JP2007192464A - Lumber artificial drying method and system - Google Patents

Lumber artificial drying method and system Download PDF

Info

Publication number
JP2007192464A
JP2007192464A JP2006011014A JP2006011014A JP2007192464A JP 2007192464 A JP2007192464 A JP 2007192464A JP 2006011014 A JP2006011014 A JP 2006011014A JP 2006011014 A JP2006011014 A JP 2006011014A JP 2007192464 A JP2007192464 A JP 2007192464A
Authority
JP
Japan
Prior art keywords
air
heat
drying
refrigerant
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006011014A
Other languages
Japanese (ja)
Other versions
JP5049495B2 (en
Inventor
Kosaku Nishida
耕作 西田
Katsumi Fujima
克己 藤間
Shuitsu Saito
周逸 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Mayekawa Manufacturing Co
Original Assignee
Forestry and Forest Products Research Institute
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute, Mayekawa Manufacturing Co filed Critical Forestry and Forest Products Research Institute
Priority to JP2006011014A priority Critical patent/JP5049495B2/en
Publication of JP2007192464A publication Critical patent/JP2007192464A/en
Application granted granted Critical
Publication of JP5049495B2 publication Critical patent/JP5049495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lumber artificial dehumidifying drying system capable of shortening a drying time and improving heat efficiency by reducing energy consumption. <P>SOLUTION: This lumber artificial drying method comprises an air heater 3 heating the air in a drying room 1, a humidifier 4 humidifying the air in the drying room, and a heat pump 2 cooling and dehumidifying the air in the drying room. In the lumber artificial drying method which dries the housed lumber in the drying room while adjusting a temperature and a relative humidity in the drying room, the heat pump 2 applies CO<SB>2</SB>as a refrigerant exchanging heat with the air in the drying room 1 to cool and dehumidify the air in an evaporation process of the heat pump, the CO<SB>2</SB>refrigerant after the evaporating process is compressed to a supercritical pressure, the heat of the CO<SB>2</SB>refrigerant of high temperature is supplied as a heat source of the air heater 3, then the heat is exchanged between the CO<SB>2</SB>refrigerant and the cooled and dehumidified air to reheat the air and to return the air into the drying room 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプを利用して乾燥室内空気の冷却除湿を行う木材の人工乾燥システムにおいて、乾燥室に高熱源を供給可能にして乾燥時間を短縮でき、かつ熱効率を向上し得た人工乾燥方法及びシステムに関する。   The present invention relates to an artificial drying method for a wood which performs cooling and dehumidification of drying room air using a heat pump, which can supply a high heat source to the drying room, shorten the drying time, and improve the thermal efficiency. And the system.

木材の人工乾燥は乾燥室内に木材を浅積みし、加熱源を用いて乾燥室内の温度を上げて乾燥させている。また乾燥工程における木材の割れや反りを防止するために乾燥室の湿度調整が重要である。
図10にスギ材の人工乾燥における木材の含水率、乾燥室内の温度と相対湿度の一例を示す。乾燥運転の初期段階では数時間で室温を70℃程度まで昇温させる。このとき、木材の割れ防止のため、湿球温度が乾球温度と等しくなる(相対湿度100%)ように昇温させる必要があり、加熱と同時に加湿機器を用いて室内の加湿を行う。
Artificial drying of wood is performed by stacking wood in a drying chamber and using a heating source to raise the temperature in the drying chamber. In addition, it is important to adjust the humidity of the drying chamber in order to prevent cracking and warping of the wood in the drying process.
FIG. 10 shows an example of the moisture content of wood, the temperature in the drying chamber, and the relative humidity in the artificial drying of cedar wood. In the initial stage of the drying operation, the room temperature is raised to about 70 ° C. in several hours. At this time, in order to prevent cracking of the wood, it is necessary to raise the temperature so that the wet bulb temperature becomes equal to the dry bulb temperature (relative humidity 100%), and humidification is performed indoors using a humidifier simultaneously with the heating.

その後、室内の相対湿度をゆっくりと低下させて木材から水分を蒸発させていく。乾燥工程では木材の含水率の低下に伴い水分の蒸発量が減少することから、次第に乾燥室内温度を上昇させ、相対湿度を減少させることにより、乾燥日数が多くかからないようにしている。特に含水率が30%以下となった工程では木材中の結合水の蒸発過程となるため、高温かつ低湿度を保持しないと多くの乾燥日数が必要となる。   Then, the relative humidity in the room is slowly lowered to evaporate moisture from the wood. In the drying process, the amount of water evaporation decreases as the moisture content of the wood decreases, so the drying chamber temperature is gradually raised and the relative humidity is reduced so that the number of drying days does not increase. In particular, in the process where the moisture content is 30% or less, the process of evaporating the bound water in the wood is performed, and therefore many days of drying are required unless high temperature and low humidity are maintained.

従来の木材人工乾燥システムは、蒸気加熱式、除湿式、減圧式などがある。2002年のデータでは蒸気加熱式が74%、除湿式が18%となっている。
蒸気加熱式はボイラにより発生させた蒸気を乾燥室内の放熱管に送り、加熱した空気により乾燥させる方式である。この方式は室内を高温に昇温することが容易であり、乾燥時間が短いことから多く用いられている。乾燥室の湿度の調整は主として室外から室内への給気および排気で行っており、運転初期および運転中の湿度低下時にはボイラの蒸気により加湿を行っている。
Conventional wood artificial drying systems include a steam heating type, a dehumidifying type, and a reduced pressure type. According to the 2002 data, the steam heating type is 74% and the dehumidifying type is 18%.
The steam heating method is a method in which steam generated by a boiler is sent to a heat radiating pipe in a drying chamber and dried by heated air. This method is often used because it is easy to raise the temperature of the room to a high temperature and the drying time is short. The humidity in the drying chamber is mainly adjusted by supplying and exhausting air from the outside to the inside of the room, and humidifying is performed by steam from the boiler at the initial stage of operation and when the humidity is reduced during operation.

しかしながらかかる方式では排気による熱ロスが多く、加熱源の投入エネルギーが多くなる欠点を持っている。
またヒートポンプを木材などの乾燥に適用した装置が、例えば特許文献1(特開2001−353398号公報)で提案されている。この装置は、被乾燥物を収納する乾燥庫に吸気口と排気口とを設け、ヒートポンプの凝縮器を吸気口に設けるとともに、蒸発器を排気口に設け、乾燥庫の外から導入する空気を凝縮器で加熱して吸気口から乾燥庫内に取り入れるとともに、被乾燥物から出た水分で高湿となった空気を排気口から乾燥庫の外に排気する時に、蒸発器で熱を回収して凝縮器に回すことにより、エネルギーの消費を少なくし、かつ乾燥時間を短縮することを目的としている。
However, such a method has a drawback that the heat loss due to the exhaust is large and the input energy of the heating source is increased.
An apparatus in which a heat pump is applied to drying wood or the like is proposed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-353398). This device is provided with an intake port and an exhaust port in a drying chamber for storing an object to be dried, a condenser for a heat pump is provided at the intake port, an evaporator is provided at the exhaust port, and air introduced from outside the drying chamber is supplied. Heated with a condenser and taken into the drying chamber from the intake port, and when the air that has become humid due to moisture from the object to be dried is exhausted from the drying port to the outside of the drying chamber, heat is recovered with the evaporator. The purpose is to reduce energy consumption and shorten the drying time.

しかしながら特許文献1の方式は、乾燥庫内の高温となった空気を外部に放出し、再循環して使用しないため、依然として排気による熱ロスが多く、加熱源の投入エネルギーが多くなる欠点を持っている。
次に従来の除湿式乾燥システムの一例を図11に示す。図11おいて、装置は気密性の良い乾燥室01、ヒートポンプ02、加熱用ヒータ(電気ヒータまたは蒸気放熱管)03、加湿器04、送風機05から構成されている。
However, the method disclosed in Patent Document 1 has a drawback in that the high-temperature air in the drying chamber is discharged outside and is not recirculated for use, so that there is still a lot of heat loss due to exhaust and the input energy of the heating source increases. ing.
Next, an example of a conventional dehumidifying drying system is shown in FIG. In FIG. 11, the apparatus includes a drying chamber 01 with good airtightness, a heat pump 02, a heater for heating (electric heater or steam radiating pipe) 03, a humidifier 04, and a blower 05.

図11ではヒートポンプ02が室内に置かれているが、室外に設置されているものもある。ヒートポンプ02の冷媒はフロン冷媒が用いられており、乾燥室01内に載置された木材間を通過して湿った空気aは、ヒートポンプ02の蒸発器(図示略)により冷却除湿され、凝縮器(図示略)の排熱とヒータ03により加熱されて木材に供給される。   In FIG. 11, the heat pump 02 is placed indoors, but some are installed outside the room. The refrigerant of the heat pump 02 uses a chlorofluorocarbon refrigerant, and the air a which has been wet through the wood placed in the drying chamber 01 is cooled and dehumidified by an evaporator (not shown) of the heat pump 02, and the condenser The waste heat (not shown) is heated by the heater 03 and supplied to the wood.

特開2001−353398号公報JP 2001-353398 A

しかるに図11の装置では、フロンを冷媒としているためヒートポンプ02では70℃の昇温が限界であり、通常は40℃程度で用いられていることが多い。本方式は低温乾燥のため狂いや材色変化が少ないという長所を有しているが、乾燥時間が蒸気加熱式の1.5〜2倍と長くなり(特に乾燥後期は長い)、除湿能力が小さいと材にカビが発生するという問題がある。
また乾燥後期では、高温かつ低湿度を保持する必要から、ヒートポンプの圧縮機の圧縮比を高める必要があり、このため蒸発温度が低下して、ヒートポンプの消費電力が多くなることや、ヒータ03のエネルギー消費が多くなる(ヒートポンプ消費電力の3〜4倍程度)問題がある。
However, in the apparatus of FIG. 11, since the refrigerant is chlorofluorocarbon, the heat pump 02 has a limit of 70 ° C., and is usually used at about 40 ° C. in many cases. This method has the advantage that it is less distorted and changes in material color due to low temperature drying, but the drying time is 1.5 to 2 times longer than the steam heating type (especially in the late stage of drying), and the dehumidifying ability is long. If it is small, there is a problem that mold occurs on the material.
Further, in the latter stage of drying, it is necessary to maintain a high temperature and low humidity, and therefore it is necessary to increase the compression ratio of the compressor of the heat pump. For this reason, the evaporation temperature is lowered and the power consumption of the heat pump is increased. There is a problem that energy consumption increases (about 3 to 4 times the heat pump power consumption).

