor 1 The first evaporator fan 5a and the second evaporator fan 8a are operated. Thus, as shown in FIG. 2, the refrigerant discharged from the compressor 1 flows through the gas cooler 2 and then flows into the first evaporator 5 via the first expansion valve 3. Further, the refrigerant that has flowed through the first evaporator 5 flows through the second evaporator 8 via the second on-off valve 6, and then is sucked into the compressor 1. At this time, the second opening / closing valve 6 and the second expansion valve 7 are provided in parallel on the inflow side of the second evaporator 7, but compared with the opened second opening / closing valve 6. Since the flow resistance of the second expansion valve 7 is remarkably high, almost all the refrigerant flows into the second evaporator 8 through the second on-off valve 6. Due to the circulation of the refrigerant, the refrigerant discharged from the compressor 1 radiates heat in the gas cooler 2 and heats water flowing through the gas cooler 2. Moreover, the refrigerant | coolant which distribute | circulates the 1st and 2nd evaporators 5 and 8 absorbs heat in the 1st evaporator 5, evaporates, and it absorbs heat in the 2nd evaporator 8, and superheat degree increases.

また、給湯運転を継続すると、第1の蒸発器5において冷媒と熱交換を行なう空気の温湿度条件によっては、第1の蒸発器5に着霜するため、除霜給湯運転を行なう必要がある。この場合には、第2の開閉弁6を閉鎖するとともに、第1及び第3の開閉弁4,9を開放し、圧縮機1及び第2の蒸発器用送風機8aを運転し、第1の蒸発器用送風機5aを停止する。これにより、図3に示すように、圧縮機1から吐出された冷媒は、ガスクーラ2を流通した後、第1の開閉弁4を介して第1の蒸発器5に流入する。また、圧縮機1の低段側圧縮部1aから吐出された冷媒の一部は、除霜用回路9aを流通し、ガスクーラ2、第1の膨張弁3及び第1の開閉弁4を流通することなく第1の蒸発器5に流入する。更に、第1の蒸発器5を流通した冷媒は、第2の膨張弁7を介して第2の蒸発器8を流通した後、圧縮機1に吸入される。このとき、ガスクーラ2の流出側と第1の蒸発器5の流入側との間には第1の膨張弁3と第1の開閉弁4が並列に設けられているが、開放された第1の開閉弁4と比較して第1の膨張弁3の流通抵抗は著しく高いため、ほぼ全ての冷媒が第1の開閉弁4を介して第1の蒸発器5に流入する。このような冷媒の循環によって、圧縮機1から吐出された冷媒は、ガスクーラ2において放熱し、ガスクーラ2を流通する水を加熱する。また、圧縮機1の低段側圧縮部1aから吐出された冷媒の一部は、第1の蒸発器4において放熱し、第1の蒸発器5に付着した霜を融解する。更に、ガスクーラ2及び第1の蒸発器5において放熱した冷媒は、第2の蒸発器8において吸熱して蒸発する。   Further, if the hot water supply operation is continued, depending on the temperature and humidity conditions of the air that exchanges heat with the refrigerant in the first evaporator 5, the first evaporator 5 is frosted, so it is necessary to perform the defrost hot water supply operation. . In this case, the second on-off valve 6 is closed, the first and third on-off valves 4 and 9 are opened, the compressor 1 and the second evaporator fan 8a are operated, and the first evaporation is performed. The blower 5a for equipment is stopped. Thus, as shown in FIG. 3, the refrigerant discharged from the compressor 1 flows through the gas cooler 2 and then flows into the first evaporator 5 via the first on-off valve 4. In addition, a part of the refrigerant discharged from the low-stage compression unit 1 a of the compressor 1 flows through the defrosting circuit 9 a and flows through the gas cooler 2, the first expansion valve 3, and the first on-off valve 4. Without flowing into the first evaporator 5. Further, the refrigerant that has flowed through the first evaporator 5 flows through the second evaporator 8 via the second expansion valve 7 and is then sucked into the compressor 1. At this time, the first expansion valve 3 and the first on-off valve 4 are provided in parallel between the outflow side of the gas cooler 2 and the inflow side of the first evaporator 5. Since the flow resistance of the first expansion valve 3 is significantly higher than that of the on-off valve 4, almost all of the refrigerant flows into the first evaporator 5 through the first on-off valve 4. Due to the circulation of the refrigerant, the refrigerant discharged from the compressor 1 radiates heat in the gas cooler 2 and heats water flowing through the gas cooler 2. In addition, a part of the refrigerant discharged from the lower stage compression unit 1 a of the compressor 1 dissipates heat in the first evaporator 4 and melts frost attached to the first evaporator 5. Furthermore, the refrigerant that has dissipated heat in the gas cooler 2 and the first evaporator 5 absorbs heat in the second evaporator 8 and evaporates.

