JP2014088974A - Refrigerator and refrigeration device - Google Patents

Refrigerator and refrigeration device Download PDF

Info

Publication number
JP2014088974A
JP2014088974A JP2012238007A JP2012238007A JP2014088974A JP 2014088974 A JP2014088974 A JP 2014088974A JP 2012238007 A JP2012238007 A JP 2012238007A JP 2012238007 A JP2012238007 A JP 2012238007A JP 2014088974 A JP2014088974 A JP 2014088974A
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
stage
heat
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012238007A
Other languages
Japanese (ja)
Inventor
Tomotaka Ishikawa
智隆 石川
So Nomoto
宗 野本
Mutsumi Kato
睦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Applied Refrigeration Systems Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Applied Refrigeration Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Applied Refrigeration Systems Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2012238007A priority Critical patent/JP2014088974A/en
Publication of JP2014088974A publication Critical patent/JP2014088974A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator and the like capable of improving energy-saving performance while securing high reliability.SOLUTION: A refrigerator includes: at least a low stage-side compressor 1 compressing a refrigerant and discharging the same; an auxiliary radiator 2 for allowing the refrigerant discharged by the low stage-side compressor 1 to exchange heat with ambient air so that the refrigerant radiates heat; a high stage-side compressor 3 compressing the refrigerant radiating heat in the auxiliary radiator 2 and discharging the same; and a high stage-side radiator 4 for allowing the refrigerant discharged by the high stage-side compressor 3 to exchange heat with the ambient air so that the refrigerant radiates heat. The high stage-side radiator 4 and the auxiliary radiator 2 are constituted on the basis of a prescribed radiation amount ratio as a ratio of a radiation amount of the refrigerant in the auxiliary radiator 2 to the total radiation amount of a radiation amount to make the refrigerant radiate heat to achieve a saturated gas state in the auxiliary radiator 2 and a radiation amount of the refrigerant in the high stage-side radiator 4 when a temperature of the ambient air is a prescribed low ambient temperature.

Description

本発明は、冷凍機等に係るものである。特に二段冷凍サイクルに補助放熱器を用いて冷媒回路を構成するに関するものである。   The present invention relates to a refrigerator and the like. In particular, the present invention relates to the construction of a refrigerant circuit using an auxiliary radiator in a two-stage refrigeration cycle.

例えば、冷凍サイクル(ヒートポンプサイクル)を利用した冷凍装置では、基本的に、圧縮機、放熱器(凝縮器)、絞り装置(減圧装置)及び冷却器(蒸発器)を冷媒配管により接続し、冷媒を循環させる冷媒回路を構成している。   For example, in a refrigeration system using a refrigeration cycle (heat pump cycle), a compressor, a radiator (condenser), a throttle device (decompression device), and a cooler (evaporator) are basically connected by a refrigerant pipe. The refrigerant circuit which circulates is constituted.

冷凍装置において、マイナス数十度の低温度帯での冷却を行うため、冷媒の圧縮過程を低段側と高段側との二段階に分割して行う二段サイクル冷凍装置がある。そして、このような二段サイクル冷凍装置において、例えば高段側圧縮機の前段に補助放熱器を設置するものが提案されている。低段側圧縮機が吐出した冷媒を補助放熱器で放熱させて冷却し、高段側圧縮機に吸入させるようにすることで、運転効率の向上をはかっている(例えば、特許文献1参照)。   In a refrigeration apparatus, there is a two-stage cycle refrigeration apparatus that performs a refrigerant compression process divided into two stages, a low-stage side and a high-stage side, in order to perform cooling in a low temperature range of minus several tens of degrees. In such a two-stage cycle refrigeration apparatus, for example, an apparatus in which an auxiliary radiator is installed in front of a high-stage compressor has been proposed. The refrigerant discharged from the low-stage compressor is radiated by an auxiliary radiator, cooled, and sucked into the high-stage compressor, thereby improving the operation efficiency (see, for example, Patent Document 1). .

特許第4219198号公報Japanese Patent No. 4219198

上記の特許文献1における冷凍装置では、低段側圧縮機が吐出した冷媒を冷却する補助放熱器により運転効率を向上することができるとされている。しかし、このような冷凍装置では、外気温度、圧縮機の運転状況等によって、補助放熱器で冷媒が凝縮してしまう可能性があった。そして、凝縮によってできた液状の冷媒(液冷媒)を高段側圧縮機が吸引してしまうと、液圧縮により損傷を受けてしまう可能性があった。   In the refrigeration apparatus described in Patent Document 1, it is said that the operation efficiency can be improved by an auxiliary radiator that cools the refrigerant discharged from the low-stage compressor. However, in such a refrigeration apparatus, there is a possibility that the refrigerant may condense in the auxiliary radiator depending on the outside air temperature, the operating condition of the compressor, and the like. If the high-stage compressor sucks the liquid refrigerant (liquid refrigerant) formed by the condensation, there is a possibility that the liquid refrigerant may be damaged.

特許文献1では、この点について、圧縮機の回転数を上昇させることによって補助放熱器で冷媒が凝縮しないようにして、圧縮機の損傷を回避するようにしている。しかし、圧縮機の回転数を上昇させると、冷却能力が増大するために、冷却負荷と冷却能力とのバランスが崩れ、冷却対象を冷やし過ぎてしまうことがある。また、冷凍装置の発停頻度が増加することで省エネルギー性が低下してしまうことがある。   In Japanese Patent Laid-Open No. 2004-228688, the compressor is prevented from being damaged by preventing the refrigerant from condensing in the auxiliary radiator by increasing the rotational speed of the compressor. However, when the rotational speed of the compressor is increased, the cooling capacity increases, so that the balance between the cooling load and the cooling capacity is lost, and the object to be cooled may be overcooled. Moreover, energy saving property may fall because the frequency of starting and stopping of the refrigeration apparatus increases.

本発明は、上記のような課題を解決するためになされたもので、高い信頼性を確保しつつ省エネルギー性をはかることができる冷凍機等を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a refrigerator or the like that can achieve energy saving while ensuring high reliability.

本発明に係る冷凍機は、冷媒を圧縮して吐出する低段側圧縮機と、低段側圧縮機が吐出した冷媒と周囲空気とを熱交換させ、冷媒を放熱させる補助放熱器と、補助放熱器で放熱した冷媒を圧縮して吐出する高段側圧縮機と、高段側圧縮機が吐出した冷媒と周囲空気とを熱交換させ、冷媒を放熱させる高段側放熱器とを少なくとも有し、周囲空気の温度が所定の低周囲温度であるとしたときの、補助放熱器において飽和ガス状態まで冷媒を放熱させる放熱量と高段側放熱器における冷媒の放熱量との合計放熱量に対する、補助放熱器における冷媒の放熱量の割合である所定放熱量比率に基づいて、高段側放熱器と補助放熱器とを構成するものである。   The refrigerator according to the present invention includes a low-stage compressor that compresses and discharges a refrigerant, an auxiliary radiator that radiates the refrigerant by heat-exchange between the refrigerant discharged from the low-stage compressor and ambient air, and an auxiliary At least a high-stage compressor that compresses and discharges the refrigerant radiated by the radiator, and a high-stage radiator that radiates the refrigerant by exchanging heat between the refrigerant discharged from the high-stage compressor and the ambient air. When the ambient air temperature is a predetermined low ambient temperature, the amount of heat released from the auxiliary radiator to radiate the refrigerant to the saturated gas state and the total amount of heat released from the refrigerant in the high-stage radiator The high-stage heat radiator and the auxiliary heat radiator are configured based on a predetermined heat radiation amount ratio that is a ratio of the heat radiation amount of the refrigerant in the auxiliary heat radiator.

本発明は、所定の低周囲温度であるときの、補助放熱器によって飽和ガス状態まで冷媒を放熱させる放熱量と高段側放熱器における冷媒の放熱量との所定放熱量比率に基づいて高段側放熱器と補助放熱器とを構成するようにしたので、周囲温度が低いときに生じる高段側圧縮機の液圧縮に対応した放熱器を構成し、年間を通して高段側圧縮機の液圧縮を回避し、高い信頼性と省エネルギー性を得ることが可能となる。   The present invention is based on a predetermined heat release amount ratio between a heat release amount for radiating the refrigerant to the saturated gas state by the auxiliary radiator and a heat release amount of the refrigerant in the high stage side radiator at a predetermined low ambient temperature. Since the side radiator and auxiliary radiator are configured, a radiator that supports liquid compression of the high stage compressor that occurs when the ambient temperature is low is configured, and liquid compression of the high stage compressor is performed throughout the year. This makes it possible to obtain high reliability and energy saving.

本発明の実施の形態1に係る冷凍装置の構成を示す図である。It is a figure which shows the structure of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の一体型放熱器7の構成を示す概略図である。It is the schematic which shows the structure of the integrated radiator 7 of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 冷凍装置におけるエンタルピと圧力との関係を示す図である。It is a figure which shows the relationship between enthalpy and pressure in a freezing apparatus. 中間圧力と圧縮機入力との関係を示す図である。It is a figure which shows the relationship between an intermediate pressure and a compressor input. 低段側凝縮温度が外気温度よりも低い場合と高い場合とにおける放熱量をモリエル線図で説明した図である。It is the figure explaining the heat dissipation in the case where the low stage side condensing temperature is lower than the outside air temperature and when it is higher with the Mollier diagram. 補助放熱器2の放熱量とCOPとの関係を説明するための図である。It is a figure for demonstrating the relationship between the heat dissipation of the auxiliary radiator 2, and COP. 本発明の実施の形態1に係る冷凍装置の一体型放熱器7の放熱量を説明するための図である。It is a figure for demonstrating the heat dissipation of the integrated radiator 7 of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の一体型放熱器における補助放熱器の放熱量割合を説明するための図である。It is a figure for demonstrating the heat dissipation rate of the auxiliary radiator in the integrated radiator of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 補助放熱器2の放熱量比率を冷媒毎に示す図である。It is a figure which shows the thermal radiation amount ratio of the auxiliary radiator 2 for every refrigerant | coolant. 本発明の実施の形態1に係る放熱量に対する十分な熱処理能力を説明するための図である。It is a figure for demonstrating sufficient heat processing capability with respect to the thermal radiation amount which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍装置の構成を示す図である。It is a figure which shows the structure of the freezing apparatus which concerns on Embodiment 2 of this invention.