本発明は、かかる従来技術の課題に鑑み、従来の除湿式乾燥システムの欠点である室内温度が低く乾燥時間が多くかかること、乾燥後期においてヒータ等の補助熱源のエネルギー消費が多いという問題を解決するために、エネルギー消費を低減して熱効率を向上できる木材の除湿式乾燥システムを実現することを目的とする。   In view of the problems of the conventional technology, the present invention solves the disadvantages of the conventional dehumidifying and drying system that the room temperature is low and the drying time is long, and that the energy consumption of the auxiliary heat source such as a heater is large in the late stage of drying. Therefore, an object of the present invention is to realize a dehumidifying and drying system for wood that can reduce energy consumption and improve thermal efficiency.

かかる目的を達成するため、本発明の木材乾燥方法は、
乾燥室内の空気を加熱するエアヒータと、該乾燥室内の空気を加湿する加湿器と、該乾燥室内の空気を冷却除湿するヒートポンプとを備え、該乾燥室内の温度及び相対湿度を調整しながら該乾燥室内に収容した木材の乾燥を行なう木材の人工乾燥方法において、
前記ヒートポンプがCOを冷媒とし、該ヒートポンプの蒸発工程で乾燥室内の空気と熱交換して該空気を冷却除湿し、
該蒸発工程後のCO冷媒を超臨界圧まで圧縮して高温としたCO冷媒の保有熱を前記エアヒータの熱源として供給し、
その後CO冷媒と冷却除湿された空気とを熱交換して該空気を再加熱することを特徴とする。
In order to achieve such an object, the wood drying method of the present invention comprises:
An air heater for heating the air in the drying chamber, a humidifier for humidifying the air in the drying chamber, and a heat pump for cooling and dehumidifying the air in the drying chamber, and adjusting the temperature and relative humidity in the drying chamber In the artificial drying method of wood for drying the wood housed in the room,
The heat pump is a CO 2 as a refrigerant, the air dampening cooled dividing by exchange of heat with air drying cabinet at evaporation step of the heat pump,
Supplying the retained heat of the CO 2 refrigerant, which has been heated to a supercritical pressure by compressing the CO 2 refrigerant after the evaporation step, as a heat source of the air heater;
Then, heat is exchanged between the CO 2 refrigerant and the cooled and dehumidified air to reheat the air.

また本発明の乾燥システムは、前記本発明方法を実施するための乾燥システムとして、
木材を乾燥させるための気密性の乾燥室と、該乾燥室内の空気を導入し冷却除湿して前記乾燥室に戻すヒートポンプと、該乾燥室内の空気を加熱するエアヒータと、該乾燥室内を加湿する加湿器とを備えた木材の人工乾燥システムにおいて、
前記ヒートポンプが、COを冷媒とし、前記乾燥室内の空気と熱交換して冷却除湿する蒸発器と、CO冷媒を圧縮して超臨界圧以上に加圧する圧縮機と、CO冷媒を膨張減圧して前記蒸気器に導入する膨張器と、超臨界圧まで圧縮して高温としたCO冷媒の保有熱を前記エアヒータの熱源として供給する手段と、冷却除湿された空気を再加熱して前記乾燥室に戻す手段とを備えたことを特徴とする。
The drying system of the present invention is a drying system for carrying out the method of the present invention.
An airtight drying chamber for drying wood, a heat pump that introduces air in the drying chamber, cools and dehumidifies the air, returns the drying chamber, an air heater that heats the air in the drying chamber, and humidifies the drying chamber In an artificial wood drying system equipped with a humidifier,
The heat pump uses CO 2 as a refrigerant, exchanges heat with the air in the drying chamber to cool and dehumidify, a compressor that compresses the CO 2 refrigerant and pressurizes it to a supercritical pressure, and expands the CO 2 refrigerant An expander that is decompressed and introduced into the vaporizer; a means for supplying the retained heat of the CO 2 refrigerant compressed to a supercritical pressure and heated to a high temperature as a heat source for the air heater; and the cooled and dehumidified air is reheated. Means for returning to the drying chamber.

本発明では、高温度の加熱が行えるCOを冷媒とした超臨界サイクルのヒートポンプを用いるため、100℃付近の熱源を取り出すことができる。
超臨界COヒートポンプサイクルのP−h線図を図1に示す。超臨界サイクルでは高圧側は臨界圧力以上の超臨界ガスとなる。よって冷媒は放熱に伴って相変化せずに温度が低下していく。この熱交換器を一般的にガスクーラと呼んでいる。このサイクルを効率良く運転するにはガスクーラの出口温度をできるだけ低下させることが重要であり、図1に示したガスクーラ出口温度が高い点Aを低い点Bまで冷却した場合には、加熱量はQhaからQhbに、冷却熱量はQcaからQcbに増加させることができる。
In the present invention, since a heat pump with a supercritical cycle using CO 2 as a refrigerant capable of high temperature heating is used, a heat source near 100 ° C. can be taken out.
A Ph diagram of the supercritical CO 2 heat pump cycle is shown in FIG. In the supercritical cycle, the high pressure side becomes a supercritical gas above the critical pressure. Therefore, the temperature of the refrigerant does not change with the heat dissipation and the temperature decreases. This heat exchanger is generally called a gas cooler. In order to operate this cycle efficiently, it is important to reduce the gas cooler outlet temperature as much as possible. When the point A shown in FIG. 1 where the gas cooler outlet temperature is high is cooled to the low point B, the heating amount is Qha. From Qca to Qhb, the cooling heat quantity can be increased from Qca to Qcb.

このため本発明では、蒸発工程後のCO冷媒を超臨界圧まで圧縮して高温としたCO冷媒の保有熱をエアヒータの熱源として供給し、さらに冷却除湿された空気を再加熱するための熱源としてCO冷媒の保有熱を供することにより、超臨界ガス冷却工程での出口温度を低減するようにしている。また冷却除湿された空気を再加熱して乾燥室に戻すため、乾燥室内を高温かつ低湿度に保つことができる。
乾燥室内の循環空気を除湿しようとすると、大量の空気を冷却する必要があるため、冷却熱量が非常に大きくなる。そこで、循環させている一部の空気を除湿用としてファンを用いて取出し、それをヒートポンプに導入して冷却除湿するようにするとよい。
Therefore, in this invention, the CO 2 refrigerant after evaporation step the potential heat of the CO 2 refrigerant that has a high temperature and compressed to a supercritical pressure supplied as a heat source of the air heater, further cooled dehumidified air reheated to for By providing the retained heat of the CO 2 refrigerant as a heat source, the outlet temperature in the supercritical gas cooling step is reduced. In addition, since the cooled and dehumidified air is reheated and returned to the drying chamber, the drying chamber can be kept at a high temperature and low humidity.
When trying to dehumidify the circulating air in the drying chamber, it is necessary to cool a large amount of air, so the amount of cooling heat becomes very large. Therefore, it is preferable to take out a part of the circulated air using a fan for dehumidification and introduce it into a heat pump for cooling and dehumidification.

また乾燥室内で木材から蒸発した水分をヒートポンプですべて除湿しようとすると、ヒートポンプの冷凍能力を大きくする必要があり、そのため圧縮機を大容量とし、あるいは蒸発温度(蒸発圧力)を下げて圧縮比を高くする必要があるが、そうすると、イニシャルコストが高くなったり、あるいは熱効率が低下するという不具合が生じる。
そこで本発明では、好ましくは、蒸発工程で冷却除湿した空気の一部を排気し、該排気量の分だけ外気を導入するように構成することにより、蒸発器の負荷を軽減させている。
Also, if you want to dehumidify all the water evaporated from the wood in the drying chamber with a heat pump, you need to increase the refrigeration capacity of the heat pump. Therefore, increase the capacity of the compressor, or lower the evaporation temperature (evaporation pressure) to reduce the compression ratio. Although it is necessary to make it high, if it does so, the malfunction that initial cost becomes high or thermal efficiency falls will arise.
Therefore, in the present invention, preferably, a part of the air cooled and dehumidified in the evaporation step is exhausted, and the outside air is introduced by the amount of the exhaust, thereby reducing the load on the evaporator.

またこうすると、冷却除湿された空気の温度をさらに下げることになり、その後超臨界圧以上に圧縮されたCO冷媒との熱交換に際して熱交換後のCO冷媒温度を下げることになるため、ヒートポンプの冷凍能力の向上につながる。この外気の給排気は、好ましくは、乾燥室内に設けた湿度センサによって給気部に設けた給気ファンを制御し、排気は給気量に応じてダンパにて排気量を制御するとよい。
給・排気部を通過した空気は、高圧のCO冷媒と熱交換させる空気加熱器によって昇温させた後に、乾燥室に戻す。
This also lowers the temperature of the cooled and dehumidified air, and then lowers the CO 2 refrigerant temperature after heat exchange when exchanging heat with the CO 2 refrigerant compressed to a supercritical pressure or higher. This will improve the refrigeration capacity of the heat pump. The supply / exhaust of the outside air is preferably controlled by a supply fan provided in the supply section by a humidity sensor provided in the drying chamber, and the exhaust amount is controlled by a damper according to the supply amount.
The air that has passed through the supply / exhaust section is heated by an air heater that exchanges heat with the high-pressure CO 2 refrigerant, and then returned to the drying chamber.

本発明において、乾燥室内で木材の水分を蒸発させるのに必要となる加熱量の主要なものは、乾燥室に設けたエアヒータによって行う。本発明システムにおいて、超臨界圧まで圧縮して高温としたCO冷媒の保有熱をエアヒータの熱源として供給する手段として、超臨界圧まで圧縮して高温としたCO冷媒とエアヒータに熱源を供給する2次側熱媒体(例えば温水)とを熱交換する加熱器を設けてもよく、あるいは超臨界圧まで圧縮して高温としたCO冷媒をエアヒータの前記乾燥室内の空気と熱交換する領域に導入して乾燥室内の空気と熱交換した後、前記空気再加熱手段に戻す管路を設けるようにしてもよい。 In the present invention, the main heating amount necessary for evaporating the moisture of the wood in the drying chamber is performed by an air heater provided in the drying chamber. In the system of the present invention, as a means of supplying the retained heat of the CO 2 refrigerant compressed to the supercritical pressure and heated to a high temperature as the heat source of the air heater, the heat source is supplied to the CO 2 refrigerant compressed to the supercritical pressure and heated to the high temperature and the air heater A heater that exchanges heat with a secondary heat medium (for example, hot water) that performs heat exchange may be provided, or a region in which CO 2 refrigerant that has been compressed to a supercritical pressure and heated to high temperature is exchanged with air in the drying chamber of the air heater. A pipe line may be provided to be returned to the air reheating means after being introduced into the air and exchanging heat with the air in the drying chamber.

