JP2011193765A - Greenhouse cultivation system - Google Patents

Greenhouse cultivation system Download PDF

Info

Publication number
JP2011193765A
JP2011193765A JP2010062536A JP2010062536A JP2011193765A JP 2011193765 A JP2011193765 A JP 2011193765A JP 2010062536 A JP2010062536 A JP 2010062536A JP 2010062536 A JP2010062536 A JP 2010062536A JP 2011193765 A JP2011193765 A JP 2011193765A
Authority
JP
Japan
Prior art keywords
greenhouse
temperature
exhaust gas
heat
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010062536A
Other languages
Japanese (ja)
Other versions
JP5451473B2 (en
Inventor
良胤 ▲高▼島
Yoshitsugu Takashima
Kazunobu Kobayashi
和伸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010062536A priority Critical patent/JP5451473B2/en
Publication of JP2011193765A publication Critical patent/JP2011193765A/en
Application granted granted Critical
Publication of JP5451473B2 publication Critical patent/JP5451473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a greenhouse cultivation system for properly adjusting a plant raising environment in a greenhouse by using exhaust gas containing carbon dioxide discharged from a piece of combustion apparatus using hydrocarbon as fuel.SOLUTION: This greenhouse cultivation system includes an exhaust gas flow path 21 supplying exhaust gas 11b from a combustion apparatus 11 to plants in a greenhouse space 2b. A latent heat collection heat exchanger 22 cooling the exhaust gas 11b by cooling water 23a and a drain collecting part 22a collecting drain produced with the latent heat collection heat exchanger 22 are each provided so as to control the temperature of the cooling water 23a to be supplied to the latent heat collection heat exchanger 22 based on humidity in the greenhouse space 2b.

Description

本発明は、炭化水素を燃料とする燃焼装置から排出される二酸化炭素を含む排ガスを温室空間の植物に供給する排ガス流路を備えた温室栽培システムに関する。   The present invention relates to a greenhouse cultivation system including an exhaust gas flow path for supplying exhaust gas containing carbon dioxide discharged from a combustion apparatus using hydrocarbon as fuel to a plant in a greenhouse space.

近年、コジェネレーションが広く採用されるようになってきており、これによりエネルギー効率が向上して、地球温暖化の原因となる二酸化炭素の排出量の低減が図られている。コジェネレーションは、発電時に発生する電力および熱をエネルギー源として利用するものであるが、更に、この時に生成され従来は廃棄されていた二酸化炭素を有効利用するものとして、トリジェネレーションという形態がある。   In recent years, cogeneration has been widely adopted, thereby improving energy efficiency and reducing carbon dioxide emissions that cause global warming. Cogeneration uses power and heat generated during power generation as an energy source, and there is another form of trigeneration that effectively uses carbon dioxide generated at this time and discarded in the past.

前記排ガスは、重油や灯油のほかLPガスや都市ガス等の炭化水素燃料を燃焼させたものであるから、大気中よりも高濃度の二酸化炭素を含んでいる。トリジェネレーションは、ガスエンジンをはじめとする内燃機関等から排出される排ガスを浄化して、排ガス中に含まれる二酸化炭素を温室内で光合成の原料の一つとして積極的に植物の育成促進等の目的で温室栽培システム等に利用するものである(特許文献1、2参照)。   Since the exhaust gas is obtained by burning hydrocarbon fuel such as LP gas and city gas in addition to heavy oil and kerosene, it contains carbon dioxide at a higher concentration than in the atmosphere. Trigeneration purifies exhaust gas emitted from internal combustion engines such as gas engines, and actively promotes the growth of plants using carbon dioxide contained in the exhaust gas as one of the raw materials for photosynthesis in the greenhouse. It is used for a greenhouse cultivation system for the purpose (see Patent Documents 1 and 2).