以下、本発明に係る冷凍機を含む冷凍装置の好適な実施の形態について図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a refrigeration apparatus including a refrigerator according to the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍装置の構成を示す図である。図1において、低段側圧縮機1、補助放熱器2、高段側圧縮機3、高段側放熱器4、減圧装置としての膨張弁5及び冷却器として機能する蒸発器6が順次接続されて冷媒回路が構成されている。本実施の形態では、低段側圧縮機1、補助放熱器2、高段側圧縮機3、高段側放熱器4及び膨張弁5を冷凍機11が有しており、蒸発器6は負荷装置となる室内機12が有している。ここで、膨張弁5については室内機12が有するようにしてもよい。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration apparatus according to Embodiment 1 of the present invention. In FIG. 1, a low-stage compressor 1, an auxiliary radiator 2, a high-stage compressor 3, a high-stage radiator 4, an expansion valve 5 as a pressure reducing device, and an evaporator 6 that functions as a cooler are sequentially connected. Thus, a refrigerant circuit is configured. In the present embodiment, the refrigerator 11 includes the low-stage compressor 1, the auxiliary radiator 2, the high-stage compressor 3, the high-stage radiator 4 and the expansion valve 5, and the evaporator 6 is a load. The indoor unit 12 which becomes an apparatus has. Here, the expansion valve 5 may be included in the indoor unit 12.

低段側圧縮機1は、吸入側配管側からの冷媒を圧縮して吐出する。補助放熱器2は、低段側圧縮機1が吐出した冷媒と周囲空気(外気)とを熱交換させ、冷媒を放熱させる。高段側圧縮機3は、補助放熱器2で放熱された冷媒を圧縮して吐出する。高段側放熱器4は、高段側圧縮機3が吐出した冷媒と周囲空気とを熱交換させ、冷媒を放熱(凝縮)させる。膨張弁5は、高段側放熱器4で放熱された冷媒を減圧する。蒸発器6は、膨張弁5で減圧された冷媒を蒸発させる。   The low-stage compressor 1 compresses and discharges the refrigerant from the suction side pipe side. The auxiliary radiator 2 exchanges heat between the refrigerant discharged from the low-stage compressor 1 and the ambient air (outside air), and radiates the refrigerant. The high stage compressor 3 compresses and discharges the refrigerant radiated by the auxiliary radiator 2. The high stage side radiator 4 exchanges heat between the refrigerant discharged from the high stage side compressor 3 and the ambient air, and radiates (condenses) the refrigerant. The expansion valve 5 depressurizes the refrigerant radiated by the high stage side radiator 4. The evaporator 6 evaporates the refrigerant decompressed by the expansion valve 5.

ここで、高段側放熱器4及び補助放熱器2は、一体型放熱器7を構成している。一体型放熱器7の近傍には放熱器ファン8が設けられている。放熱器ファン8は、一体型放熱器7に外気を通過させ、一体型放熱器7の伝熱管を通過する冷媒と熱交換させた後、熱交換後の外気を一体型放熱器7外に排気させる。   Here, the high-stage radiator 4 and the auxiliary radiator 2 constitute an integrated radiator 7. A radiator fan 8 is provided in the vicinity of the integrated radiator 7. The radiator fan 8 allows the outside air to pass through the integrated radiator 7, exchanges heat with the refrigerant passing through the heat transfer tube of the integrated radiator 7, and then exhausts the outside air after the heat exchange to the outside of the integrated radiator 7. Let

図2は、本発明の実施の形態1に係る冷凍装置の一体型放熱器7の構成を示す概略図である。図2において、一体型放熱器7は、平板状の伝熱フィン71に伝熱管72を貫通して構成したプレートフィンチューブ型熱交換器である。ここで、本実施の形態では、高段側放熱器4及び補助放熱器2は、伝熱フィン71を共有することによって一体化しているが、伝熱フィン71部分を分割して構成するようにしてもよい。一体化することで、熱交換器の構造上、製造が容易となる。一方、高温となる補助放熱器2と高段側放熱器4との間で伝熱フィン71を分割した構成とした場合には熱絶縁効果が大きくなるため、補助放熱器2及び高段側放熱器4の双方がより効率よく放熱可能となる。   FIG. 2 is a schematic diagram showing the configuration of the integrated radiator 7 of the refrigeration apparatus according to Embodiment 1 of the present invention. In FIG. 2, the integrated radiator 7 is a plate fin tube type heat exchanger configured by passing a heat transfer tube 72 through a flat plate heat transfer fin 71. Here, in the present embodiment, the high-stage radiator 4 and the auxiliary radiator 2 are integrated by sharing the heat transfer fins 71, but the heat transfer fins 71 are divided and configured. May be. Due to the integration, the manufacture of the heat exchanger is facilitated. On the other hand, if the heat transfer fins 71 are divided between the auxiliary radiator 2 and the high-stage side radiator 4 that are at a high temperature, the thermal insulation effect is increased, and thus the auxiliary radiator 2 and the high-stage side heat dissipation. Both units 4 can dissipate heat more efficiently.

また、一体型放熱器7では、図2に示すように、低段側圧縮機1が吐出した高温となるガス状の冷媒(ガス冷媒)を冷却する補助放熱器2を熱交換器の上方部(重力方向の上側)に配置し、高段側放熱器4を下方部(重力方向の下側)に配置する。これにより、補助放熱器2の放熱が高段側放熱器4側に干渉することがない。したがって、補助放熱器2で暖められた被熱伝達流体が高段側放熱器4側に移動することがなく、補助放熱器2及び高段側放熱器4の双方が効率よく放熱可能となる。   Further, in the integrated radiator 7, as shown in FIG. 2, the auxiliary radiator 2 for cooling the high-temperature gaseous refrigerant (gas refrigerant) discharged from the low-stage compressor 1 is provided above the heat exchanger. The upper stage radiator 4 is arranged in the lower part (lower side in the gravity direction). Thereby, the heat radiation of the auxiliary radiator 2 does not interfere with the high-stage radiator 4 side. Therefore, the heat transfer fluid heated by the auxiliary radiator 2 does not move to the high stage radiator 4 side, and both the auxiliary radiator 2 and the high stage radiator 4 can efficiently radiate heat.

本実施の形態では、図2に示しているように、一体型放熱器7の全放熱量(高段側放熱器4の放熱量+補助放熱器2の放熱量)に対する補助放熱器2の放熱量比率を、所定の低周囲温度の放熱量比率以下の範囲内として一体型放熱器7(高段側放熱器4と補助放熱器2)を構成した装置とすることに特徴を有するものである。詳細については後述する。   In the present embodiment, as shown in FIG. 2, the radiation of the auxiliary radiator 2 with respect to the total radiation amount of the integrated radiator 7 (the radiation amount of the high-stage radiator 4 + the radiation amount of the auxiliary radiator 2). The apparatus is characterized in that the heat dissipation ratio is within a range equal to or less than the heat dissipation ratio at a predetermined low ambient temperature and the integrated radiator 7 (the high-stage radiator 4 and the auxiliary radiator 2) is configured. . Details will be described later.

このように構成された冷凍装置に用いる冷媒は、本実施の形態では二酸化炭素(CO)とする。例えば、本実施の形態の冷凍機11の接続対象となる室内機12として、例えばスーパーマーケットのショーケース等においては、配置換え等により配管等が開放されることがあり、冷媒漏れが発生する可能性がある。そこで、冷媒漏れを考慮すると、地球温暖化に対する影響が小さいCOを冷媒として用いることが望ましい。 In the present embodiment, the refrigerant used for the refrigeration apparatus configured as described above is carbon dioxide (CO 2 ). For example, as the indoor unit 12 to be connected to the refrigerator 11 of the present embodiment, for example, in a supermarket showcase or the like, piping or the like may be opened due to rearrangement or the like, and refrigerant leakage may occur. There is. Therefore, considering refrigerant leakage, it is desirable to use CO 2 having a small influence on global warming as the refrigerant.

また、本実施の形態の冷凍装置は、冷凍機内蔵型のショーケース等にも適用することができる。冷凍機内蔵型のショーケースは、冷媒回路が開放されることがないため、冷媒漏れ量も小さい。このため、従来用いられている地球温暖化係数の高いHFC系冷媒でもよいが、本来的には、地球温暖化に対する影響が小さい冷媒である、例えばHFO冷媒、HC系冷媒、CO、アンモニア、水等が望ましい。 Further, the refrigeration apparatus of the present embodiment can also be applied to a showcase with a built-in refrigerator. The showcase with a built-in refrigerator has a small amount of refrigerant leakage because the refrigerant circuit is not opened. For this reason, it may be a conventionally used HFC refrigerant having a high global warming potential, but is essentially a refrigerant having a small influence on global warming, such as HFO refrigerant, HC refrigerant, CO 2 , ammonia, Water is desirable.

以上のように構成された冷凍装置の動作について冷媒の流れに基づいて説明する。
低段側圧縮機1はCO冷媒を圧縮する。圧縮されて吐出されたCO冷媒は、一体型放熱器7内の補助放熱器2で放熱することで冷却された後、高段側圧縮機3に吸入される。高段側圧縮機3はCO冷媒をさらに圧縮する。高段側圧縮機3で圧縮されて吐出されたCO冷媒は、一体型放熱器7内の高段側放熱器4で放熱することで凝縮された後、膨張弁5で減圧されて蒸発器6に流入する。蒸発器6に流入したCO冷媒は蒸発して、低段側圧縮機1へ還流する。蒸発器6においてCO冷媒が蒸発する際に負荷を冷却する。
The operation of the refrigeration apparatus configured as described above will be described based on the refrigerant flow.
The low stage compressor 1 compresses the CO 2 refrigerant. The compressed and discharged CO 2 refrigerant is cooled by radiating heat with the auxiliary radiator 2 in the integrated radiator 7 and then sucked into the high-stage compressor 3. The high stage side compressor 3 further compresses the CO 2 refrigerant. The CO 2 refrigerant compressed and discharged by the high-stage compressor 3 is condensed by radiating heat from the high-stage radiator 4 in the integrated radiator 7 and then depressurized by the expansion valve 5 to be evaporated. 6 flows in. The CO 2 refrigerant that has flowed into the evaporator 6 evaporates and returns to the low-stage compressor 1. The load is cooled when the CO 2 refrigerant evaporates in the evaporator 6.