本発明システムにおいて、好ましくは、乾燥室内に設けられた温度センサ及び湿度センサと、前記給気部に設けられた給気ファンと、乾燥室内の空気をヒートポンプの蒸発器に導入する除湿ファンと、前記温度センサで検知された温度に基づいて前記除湿ファンとヒートポンプの圧縮機の駆動装置とを制御するとともに、前記湿度センサで検知された湿度に基づいて前記給気ファン及び前記除湿ファンを制御するコントローラとを備えるようにする。   In the system of the present invention, preferably, a temperature sensor and a humidity sensor provided in the drying chamber, an air supply fan provided in the air supply unit, a dehumidifying fan for introducing the air in the drying chamber into the evaporator of the heat pump, The dehumidifying fan and a heat pump compressor driving device are controlled based on the temperature detected by the temperature sensor, and the air supply fan and the dehumidifying fan are controlled based on the humidity detected by the humidity sensor. And a controller.

木材の乾燥工程は、図10のように乾燥時間(含水率)に適した温度・湿度があり、乾燥室内の温度センサによって除湿ファンの回転数と圧縮機の回転数を制御するとともに、湿度センサによって外気の給気ファンと除湿ファンの回転数を制御することよって、乾燥室内を図10にように設定された温度及び湿度に正確に制御することができる。   The wood drying process has a temperature and humidity suitable for the drying time (moisture content) as shown in FIG. 10, and the humidity sensor controls the rotational speed of the dehumidifying fan and the rotational speed of the compressor by the temperature sensor in the drying chamber. By controlling the rotational speed of the outside air supply fan and the dehumidifying fan, the drying chamber can be accurately controlled to the temperature and humidity set as shown in FIG.

本発明システムの初期運転時の一実施形態として、蒸発器と並列に外気から蒸発潜熱を吸収する空気採熱器を設け、乾燥初期運転時にCO冷媒が該空気採熱器に導入されるように構成するとともに、超臨界圧まで圧縮して高温としたCO冷媒と前記加湿器で噴霧される温水とを熱交換する加湿用加熱器を設け、乾燥初期運転時に前記加湿器から該温水を噴霧するように構成する。 As an embodiment in the initial operation of the present invention system, the air Tonetsu device to absorb latent heat of vaporization from the outside air in parallel with the evaporator arranged so that the CO 2 refrigerant is introduced into the air Tonetsu device during the initial stage of drying operation And a humidifying heater for exchanging heat between the CO 2 refrigerant compressed to a supercritical pressure and heated to a high temperature and the hot water sprayed by the humidifier, and supplying the hot water from the humidifier during the initial drying operation. Configure to spray.

運転初期では、外気温度・湿度に近い状態から、70℃程度の乾燥温度まで、相対湿度100%で昇温させる必要がある。通常運転では、前述のように、ヒートポンプの採熱源として乾燥室内の空気を用いていたが、数時間で室内を昇温させる必要があるため、外気から採熱してヒートポンプで乾燥室内空気を加熱させる。   In the initial stage of operation, it is necessary to raise the temperature at a relative humidity of 100% from a state close to the outside air temperature / humidity to a drying temperature of about 70 ° C. In normal operation, as described above, air in the drying chamber is used as the heat collection source of the heat pump. However, since it is necessary to raise the temperature in a few hours, heat is collected from the outside air and the drying chamber is heated by the heat pump. .

本発明システムの初期運転時の他の実施形態として、蒸発器上流側の空気流路に排気部を設け、初期運転時に前記給気部から前記蒸発器を通って前記排気部に抜ける外気流路を形成させるようにしてもよい。このようにすれば、前記実施形態のように、空気採熱器を別に設ける必要がなく、空気除湿用の蒸発器を初期運転時に兼用することができる。   As another embodiment at the time of initial operation of the system of the present invention, an air flow path is provided in the air flow path on the upstream side of the evaporator, and passes from the air supply section through the evaporator to the air exhaust section at the time of initial operation. May be formed. In this way, it is not necessary to provide a separate air heat collector as in the above-described embodiment, and the evaporator for air dehumidification can also be used during initial operation.

また本発明システムでは、冷却水を貯留した冷却水槽と、該冷却水槽と前記蒸発器との間で冷却水を循環させる管路とを備え、前記蒸発器で冷却され前記冷却水槽内に貯留した冷却水中に前記乾燥室内の空気を導入して冷却除湿するように構成してもよい。
このように乾燥室内の空気を冷却水と直接接触させれば、湿度コントロールが容易になり、また冷却水と空気との熱伝達率が向上するため、圧縮機の大型化を図ったり、圧縮機の圧縮比をそれほど高める必要がなくなる。
The system of the present invention further includes a cooling water tank in which cooling water is stored and a conduit for circulating the cooling water between the cooling water tank and the evaporator, and is cooled by the evaporator and stored in the cooling water tank. You may comprise so that it cools and dehumidifies by introduce | transducing the air in the said drying chamber in cooling water.
If the air in the drying chamber is brought into direct contact with the cooling water in this way, the humidity control becomes easy and the heat transfer coefficient between the cooling water and the air is improved. Therefore, it is not necessary to increase the compression ratio so much.

本発明方法によれば、ヒートポンプがCOを冷媒とした超臨界域に達する冷凍サイクルで構成したことにより、乾燥室に高温の熱源を供給することができるとともに、超臨界圧まで圧縮して高温としたCO冷媒の保有熱を乾燥室を加熱するエアヒータの熱源として、また蒸発器で冷却除湿された乾燥室空気の再加熱の熱源として少なくとも2段階に亘って放熱することにより、木材の乾燥に十分な熱を供給できるため、木材を短時間で乾燥することができる。またヒートポンプのCOPを向上させることができるため、ヒートポンプの熱量も少なくて済み、イニシャルコストも低減することができる。 According to the method of the present invention, since the heat pump is configured with a refrigeration cycle reaching the supercritical region using CO 2 as a refrigerant, a high-temperature heat source can be supplied to the drying chamber, and compressed to a supercritical pressure to be heated to a high temperature. Drying of wood by dissipating the retained heat of the CO 2 refrigerant as a heat source of the air heater for heating the drying chamber and as a heat source for reheating the drying chamber air cooled and dehumidified by the evaporator in at least two stages Therefore, the wood can be dried in a short time. Moreover, since the COP of the heat pump can be improved, the heat amount of the heat pump can be reduced, and the initial cost can be reduced.

また本発明システムによれば、ヒートポンプが、COを冷媒とし、乾燥室内の空気と熱交換して冷却除湿する蒸発器と、CO冷媒を圧縮して超臨界圧以上に加圧する圧縮機と、CO冷媒を膨張減圧して前記蒸気器に導入する膨張器と、超臨界圧まで圧縮して高温としたCO冷媒の保有熱をエアヒータの熱源として供給する手段と、冷却除湿された空気を再加熱して乾燥室に戻す手段とを備え、COを冷媒とした超臨界域に達する冷凍サイクルで構成したことにより、乾燥室に高温の熱源を供給することができるとともに、超臨界圧まで圧縮して高温としたCO冷媒の保有熱を乾燥室を加熱するエアヒータの熱源として、また蒸発器で冷却除湿された乾燥室空気の再加熱の熱源として少なくとも2段階に亘って放熱することにより、木材の乾燥に十分な熱を供給できるため、木材を短時間で乾燥することができる。また同時にヒートポンプのCOPを向上させることができるため、ヒートポンプの熱量も少なくて済み、イニシャルコストも低減することができる。 According to the system of the present invention, the heat pump uses CO 2 as a refrigerant, exchanges heat with the air in the drying chamber, cools and dehumidifies the evaporator, and compresses the CO 2 refrigerant to compress it to a supercritical pressure or higher. An expander that expands and depressurizes the CO 2 refrigerant and introduces it into the steamer; means for supplying the retained heat of the CO 2 refrigerant that has been compressed to a supercritical pressure to a high temperature as a heat source for the air heater; and air that has been cooled and dehumidified Means for reheating and returning to the drying chamber, and a high temperature heat source can be supplied to the drying chamber by using a refrigeration cycle that reaches a supercritical region using CO 2 as a refrigerant. Dissipate the retained heat of the CO 2 refrigerant compressed to a high temperature to a heat source for the air heater that heats the drying chamber and as a heat source for reheating the drying chamber air that has been cooled and dehumidified by the evaporator in at least two stages. In Ri, it is possible to supply sufficient heat for drying the wood can be dried in a short time timber. At the same time, since the COP of the heat pump can be improved, the heat amount of the heat pump can be reduced, and the initial cost can be reduced.

また好ましくは、蒸発器で冷却除湿された後の空気の一部を排気する排気部と、該排気量の分だけ給気する給気部とを備え、該排気部から蒸発器で冷却除湿した空気の一部を排気し、該給気部から該排気量の分だけ外気を導入するように構成することにより、蒸発器の負荷を軽減させ、圧縮機の容量又は圧縮比を低減できて、イニシャルコストを低減できるとともに、冷却除湿された空気の温度をさらに下げ、その後超臨界圧とされたCO冷媒との熱交換に際して熱交換後のCO冷媒温度を下げることになるため、ヒートポンプの冷凍能力の向上につながる。 Preferably, an exhaust unit that exhausts a part of the air after being cooled and dehumidified by the evaporator, and an air supply unit that supplies air by an amount corresponding to the exhaust amount, and is cooled and dehumidified from the exhaust unit by the evaporator. By exhausting a part of the air and introducing outside air from the air supply unit by the amount of the exhaust, the load on the evaporator can be reduced, and the capacity or compression ratio of the compressor can be reduced. it is possible to reduce the initial cost and further reducing the temperature of the cooling dehumidified air, then upon heat exchange with the CO 2 refrigerant a supercritical pressure for thereby reducing the CO 2 refrigerant temperature after the heat exchange, the heat pump It leads to improvement of freezing capacity.