ここで、給湯運転と除霜給湯運転の切換に関する制御部20の動作を図4のフローチャートを用いて説明する。まず、給湯運転を行い(ステップS1)、温度検出器5bの検出温度Tが所定温度T1以下になると(ステップS2)、除霜給湯運転に切換える(ステップS3)。次に、温度検出器5bの検出温度Tが所定温度T2以上になると(ステップS4)、再び給湯運転に切換える(ステップS1)。   Here, operation | movement of the control part 20 regarding the switching of hot water supply operation and defrost hot water supply operation is demonstrated using the flowchart of FIG. First, a hot water supply operation is performed (step S1), and when the detected temperature T of the temperature detector 5b becomes equal to or lower than a predetermined temperature T1 (step S2), the operation is switched to a defrosting hot water supply operation (step S3). Next, when the detected temperature T of the temperature detector 5b becomes equal to or higher than the predetermined temperature T2 (step S4), the operation is switched again to the hot water supply operation (step S1).

このように、本実施形態のヒートポンプ装置によれば、第1の蒸発器5と圧縮機1の冷媒吸入側との間に設けられ、第1の蒸発器5から流出する冷媒と空気とを熱交換可能な第2の蒸発器8と、第2の蒸発器8の冷媒流入側に設けられた第2の膨張手段7と、第2の膨張手段7をバイパスする流路を開閉可能な第2の開閉弁6とを備えたので、ガスクーラ2及び第1の蒸発器5において放熱した冷媒を第2の蒸発器8において吸熱させることができ、第1の蒸発器5を除霜する場合にも、ガスクーラ2において給湯を行なうことができる。   Thus, according to the heat pump device of the present embodiment, the refrigerant and air that are provided between the first evaporator 5 and the refrigerant suction side of the compressor 1 and flow out of the first evaporator 5 are heated. A replaceable second evaporator 8, a second expansion means 7 provided on the refrigerant inflow side of the second evaporator 8, and a second flow path that can open and close the flow path bypassing the second expansion means 7. The on-off valve 6 is provided, so that the heat dissipated in the gas cooler 2 and the first evaporator 5 can be absorbed in the second evaporator 8, and the first evaporator 5 is defrosted. In the gas cooler 2, hot water can be supplied.

また、温度検出器5bの検出温度Tに応じて給湯運転と除霜給湯運転を切換えるようにしたので、第1の蒸発器5の着霜を検知して除霜給湯運転を行うとともに、霜が融解したことを検知して給湯運転を行うことができ、第1の蒸発器5の熱交換能力の低下を確実に防止することができる。   In addition, since the hot water supply operation and the defrost hot water supply operation are switched according to the detected temperature T of the temperature detector 5b, the frost formation of the first evaporator 5 is detected and the defrost hot water supply operation is performed. It is possible to detect the melting and perform a hot water supply operation, and to reliably prevent a decrease in the heat exchange capability of the first evaporator 5.

ガスクーラ2から流出する冷媒を、第1の膨張弁3をバイパス流路を開閉可能な第1の開閉弁4を備えたので、ガスクーラ2から流出する冷媒を減圧することなく第1の蒸発器5に流入させることができ、除霜給湯運転において第1の蒸発器5の温度を高温に保持することにより、確実に霜を融解させることが可能となる。   Since the first on-off valve 4 capable of opening and closing the bypass passage of the first expansion valve 3 is provided for the refrigerant flowing out of the gas cooler 2, the first evaporator 5 is not decompressed without reducing the refrigerant flowing out of the gas cooler 2. By keeping the temperature of the first evaporator 5 at a high temperature in the defrosting hot water supply operation, the frost can be surely melted.