本実施の形態の冷凍装置では、低段側圧縮機1と高段側圧縮機3との容量比により低段側高圧(中間圧力)を調節する。ここで、本実施の形態では、圧縮機を駆動させるモータの回転数を制御できる運転容量可変式とすることで、低段側高圧の調節を行えるようにするが、低段側圧縮機1と高段側圧縮機3の排除容積比により低段側高圧を調節してもよい。   In the refrigeration apparatus of the present embodiment, the low-stage high pressure (intermediate pressure) is adjusted by the capacity ratio between the low-stage compressor 1 and the high-stage compressor 3. Here, in the present embodiment, the low-stage-side high-pressure can be adjusted by adopting a variable operating capacity type that can control the rotation speed of the motor that drives the compressor. The low-stage high pressure may be adjusted according to the excluded volume ratio of the high-stage compressor 3.

図3は、冷凍装置におけるエンタルピと圧力との関係を示す図である。本実施の形態の冷凍装置では、外気温度に応じて冷却負荷が変化し、冷却負荷に対して冷凍能力(蒸発器6の熱交換量)を決定しており、その決定した冷凍能力を一定に保つように、低段側圧縮機1により冷媒流量を制御している。このため、ある運転状態から高段側圧縮機3の駆動回転数を上げて高段側圧縮機3の容量を増大させても、低段側圧縮機1の駆動回転数が追従するわけではない。したがって、高段側圧縮機3の容量が増大すると高段側吸入圧力が低下し、低段側高圧(低段側吐出圧力)も低下するという関係がある。逆に、高段側圧縮機3の容量を低減すれば低段側高圧が上昇する。   FIG. 3 is a diagram illustrating a relationship between enthalpy and pressure in the refrigeration apparatus. In the refrigeration apparatus of the present embodiment, the cooling load changes according to the outside air temperature, the refrigeration capacity (heat exchange amount of the evaporator 6) is determined for the cooling load, and the determined refrigeration capacity is kept constant. The refrigerant flow rate is controlled by the low-stage compressor 1 so as to keep it. For this reason, even if the driving speed of the high stage compressor 3 is increased from a certain operating state to increase the capacity of the high stage compressor 3, the driving speed of the low stage compressor 1 does not follow. . Therefore, when the capacity of the high-stage compressor 3 increases, the high-stage suction pressure decreases, and the low-stage high pressure (low-stage discharge pressure) also decreases. Conversely, if the capacity of the high-stage compressor 3 is reduced, the low-stage high pressure increases.

また、図3から明らかなように、高段側圧縮機3の駆動回転数を上げて低段側高圧が低下すると、高段側圧縮機3の入力(電力)は大きくなる(WH1<WH2)のに対し、低段側圧縮機1の入力は小さくなる(WL1>WL2)。   As is apparent from FIG. 3, when the driving speed of the high-stage compressor 3 is increased and the low-stage high pressure is decreased, the input (electric power) of the high-stage compressor 3 is increased (WH1 <WH2). On the other hand, the input of the low-stage compressor 1 is small (WL1> WL2).

ところで、低段側圧縮機1と高段側圧縮機3の圧縮比が略同等となるときに、合計入力(高段側圧縮機3の入力+低段側圧縮機1の入力)が最小となり、二段サイクル全体の運転効率が最適となる。そこで、高段側圧縮機3の容量を調節して、低段側圧縮機1と高段側圧縮機3との圧縮比が略同等となるように低段側高圧を調節する。よって、低段側高圧は超臨界とならない運転となる。このため、圧力によって相変化が生じる飽和温度が決まることとなる。   By the way, when the compression ratios of the low-stage compressor 1 and the high-stage compressor 3 are substantially equal, the total input (input of the high-stage compressor 3 + input of the low-stage compressor 1) is minimized. The operating efficiency of the entire two-stage cycle is optimal. Therefore, the capacity of the high-stage compressor 3 is adjusted, and the low-stage high pressure is adjusted so that the compression ratio between the low-stage compressor 1 and the high-stage compressor 3 is substantially equal. Therefore, the low stage side high pressure is not supercritical. For this reason, the saturation temperature at which the phase change occurs due to the pressure is determined.

図4は、中間圧力と圧縮機の入力との関係を示す図である。図4は、前述した関係を整理したものであり、横軸を低段側高圧(中間圧力)とし、縦軸を二段サイクル冷凍装置における入力として、高段側圧縮機3の入力(エンタルピ差)と低段側圧縮機1の入力(エンタルピ差)とそれらの合計入力をそれぞれ示している。図4に示すように、高段側圧縮機3と低段側圧縮機1とにおける圧縮機入力が略同じになるときに合計入力が最も小さくなることがわかる。そして、このときCOP(=冷凍能力/(高段側圧縮機入力+低段側圧縮機入力))が最大となる。   FIG. 4 is a diagram showing the relationship between the intermediate pressure and the input of the compressor. FIG. 4 is a summary of the above-described relationship, where the horizontal axis is the low-stage high pressure (intermediate pressure) and the vertical axis is the input in the two-stage cycle refrigeration system, and the input (enthalpy difference) of the high-stage compressor 3. ) And the input (enthalpy difference) of the low-stage compressor 1 and their total inputs. As shown in FIG. 4, it can be seen that the total input becomes the smallest when the compressor inputs in the high-stage compressor 3 and the low-stage compressor 1 are substantially the same. At this time, COP (= refrigeration capacity / (high stage side compressor input + low stage side compressor input)) is maximized.

以上より、高段側圧縮機3と低段側圧縮機1とにおける圧縮比を略同じとする低段側高圧(以下、最適中間圧という)を目標として高段側圧縮機3の容量制御を行う。これにより、二段サイクル冷凍装置のCOPが最大となる効果を得ることができる。ここで、本実施の形態では、高段側圧縮機3の容量制御を行う場合について説明するが、本発明はこれに限らず、低段側圧縮機1の圧縮比と高段側圧縮機3の圧縮比とが同等となるように、低段側圧縮機1の容量と高段側圧縮機3の容量との容量比を調節すればよい。   From the above, the capacity control of the high-stage compressor 3 is controlled with the target of the low-stage high pressure (hereinafter referred to as the optimum intermediate pressure) in which the compression ratio between the high-stage compressor 3 and the low-stage compressor 1 is substantially the same. Do. Thereby, the effect that the COP of the two-stage cycle refrigeration apparatus is maximized can be obtained. Here, in the present embodiment, a case where the capacity control of the high-stage compressor 3 is performed will be described. However, the present invention is not limited thereto, and the compression ratio of the low-stage compressor 1 and the high-stage compressor 3 are not limited thereto. What is necessary is just to adjust the capacity | capacitance ratio of the capacity | capacitance of the low stage side compressor 1 and the capacity | capacitance of the high stage side compressor 3 so that the compression ratio of this may become equivalent.

高段側高圧は、高段側放熱器4において冷媒との熱交換に係る周囲空気の温度によって変化する。本実施の形態では高段側放熱器4は屋外設置の冷凍機11が収容している。このため、高段側放熱器4において冷媒と熱交換するのは外気空気である。例えば外気温度が上昇すれば高段側高圧が上昇し、最適中間圧も上昇する。一方、外気温度が低下すれば同様に最適中間圧が低下する。このように、外気温度に伴って最適中間圧が変化することになる。   The high stage side high pressure varies depending on the temperature of the ambient air related to heat exchange with the refrigerant in the high stage side radiator 4. In the present embodiment, the high-stage radiator 4 is housed in a refrigerator 11 installed outdoors. For this reason, it is the outside air that exchanges heat with the refrigerant in the high-stage radiator 4. For example, if the outside air temperature rises, the high stage side high pressure rises and the optimum intermediate pressure also rises. On the other hand, if the outside air temperature decreases, the optimum intermediate pressure similarly decreases. Thus, the optimum intermediate pressure changes with the outside air temperature.

ここで、本実施の形態では、圧縮機の圧力運転範囲を維持するため、放熱器ファン8の回転速度を制御して高段側高圧を調節する。このとき、本実施の形態のように高段側圧縮機3と低段側圧縮機1とにおける圧縮比を略同じとする最適中間圧を目標として高段側圧縮機3の容量制御を行おうとすると、最適中間圧における冷媒の飽和温度が外気温度よりも高くなる可能性がある。   Here, in this embodiment, in order to maintain the pressure operation range of the compressor, the rotational speed of the radiator fan 8 is controlled to adjust the high stage side high pressure. At this time, as in the present embodiment, the capacity control of the high-stage compressor 3 is performed with the target of the optimum intermediate pressure that makes the compression ratios of the high-stage compressor 3 and the low-stage compressor 1 substantially the same. Then, the saturation temperature of the refrigerant at the optimum intermediate pressure may be higher than the outside air temperature.

<低段側凝縮温度が外気温度よりも低い場合と高い場合の補助放熱器2の放熱量の違いについて>
次に、補助放熱器2の放熱量について考察する。本実施の形態の冷凍装置では、上記のような圧力制御を行うため、最適中間圧の飽和温度が外気温度(周囲温度)に対して低くなる場合と高くなる場合(同じ場合も含む)とがある。補助放熱器2は外気に冷媒の熱を放熱する放熱器であるため、低段側圧縮機1から吐出された冷媒は補助放熱器2で外気と熱交換しても、最大でも外気温度までしか下がらない。また、低段側凝縮温度が外気温度よりも低い場合と高い場合とでは吐出温度の冷媒を補助放熱器2で同じ外気温度まで下げるにあたっても、その放熱量は異なるものとなる。
<Difference in heat dissipation of auxiliary radiator 2 when low-stage side condensation temperature is lower and higher than outside temperature>
Next, the heat radiation amount of the auxiliary radiator 2 will be considered. In the refrigeration apparatus of the present embodiment, since the pressure control as described above is performed, there are cases where the saturation temperature of the optimum intermediate pressure becomes lower than the outside air temperature (ambient temperature) and becomes higher (including the same case). is there. Since the auxiliary radiator 2 is a radiator that radiates the heat of the refrigerant to the outside air, the refrigerant discharged from the low-stage compressor 1 can exchange heat with the outside air at the auxiliary radiator 2 only to the maximum outside temperature. It does not fall. Also, when the low-stage side condensation temperature is lower than the outside air temperature and when it is higher than the outside air temperature, the amount of heat released differs even when the auxiliary radiator 2 lowers the refrigerant at the discharge temperature to the same outside air temperature.