また本発明システムにおいて、好ましくは、乾燥室内に設けられた温度センサ及び湿度センサと、前記給気部に設けられた給気ファンと、乾燥室内の空気をヒートポンプの蒸発器に導入する除湿ファンと、前記温度センサで検知された温度に基づいて前記除湿ファンとヒートポンプの圧縮機の駆動装置とを制御するとともに、前記湿度センサで検知された湿度に基づいて前記給気ファン及び前記除湿ファンを制御するコントローラとを備えることにより、乾燥室内を図1にように設定された温度及び湿度に正確に制御することができる。   In the system of the present invention, preferably, a temperature sensor and a humidity sensor provided in the drying chamber, an air supply fan provided in the air supply unit, and a dehumidifying fan for introducing the air in the drying chamber into the evaporator of the heat pump; And controlling the dehumidifying fan and a heat pump compressor driving device based on the temperature detected by the temperature sensor, and controlling the air supply fan and the dehumidifying fan based on the humidity detected by the humidity sensor. By providing the controller, it is possible to accurately control the drying chamber to the temperature and humidity set as shown in FIG.

また本発明システムにおいて、好ましくは、蒸発器と並列に外気から蒸発潜熱を吸収する空気採熱器を設け、乾燥初期運転時にCO冷媒が該空気採熱器に導入されるように構成するとともに、超臨界圧まで圧縮して高温としたCO冷媒と前記加湿器で噴霧される温水とを熱交換する加湿用加熱器を設け、乾燥初期運転時に前記加湿器から該温水を噴霧するように構成すれば、初期運転時に必要な急速な温度上昇と相対湿度100%への到達を短時間で行なうことができる。 In the system of the present invention, preferably, an air heat collector that absorbs latent heat of vaporization from outside air is provided in parallel with the evaporator, and the CO 2 refrigerant is introduced into the air heat collector during the initial drying operation. A humidifying heater for exchanging heat between the CO 2 refrigerant compressed to a supercritical pressure and heated to the hot water sprayed by the humidifier, and spraying the hot water from the humidifier during the initial drying operation. If comprised, the rapid temperature rise required at the time of initial operation and the relative humidity of 100% can be achieved in a short time.

あるいは、初期運転時の別な実施態様として、蒸発器上流側の空気流路に排気部を設け、初期運転時に蒸発器可撓性下流側の給気部から蒸発器を通って前記排気部に抜ける外気流路を形成させるようにすれば、空気採熱器を別に設ける必要がなく、空気除湿用の蒸発器を初期運転時に兼用することができるため、設備費を低減することができる。   Alternatively, as another embodiment at the time of initial operation, an exhaust part is provided in the air flow path on the upstream side of the evaporator, and at the time of initial operation, the air supply part on the evaporator flexible downstream side passes through the evaporator to the exhaust part. If the outside air flow path is formed, it is not necessary to provide a separate air heat collector, and the evaporator for air dehumidification can be used in the initial operation, so that the equipment cost can be reduced.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明をそれのみに限定する趣旨ではない。
図2は本発明の第1実施例を示すブロック線図、図3は、第1実施例の制御系を示すブロック線図、図4は、排気ライン19に設けられたエアーダンパ19aの構成図、図5は、第1実施例の初期運転時の作動を示すブロック線図、図6は、本発明の第2実施例を示すブロック線図、図7は、本発明の第3実施例を示すブロック線図、図8は、本発明の第4実施例を示すブロック線図、図9は第4実施例の制御系を示すブロック線図である。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the present invention to that only, unless otherwise specified.
2 is a block diagram showing the first embodiment of the present invention, FIG. 3 is a block diagram showing the control system of the first embodiment, and FIG. 4 is a configuration diagram of an air damper 19a provided in the exhaust line 19. FIG. 5 is a block diagram showing the operation during the initial operation of the first embodiment, FIG. 6 is a block diagram showing the second embodiment of the present invention, and FIG. 7 is the third embodiment of the present invention. FIG. 8 is a block diagram showing a fourth embodiment of the present invention, and FIG. 9 is a block diagram showing a control system of the fourth embodiment.

本発明の第1実施例を示す図1において、密閉機能を有する乾燥室1には被乾燥物である木材Wが間を空気aが流通するように互いに間隔を設けて載置されている。乾燥室1内には、空気の循環流bを形成するための仕切り6が設けられ、該循環流路bに面してエアヒータ3、ファン5、加湿器4、温度センサ8及び湿度センサ7が配置されている。   In FIG. 1 showing the first embodiment of the present invention, a wood W which is an object to be dried is placed in a drying chamber 1 having a sealing function so as to be spaced from each other so that air a flows therethrough. A partition 6 for forming a circulating air flow b is provided in the drying chamber 1. An air heater 3, a fan 5, a humidifier 4, a temperature sensor 8, and a humidity sensor 7 face the circulating flow path b. Has been placed.

一方ヒートポンプ2は、COを冷媒とし、CO冷媒が循環する冷媒ライン21に、冷却除湿器(蒸発器)22と、圧縮機23と、加湿用加熱器(凝縮器)24と、温水加熱器(凝縮器)25と、空気加熱器(凝縮器)26と、膨張弁27が介設されている。
冷却除湿器22には、空気ライン9を介して除湿ファン10によって乾燥室1内の空気が供給され、冷却除湿器22でCO冷媒と熱交換されて冷却除湿され、その後ライン11を経て空気加熱器26に送られ、そこでCO冷媒と熱交換してCO冷媒の凝縮熱を得て、乾燥室内空位温度と同じ温度に加熱され、戻りライン12を経て乾燥室1内に戻るように構成されている。
On the other hand, the heat pump 2 uses CO 2 as a refrigerant, a refrigerant dehumidifier (evaporator) 22, a compressor 23, a humidifier heater (condenser) 24, and hot water heating in a refrigerant line 21 through which the CO 2 refrigerant circulates. A condenser (condenser) 25, an air heater (condenser) 26, and an expansion valve 27 are interposed.
Air in the drying chamber 1 is supplied to the cooling dehumidifier 22 by the dehumidifying fan 10 through the air line 9, and heat is exchanged with the CO 2 refrigerant in the cooling dehumidifier 22 to cool and dehumidify, and then air is passed through the line 11. is sent to the heater 26, where CO 2 refrigerant and by heat exchange to give the heat of condensation of the CO 2 refrigerant is heated to the same temperature as the drying chamber vacant temperature, via a return line 12 back into the drying chamber 1 It is configured.

またエアヒータ3には、乾燥室1内の空気循環流bに面した領域に位置するとともに、温水加熱器25との間をポンプ15によって矢印方向に温水を循環する温水循環ライン13が設けられている。温水循環ライン13に介装されたバッファタンク14は、給水部14bを有するとともに、内部に気相空間14aを有して温水循環ライン13内部で急激な高圧が発生したときに緩衝作用を有する。また温水循環ライン13から分岐した分岐ライン16は、加湿用加熱器24に接続されている。通常運転時分岐ライン16に介装された開閉弁35は閉となっているが、初期運転時開となり、初期運転時分岐ライン16から加湿用加熱器24に導入された温水は、CO冷媒の凝縮熱を得て高温となり、温水ライン17を経て乾燥室1内の加湿器4で空気循環流bに噴霧される。 The air heater 3 is provided with a hot water circulation line 13 that is located in a region facing the air circulation flow b in the drying chamber 1 and that circulates hot water between the hot water heater 25 in the direction of the arrow by a pump 15. Yes. The buffer tank 14 interposed in the hot water circulation line 13 has a water supply part 14 b and also has a gas phase space 14 a inside, and has a buffering action when a sudden high pressure is generated inside the hot water circulation line 13. A branch line 16 branched from the hot water circulation line 13 is connected to a humidifier heater 24. The on-off valve 35 interposed in the branch line 16 during normal operation is closed, but is opened during initial operation, and the hot water introduced from the branch line 16 during initial operation into the humidifying heater 24 is CO 2 refrigerant. The condensation heat is obtained and the temperature becomes high, and is sprayed to the air circulation flow b by the humidifier 4 in the drying chamber 1 through the hot water line 17.

空気ライン11には、給気ファン18aが介設された給気ライン18と、エアーダンパ19aが介設された排気ライン19が接続されている。またヒートポンプ2には、冷却除湿器22と並列に空気採熱器(蒸発器)28が設けられ、開閉弁29及び30の開閉により、本乾燥システムの初期運転時に、冷却除湿器22の代わりに空気採熱器28にCO冷媒が導入されて、外気cから蒸発潜熱を得るように構成されている。 The air line 11 is connected to an air supply line 18 provided with an air supply fan 18a and an exhaust line 19 provided with an air damper 19a. Further, the heat pump 2 is provided with an air heat collector (evaporator) 28 in parallel with the cooling dehumidifier 22, and the opening and closing valves 29 and 30 are opened and closed instead of the cooling dehumidifier 22 during the initial operation of the drying system. A CO 2 refrigerant is introduced into the air heat collector 28 to obtain latent heat of vaporization from the outside air c.

図3は第1実施例の制御系であり、図3において、コントローラ31は、温度センサ7で検知された乾燥室1内の温度に基づいて除湿ファン10とヒートポンプの圧縮機の駆動モータ23aとを制御するとともに、湿度センサ8で検知された湿度に基づいて給気ライン18に設けられた給気ファン18a及び除湿ファン10を制御する。
木材の乾燥工程は、図10のように乾燥時間(含水率)に適した温度及び湿度があり、上記制御を行うことによって、乾燥室1内を図10にように設定された温度及び湿度に正確に制御することができる。
FIG. 3 shows a control system of the first embodiment. In FIG. 3, the controller 31 includes a dehumidifying fan 10 and a drive motor 23a for a heat pump compressor based on the temperature in the drying chamber 1 detected by the temperature sensor 7. And the air supply fan 18 a and the dehumidifying fan 10 provided in the air supply line 18 are controlled based on the humidity detected by the humidity sensor 8.
The wood drying process has a temperature and humidity suitable for the drying time (moisture content) as shown in FIG. 10, and by performing the above control, the inside of the drying chamber 1 is set to the temperature and humidity set as shown in FIG. It can be controlled accurately.