また、圧縮機1として、吸入した冷媒を所定の中間圧力に圧縮する低段側圧縮部1aと、中間圧力に圧縮された冷媒を所定の高圧に圧縮する高段側圧縮部1bを有する二段圧縮機を用い、低段側圧縮部1aにおいて中間圧力に圧縮した冷媒の一部を除霜回路9に流通させるようにしたので、圧縮機1の吐出圧力よりも低い中間圧力の冷媒を第1及び第2の蒸発器4,7に流入させることができ、回路内の圧力バランスが崩れることによる冷媒循環量の不足を防止することができる。   Further, as the compressor 1, a two-stage compressor having a low-stage compression section 1a that compresses the sucked refrigerant to a predetermined intermediate pressure and a high-stage compression section 1b that compresses the refrigerant compressed to the intermediate pressure to a predetermined high pressure. Since a part of the refrigerant compressed to the intermediate pressure in the low-stage compression unit 1a is circulated through the defrosting circuit 9 using the compressor, the refrigerant having the intermediate pressure lower than the discharge pressure of the compressor 1 is the first. And it can be made to flow into the 2nd evaporators 4 and 7, and the shortage of the amount of refrigerant circulation by the balance of the pressure in a circuit breaking can be prevented.

また、冷媒として高圧側が超臨界状態となる二酸化炭素を用いたので、オゾン層破壊や地球温暖化等の環境負荷を小さくすることができる。   In addition, since carbon dioxide whose high pressure side is in a supercritical state is used as the refrigerant, it is possible to reduce environmental loads such as ozone layer destruction and global warming.

尚、前記実施形態では、圧縮機1として、吸入した冷媒を所定の中間圧力に圧縮する低段側圧縮部1aと、中間圧力に圧縮された冷媒を所定の高圧に圧縮する高段側圧縮部1bを有する二段圧縮機を用い、低段側圧縮部1aにおいて中間圧力に圧縮した冷媒の一部を除霜回路9に流通させるようにしたものを示したが、図5に示すように、単段式の圧縮機11を用い、圧縮機から吐出された冷媒の一部を除霜回路9aに流通させるようにしても、前記実施形態と同様にガスクーラ2において給湯するととともに、第1の蒸発器5の除霜を行なうことが可能となる。   In the embodiment, as the compressor 1, the low-stage compression unit 1a that compresses the sucked refrigerant to a predetermined intermediate pressure, and the high-stage compression unit that compresses the refrigerant compressed to the intermediate pressure to a predetermined high pressure. A two-stage compressor having 1b was used, and a part of the refrigerant compressed to an intermediate pressure in the low-stage compression unit 1a was circulated through the defrosting circuit 9, but as shown in FIG. Even when a part of the refrigerant discharged from the compressor is circulated through the defrosting circuit 9a using the single-stage compressor 11, hot water is supplied in the gas cooler 2 and the first evaporation is performed as in the above embodiment. The defrosting of the vessel 5 can be performed.

また、前記実施形態では、弁開度が固定式の第1の膨張弁3及び第2の膨張弁7とそれぞれ並列に第1の開閉弁4及び第2の開閉弁6を設けたものを示したが、図6に示すように、第1の膨張弁12及び第2の膨張弁13として弁開度可変の電子膨張弁を用いることにより、第1の開閉弁4及び第2の開閉弁6を必要とすることなく、冷媒回路10を流通する冷媒の圧力の調整が可能となる。   Moreover, in the said embodiment, the thing which provided the 1st on-off valve 4 and the 2nd on-off valve 6 in parallel with the 1st expansion valve 3 and the 2nd expansion valve 7 with a fixed valve opening degree respectively is shown. However, as shown in FIG. 6, by using an electronic expansion valve with variable valve opening as the first expansion valve 12 and the second expansion valve 13, the first on-off valve 4 and the second on-off valve 6 The pressure of the refrigerant flowing through the refrigerant circuit 10 can be adjusted without the need for