図5は、凝縮温度が外気温度よりも低い場合と高い場合との放熱量をモリエル線図で説明した図である。図5(a)は、凝縮温度が外気温度よりも高い場合の放熱エンタルピ差、図5(b)は、凝縮温度が外気温度よりも低い場合の放熱エンタルピ差を示している。   FIG. 5 is a diagram illustrating the amount of heat released when the condensation temperature is lower and higher than the outside air temperature with the Mollier diagram. FIG. 5A shows the heat dissipation enthalpy difference when the condensation temperature is higher than the outside air temperature, and FIG. 5B shows the heat dissipation enthalpy difference when the condensation temperature is lower than the outside air temperature.

(a)凝縮温度が外気温度よりも高い場合
圧縮機の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、外気温度が20℃で凝縮温度が25℃の場合について考える。
放熱器は外気に冷媒の熱を放熱する放熱器であるため、図5(a)に示すように、80℃〜90℃の冷媒(点a)は、放熱器での外気との熱交換により、まず、ガス状態のまま凝縮温度である25℃(点b)まで下がる。そして、25℃を保ちながら凝縮して液状態となる(c点)。外気温度は20℃であるため冷媒はさらに放熱可能であり、液状態で20℃(点d)まで下がる。このように凝縮温度が外気温度よりも高い場合、冷媒は凝縮するため、相変化を伴う冷却を行うことになる。
(A) When the condensation temperature is higher than the outside air temperature Consider the case where the temperature of the refrigerant discharged from the compressor (the temperature at point a) is, for example, 80 ° C. to 90 ° C., the outside air temperature is 20 ° C., and the condensation temperature is 25 ° C. .
Since the radiator is a radiator that radiates the heat of the refrigerant to the outside air, as shown in FIG. 5A, the refrigerant at 80 ° C. to 90 ° C. (point a) is exchanged with the outside air by the radiator. First, it lowers to 25 ° C. (point b) which is the condensation temperature in the gas state. And it is condensed and liquid state is maintained while maintaining 25 ° C. (point c). Since the outside air temperature is 20 ° C., the refrigerant can further dissipate heat and falls to 20 ° C. (point d) in a liquid state. In this way, when the condensation temperature is higher than the outside air temperature, the refrigerant condenses, so that cooling accompanied with a phase change is performed.

(b)凝縮温度が外気温度よりも低い場合
低段側圧縮機1の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、外気温度が20℃で凝縮温度が10℃の場合について考える。補助放熱器2は外気に冷媒の熱を放熱する放熱器であるため、上述したように80℃〜90℃の冷媒は、補助放熱器2における外気との熱交換により最大でも外気温度の20℃までしか下がらない。したがって、図5(b)に示すように、80℃〜90℃の冷媒(点a)は、補助放熱器2でガス状態のまま20℃(点b)となる。このため、凝縮温度が外気温度より低い場合は、補助放熱器2では凝縮による相変化を伴う冷却を行えず、ガス状のまま冷却を行うことになる。
(B) When the condensing temperature is lower than the outside air temperature The temperature of the refrigerant discharged from the low-stage compressor 1 (the temperature at point a) is, for example, 80 ° C to 90 ° C, the outside air temperature is 20 ° C, and the condensing temperature is 10 ° C. Think about the case. Since the auxiliary radiator 2 is a radiator that radiates the heat of the refrigerant to the outside air, as described above, the refrigerant at 80 ° C. to 90 ° C. has a maximum outside air temperature of 20 ° C. due to heat exchange with the outside air in the auxiliary radiator 2. It will only go down. Therefore, as shown in FIG. 5B, the refrigerant (point a) at 80 ° C. to 90 ° C. becomes 20 ° C. (point b) while being in a gas state in the auxiliary radiator 2. For this reason, when the condensation temperature is lower than the outside air temperature, the auxiliary radiator 2 cannot perform the cooling accompanied by the phase change due to the condensation, and performs the cooling in the gaseous state.

<補助放熱器2の放熱量とCOPとの関係>
図6は、補助放熱器2の放熱量とCOPとの関係を説明するための図である。図6においては、二段サイクルのモリエル線図を示している。二段サイクルを構成するにあたり、補助放熱器2での放熱量をQsub1にした場合(図6(a))とQsub2にした場合(図6(b))とを比較する(Qsub1<Qsub2)。図6に示すように、冷凍能力が一定とすると、θh1<θh2となるため、放熱量Qsub1で放熱する場合に比べて放熱量Qsub2で放熱する方が高段側圧縮機3の入力(エンタルピ差)を少なくすることができる(WH1>WH2)。このため、高段側圧縮機3の吸入温度が低ければ同じ昇圧量でも圧縮機動力は少なくなる。よって、補助放熱器2の放熱量が多い方が高段側圧縮機3の入力を小さくできる。
<Relationship between heat dissipation of auxiliary radiator 2 and COP>
FIG. 6 is a diagram for explaining the relationship between the heat dissipation amount of the auxiliary radiator 2 and the COP. FIG. 6 shows a Mollier diagram of a two-stage cycle. In configuring the two-stage cycle, the case where the heat dissipation amount in the auxiliary radiator 2 is Qsub1 (FIG. 6A) and the case where Qsub2 is set (FIG. 6B) are compared (Qsub1 <Qsub2). As shown in FIG. 6, when the refrigeration capacity is constant, θh1 <θh2, so that heat is radiated with the heat radiation amount Qsub2 compared to the heat radiated with the heat radiation amount Qsub1 (enthalpy difference). ) Can be reduced (WH1> WH2). For this reason, if the suction temperature of the high-stage compressor 3 is low, the compressor power is reduced even with the same boost amount. Therefore, the input of the high stage compressor 3 can be reduced when the amount of heat radiation of the auxiliary radiator 2 is large.

本実施の形態の冷凍装置では、冷凍能力一定の制御が行われており、COP=冷凍能力/(高段側圧縮機3の入力+低段側圧縮機1の入力)であるため、高段側圧縮機3の入力を小さくすることができればCOPを大きくすることができる。   In the refrigeration apparatus of the present embodiment, constant control of the refrigeration capacity is performed, and COP = refrigeration capacity / (input of the high-stage compressor 3 + input of the low-stage compressor 1). If the input of the side compressor 3 can be reduced, the COP can be increased.

以上の内容を整理すると、高段側圧縮機3の圧縮比と低段側圧縮機1の圧縮比とを略同じとする運転制御によりCOPを最大とすることができ、また、補助放熱器2の放熱量を多くするほど、COPの値を大きくすることができることになる。   By arranging the above contents, the COP can be maximized by the operation control in which the compression ratio of the high-stage compressor 3 and the compression ratio of the low-stage compressor 1 are substantially the same, and the auxiliary radiator 2 As the amount of heat released increases, the value of COP can be increased.

よって、補助放熱器2の冷媒流出口において、ちょうど飽和ガスとなるような放熱量とすれば、高段側圧縮機3の液圧縮を回避しつつ、最大のCOPを得られる。低段側圧縮機1から吐出された冷媒が飽和ガス状態となる程度に補助放熱器2の放熱量を確保する。この放熱量を以下では所要放熱量という。この所要放熱量を達成するには、例えば、放熱器ファン8の風量を制御したり、補助放熱器2自体の構造的な設計を行ったりすることになる。このように補助放熱器2の放熱量を所要放熱量とすることにより、高段側圧縮機3の液圧縮を回避しつつ、最大限のCOPを得ることができる。   Therefore, if the amount of heat released is just a saturated gas at the refrigerant outlet of the auxiliary radiator 2, the maximum COP can be obtained while avoiding liquid compression of the high stage compressor 3. The heat radiation amount of the auxiliary radiator 2 is ensured to such an extent that the refrigerant discharged from the low-stage compressor 1 is in a saturated gas state. Hereinafter, this heat dissipation amount is referred to as a required heat dissipation amount. In order to achieve this required heat dissipation amount, for example, the air volume of the radiator fan 8 is controlled or the structural design of the auxiliary radiator 2 itself is performed. Thus, by setting the heat radiation amount of the auxiliary radiator 2 to the required heat radiation amount, the maximum COP can be obtained while avoiding liquid compression of the high stage compressor 3.

ここで、高段側圧縮機3と低段側圧縮機1とにおける圧縮比を制御し、低段側凝縮温度が外気温度より低くなるようにすれば、補助放熱器2における冷媒の冷却(放熱)では相変化が伴わないので、必ず高段側圧縮機3の液圧縮を回避することはできる。しかしながら、高段側圧縮機3と低段側圧縮機1とにおける圧縮比を略同じとする最適中間圧を目標とするものではないため、最大限のCOPは得られないこととなる。   Here, if the compression ratio in the high stage side compressor 3 and the low stage side compressor 1 is controlled so that the low stage side condensation temperature is lower than the outside air temperature, cooling of the refrigerant in the auxiliary radiator 2 (heat radiation) ) Does not involve a phase change, it is possible to avoid the liquid compression of the high stage compressor 3 without fail. However, since the optimum intermediate pressure that makes the compression ratios of the high-stage compressor 3 and the low-stage compressor 1 substantially the same is not targeted, the maximum COP cannot be obtained.

ところで、所要放熱量は外気温度によって異なる。よって、年間を通じて高段側圧縮機3の液圧縮を回避しつつ、最大限のCOPを得るには、低外気条件のときの所要放熱量と高外気条件のときの所要放熱量とを把握しておく必要がある。本実施の形態の冷凍装置では、補助放熱器2の所要放熱量と高段側放熱器4の放熱量との間には、外気条件に応じた所定の放熱量比が存在する。ここで、本実施の形態では補助放熱器2と高段側放熱器4とが一体型放熱器7で構成されているため、所定の放熱量比は、一体型放熱器7の全体放熱量に対する補助放熱器2の放熱量の割合に置き換えられる。したがって、低外気条件のときの放熱量割合、又は高外気条件のときの放熱量割合のいずれか小さい方の放熱量割合を設定することにより、年間を通じて高段側圧縮機3の液圧縮を回避しつつ、最大限のCOPを得ることが可能な冷凍装置を構成することができる。   By the way, the required heat dissipation varies depending on the outside air temperature. Therefore, in order to obtain the maximum COP while avoiding liquid compression of the high-stage compressor 3 throughout the year, it is necessary to grasp the required heat dissipation amount under low outside air conditions and the required heat dissipation amount under high outside air conditions. It is necessary to keep. In the refrigeration apparatus of the present embodiment, there is a predetermined heat dissipation amount ratio according to the outside air condition between the required heat dissipation amount of the auxiliary radiator 2 and the heat dissipation amount of the high stage side radiator 4. Here, in this embodiment, since the auxiliary radiator 2 and the high-stage radiator 4 are configured by the integrated radiator 7, the predetermined heat dissipation ratio is based on the total heat dissipation of the integrated radiator 7. It is replaced with the ratio of the heat dissipation amount of the auxiliary radiator 2. Therefore, by setting the smaller heat dissipation rate ratio, which is the smaller one of the heat dissipation rate at low outside air conditions and the heat dissipation rate at high outside air conditions, liquid compression of the high stage compressor 3 is avoided throughout the year. However, a refrigeration apparatus capable of obtaining the maximum COP can be configured.