また図4は、排気ライン19に介装されたエアーダンパ19aを示し、排気ライン19は、軸32によって回動可能に設けられた開閉板33によって開閉される。開閉板33は、軸32に設けられた錘34によって排気ライン19の開口19bを予め設定された付勢力により閉鎖する方向に付勢されている。かかる構成のため、給気ライン18からライン11に給気されることによって、排気ライン19内の空気圧dが設定された圧力以上になると、開閉板33が開口19bを開放する。
なお図2において、各部に記された温度表示は、そのラインを流れる空気、CO冷媒又は温水の温度を示す。
FIG. 4 shows an air damper 19 a interposed in the exhaust line 19, and the exhaust line 19 is opened and closed by an opening / closing plate 33 provided rotatably by a shaft 32. The opening / closing plate 33 is urged by a weight 34 provided on the shaft 32 in a direction to close the opening 19 b of the exhaust line 19 by a preset urging force. With this configuration, when the air supply line 18 supplies air to the line 11 and the air pressure d in the exhaust line 19 exceeds the set pressure, the opening / closing plate 33 opens the opening 19b.
In FIG. 2, temperature indications shown in the respective parts indicate the temperature of the air, CO 2 refrigerant, or hot water flowing through the line.

かかる構成の第1実施例において、図5にその初期運転時の作動状況を示す。図5において、運転初期では、乾燥室1内の空気を外気の温度及び湿度に近い状態から70℃態度の乾燥温度及び相対湿度100%まで数時間で急速上昇させる必要がある。このため開閉弁29を閉、開閉弁30を開として、空気採熱器28にCO冷媒を導入して外気cから蒸発潜熱を採熱する。
また同時に開閉弁35を開として、エアヒータ3と温水加熱器25の間を循環する温水の一部を温水循環ライン13から分岐ライン16に取り出し、加湿用加熱器24において圧縮機23により超臨界圧に達した高温のCO冷媒と熱交換させて加熱し、その後加熱した温水を乾燥室1内の加湿器4に噴霧して加湿を行なう。
In the first embodiment having such a configuration, FIG. 5 shows an operating state during the initial operation. In FIG. 5, at the initial stage of operation, it is necessary to rapidly increase the air in the drying chamber 1 from a state close to the temperature and humidity of the outside air to a drying temperature of 70 ° C. and a relative humidity of 100% in several hours. Therefore, the on-off valve 29 is closed, the on-off valve 30 is opened, CO 2 refrigerant is introduced into the air heat collector 28, and latent heat of evaporation is collected from the outside air c.
At the same time, the on-off valve 35 is opened, a part of the hot water circulating between the air heater 3 and the hot water heater 25 is taken out from the hot water circulation line 13 to the branch line 16, and the supercritical pressure is supplied by the compressor 23 in the humidifying heater 24. Heat is exchanged with the high-temperature CO 2 refrigerant that has reached the temperature and heated, and then the heated warm water is sprayed onto the humidifier 4 in the drying chamber 1 to perform humidification.

加湿用加熱器24で温水と熱交換した後、CO冷媒は温水加熱器25で温水循環ライン13を流れる温水と熱交換して温水をその凝縮熱で加熱し、加熱された温水は、エアヒータ3に供給されて、エアヒータ3の熱源に供される。
かかる操作によって初期運転を行ない、乾燥室1内を急速昇温及び急速加湿し、70℃及び相対湿度100%の雰囲気とした後、図2に示す通常運転に移行する。
After exchanging heat with warm water by the humidifying heater 24, the CO 2 refrigerant exchanges heat with warm water flowing through the warm water circulation line 13 by the warm water heater 25 to heat the warm water with its condensation heat, and the heated warm water is converted into an air heater. 3 and supplied to the heat source of the air heater 3.
The initial operation is performed by such an operation, the inside of the drying chamber 1 is rapidly heated and humidified to make an atmosphere of 70 ° C. and a relative humidity of 100%, and then the normal operation shown in FIG. 2 is performed.

通常運転においては、図2に示すように、開閉弁29を開、開閉弁30を閉として、CO冷媒を冷却除湿器22に流すようにする。同時に開閉弁35を閉として、加湿用加熱器24へ温水を流すことを止める。これによって圧縮機23によって超臨界圧まで圧縮され高温となったCO冷媒は、加湿用加熱器24での熱交換をせず、温水加熱器25でエアヒータ3の熱源となる温水をその凝縮熱で加熱し、その後空気加熱器26で冷却除湿器22で冷却除湿された空気を加熱する。 In the normal operation, as shown in FIG. 2, the on-off valve 29 is opened and the on-off valve 30 is closed so that the CO 2 refrigerant flows through the cooling dehumidifier 22. At the same time, the on-off valve 35 is closed to stop the flow of warm water to the humidifying heater 24. As a result, the CO 2 refrigerant that has been compressed to the supercritical pressure by the compressor 23 to a high temperature does not exchange heat in the humidifying heater 24, and the hot water that becomes the heat source of the air heater 3 is condensed in the hot water heater 25. Then, the air that has been cooled and dehumidified by the cooling dehumidifier 22 is heated by the air heater 26.

通常運転時になって除湿ファン10によって乾燥室1内から冷却除湿器22に送られた空気は、ここでCO冷媒によって蒸発潜熱を奪われ、冷却除湿してライン11を経て空気加熱器26に至り、ここでCO冷媒の凝縮熱で加熱され、70℃の温度に再加熱されて乾燥室1内に戻される。
なお冷却除湿器22で乾燥室1から送られた全ての空気を冷却除湿すると、ヒートポンプ2の冷凍能力に負担がかかり、圧縮機の容量を大きくするか、あるいは圧縮比を上げる必要があるが、圧縮比を上げると、COPが低下するので、冷却除湿後の空気の一部を排気ライン19から排気し、低湿度及び常温の外気を給気ライン18から給気ファン18aによって導入する。
During normal operation, the air sent from the drying chamber 1 to the cooling dehumidifier 22 by the dehumidifying fan 10 is deprived of the latent heat of vaporization by the CO 2 refrigerant, cooled and dehumidified to the air heater 26 via the line 11. At this point, it is heated by the condensation heat of the CO 2 refrigerant, reheated to a temperature of 70 ° C., and returned to the drying chamber 1.
If all the air sent from the drying chamber 1 is cooled and dehumidified by the cooling dehumidifier 22, the refrigeration capacity of the heat pump 2 is burdened, and it is necessary to increase the capacity of the compressor or increase the compression ratio. When the compression ratio is increased, the COP is lowered. Therefore, a part of the air after cooling and dehumidification is exhausted from the exhaust line 19, and outside air at low humidity and room temperature is introduced from the air supply line 18 by the air supply fan 18a.

なお排気ライン19に設けられたエアーダンパ19aは、図5に示す構成を有することにより、ライン11内の空気圧を設定値に保持するように排気することができる。これによって給気ライン18から導入された外気量の分だけ排気ライン19から排気することができる。
かかる第1実施例によれば、ヒートポンプ2がCOを冷媒とする超臨界圧冷凍サイクルを構成することにより、高温の熱源を乾燥室1に供給することができる。従って乾燥室1に十分な熱源を供給できて嵌挿時間を短縮でき、特に急速な昇温及び高湿度化を必要とする初期運転時に超臨界圧の高温の保有熱を放出して加湿器8に高温水を供給できるとともに、温水加熱器25でその凝縮熱を放出してエアヒータ3の熱源用温水を供給でき、さらにその後残った凝縮熱で乾燥室1に戻る空気を再加熱することができる。
In addition, the air damper 19a provided in the exhaust line 19 can exhaust so that the air pressure in the line 11 may be hold | maintained to a setting value by having the structure shown in FIG. As a result, the exhaust air can be exhausted from the exhaust line 19 by the amount of the outside air introduced from the air supply line 18.
According to the first embodiment, a high-temperature heat source can be supplied to the drying chamber 1 by configuring the supercritical pressure refrigeration cycle in which the heat pump 2 uses CO 2 as a refrigerant. Accordingly, a sufficient heat source can be supplied to the drying chamber 1 and the insertion time can be shortened. In particular, during the initial operation that requires rapid temperature increase and high humidity, the high-temperature retained heat of supercritical pressure is released, and the humidifier 8 The hot water heater 25 can release the heat of condensation to supply hot water for the heat source of the air heater 3, and the remaining condensation heat can be used to reheat the air returning to the drying chamber 1. .

またこのように2段階(初期運転時は3段階)に亘って凝縮熱を放出することにより、図1に示すように、冷凍能力を高め、COPを向上させることができる。
また冷却除湿器22で冷却除湿した空気の一部をライン11で外気と入れ替えることにより、ヒートポンプの負荷軽減を図ることができ、これによってCOPを向上させることができるとともに、イニシャルコストを低減することができる。
また初期運転時に外気の保有熱を利用することができるため、急速昇温が可能になる。
また図3に示す制御系を具備することにより、乾燥室1内の温度及び湿度を所望の状態に正確に制御することができる。
Further, by releasing the condensation heat in two stages (three stages at the initial operation) as described above, the refrigeration capacity can be increased and the COP can be improved as shown in FIG.
Further, by replacing a part of the air cooled and dehumidified by the cooling dehumidifier 22 with the outside air in the line 11, it is possible to reduce the load of the heat pump, thereby improving the COP and reducing the initial cost. Can do.
Moreover, since the retained heat of the outside air can be used during the initial operation, rapid temperature increase is possible.
Moreover, by providing the control system shown in FIG. 3, the temperature and humidity in the drying chamber 1 can be accurately controlled to a desired state.

次に本発明の第2実施例を図6により説明する。図6において、本実施例は、第1実施例の空気採熱器28を廃し、代わりに冷却除湿器22に接続する空気ライン9に排気ライン41を設け、排気ライン41に排気弁42を設けた構成としている。なおその他の構成は図2の第1実施例と同一であり、第1実施例と同一の部位については同一の符号を付し、それら部位の説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 6, this embodiment eliminates the air heat collector 28 of the first embodiment, and instead provides an exhaust line 41 in the air line 9 connected to the cooling dehumidifier 22, and provides an exhaust valve 42 in the exhaust line 41. It has a configuration. The other configurations are the same as those of the first embodiment shown in FIG. 2, and the same portions as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

かかる構成の第2実施例においては、初期運転時には排気弁42を開とし、給気ライン18から外気を導入し、冷却除湿器22で外気の保有熱を蒸発潜熱として採熱し、その後外気を排気ライン41から外部に排出する。
その他の初期運転時の操作は、第1実施例と同一である。また通常運転時の操作は、排気弁42を閉とした後、第1実施例と同一の操作を行う。
かかる第2実施例によれば、第1実施例において初期運転時に作動する空気採熱器28と通常運転時に作動する冷却除湿器22とを兼用できるので、設備費を軽減することができる。
In the second embodiment having such a configuration, during the initial operation, the exhaust valve 42 is opened, outside air is introduced from the air supply line 18, the retained heat of the outside air is collected as latent heat of evaporation by the cooling dehumidifier 22, and then the outside air is exhausted. Discharge from the line 41 to the outside.
Other operations during initial operation are the same as those in the first embodiment. The normal operation is the same as that in the first embodiment after the exhaust valve 42 is closed.
According to the second embodiment, since the air heat collector 28 that operates during the initial operation and the cooling dehumidifier 22 that operates during the normal operation can be used together in the first embodiment, the equipment cost can be reduced.