ヒートポンプ装置の概略構成図Schematic configuration diagram of heat pump device 給湯運転を示すヒートポンプ装置の概略構成図Schematic configuration diagram of heat pump device showing hot water supply operation 除霜給湯運転を示すヒートポンプ装置の概略構成図Schematic configuration diagram of heat pump device showing defrosting hot water operation 給湯運転と除霜給湯運転の切換制御を示すフローチャートFlow chart showing switching control between hot water supply operation and defrost hot water supply operation その他の例を示すヒートポンプ装置の概略構成図Schematic configuration diagram of heat pump device showing other examples その他の例を示すヒートポンプ装置の概略構成図Schematic configuration diagram of heat pump device showing other examples

符号の説明Explanation of symbols

1…圧縮機、1a…低段側圧縮部、1b…高段側圧縮部、2…ガスクーラ、3…第1の膨張弁、4…第1の開閉弁、5…第1の蒸発器、5b…温度検出器、6…第2の開閉弁、7…第2の膨張弁、8…第2の蒸発器、9…第3の開閉弁、9a…除霜用回路、10…冷媒回路、11…圧縮機、12…電子膨張弁、13…電子膨張弁、20…制御部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 1a ... Low stage side compression part, 1b ... High stage side compression part, 2 ... Gas cooler, 3 ... 1st expansion valve, 4 ... 1st on-off valve, 5 ... 1st evaporator, 5b DESCRIPTION OF SYMBOLS ... Temperature detector, 6 ... 2nd on-off valve, 7 ... 2nd expansion valve, 8 ... 2nd evaporator, 9 ... 3rd on-off valve, 9a ... Circuit for defrosting, 10 ... Refrigerant circuit, 11 Compressor, 12 Electronic expansion valve, 13 Electronic expansion valve, 20 Control unit.

Claims (7)