後述するように、上記の一体型放熱器7における全放熱量に対する補助放熱器2の放熱量割合は、低外気条件の方が小さくなり、外気温度の変化に対して増減の傾向は変化しない単調変化となる。このため、低外気条件の放熱量割合で補助放熱器2を構成すれば、年間を通じて高段側圧縮機3の液圧縮を回避しつつ、最大COPが得られる所要放熱量を確保できることとなる。   As will be described later, the ratio of the heat dissipation amount of the auxiliary radiator 2 to the total heat dissipation amount in the integrated radiator 7 is smaller in the low outside air condition, and the monotonous change does not change with the change in the outside air temperature. It becomes a change. For this reason, if the auxiliary radiator 2 is configured with a heat dissipation rate in a low outside air condition, it is possible to secure a required heat dissipation amount that provides the maximum COP while avoiding liquid compression of the high stage compressor 3 throughout the year.

特に本実施の形態の冷凍装置において、使用環境の想定がつく場合、年間を通じて最も低い外気温度条件によって放熱量割合を設定すれば、年間を通じて高段側圧縮機3の液圧縮を回避できるため、高信頼性を得ることができる。   In particular, in the refrigeration apparatus of the present embodiment, when the usage environment is assumed, if the heat release rate is set according to the lowest outdoor temperature condition throughout the year, liquid compression of the high stage compressor 3 can be avoided throughout the year. High reliability can be obtained.

以下、JIS規格に基づく低外気条件(7℃)及び高外気条件(35℃)のときの放熱量割合の説明に先立って、一体型放熱器7全体の放熱量について説明する。   Hereinafter, prior to the description of the heat dissipation rate under the low outside air condition (7 ° C.) and the high outside air condition (35 ° C.) based on the JIS standard, the heat dissipation amount of the integrated radiator 7 as a whole will be described.

<一体型放熱器7の放熱量>
図7は、本発明の実施の形態1に係る冷凍装置の一体型放熱器7の放熱量を説明するための図である。図7においては、本実施の形態の冷凍装置のモリエル線図を示している。一体型放熱器7の放熱量QALLは、次の(1)式のように、高段側放熱器4の放熱量QCHと補助放熱器2の放熱量Qsubを加算した量となる。
<Heat dissipation amount of integrated radiator 7>
FIG. 7 is a diagram for explaining the heat radiation amount of the integrated radiator 7 of the refrigeration apparatus according to Embodiment 1 of the present invention. FIG. 7 shows a Mollier diagram of the refrigeration apparatus of the present embodiment. The heat radiation amount QALL of the integrated radiator 7 is an amount obtained by adding the heat radiation amount QCH of the high-stage side radiator 4 and the heat radiation amount Qsub of the auxiliary radiator 2 as in the following equation (1).

QALL=Qsub+QCH …(1)   QALL = Qsub + QCH (1)

<一体型放熱器7における補助放熱器2の放熱量割合>
補助放熱器2の放熱量Qsubを所要放熱量とすると、この放熱量Qsubと一体型放熱器7全体の放熱量QALLとの間には、外気温度及びCO冷媒の物性に応じた関係がある。この関係について以下に説明する。
<Rate of heat dissipation of auxiliary radiator 2 in integrated radiator 7>
When the heat radiation amount Qsub of the auxiliary radiator 2 is a required heat radiation amount, there is a relationship between the heat radiation amount Qsub and the heat radiation amount QALL of the entire integrated radiator 7 according to the outside air temperature and the physical properties of the CO 2 refrigerant. . This relationship will be described below.

図8は、本発明の実施の形態1に係る冷凍装置の一体型放熱器における補助放熱器の放熱量割合を説明するための図である。図8においては、外気温度35℃と外気温度7℃のときのモリエル線図を示している。   FIG. 8 is a diagram for explaining a heat dissipation rate ratio of the auxiliary radiator in the integrated radiator of the refrigeration apparatus according to Embodiment 1 of the present invention. FIG. 8 shows a Mollier diagram when the outside air temperature is 35 ° C. and the outside air temperature is 7 ° C.

例えば外気温度が35℃のとき、図8の高段側放熱器4の放熱量A1と、補助放熱器2の放熱量B1との比が67:33になることがCO冷媒の物性に基づき決まっている。また、外気温度が7℃(低外気条件)のとき、高段側放熱器4の放熱量A2と、補助放熱器2の放熱量B2との比が83:17になることがCO冷媒の物性に基づき決まっている。 For example, when the outside air temperature is 35 ° C., the ratio of the heat dissipation amount A1 of the high-stage radiator 4 and the heat dissipation amount B1 of the auxiliary radiator 2 in FIG. 8 is 67:33 based on the physical properties of the CO 2 refrigerant. It has been decided. Further, when the outside air temperature is 7 ° C. (low ambient conditions), the heat radiation amount A2 of the high-stage radiator 4, the ratio of the heat radiation amount B2 of the auxiliary radiator 2 that is 83:17 of CO 2 refrigerant Determined based on physical properties.

以上より、本実施の形態の冷凍装置をCOPが最大となる制御で運転し、補助放熱器2で凝縮させずに最大可能な放熱量を確保して高いCOPを得るための構成とするには、一体型放熱器7の全放熱量に対する補助放熱器2の放熱量割合を、外気温度が35℃の場合は33%とし、外気温度が7℃の場合は17%とすることが好ましい。そして、この冷凍装置は年間を通して使用されることを鑑みると、一体型放熱器7の全放熱量は、低外気温度7℃での割合17%以下を補助放熱器2で放熱する構成とすることが望ましいということになる。   As described above, the refrigeration apparatus according to the present embodiment is operated with the control that maximizes the COP, and is configured to obtain a high COP by securing the maximum heat radiation amount without being condensed by the auxiliary radiator 2. The ratio of the heat dissipation amount of the auxiliary radiator 2 to the total heat dissipation amount of the integrated radiator 7 is preferably 33% when the outside air temperature is 35 ° C. and 17% when the outside air temperature is 7 ° C. In view of the fact that this refrigeration system is used throughout the year, the total heat dissipation amount of the integrated radiator 7 is configured to radiate heat by the auxiliary radiator 2 at a ratio of 17% or less at a low outside air temperature of 7 ° C. Is desirable.

また、上記の全放熱量に対する補助放熱器2の放熱量割合は、外気温度変化に対して増減の傾向は変化しないため、外気温度に対して単調増加、又は単調減少となる。よって、例えば最低外気温度7℃のときの放熱量割合で補助放熱器2を構成すれば、年間を通じて高段側圧縮機3の液圧縮を回避しつつ、最大COPが得られる所要放熱量となる。   Moreover, since the tendency of increase / decrease does not change with respect to the outside air temperature change, the ratio of the heat radiation amount of the auxiliary radiator 2 to the total heat radiation amount is monotonously increased or monotonously decreased with respect to the outside air temperature. Therefore, for example, if the auxiliary radiator 2 is configured with a heat dissipation rate at a minimum outside air temperature of 7 ° C., the required heat dissipation is obtained so that the maximum COP can be obtained while avoiding liquid compression of the high stage compressor 3 throughout the year. .

ここで、上述した外気温度は一例である。冷凍装置が配置される環境に応じて適宜設定することができる。例えば低外気条件の温度(所定の低周囲温度)は、外気温度として想定される温度の下限値に応じた温度であり、高外気条件の温度(所定の高周囲温度)は、外気温度として想定される温度の上限値に応じた温度である。そして、一体型放熱器7の全放熱量に対する補助放熱器2の放熱量比率を、外気温度が低外気条件の際に、補助放熱器2により冷媒状態を略飽和ガス状態まで冷却させた場合での放熱量比率より低くなるように、補助放熱器2を構成すればよい。   Here, the outside temperature mentioned above is an example. It can set suitably according to the environment where a refrigerating device is arranged. For example, the temperature of the low outside air condition (predetermined low ambient temperature) is a temperature corresponding to the lower limit of the temperature assumed as the outside air temperature, and the temperature of the high outside air condition (predetermined high ambient temperature) is assumed as the outside air temperature. It is the temperature according to the upper limit of the temperature to be performed. The ratio of the heat dissipation amount of the auxiliary radiator 2 to the total heat dissipation amount of the integrated radiator 7 is the case where the auxiliary radiator 2 cools the refrigerant state to a substantially saturated gas state when the outside air temperature is a low outside air condition. What is necessary is just to comprise the auxiliary | assistant heat radiator 2 so that it may become lower than the thermal radiation amount ratio.

例えば本実施の形態の冷凍装置で用いるCO冷媒は超臨界冷媒となる。そのため、高段側放熱器4のエンタルピ差が小さく、また、比熱比が大きいため吐出温度が高く、補助放熱器2のエンタルピ差が大きい。よって、一体型放熱器7の全放熱量に対する補助放熱器2の放熱量割合は大きいものとなる。 For example, the CO 2 refrigerant used in the refrigeration apparatus of the present embodiment is a supercritical refrigerant. Therefore, the enthalpy difference of the high stage side radiator 4 is small, and since the specific heat ratio is large, the discharge temperature is high, and the enthalpy difference of the auxiliary radiator 2 is large. Therefore, the ratio of the heat dissipation amount of the auxiliary radiator 2 to the total heat dissipation amount of the integrated radiator 7 is large.