次に本発明の第3実施例を図7により説明する。図7において、本実施例は、第1実施例と比べて、温水加熱器25と乾燥室1内のエアヒータ3との間で温水を循環する温水循環ライン13及び分岐ライン16を廃し、代わりに加湿用加熱器24から出る高温・高圧のCO冷媒をエアヒータ3に供給する供給ライン51を設け、またCO冷媒をエアヒータ3から空気加熱器26に戻す、ポンプ53が介設された戻りライン52を設けたものである。 Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 7, this embodiment eliminates the hot water circulation line 13 and the branch line 16 that circulate hot water between the hot water heater 25 and the air heater 3 in the drying chamber 1 as compared with the first embodiment. A supply line 51 for supplying high-temperature and high-pressure CO 2 refrigerant coming out of the humidifying heater 24 to the air heater 3 is provided, and a return line through which a pump 53 is provided to return the CO 2 refrigerant from the air heater 3 to the air heater 26. 52 is provided.

また分岐ライン16を廃した代わりに、加湿用加熱器24に給水部24aを設け、初期運転時に給水部24aから供給する水をCO冷媒によって加湿用加熱器24で加熱し、加熱された温水をライン17から加湿器4に供給するようにしている。その他の構成は第1実施例と同一であるので、同一符号を付してそれら同一部位の説明を省略する。
かかる構成の第3実施例によれば、CO冷媒と温水とを熱交換する温水加熱器25及び温水循環ライン13に介設されるバッファタンク15等が不要になり、設備が低減するとともに、CO冷媒を直接乾燥室内の空位と熱交換するので、熱効率が向上するという利点がある。
Further, instead of eliminating the branch line 16, a water supply unit 24 a is provided in the humidification heater 24, and water supplied from the water supply unit 24 a during the initial operation is heated by the humidification heater 24 with CO 2 refrigerant, and heated hot water Is supplied from the line 17 to the humidifier 4. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description of those same portions is omitted.
According to the third embodiment having such a configuration, the hot water heater 25 for exchanging heat between the CO 2 refrigerant and the hot water, the buffer tank 15 interposed in the hot water circulation line 13 and the like are not necessary, and the facilities are reduced. Since the CO 2 refrigerant directly exchanges heat with the vacant space in the drying chamber, there is an advantage that the thermal efficiency is improved.

次に本発明の第4実施例を図8により説明する。図8において、本実施例は、第1実施例と比べて、ヒートポンプ2を構成する蒸発器61とは別に直接接触式除湿器62を設け、外気の給気ライン18及び排気ライン19を廃した点が異なっている。
該除湿器62は、容器形状をなし、内部に冷却水が貯留され、該冷却水は循環ライン63に設けられたポンプ64で蒸発器61との間を循環され、蒸発器61で吸熱され冷却される。乾燥室1内の空気は、除湿器62内に貯留する冷却水中のヘッダ67から放出され、冷却水と直接接触して冷却除湿される。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 8, this embodiment is provided with a direct contact type dehumidifier 62 separately from the evaporator 61 constituting the heat pump 2 and the outside air supply line 18 and the exhaust line 19 are eliminated, as compared with the first embodiment. The point is different.
The dehumidifier 62 has a container shape and stores cooling water therein. The cooling water is circulated between the evaporator 61 by a pump 64 provided in a circulation line 63 and is absorbed by the evaporator 61 to be cooled. Is done. The air in the drying chamber 1 is discharged from the header 67 in the cooling water stored in the dehumidifier 62, and is cooled and dehumidified in direct contact with the cooling water.

図9は本実施例の制御系を示す。図9において、コントローラ31は、温度センサ7で検知された乾燥室1内の温度に基づいて除湿ファン10とヒートポンプの圧縮機の駆動モータ23aとを制御するとともに、湿度センサ8で検知された湿度に基づいて冷却水ポンプ64及び除湿ファン10の回転数を制御する。冷却水ポンプ64を制御することによって冷却水の循環量を制御し、これによって冷却水の温度を調整できるため、除湿器62の除湿量を制御することができる。   FIG. 9 shows a control system of this embodiment. In FIG. 9, the controller 31 controls the dehumidifying fan 10 and the drive motor 23 a of the compressor of the heat pump based on the temperature in the drying chamber 1 detected by the temperature sensor 7, and the humidity detected by the humidity sensor 8. Based on the above, the rotational speeds of the cooling water pump 64 and the dehumidifying fan 10 are controlled. By controlling the cooling water pump 64, the circulation amount of the cooling water can be controlled, and thereby the temperature of the cooling water can be adjusted. Therefore, the dehumidification amount of the dehumidifier 62 can be controlled.

冷却除湿された空気は、空気加熱器26に送られて空気加熱器26でCO冷媒と熱交換し、CO冷媒の凝縮熱で加熱されるのは第1実施例と同一である。空気から除湿された水分は、除湿器62内に溜まるが、冷却水の水位が高くなれば、水位センサ67で検知し、排水弁66を自動的に開にして、排水ライン65から排水されることにより、冷却水の水位が一定に保持される。 Cooled dehumidified air is sent to the air heater 26 CO 2 and refrigerant exchanges heat with the air heater 26, is identical to the first embodiment being heated by the heat of condensation of the CO 2 refrigerant. Moisture dehumidified from the air accumulates in the dehumidifier 62, but if the water level of the cooling water becomes high, it is detected by the water level sensor 67, and the drain valve 66 is automatically opened and drained from the drain line 65. As a result, the water level of the cooling water is kept constant.

かかる第4実施例によれば、空気を冷却水と直接接触により冷却除湿するため、湿度コントロールが容易となり、また空気と冷却水との熱伝達率が良いため、乾燥室1から送られる全部の空気を冷却除湿してもヒートポンプ2の圧縮機23の容量を増大させたり、あるいは圧縮比を大きくする必要がない。従って第1実施例にように空気の一部を外気と入れ替える給気ライン81や排気ライン19を廃することができるとともに、イニシャルコストを低減し、ヒートポンプ2のCOPを向上させることができる。   According to the fourth embodiment, since the air is cooled and dehumidified by direct contact with the cooling water, the humidity control becomes easy, and the heat transfer coefficient between the air and the cooling water is good. Even if the air is cooled and dehumidified, it is not necessary to increase the capacity of the compressor 23 of the heat pump 2 or increase the compression ratio. Therefore, the air supply line 81 and the exhaust line 19 for replacing a part of the air with the outside air as in the first embodiment can be eliminated, the initial cost can be reduced, and the COP of the heat pump 2 can be improved.

本発明によれば、木材の乾燥時間を短縮できて、乾燥システムに使用されるヒートポンプのCOPを格段に向上させ、エネルギ消費を低減して熱効率を向上できる木材の除湿式乾燥システムを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the drying time of wood can be shortened, the COP of the heat pump used for a drying system is improved significantly, and the dehumidification drying system of wood which can reduce energy consumption and can improve thermal efficiency is realized. Can do.

超臨界COヒートポンプサイクルのP−h線図である。It is a P-h diagram of supercritical CO 2 heat pump cycle. 本発明の第1実施例を示すブロック線図である。It is a block diagram which shows 1st Example of this invention. 前記第1実施例の制御系を示すブロック線図である。It is a block diagram which shows the control system of the said 1st Example. 前記第1実施例の排気ライン19に設けられたエアーダンパ19aの構成図である。It is a block diagram of the air damper 19a provided in the exhaust line 19 of the said 1st Example. 前記第1実施例の初期運転時の作動を示すブロック線図である。It is a block diagram which shows the action | operation at the time of the initial stage driving | operation of the said 1st Example. 本発明の第2実施例を示すブロック線図である。It is a block diagram which shows 2nd Example of this invention. 本発明の第3実施例を示すブロック線図である。It is a block diagram which shows 3rd Example of this invention. 本発明の第4実施例を示すブロック線図である。It is a block diagram which shows 4th Example of this invention. 前記第4実施例の制御系を示すブロック線図である。It is a block diagram which shows the control system of the said 4th Example. 木材人工乾燥における乾燥条件の一例を示す線図である。It is a diagram which shows an example of the drying conditions in wood artificial drying. 従来の除湿式木材人工乾燥システムを示す構成図である。It is a block diagram which shows the conventional dehumidification wood artificial drying system.