圧縮機、高温側熱交換器、膨張手段及び低温側熱交換器に順次冷媒を流通可能な冷媒回路と、圧縮機から吐出される冷媒の一部を、高温側熱交換器及び膨張手段に流通させることなく低温側熱交換器に流通させることにより、低温側熱交換器を除霜可能な除霜用回路とを備えたヒートポンプ装置において、
前記低温側熱交換器と圧縮機の冷媒吸入側との間に設けられ、低温側熱交換器から流出する冷媒と空気とを熱交換可能な除霜加熱用熱交換器と、
除霜加熱用熱交換器に流入する冷媒の圧力を所定の圧力に減圧可能な除霜加熱用膨張手段とを備えた
ことを特徴とするヒートポンプ装置。
Refrigerant circuit capable of sequentially flowing refrigerant to the compressor, high temperature side heat exchanger, expansion means and low temperature side heat exchanger, and a part of the refrigerant discharged from the compressor is distributed to high temperature side heat exchanger and expansion means In the heat pump device provided with a circuit for defrosting capable of defrosting the low-temperature side heat exchanger by distributing it to the low-temperature side heat exchanger without causing
A heat exchanger for defrosting heating provided between the low temperature side heat exchanger and the refrigerant suction side of the compressor, and capable of exchanging heat between the refrigerant flowing out of the low temperature side heat exchanger and the air;
A heat pump device comprising: defrost heating expansion means capable of reducing the pressure of the refrigerant flowing into the defrost heating heat exchanger to a predetermined pressure.
前記除霜用回路を開閉可能な除霜用開閉弁と、
低温側熱交換器の温度を検出する温度検出器と、
圧縮機から吐出された冷媒を、除霜用開閉弁を閉鎖することにより高温側熱交換器及び膨張手段を流通させて低温側熱交換器に流入させ、低温側熱交換器から流出する冷媒の圧力を除霜加熱用膨張手段によって所定の圧力に減圧することなく除霜加熱用熱交換器に流入させる加熱運転と、圧縮機から吐出された冷媒の一部を、除霜用開閉弁を開放することにより除霜回路を介して低温側熱交換器に流入させるとともに、その他の冷媒を、高温側熱交換器及び膨張手段を流通させて低温側熱交換器に流入させ、低温側熱交換器から流出する冷媒の圧力を除霜加熱用膨張手段によって所定の圧力に減圧して除霜加熱用熱交換器に流入させる除霜加熱運転とを温度検出器の検出温度に応じて切換える運転切換制御手段とを備えた
ことを特徴とする請求項1記載のヒートポンプ装置。
A defrosting on-off valve capable of opening and closing the defrosting circuit;
A temperature detector for detecting the temperature of the low temperature side heat exchanger;
The refrigerant discharged from the compressor is caused to flow through the high-temperature side heat exchanger and the expansion means by closing the defrosting on-off valve and flow into the low-temperature side heat exchanger, and the refrigerant flowing out from the low-temperature side heat exchanger A heating operation for flowing the pressure into the heat exchanger for defrost heating without reducing the pressure to a predetermined pressure by the expansion means for defrost heating, and opening the defrost on-off valve for a part of the refrigerant discharged from the compressor By flowing into the low-temperature side heat exchanger through the defrosting circuit, the other refrigerant flows into the low-temperature side heat exchanger through the high-temperature side heat exchanger and the expansion means, and the low-temperature side heat exchanger Switching control for switching the defrosting heating operation in which the pressure of the refrigerant flowing out of the refrigerant is reduced to a predetermined pressure by the defrosting heating expansion means and flows into the defrosting heat exchanger according to the temperature detected by the temperature detector Characterized by comprising means The heat pump device according to claim 1.
前記高温側熱交換器から流出する冷媒を、膨張手段によって減圧することなく低温側熱交換器に流通させる冷媒流通手段を備えた
ことを特徴とする請求項1または2記載のヒートポンプ装置。
The heat pump device according to claim 1 or 2, further comprising refrigerant circulation means for causing the refrigerant flowing out from the high temperature side heat exchanger to flow through the low temperature side heat exchanger without being depressurized by the expansion means.
前記圧縮機として、吸入した冷媒を所定の中間圧力に圧縮する低段側圧縮部と、中間圧力に圧縮された冷媒を中間圧力よりも高い所定の圧力に圧縮する高段側圧縮部を有する二段圧縮機を用い、
除霜用回路を、低段側圧縮部において中間圧力に圧縮された冷媒の一部が流通するように構成した
ことを特徴とする請求項1、2または3記載のヒートポンプ装置。
The compressor includes a low-stage compression unit that compresses the sucked refrigerant to a predetermined intermediate pressure, and a high-stage compression unit that compresses the refrigerant compressed to the intermediate pressure to a predetermined pressure higher than the intermediate pressure. Using a stage compressor,
4. The heat pump device according to claim 1, wherein the defrosting circuit is configured such that a part of the refrigerant compressed to an intermediate pressure flows in the low-stage compression unit.
前記除霜加熱用膨張手段を、除霜加熱用熱交換器に流入する冷媒の圧力を所定の圧力に減圧する膨張弁またはキャピラリチューブと、膨張弁またはキャピラリチューブをバイパス可能なバイパス回路と、バイパス回路を開閉可能なバイパス開閉弁とから構成した
ことを特徴とする請求項1、2、3または4記載のヒートポンプ装置。
The defrosting heating expansion means includes an expansion valve or capillary tube for reducing the pressure of the refrigerant flowing into the defrosting heat exchanger to a predetermined pressure, a bypass circuit capable of bypassing the expansion valve or capillary tube, and a bypass The heat pump device according to claim 1, 2, 3, or 4, wherein the heat pump device comprises a bypass on-off valve capable of opening and closing the circuit.
前記除霜加熱用膨張手段として弁開度を任意に設定可能な電子式の膨張弁を用いた
ことを特徴とする請求項1、2、3または4記載のヒートポンプ装置。
The heat pump device according to claim 1, 2, 3, or 4, wherein an electronic expansion valve capable of arbitrarily setting a valve opening is used as the defrosting heating expansion means.
前記冷媒として高圧側が超臨界状態となる二酸化炭素を用いた
ことを特徴とする請求項1、2、3、または4記載のヒートポンプ装置。
The heat pump apparatus according to claim 1, 2, 3, or 4, wherein carbon dioxide whose high pressure side is in a supercritical state is used as the refrigerant.
JP2005260923A 2005-09-08 2005-09-08 Heat pump device Pending JP2007071478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260923A JP2007071478A (en) 2005-09-08 2005-09-08 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260923A JP2007071478A (en) 2005-09-08 2005-09-08 Heat pump device