図9は、補助放熱器2の放熱量比率を冷媒毎に示す図である。次に凝縮潜熱を利用する冷媒について考察する。図9においては、CO冷媒、凝縮潜熱を利用する代表的な冷媒(プロパン、イソブタン、アンモニア、HFO1234yf、HFO1234ze、R134a、R410A、R32)を用いた場合における、一体型放熱器7の全放熱量に対する補助放熱器2の放熱量比率を、低外気条件(7℃)と高外気条件(35℃)とでそれぞれグラフで示している。 FIG. 9 is a diagram showing the heat release rate ratio of the auxiliary radiator 2 for each refrigerant. Next, a refrigerant that uses latent heat of condensation will be considered. In FIG. 9, the total heat dissipation of the integrated radiator 7 in the case of using a CO 2 refrigerant and a typical refrigerant (propane, isobutane, ammonia, HFO1234yf, HFO1234ze, R134a, R410A, and R32) using latent heat of condensation. The ratio of the heat dissipation amount of the auxiliary radiator 2 with respect to is shown in a graph under a low outside air condition (7 ° C) and a high outside air condition (35 ° C).

凝縮潜熱を利用した場合、CO冷媒とは対照に、高段側放熱器4のエンタルピ差が大きく、補助放熱器2のエンタルピ差が小さくなる。よって、一体型放熱器7の全放熱量に対する補助放熱器2の所要放熱量割合はCO冷媒より小さいものとなる。各冷媒の中で、最小の放熱量割合はイソブタンの7.7%となり、最大の放熱量割合はR410A、又はR32の16.9%となる。よって、CO冷媒以外の凝縮潜熱を利用する冷媒を、年間を通して使用することを鑑みると、一体型放熱器7の全放熱量の8%以下を補助放熱器2で放熱する構成とすることが望ましいということになる。 When the condensation latent heat is used, in contrast to the CO 2 refrigerant, the enthalpy difference of the high stage radiator 4 is large, and the enthalpy difference of the auxiliary radiator 2 is small. Therefore, the required heat dissipation amount ratio of the auxiliary radiator 2 with respect to the total heat dissipation amount of the integrated radiator 7 is smaller than the CO 2 refrigerant. Among each refrigerant, the minimum heat release rate is 7.7% of isobutane, and the maximum heat release rate is 16.9% of R410A or R32. Therefore, in consideration of using a refrigerant that uses condensed latent heat other than CO 2 refrigerant throughout the year, the auxiliary radiator 2 may be configured to radiate 8% or less of the total heat radiation amount of the integrated radiator 7. That would be desirable.

本実施の形態の冷凍装置において、上記のような放熱量割合にするための具体的な構成として任意の構成を採用することができる。例えば、図1に示すように補助放熱器2と高段側放熱器4とで共通の放熱器ファン8を備えた構成とする場合は、補助放熱器2の伝熱面積を一体型放熱器7の伝熱面積の17%以下とする。   In the refrigeration apparatus of the present embodiment, any configuration can be adopted as a specific configuration for achieving the above heat dissipation rate ratio. For example, when the auxiliary radiator 2 and the high-stage radiator 4 have a common radiator fan 8 as shown in FIG. 1, the heat transfer area of the auxiliary radiator 2 is set to the integrated radiator 7. 17% or less of the heat transfer area.

また、補助放熱器2と高段側放熱器4とでそれぞれ別々の放熱器ファン8を用いる構成であれば、各放熱器ファン8の回転数を変えて放熱量割合を制御するようにしてもよい。この場合、外気温度が7℃の場合には放熱量割合が17%、外気温度が35℃のときは放熱量割合が33%となるように、図示しない制御装置により外気温度に応じて各放熱器ファン8を制御するようにしてもよい。   Further, if the auxiliary radiator 2 and the high-stage radiator 4 use different radiator fans 8, the amount of heat radiation may be controlled by changing the rotational speed of each radiator fan 8. Good. In this case, each heat release is controlled by a control device (not shown) according to the outside air temperature so that the heat release rate is 17% when the outside air temperature is 7 ° C. and the heat release rate is 33% when the outside air temperature is 35 ° C. The fan 8 may be controlled.

以上説明したように、本実施の形態によれば、高段側放熱器4の冷媒の放熱量と補助放熱器2の冷媒の放熱量との合計放熱量に対する補助放熱器2の冷媒の放熱量の割合である放熱量比率を、低外気条件の際に補助放熱器2の放熱量を所要放熱量とした場合における放熱量比率より低くするようにした。このため、低い周囲温度における放熱量に基づいて高段側放熱器4と補助放熱器2とを構成することで、補助放熱器2における冷媒の凝縮は年間を通じて発生せず、高段側圧縮機3の液圧縮を回避できるため、高い信頼性を得ることができる。また、圧縮機の発停等が抑えられ、安定した駆動を行うことができるので省エネルギー効果を得ることが可能となる。ここで、本実施の形態では、高段側放熱器4と補助放熱器2との構成を、放熱量比率(割合)に基づいて設定するようにしたが、例えば高段側放熱器4と補助放熱器2とにおける冷媒の放熱量について、比等の関係に基づいて構成を定めるようにしてもよい。   As described above, according to the present embodiment, the heat dissipation amount of the refrigerant of the auxiliary radiator 2 with respect to the total heat dissipation amount of the heat dissipation amount of the refrigerant of the high-stage side radiator 4 and the heat dissipation amount of the refrigerant of the auxiliary radiator 2. The ratio of the heat dissipation amount, which is the ratio of the heat dissipation amount, is set to be lower than the heat dissipation amount ratio when the heat dissipation amount of the auxiliary radiator 2 is set as the required heat dissipation amount under the low outside air condition. For this reason, the high stage side radiator 4 and the auxiliary radiator 2 are configured based on the amount of heat released at a low ambient temperature, so that the refrigerant in the auxiliary radiator 2 does not condense throughout the year, and the high stage compressor Since the liquid compression of 3 can be avoided, high reliability can be obtained. In addition, since starting and stopping of the compressor is suppressed and stable driving can be performed, an energy saving effect can be obtained. Here, in the present embodiment, the configuration of the high-stage side radiator 4 and the auxiliary radiator 2 is set based on the heat dissipation ratio (ratio). You may make it determine a structure based on relationship, such as ratio, about the thermal radiation amount of the refrigerant | coolant in the heat radiator 2. FIG.

また、地球温暖化に対する影響が小さい自然冷媒として、運転効率の低いCO冷媒を用いた冷凍装置に関して、年間を通した外気温度変化、負荷変動と、冷媒の特性、高段と低段の消費電力比率を考慮しつつ、放熱量割合を選定するようにしたので、高段側圧縮機3の液圧縮を回避しつつ、冷凍装置全体の運転効率が向上することで年間を通した省エネルギー効果を得ることができる。例えば、また、補助放熱器2の放熱量を一体型放熱器7の全放熱量に対して17%以下としたことにより、CO冷媒を冷凍装置に使用した場合であっても、年間を通して大きな省エネルギー効果を得ることができる。 In addition, regarding refrigeration systems that use CO 2 refrigerant with low operating efficiency as a natural refrigerant that has little impact on global warming, year-round outdoor temperature changes, load fluctuations, refrigerant characteristics, high and low consumption Since the ratio of the amount of heat release was selected while taking into account the power ratio, the overall efficiency of the refrigeration system was improved while avoiding liquid compression of the high-stage compressor 3, resulting in energy saving effects throughout the year. Can be obtained. For example, since the heat radiation amount of the auxiliary radiator 2 is set to 17% or less with respect to the total heat radiation amount of the integrated radiator 7, even when CO 2 refrigerant is used in the refrigeration apparatus, it is large throughout the year. Energy saving effect can be obtained.

さらに、補助放熱器2と高段側放熱器4とを一体とした一体型放熱器7で形成することでコンパクトな冷凍装置を得ることができる。さらに、補助放熱器2の放熱量を一体型放熱器7の全放熱量に対して17%以下にするにあたり、一体型放熱器7において、補助放熱器2と高段側放熱器4とで伝熱面積を分けるように構成することにより、無駄なく一体型放熱器7を使用することができ、信頼性が高く、かつ年間を通して大きな省エネルギー効果となるコンパクトな冷凍装置を得ることができる。   Furthermore, a compact refrigeration apparatus can be obtained by forming the auxiliary radiator 2 and the high-stage radiator 4 as an integrated radiator 7. Further, when the heat radiation amount of the auxiliary radiator 2 is set to 17% or less with respect to the total heat radiation amount of the integrated radiator 7, in the integrated radiator 7, the auxiliary radiator 2 and the high-stage side radiator 4 are transmitted. By configuring so as to divide the heat area, the integrated radiator 7 can be used without waste, and a compact refrigeration apparatus having high reliability and a large energy saving effect throughout the year can be obtained.

本実施の形態の冷凍装置において、補助放熱器2の放熱量を一体型放熱器7の全放熱量に対して17%以下にすれば補助放熱器2において信頼性が高く、最も高い省エネルギー効果が得られるのは上述の通りである。これは、全放熱量に対して一体型放熱器7が十分な熱処理能力を有している場合に成立する。一方、例えば一体型放熱器7が十分な熱処理能力を有していないような場合は、高段側高圧が高くなるため、補助放熱器2の割合を減らして高段側放熱器4に割り当てた方が省エネルギー効果が大きくなる。また、高段側高圧が過上昇するような場合は、信頼性を確保するため補助放熱器2を高段側放熱器4に割り当てざるを得ない。しかし、これらは補助放熱器2で所要放熱量が得られないため、所要放熱量が得られる場合と比較するとCOPは大きく悪化する。   In the refrigeration apparatus of the present embodiment, if the heat dissipation amount of the auxiliary radiator 2 is 17% or less with respect to the total heat dissipation amount of the integrated radiator 7, the auxiliary radiator 2 has high reliability and the highest energy saving effect. What is obtained is as described above. This is true when the integrated radiator 7 has a sufficient heat treatment capacity for the total heat radiation. On the other hand, for example, when the integrated radiator 7 does not have sufficient heat treatment capability, the high stage side high pressure becomes high, so the proportion of the auxiliary radiator 2 is reduced and assigned to the high stage radiator 4. The energy saving effect is greater. In addition, when the high stage side high pressure is excessively increased, the auxiliary radiator 2 must be assigned to the high stage side radiator 4 in order to ensure reliability. However, since the required heat dissipation amount cannot be obtained by the auxiliary radiator 2, the COP is greatly deteriorated as compared with the case where the required heat dissipation amount is obtained.