符号の説明Explanation of symbols

1 乾燥室
2 ヒートポンプ
3 エアヒータ
4 加湿器
7 温度センサ
8 加湿センサ
9 空気ライン
10 除湿ファン
12 戻りライン
13 温水循環ライン
18 給気ライン
18a 給気ファン
19 排気ライン
19a エアーダンパ
21 CO冷媒循環ライン
22 冷却除湿器
23 圧縮機
23a 圧縮機駆動モータ
24 加湿用加熱器
25 温水加熱器
26 空気加熱器
28 空気採熱器
31 コントローラ
41 排気ライン
51 CO冷媒供給ライン
52 CO冷媒戻りライン
62 直接接触式除湿器
63 冷却水循環ライン
W 木材
1 drying chamber 2 heat pump 3 the air heater 4 humidifier 7 temperature sensor 8 humidified sensor 9 air line 10 dehumidifying fan 12 return line 13 hot water circulation line 18 the air supply line 18a supply fan 19 exhaust line 19a air damper 21 CO 2 refrigerant circulation line 22 Cooling dehumidifier 23 Compressor 23a Compressor drive motor 24 Humidification heater 25 Hot water heater 26 Air heater 28 Air heat collector 31 Controller 41 Exhaust line 51 CO 2 refrigerant supply line 52 CO 2 refrigerant return line 62 Direct contact type Dehumidifier 63 Cooling water circulation line W Wood

Claims (11)

乾燥室内の空気を加熱するエアヒータと、該乾燥室内の空気を加湿する加湿器と、該乾燥室内の空気を冷却除湿するヒートポンプとを備え、該乾燥室内の温度及び相対湿度を調整しながら該乾燥室内に収容した木材の乾燥を行なう木材の人工乾燥方法において、
前記ヒートポンプがCOを冷媒とし、該ヒートポンプの蒸発工程で乾燥室内の空気と熱交換して該空気を冷却除湿し、
該蒸発工程後のCO冷媒を超臨界圧まで圧縮して高温としたCO冷媒の保有熱を前記エアヒータの熱源として供給し、
その後CO冷媒と冷却除湿された空気とを熱交換して該空気を再加熱することを特徴とする木材の人工乾燥方法。
An air heater for heating the air in the drying chamber, a humidifier for humidifying the air in the drying chamber, and a heat pump for cooling and dehumidifying the air in the drying chamber, and adjusting the temperature and relative humidity in the drying chamber In the artificial drying method of wood for drying the wood housed in the room,
The heat pump is a CO 2 as a refrigerant, the air dampening cooled dividing by exchange of heat with air drying cabinet at evaporation step of the heat pump,
Supplying the retained heat of the CO 2 refrigerant, which has been heated to a supercritical pressure by compressing the CO 2 refrigerant after the evaporation step, as a heat source of the air heater;
A method for artificially drying wood, wherein the air is then reheated by exchanging heat between the CO 2 refrigerant and the cooled and dehumidified air.
前記蒸発工程で冷却除湿した空気の一部を排気し、該排気量の分だけ外気を導入することを特徴とする請求項1記載の木材の人工乾燥方法。   2. The method for artificially drying wood according to claim 1, wherein a part of the air cooled and dehumidified in the evaporation step is exhausted, and the outside air is introduced by an amount corresponding to the exhaust amount. 乾燥運転初期の前記ヒートポンプの蒸発工程において前記乾燥室内の空気の代わりに外気と熱交換して外気の保有熱を吸収するとともに、
前記加湿器で噴霧する水に超臨界圧まで圧縮したCO冷媒の保有熱を供するようにしたことを特徴とする請求項1記載の木材の人工乾燥方法。
In the evaporation process of the heat pump in the initial stage of the drying operation, heat is exchanged with the outside air instead of the air in the drying chamber to absorb the retained heat of the outside air,
The method for artificially drying wood according to claim 1, wherein the water sprayed by the humidifier is supplied with the heat retained by the CO 2 refrigerant compressed to a supercritical pressure.
木材を乾燥させるための気密性の乾燥室と、該乾燥室内の空気を導入し冷却除湿して前記乾燥室に戻すヒートポンプと、該乾燥室内の空気を加熱するエアヒータと、該乾燥室内を加湿する加湿器とを備えた木材の人工乾燥システムにおいて、
前記ヒートポンプが、COを冷媒とし、前記乾燥室内の空気と熱交換して冷却除湿する蒸発器と、CO冷媒を圧縮して超臨界圧以上に加圧する圧縮機と、CO冷媒を膨張減圧して前記蒸気器に導入する膨張器と、超臨界圧まで圧縮して高温としたCO冷媒の保有熱を前記エアヒータの熱源として供給する手段と、冷却除湿された空気を再加熱して前記乾燥室に戻す手段とを備えたことを特徴とする木材の人工乾燥システム。
An airtight drying chamber for drying wood, a heat pump that introduces air in the drying chamber, cools and dehumidifies the air, returns the drying chamber, an air heater that heats the air in the drying chamber, and humidifies the drying chamber In an artificial wood drying system equipped with a humidifier,
The heat pump uses CO 2 as a refrigerant, exchanges heat with the air in the drying chamber to cool and dehumidify, a compressor that compresses the CO 2 refrigerant and pressurizes it to a supercritical pressure, and expands the CO 2 refrigerant and inflator to be introduced into the steam vessel by vacuum, and means for supplying a potential heat of CO 2 refrigerant that has a high temperature and compressed to a supercritical pressure as a heat source of the air heater, and re-heating the cooled dehumidified air A wood artificial drying system comprising means for returning to the drying chamber.
前記蒸発器で冷却除湿された後の空気の一部を排気する排気部と、該排気量の分だけ給気する給気部とを備えたことを特徴とする請求項4記載の木材の人工乾燥システム。   5. The artificial wood according to claim 4, further comprising: an exhaust part that exhausts a part of the air after being cooled and dehumidified by the evaporator, and an air supply part that supplies air by an amount corresponding to the exhaust amount. Drying system. 超臨界圧まで圧縮して高温としたCO冷媒と前記エアヒータに熱源を供給する2次側熱媒体とを熱交換する加熱器と、該加熱器で熱交換した後のCO冷媒と冷却除湿された空気とを熱交換して該空気を再加熱する空気加熱器を備えたことを特徴とする請求項4記載の木材の人工乾燥システム。 A heater that exchanges heat between the CO 2 refrigerant compressed to a supercritical pressure and heated to a secondary heat medium that supplies a heat source to the air heater, and the CO 2 refrigerant and the cooling dehumidifier after heat exchange with the heater 5. The artificial wood drying system according to claim 4, further comprising an air heater for exchanging heat with the air thus reheated. 超臨界圧まで圧縮して高温としたCO冷媒を前記エアヒータの前記乾燥室内の空気と接触する領域に導入した後、前記空気再加熱手段に戻す管路を設けたことを特徴とする請求項4記載の木材の人工乾燥システム。 Claims, characterized in that supercritical pressure and compressed to a CO 2 refrigerant that has a high temperature after introduction in the area in contact with air in the drying chamber of the air heater, is provided a conduit for returning to the air reheating device 4. Artificial drying system for wood according to 4. 前記乾燥室内に設けられた温度センサ及び湿度センサと、
前記給気部に設けられた給気ファンと、
前記乾燥室内の空気を前記ヒートポンプの蒸発器に導入する除湿ファンと、
前記温度センサで検知された温度に基づいて前記ヒートポンプの圧縮機の駆動装置を制御するとともに、前記湿度センサで検知された湿度に基づいて前記給気ファン及び前記除湿ファンを制御するコントローラとを備えたことを特徴とする請求項5記載の木材の人工乾燥システム。
A temperature sensor and a humidity sensor provided in the drying chamber;
An air supply fan provided in the air supply unit;
A dehumidifying fan for introducing the air in the drying chamber into the evaporator of the heat pump;
A controller that controls a compressor driving device of the heat pump based on the temperature detected by the temperature sensor, and that controls the air supply fan and the dehumidifying fan based on the humidity detected by the humidity sensor. The artificial drying system for wood according to claim 5.
冷却水を貯留した冷却水槽と、該冷却水槽と前記蒸発器との間で冷却水を循環させる管路とを備え、前記蒸発器で冷却され前記冷却水槽内に貯留した冷却水中に前記乾燥室内の空気を導入して冷却除湿するように構成したことを特徴とする請求項4記載の木材の人工乾燥システム。   A cooling water tank in which cooling water is stored; and a conduit for circulating the cooling water between the cooling water tank and the evaporator, wherein the drying chamber is placed in the cooling water cooled by the evaporator and stored in the cooling water tank. The artificial drying system for wood according to claim 4, wherein the air is introduced to cool and dehumidify. 前記蒸発器と並列に外気から蒸発潜熱を吸収する空気採熱器を設け、乾燥初期運転時にCO冷媒が該空気採熱器に導入されるように構成するとともに、
超臨界圧まで圧縮して高温としたCO冷媒と前記加湿器で噴霧される温水とを熱交換する加湿用加熱器を設け、乾燥初期運転時に前記加湿器から該温水を噴霧するように構成したことを特徴とする請求項4記載の木材の人工乾燥システム。
An air heat collector that absorbs latent heat of vaporization from outside air is provided in parallel with the evaporator, and is configured such that CO 2 refrigerant is introduced into the air heat collector during the initial drying operation.
A humidifier heater that exchanges heat between the CO 2 refrigerant compressed to a supercritical pressure and heated to hot water sprayed by the humidifier is provided, and the warm water is sprayed from the humidifier during the initial drying operation. The artificial drying system for wood according to claim 4.
前記蒸発器上流側の空気流路に排気部を設け、初期運転時に前記給気部から前記蒸発器を通って前記排気部に抜ける外気流路を形成させることを特徴とする請求項5記載の木材の人工乾燥システム。   6. The exhaust passage is provided in an air flow path on the upstream side of the evaporator, and an outside air flow path is formed that passes from the air supply section through the evaporator to the exhaust section during initial operation. Artificial drying system for wood.
JP2006011014A 2006-01-19 2006-01-19 Artificial drying method and system for wood Active JP5049495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011014A JP5049495B2 (en) 2006-01-19 2006-01-19 Artificial drying method and system for wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011014A JP5049495B2 (en) 2006-01-19 2006-01-19 Artificial drying method and system for wood

Publications (2)

Publication Number Publication Date
JP2007192464A true JP2007192464A (en) 2007-08-02
JP5049495B2 JP5049495B2 (en) 2012-10-17

Family

ID=38448311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011014A Active JP5049495B2 (en) 2006-01-19 2006-01-19 Artificial drying method and system for wood

Country Status (1)