Publications (1)

Publication Number Publication Date
JP2007071478A true JP2007071478A (en) 2007-03-22

Family

ID=37933078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260923A Pending JP2007071478A (en) 2005-09-08 2005-09-08 Heat pump device

Country Status (1)

Country Link
JP (1) JP2007071478A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095294B (en) * 2009-12-11 2012-07-04 珠海格力电器股份有限公司 Heat reclamation module unit, air-conditioning unit and control method
WO2012108211A1 (en) * 2011-02-11 2012-08-16 株式会社デンソー Heat pump cycle
JP2012159273A (en) * 2011-02-02 2012-08-23 Central Research Institute Of Electric Power Industry Heat pump system
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014001863A (en) * 2012-06-15 2014-01-09 Rinnai Corp Thermal apparatus
CN110822767A (en) * 2019-09-30 2020-02-21 西安交通大学 Heat pump system for performing air suction preheating and defrosting by utilizing expansion machine and internal heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115840A (en) * 1974-07-30 1976-02-07 Sanyo Electric Co JOSOSOCHI
JPS53109156U (en) * 1977-02-09 1978-09-01
JP2003065616A (en) * 2001-06-11 2003-03-05 Daikin Ind Ltd Refrigerant circuit
JP2003185306A (en) * 2001-12-21 2003-07-03 Sanyo Electric Co Ltd Heat pump hot-water supplier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115840A (en) * 1974-07-30 1976-02-07 Sanyo Electric Co JOSOSOCHI
JPS53109156U (en) * 1977-02-09 1978-09-01
JP2003065616A (en) * 2001-06-11 2003-03-05 Daikin Ind Ltd Refrigerant circuit
JP2003185306A (en) * 2001-12-21 2003-07-03 Sanyo Electric Co Ltd Heat pump hot-water supplier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095294B (en) * 2009-12-11 2012-07-04 珠海格力电器股份有限公司 Heat reclamation module unit, air-conditioning unit and control method
JP2012159273A (en) * 2011-02-02 2012-08-23 Central Research Institute Of Electric Power Industry Heat pump system
WO2012108211A1 (en) * 2011-02-11 2012-08-16 株式会社デンソー Heat pump cycle
JP2012181005A (en) * 2011-02-11 2012-09-20 Denso Corp Heat pump cycle
CN103348198A (en) * 2011-02-11 2013-10-09 株式会社电装 Heat pump cycle
US9441865B2 (en) 2011-02-11 2016-09-13 Denso Corporation Heat pump cycle for a vehicle utilizing a variable opening throttle valve for humidifying operation
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014001863A (en) * 2012-06-15 2014-01-09 Rinnai Corp Thermal apparatus
CN110822767A (en) * 2019-09-30 2020-02-21 西安交通大学 Heat pump system for performing air suction preheating and defrosting by utilizing expansion machine and internal heat exchanger

Similar Documents

Publication Publication Date Title
JP3876911B2 (en) Water heater
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
JP4974714B2 (en) Water heater
WO2017006596A1 (en) Refrigeration cycle device
EP1873466A2 (en) Refrigeration cycle and water heater
JP5653451B2 (en) Heat pump type water heater
JP6328270B2 (en) Air conditioner
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JPWO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2007139244A (en) Refrigeration device
JP5404761B2 (en) Refrigeration equipment
JP2007071478A (en) Heat pump device
JPWO2020161803A1 (en) Outdoor unit of refrigeration equipment and refrigeration equipment equipped with it
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2015064169A (en) Hot water generation device
JP6880213B2 (en) Air conditioner
JP5769684B2 (en) Heat pump equipment
JP6433422B2 (en) Refrigeration cycle equipment
JP6529579B2 (en) Heat pump system
JP2008241176A (en) Refrigerating cycle device
JP2008134025A (en) Heat pump type heating device
WO2009096179A1 (en) Auxiliary unit for heating and air conditioner
JP4468888B2 (en) Air conditioner
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP2006242480A (en) Vapor compression cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100617