よって、一体型放熱器7が十分な熱処理能力を有している場合に補助放熱器2の所要放熱量を得ることができるため、二段サイクルにおける補助放熱器2の効果を最大限に活かすには、一体型放熱器7は十分な熱処理能力を有していた方が良い。   Therefore, since the required heat radiation amount of the auxiliary radiator 2 can be obtained when the integrated radiator 7 has a sufficient heat treatment capability, the effect of the auxiliary radiator 2 in the two-stage cycle can be maximized. The integrated radiator 7 should have sufficient heat treatment capability.

図10は、本発明の実施の形態1に係る放熱量に対する十分な熱処理能力を説明するための図である。図10に基づいて、放熱量に対する十分な熱処理能力について具体的に説明する。放熱量は、蒸発器6(冷却器)の熱交換量(冷凍能力)+圧縮機入力となる。例えば、COP=2の単段サイクルの冷凍装置の場合、圧縮機入力が「1」に対して冷凍能力が「2」となるため、放熱量は「3」となる。よって、一般的に放熱器の熱処理能力は冷却器の1.5倍程度で設計される。   FIG. 10 is a diagram for explaining a sufficient heat treatment capability with respect to the heat radiation amount according to Embodiment 1 of the present invention. Based on FIG. 10, the sufficient heat treatment capability with respect to the heat radiation amount will be specifically described. The amount of heat released is the amount of heat exchange (refrigeration capacity) of the evaporator 6 (cooler) + the compressor input. For example, in the case of a COP = 2 single-stage cycle refrigeration system, since the refrigeration capacity is “2” with respect to the compressor input “1”, the heat release amount is “3”. Therefore, the heat treatment capacity of the radiator is generally designed to be about 1.5 times that of the cooler.

また、蒸発器6において、冷媒温度(蒸発温度)と被冷却媒体(冷蔵庫内空気)との温度差を所望の温度(例えば10℃)とするため、放熱器の冷媒温度(凝縮温度)と外気温度との温度差がその所望の温度(例えば10℃)となれば十分な熱処理能力を有する。例えば本実施の形態のような二段サイクル冷凍装置の一体型放熱器7において、冷媒温度(凝縮温度)と外気温度との温度差を、放熱器の冷媒温度(凝縮温度)と外気温度との温度差以下(例えば10℃以下)とすれば、補助放熱器2の効果を含めて確実に単段サイクルより高いCOPを得ることができる。   Further, in the evaporator 6, in order to set the temperature difference between the refrigerant temperature (evaporation temperature) and the medium to be cooled (refrigerator air) to a desired temperature (for example, 10 ° C.), the refrigerant temperature (condensation temperature) of the radiator and the outside air If the temperature difference from the temperature is the desired temperature (for example, 10 ° C.), sufficient heat treatment capability is obtained. For example, in the integrated radiator 7 of the two-stage cycle refrigeration system as in the present embodiment, the temperature difference between the refrigerant temperature (condensation temperature) and the outside air temperature is expressed as the refrigerant temperature (condensation temperature) and the outside air temperature of the radiator. If the temperature difference is equal to or less than 10 ° C. (for example, 10 ° C. or less), it is possible to reliably obtain a COP higher than that of the single stage cycle including the effect of the auxiliary radiator 2.

ここで、熱処理能力とは、熱交換器の伝熱面積と熱通過率の積で表される。熱通過率は、主に冷媒側の熱伝達率と空気側の熱伝達率で決まる。低温機器用の冷却器は着霜耐力向上の観点から、伝熱管やフィンのピッチが大きく、放熱器より熱通過率が小さいため、伝熱面積は大きいが、熱処理能力は放熱器より小さい。   Here, the heat treatment capacity is represented by the product of the heat transfer area and the heat transfer rate of the heat exchanger. The heat transfer rate is mainly determined by the heat transfer rate on the refrigerant side and the heat transfer rate on the air side. The cooler for low-temperature equipment has a large heat transfer area because the pitch of the heat transfer tubes and fins is large and the heat passage rate is smaller than that of the radiator from the viewpoint of improving the frost resistance, but the heat treatment capacity is smaller than that of the radiator.

実施の形態2.
図11は、本発明の実施の形態2に係る冷凍装置の構成を示す図である。図11において、図1等と同じ符号を付している機器等については、実施の形態1で説明したことと同様の動作等を行う。図11(a)、図11(b)に示すように、本実施の形態の冷凍装置は、冷媒回路における補助放熱器2から高段側圧縮機3の間の経路にアキュムレータ9を備える。補助放熱器2において凝縮した液冷媒が生じても、アキュムレータ9により液を貯留することが可能となり、気液分離を行うことができる。このため、高段側圧縮機3にはガス冷媒のみを流出させることができるため、高段側圧縮機3の液圧縮を回避可能となる。
Embodiment 2. FIG.
FIG. 11 is a diagram showing a configuration of a refrigeration apparatus according to Embodiment 2 of the present invention. In FIG. 11, the same reference numerals as those in FIG. 1 and the like perform the same operations and the like as described in the first embodiment. As shown in FIGS. 11A and 11B, the refrigeration apparatus of the present embodiment includes an accumulator 9 in a path between the auxiliary radiator 2 and the high stage compressor 3 in the refrigerant circuit. Even if the liquid refrigerant condensed in the auxiliary radiator 2 is generated, the accumulator 9 can store the liquid, and gas-liquid separation can be performed. For this reason, since only the gas refrigerant can flow out to the high stage side compressor 3, liquid compression of the high stage side compressor 3 can be avoided.

そして、特に図11(b)では、アキュムレータ9において、気液分離により貯留した液冷媒の取出口を備え、流量調節弁10を介して流量調節、減圧等を行って蒸発器6の上流側へ液冷媒を流して、高段側放熱器4、膨張弁5を通過した冷媒と合流させる構成とする。図11(b)の冷凍装置では、アキュムレータ9内の中間圧冷媒を、圧縮、凝縮等の過程を経ずに、蒸発器6に直接導くことができるため、高段側圧縮機3の入力を低減することができ、省エネルギー効果も得ることができる。   In particular, in FIG. 11B, the accumulator 9 includes an outlet for the liquid refrigerant stored by gas-liquid separation, and performs flow rate adjustment, pressure reduction, etc. via the flow rate control valve 10 to the upstream side of the evaporator 6. It is set as the structure which flows a liquid refrigerant and merges with the refrigerant | coolant which passed the high stage | side heat radiator 4 and the expansion valve 5. FIG. In the refrigeration apparatus of FIG. 11 (b), the intermediate pressure refrigerant in the accumulator 9 can be directly guided to the evaporator 6 without undergoing processes such as compression and condensation. The energy saving effect can also be obtained.

本実施の形態の冷凍装置についても、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケース、業務用冷凍冷蔵庫、自動販売機等の冷蔵あるいは冷凍機器にも広く適用することができる。   The refrigeration apparatus of this embodiment is also widely applied to refrigeration or refrigeration equipment such as showcases, commercial refrigeration refrigerators, vending machines, etc. that require non-fluorocarbons, reduction of chlorofluorocarbon refrigerants, and energy saving of equipment. be able to.

1 低段側圧縮機、2 補助放熱器、3 高段側圧縮機、4 高段側放熱器、5 膨張弁、6 蒸発器、7 一体型放熱器、8 放熱器ファン、9 アキュムレータ、10 流量調節弁、11 冷凍機、12 室内機、13 液冷媒配管、71 伝熱フィン、72 伝熱管。   1 Low stage compressor, 2 auxiliary radiator, 3 high stage compressor, 4 high stage radiator, 5 expansion valve, 6 evaporator, 7 integrated radiator, 8 radiator fan, 9 accumulator, 10 flow rate Control valve, 11 refrigerator, 12 indoor unit, 13 liquid refrigerant piping, 71 heat transfer fin, 72 heat transfer tube.

Claims (11)