Country Link
JP (1) JP5049495B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236328A (en) * 2008-03-25 2009-10-15 Tokyo Electric Power Co Inc:The Industrial drying system
JP2011021778A (en) * 2009-07-14 2011-02-03 Okawara Mfg Co Ltd Drying system having heat pump unit and temperature rising device
JP2011075131A (en) * 2009-09-29 2011-04-14 Tokyo Electric Power Co Inc:The Heat supply system
JP2011117670A (en) * 2009-12-03 2011-06-16 Tokyo Electric Power Co Inc:The Industrial heating system
JP2011117690A (en) * 2009-12-04 2011-06-16 Canon Electronics Inc Fluid heating device and disposal device
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
US8096064B2 (en) * 2007-01-26 2012-01-17 Forestry And Forest Products Research Institute Method for drying lumber, method of impregnating lumber with chemicals, and drying apparatus
JP2013002776A (en) * 2011-06-20 2013-01-07 Mayekawa Mfg Co Ltd Control device and control method of wood drying apparatus
JP2013124844A (en) * 2011-12-16 2013-06-24 Kansai Electric Power Co Inc:The Heat pump type heating system
JP2013234771A (en) * 2012-05-07 2013-11-21 Okawara Mfg Co Ltd Drying system equipped with dehumidifying mechanism for dry air
CN103512319A (en) * 2012-06-18 2014-01-15 海口同方阳光科技有限公司 Original palm rattan drying technology of solar heating pump
JP2014085092A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Open showcase
JP2014088974A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Refrigerator and refrigeration device
JP2014163627A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Open showcase
CN104290161A (en) * 2014-08-23 2015-01-21 苏义燕 Redwood drying technology
CN104493938A (en) * 2015-01-10 2015-04-08 陈霞 Drying process of rosewood
CN104552518A (en) * 2015-01-10 2015-04-29 陈霞 Dehumidification process of redwood
JP2015527559A (en) * 2012-08-02 2015-09-17 エレクトリシテ・ドゥ・フランス Equipment including heat pump for heating external fluids with large temperature difference
KR101764134B1 (en) * 2016-10-17 2017-08-14 주식회사 에이치티 Apparatus for drying and high heat-treating wood
CN107560339A (en) * 2017-09-19 2018-01-09 长兴谐达能源科技有限公司 A kind of good biomass granulation drying plant of environment protecting
WO2018107019A1 (en) * 2016-12-08 2018-06-14 R.P. Scherer Technologies, Llc Accelerated drying of soft capsules in a controlled environment
CN109708087A (en) * 2018-12-18 2019-05-03 东莞市风火轮热能科技有限公司 Ultralow temperature fresh food CO2Heat pump preserved drying apparatus control system
CN109708088A (en) * 2018-12-18 2019-05-03 东莞市风火轮热能科技有限公司 A kind of energy-saving CO2Heat pump preserved drying apparatus control system and control method
KR102129289B1 (en) * 2019-07-15 2020-07-02 문중묵 Apparatus for drying domestically produced oak tree
KR20210008771A (en) * 2019-07-15 2021-01-25 문중묵 Method for manufacturing deck board using domestically produced oak tree and deck board manufactured thereby
KR20210049246A (en) * 2019-10-24 2021-05-06 문중묵 Method for manufacturing a complex light wood pole using domestically produced oak tree
KR20210084130A (en) * 2019-12-27 2021-07-07 문중묵 Manufacturing method of wood flooring boards for gymnasiums and classrooms using domestically produced oak tree
CN114659342A (en) * 2022-03-24 2022-06-24 中国农业大学 Traditional Chinese medicine browning drying device and method based on accurate temperature and humidity control
CN117139104A (en) * 2023-11-01 2023-12-01 江苏时代新能源科技有限公司 Drying system, battery production equipment and pole piece coating and drying method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325280A (en) * 1989-06-22 1991-02-04 Shikoku Electric Power Co Inc Lumber drying device
JPH10325677A (en) * 1997-05-22 1998-12-08 Izuha Sangyo Kk Wood drier
JP2004116899A (en) * 2002-09-26 2004-04-15 Matsushita Electric Ind Co Ltd Heat pump type drier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325280A (en) * 1989-06-22 1991-02-04 Shikoku Electric Power Co Inc Lumber drying device
JPH10325677A (en) * 1997-05-22 1998-12-08 Izuha Sangyo Kk Wood drier
JP2004116899A (en) * 2002-09-26 2004-04-15 Matsushita Electric Ind Co Ltd Heat pump type drier

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096064B2 (en) * 2007-01-26 2012-01-17 Forestry And Forest Products Research Institute Method for drying lumber, method of impregnating lumber with chemicals, and drying apparatus
JP2009236328A (en) * 2008-03-25 2009-10-15 Tokyo Electric Power Co Inc:The Industrial drying system
JP2011021778A (en) * 2009-07-14 2011-02-03 Okawara Mfg Co Ltd Drying system having heat pump unit and temperature rising device
JP2011075131A (en) * 2009-09-29 2011-04-14 Tokyo Electric Power Co Inc:The Heat supply system
JP2011117670A (en) * 2009-12-03 2011-06-16 Tokyo Electric Power Co Inc:The Industrial heating system
JP2011117690A (en) * 2009-12-04 2011-06-16 Canon Electronics Inc Fluid heating device and disposal device
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
JP2013002776A (en) * 2011-06-20 2013-01-07 Mayekawa Mfg Co Ltd Control device and control method of wood drying apparatus
JP2013124844A (en) * 2011-12-16 2013-06-24 Kansai Electric Power Co Inc:The Heat pump type heating system
JP2013234771A (en) * 2012-05-07 2013-11-21 Okawara Mfg Co Ltd Drying system equipped with dehumidifying mechanism for dry air
CN103512319A (en) * 2012-06-18 2014-01-15 海口同方阳光科技有限公司 Original palm rattan drying technology of solar heating pump
JP2015527559A (en) * 2012-08-02 2015-09-17 エレクトリシテ・ドゥ・フランス Equipment including heat pump for heating external fluids with large temperature difference
JP2014085092A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Open showcase
JP2014088974A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Refrigerator and refrigeration device
JP2014163627A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Open showcase
CN104290161A (en) * 2014-08-23 2015-01-21 苏义燕 Redwood drying technology
CN104493938A (en) * 2015-01-10 2015-04-08 陈霞 Drying process of rosewood
CN104552518A (en) * 2015-01-10 2015-04-29 陈霞 Dehumidification process of redwood
KR101764134B1 (en) * 2016-10-17 2017-08-14 주식회사 에이치티 Apparatus for drying and high heat-treating wood
US11026865B2 (en) 2016-12-08 2021-06-08 R.P. Scherer Technologies, Llc Accelerated drying of soft capsules in a controlled environment
WO2018107019A1 (en) * 2016-12-08 2018-06-14 R.P. Scherer Technologies, Llc Accelerated drying of soft capsules in a controlled environment
CN109923360A (en) * 2016-12-08 2019-06-21 R·P·谢勒技术有限公司 Accelerate drying soft capsule in controlled environment
JP2020501101A (en) * 2016-12-08 2020-01-16 アール.ピー.シェーラー テクノロジーズ、エルエルシー Accelerated drying of soft capsules in a controlled environment
RU2745334C2 (en) * 2016-12-08 2021-03-24 Р.П. Шерер Текнолоджис, Ллс Drying soft capsules in a controlled medium on an accelerated basis
RU2745334C9 (en) * 2016-12-08 2021-05-24 Р.П. Шерер Текнолоджис, Ллс Drying soft capsules in a controlled medium on an accelerated basis
JP7013465B2 (en) 2016-12-08 2022-01-31 アール.ピー.シェーラー テクノロジーズ、エルエルシー Accelerated drying of soft capsules in a controlled environment
CN107560339A (en) * 2017-09-19 2018-01-09 长兴谐达能源科技有限公司 A kind of good biomass granulation drying plant of environment protecting
CN109708088A (en) * 2018-12-18 2019-05-03 东莞市风火轮热能科技有限公司 A kind of energy-saving CO2Heat pump preserved drying apparatus control system and control method
CN109708087A (en) * 2018-12-18 2019-05-03 东莞市风火轮热能科技有限公司 Ultralow temperature fresh food CO2Heat pump preserved drying apparatus control system
KR102222941B1 (en) * 2019-07-15 2021-03-04 문중묵 Method for manufacturing deck board using domestically produced oak tree and deck board manufactured thereby
KR102129289B1 (en) * 2019-07-15 2020-07-02 문중묵 Apparatus for drying domestically produced oak tree
KR20210008771A (en) * 2019-07-15 2021-01-25 문중묵 Method for manufacturing deck board using domestically produced oak tree and deck board manufactured thereby
KR102270608B1 (en) * 2019-10-24 2021-06-30 문중묵 Method for manufacturing a complex light wood pole using domestically produced oak tree
KR20210049246A (en) * 2019-10-24 2021-05-06 문중묵 Method for manufacturing a complex light wood pole using domestically produced oak tree
KR20210084130A (en) * 2019-12-27 2021-07-07 문중묵 Manufacturing method of wood flooring boards for gymnasiums and classrooms using domestically produced oak tree
KR102297609B1 (en) * 2019-12-27 2021-09-03 문중묵 Manufacturing method of wood flooring boards for gymnasiums and classrooms using domestically produced oak tree
CN114659342A (en) * 2022-03-24 2022-06-24 中国农业大学 Traditional Chinese medicine browning drying device and method based on accurate temperature and humidity control
CN117139104A (en) * 2023-11-01 2023-12-01 江苏时代新能源科技有限公司 Drying system, battery production equipment and pole piece coating and drying method

Also Published As

Publication number Publication date
JP5049495B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5049495B2 (en) Artificial drying method and system for wood
EP1664647B1 (en) Heat pump type drying apparatus drying apparatus and drying method
CN110274443B (en) Heat pump drying system and heat pump drying unit
KR101481706B1 (en) Energy recovery enhanced condenser reactivated desiccant refrigerant dehumidifier
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
US9885486B2 (en) Heat pump humidifier and dehumidifier system and method
JP2001227869A (en) Drier
JP2994303B2 (en) Air conditioning system and operating method thereof
JPS5925134B2 (en) a plant for drying materials especially wood
KR20170105660A (en) Controlling method for dehimidifier by used heat pump with switch fuction of condenser
JP5325185B2 (en) Water-containing body drying apparatus and operation method thereof
CN107305042A (en) High temperature constant temperature constant humidity unit
KR20100066847A (en) Dehumidified dryer for heat pump
JP2012137201A (en) Heat pump system for drying equipment, and drying equipment with the same, and method of controlling heat pump system for drying equipment
JP6626424B2 (en) Environmental test equipment and air conditioner
JP2007303756A (en) Drying method and drying system
JP4848211B2 (en) Dehumidification air conditioning system
JPH074845A (en) Method and device for drying mold for coating by use of heat pump
JP5360893B2 (en) Desiccant air conditioner
US11585576B2 (en) Cooling system
JP5118629B2 (en) Recuperated environmental adjustment system
EP3256635B1 (en) Clothes dryer and method for operating a clothes dryer
JP2010255970A (en) Outdoor air conditioner and outdoor air conditioning system
KR20170105659A (en) Dehimidifier by used heat pump with switch fuction of condenser
JP2010243003A (en) Dehumidification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250