冷媒を圧縮して吐出する低段側圧縮機と、
前記低段側圧縮機が吐出した前記冷媒と周囲空気とを熱交換させ、前記冷媒を放熱させる補助放熱器と、
前記補助放熱器で放熱した前記冷媒を圧縮して吐出する高段側圧縮機と、
前記高段側圧縮機が吐出した前記冷媒と前記周囲空気とを熱交換させ、前記冷媒を放熱させる高段側放熱器とを少なくとも有し、
前記周囲空気の温度が所定の低周囲温度であるとしたときの、前記補助放熱器において飽和ガス状態まで前記冷媒を放熱させる放熱量と前記高段側放熱器における前記冷媒の放熱量との合計放熱量に対する、前記補助放熱器における前記冷媒の放熱量の割合である所定放熱量比率に基づいて、前記高段側放熱器と前記補助放熱器とを構成することを特徴とする冷凍機。
A low-stage compressor that compresses and discharges the refrigerant;
Heat exchange between the refrigerant discharged from the low-stage compressor and ambient air, and an auxiliary radiator that radiates heat from the refrigerant;
A high-stage compressor that compresses and discharges the refrigerant radiated by the auxiliary radiator; and
Heat exchange between the refrigerant discharged from the high-stage compressor and the ambient air, and at least a high-stage radiator that radiates heat from the refrigerant;
The sum of the amount of heat released from the refrigerant to the saturated gas state in the auxiliary radiator and the amount of heat released from the refrigerant in the high-stage radiator when the temperature of the ambient air is a predetermined low ambient temperature. The refrigerator comprising the high-stage side radiator and the auxiliary radiator based on a predetermined heat dissipation amount ratio that is a ratio of a heat dissipation amount of the refrigerant in the auxiliary radiator to a heat dissipation amount.
前記高段側放熱器における前記冷媒の放熱量と前記補助放熱器における前記冷媒の放熱量との合計放熱量に対する、前記補助放熱器における前記冷媒の放熱量の割合である放熱量比率が、前記所定放熱量比率以下となるように、前記高段側放熱器と前記補助放熱器とを構成することを特徴とする請求項1記載の冷凍機。   The heat dissipation ratio, which is the ratio of the heat dissipation amount of the refrigerant in the auxiliary radiator to the total heat dissipation amount of the refrigerant in the high-stage radiator and the heat dissipation amount of the refrigerant in the auxiliary radiator, The refrigerator according to claim 1, wherein the high stage side radiator and the auxiliary radiator are configured so as to be equal to or less than a predetermined heat dissipation ratio. 前記所定の低周囲温度は、冷却対象外の空気の想定される下限値に応じた温度であることを特徴とする請求項1又は2記載の冷凍機。   The refrigerator according to claim 1 or 2, wherein the predetermined low ambient temperature is a temperature corresponding to an assumed lower limit value of air that is not to be cooled. 前記低段側圧縮機の圧縮比と前記高段側圧縮機の圧縮比とが同等となるように、前記低段側圧縮機の容量と前記高段側圧縮機の容量との容量比を調節することを特徴とする請求項1〜3の何れか一項に記載の冷凍機。   The capacity ratio between the capacity of the low-stage compressor and the capacity of the high-stage compressor is adjusted so that the compression ratio of the low-stage compressor is equal to the compression ratio of the high-stage compressor. The refrigerator as described in any one of Claims 1-3 characterized by the above-mentioned. 前記高段側放熱器は、
当該高段側放熱器を流れる前記冷媒と前記周囲空気との温度差が、前記冷媒を蒸発させる冷却器を流れる前記冷媒と、前記冷却器における前記冷媒の熱交換対象との温度差以下となる熱処理能力を有することを特徴とする請求項1〜4の何れか一項に記載の冷凍機。
The high stage side radiator is
The temperature difference between the refrigerant flowing through the high-stage radiator and the ambient air is equal to or less than the temperature difference between the refrigerant flowing through the cooler that evaporates the refrigerant and the heat exchange target of the refrigerant in the cooler. It has heat processing capability, The refrigerator as described in any one of Claims 1-4 characterized by the above-mentioned.
前記高段側放熱器と前記補助放熱器とを、伝熱フィンを一体化した一体型放熱器で構成し、
前記一体型放熱器に前記周囲空気を通過させる送風機をさらに備えることを特徴とする請求項1〜5の何れか一項に記載の冷凍機。
The high-stage side radiator and the auxiliary radiator are constituted by an integrated radiator that integrates heat transfer fins,
The refrigerator according to any one of claims 1 to 5, further comprising a blower that allows the ambient air to pass through the integrated radiator.
前記高段側圧縮機にガス状の冷媒を吸入させる気液分離器を、前記補助放熱器と前記高段側圧縮機との間にさらに備えることを特徴とする請求項1〜6の何れか一項に記載の冷凍機。   The gas-liquid separator which makes the said high stage side compressor suck | inhale a gaseous refrigerant | coolant is further provided between the said auxiliary | assistant heat radiator and the said high stage side compressor, The any one of Claims 1-6 characterized by the above-mentioned. The refrigerator according to one item. 前記気液分離器の液冷媒流出口と接続し、前記高段側放熱器を流出した冷媒と合流させる液冷媒配管と、
該接続配管を通過する冷媒量を調節する流量調節装置とをさらに備えることを特徴とする請求項7記載の冷凍機。
A liquid refrigerant pipe connected to the liquid refrigerant outlet of the gas-liquid separator and joined with the refrigerant flowing out of the high-stage radiator;
The refrigerator according to claim 7, further comprising a flow rate adjusting device that adjusts an amount of refrigerant passing through the connection pipe.
前記冷媒として二酸化炭素を用い、前記放熱量比率を17%以下として構成することを特徴とする請求項1〜8の何れか一項に記載の冷凍機。   The refrigerator according to any one of claims 1 to 8, wherein carbon dioxide is used as the refrigerant, and the heat release rate ratio is set to 17% or less. 前記冷媒として、プロパン、イソブタン、アンモニア、HFO1234yf、HFO1234ze、R134a、R410A、R32の少なくとも一つを用い、前記放熱量比率を8%以下として構成することを特徴とする請求項1〜8の何れか一項に記載の冷凍機。   9. The refrigerant according to claim 1, wherein at least one of propane, isobutane, ammonia, HFO1234yf, HFO1234ze, R134a, R410A, and R32 is used as the refrigerant, and the heat dissipation rate ratio is 8% or less. The refrigerator according to one item. 請求項1〜10の何れか一項に記載の冷凍機における低段側圧縮機、補助放熱器、高段側圧縮機及び高段側放熱器と、
前記高段側放熱器で放熱した前記冷媒を減圧する減圧装置と、
前記減圧装置で減圧された前記冷媒を蒸発させる冷却器とを配管接続して冷媒回路を構成することを特徴とする冷凍装置。
A low-stage compressor, an auxiliary radiator, a high-stage compressor, and a high-stage radiator in the refrigerator according to any one of claims 1 to 10,
A decompression device that decompresses the refrigerant radiated by the high-stage radiator;
A refrigeration apparatus comprising a refrigerant circuit connected by piping to a cooler that evaporates the refrigerant decompressed by the decompression device.
JP2012238007A 2012-10-29 2012-10-29 Refrigerator and refrigeration device Pending JP2014088974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238007A JP2014088974A (en) 2012-10-29 2012-10-29 Refrigerator and refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238007A JP2014088974A (en) 2012-10-29 2012-10-29 Refrigerator and refrigeration device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015172274A Division JP6091567B2 (en) 2015-09-01 2015-09-01 Refrigerator and refrigeration equipment

Publications (1)

Publication Number Publication Date
JP2014088974A true JP2014088974A (en) 2014-05-15

Family

ID=50791019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238007A Pending JP2014088974A (en) 2012-10-29 2012-10-29 Refrigerator and refrigeration device

Country Status (1)

Country Link
JP (1) JP2014088974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811986A (en) * 2022-06-06 2022-07-29 珠海格力电器股份有限公司 Refrigeration system, defrosting control method and refrigeration equipment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949850U (en) * 1982-09-24 1984-04-02 富士電機株式会社 Air-cooled refrigeration equipment with supercooler
JPH0486458A (en) * 1990-07-31 1992-03-19 Matsushita Electric Ind Co Ltd Freezer device
JP2001235245A (en) * 2000-02-22 2001-08-31 Daikin Ind Ltd Freezer
JP2003106694A (en) * 2001-09-28 2003-04-09 Fujitsu General Ltd Air conditioner
JP2004270517A (en) * 2003-03-07 2004-09-30 Sanyo Electric Co Ltd Compressor and refrigerant cycle device
JP2004293871A (en) * 2003-03-26 2004-10-21 Sanyo Electric Co Ltd Refrigerant cycle equipment
JP2004317073A (en) * 2003-04-18 2004-11-11 Sanyo Electric Co Ltd Refrigerant cycling device
JP2005326138A (en) * 2004-04-12 2005-11-24 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine with it
JP2006046812A (en) * 2004-08-05 2006-02-16 Fuji Electric Retail Systems Co Ltd Cooling device, and automatic vending machine
JP2007163085A (en) * 2005-12-16 2007-06-28 Samsung Electronics Co Ltd Air-conditioning system
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
JP2007263431A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Manufacturing method of transient critical refrigerating cycle apparatus
WO2008146709A1 (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP2009150641A (en) * 2007-11-30 2009-07-09 Daikin Ind Ltd Refrigeration unit
WO2009133868A1 (en) * 2008-05-02 2009-11-05 ダイキン工業株式会社 Refrigeration unit
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2011012828A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Refrigerating device
JP2011202905A (en) * 2010-03-26 2011-10-13 Panasonic Corp Refrigerating cycle apparatus, and starting control method thereof

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949850U (en) * 1982-09-24 1984-04-02 富士電機株式会社 Air-cooled refrigeration equipment with supercooler
JPH0486458A (en) * 1990-07-31 1992-03-19 Matsushita Electric Ind Co Ltd Freezer device
JP2001235245A (en) * 2000-02-22 2001-08-31 Daikin Ind Ltd Freezer
JP2003106694A (en) * 2001-09-28 2003-04-09 Fujitsu General Ltd Air conditioner
JP2004270517A (en) * 2003-03-07 2004-09-30 Sanyo Electric Co Ltd Compressor and refrigerant cycle device
JP2004293871A (en) * 2003-03-26 2004-10-21 Sanyo Electric Co Ltd Refrigerant cycle equipment
JP2004317073A (en) * 2003-04-18 2004-11-11 Sanyo Electric Co Ltd Refrigerant cycling device
JP2005326138A (en) * 2004-04-12 2005-11-24 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine with it
JP2006046812A (en) * 2004-08-05 2006-02-16 Fuji Electric Retail Systems Co Ltd Cooling device, and automatic vending machine
JP2007163085A (en) * 2005-12-16 2007-06-28 Samsung Electronics Co Ltd Air-conditioning system
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
JP2007263431A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Manufacturing method of transient critical refrigerating cycle apparatus
WO2008146709A1 (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP2011257133A (en) * 2007-05-25 2011-12-22 Mitsubishi Electric Corp Refrigeration cycle device
JP2009150641A (en) * 2007-11-30 2009-07-09 Daikin Ind Ltd Refrigeration unit
WO2009133868A1 (en) * 2008-05-02 2009-11-05 ダイキン工業株式会社 Refrigeration unit
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2011012828A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Refrigerating device
JP2011202905A (en) * 2010-03-26 2011-10-13 Panasonic Corp Refrigerating cycle apparatus, and starting control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811986A (en) * 2022-06-06 2022-07-29 珠海格力电器股份有限公司 Refrigeration system, defrosting control method and refrigeration equipment

Similar Documents

Publication Publication Date Title
Arpagaus et al. Multi-temperature heat pumps: A literature review
JP6125000B2 (en) Dual refrigeration equipment
WO2012066763A1 (en) Freezer
JP2011512509A (en) Refrigerant vapor compression system
US10101060B2 (en) Cooling system
JP2011521194A (en) Filling management in refrigerant vapor compression systems.
JP5430604B2 (en) Dual refrigeration equipment
JP5323023B2 (en) Refrigeration equipment
JP2011214753A (en) Refrigerating device
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP5270523B2 (en) Freezer refrigerator
JP6161787B2 (en) Refrigeration cycle equipment
JP5409747B2 (en) Dual refrigeration equipment
JP5506638B2 (en) Refrigeration equipment
WO2018008129A1 (en) Refrigeration cycle device
JP5474140B2 (en) Refrigeration equipment
JPWO2015063837A1 (en) Refrigeration cycle equipment
JP2007051788A (en) Refrigerating device
JP6675083B2 (en) Binary heat pump device
JP2016223743A (en) Air conditioner
JP2014088974A (en) Refrigerator and refrigeration device
JP2006170536A (en) Vapor compression type heat pump
US20220363967A1 (en) Refrigerant Comprising Methane, And Refrigeration System And Cabinet With Such Refrigerant
JP2006003023A (en) Refrigerating unit
JP2011017513A (en) Refrigerating system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602