特開2008−201649号公報JP 2008-201649 A 特開2004−344154号公報JP 2004-344154 A

ところが、温室内の植物の好適な育成環境は、温度、光、二酸化炭素のみで決まるわけではなく、実際には湿度が重要な要素になっている場合も多い。前記排ガスは、重油や灯油のほかLPガスや都市ガス等の炭化水素燃料を燃焼させたものであるから、二酸化炭素のほかに水蒸気も大量に含んでいる。このような排ガスを、温室空間に供給すると、前記温室空間は、排ガスによって加熱され、二酸化炭素および水蒸気の供給を受けるため、前記育成条件のうち温度、二酸化炭素、湿度の条件が同時に変化する。そのため、例えば、前記排ガスにより、温度条件と二酸化炭素濃度条件を満たすように供給すると、前記温室内雰囲気が多湿になりすぎ、好適な植物育成条件が得られないというような問題が生じやすい。このような状況は、前記特許文献1に示されるように、前記排ガスを冷却して、その排ガス中に含まれる水蒸気をドレンとして除去する構成があるが、冷却水温度の低減による更なる低湿化や冷却水温度の向上による多湿化への対応が難しいという問題があって、実際には植物の育成環境での適切な湿度管理の制御が困難であるというのが実情であった。   However, a suitable growing environment for plants in a greenhouse is not determined only by temperature, light, and carbon dioxide, and in fact, humidity is often an important factor. Since the exhaust gas is obtained by burning hydrocarbon fuel such as LP gas and city gas in addition to heavy oil and kerosene, it contains a large amount of water vapor in addition to carbon dioxide. When such exhaust gas is supplied to the greenhouse space, the greenhouse space is heated by the exhaust gas and is supplied with carbon dioxide and water vapor, so that the conditions of temperature, carbon dioxide, and humidity among the growth conditions change simultaneously. Therefore, for example, when the exhaust gas is supplied so as to satisfy the temperature condition and the carbon dioxide concentration condition, the atmosphere in the greenhouse becomes excessively humid, and a problem that a suitable plant growth condition cannot be obtained easily occurs. In such a situation, as shown in Patent Document 1, the exhaust gas is cooled and the water vapor contained in the exhaust gas is removed as drainage. However, the humidity is further reduced by reducing the cooling water temperature. In addition, there is a problem that it is difficult to cope with high humidity by increasing the temperature of the cooling water, and in reality, it is difficult to control appropriate humidity management in a plant growing environment.

本発明の目的は、上記実情に鑑み、炭化水素を燃料とする燃焼装置から排出される二酸化炭素を含む排ガスを用いて適正に温室内の植物育成環境を整えることができる温室栽培システムを提供することにある。   In view of the above circumstances, an object of the present invention is to provide a greenhouse cultivation system that can appropriately prepare a plant growing environment in a greenhouse using exhaust gas containing carbon dioxide discharged from a combustion apparatus using hydrocarbon as fuel. There is.

〔構成〕
上記目的を達成するための本発明の温室栽培システムの特徴構成は、炭化水素を燃料とする燃焼装置から排出される二酸化炭素を含む排ガスを温室空間の植物に供給する排ガス流路を備えた温室栽培システムであって、
前記排ガス流路に前記排ガスを冷却水により冷却する潜熱回収型熱交換器を設けるとともに、前記潜熱回収型熱交換器で生成されるドレンを回収するドレン回収部を設け、前記潜熱回収型熱交換器で加温された冷却水の保有熱を温室に供給し、
前記温室空間内の湿度が温室内の植物の生育に適した湿度以上の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を低下させ、前記温室空間内の湿度が温室内の植物の生育に適した湿度未満の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を上昇させる熱交換温度制御機構を設けた点にある。
〔Constitution〕
In order to achieve the above object, a characteristic configuration of the greenhouse cultivation system of the present invention is a greenhouse equipped with an exhaust gas flow path for supplying exhaust gas containing carbon dioxide discharged from a combustion apparatus using hydrocarbon as fuel to plants in the greenhouse space. A cultivation system,
A latent heat recovery type heat exchanger that cools the exhaust gas with cooling water is provided in the exhaust gas flow path, and a drain recovery unit that recovers drain generated by the latent heat recovery type heat exchanger is provided, and the latent heat recovery type heat exchange is provided. Supply the heat stored in the cooling water heated by the vessel to the greenhouse,
When the humidity in the greenhouse space is higher than the humidity suitable for the growth of plants in the greenhouse, the temperature of the cooling water supplied to the latent heat recovery heat exchanger is lowered, and the humidity in the greenhouse space is increased in the greenhouse. A heat exchange temperature control mechanism is provided that raises the temperature of the cooling water supplied to the latent heat recovery heat exchanger when the humidity is lower than that suitable for growing plants.

〔作用効果〕
つまり、前記燃焼装置から排出される二酸化炭素を含む排ガスを排ガス流路から温室空間内に供給すると、前記排ガスは燃焼熱および二酸化炭素および水蒸気の供給源となる。このとき、前記排ガスに含まれる二酸化炭素量は、前記燃焼装置の運転条件により決定される。そして、前記排ガス流路に前記排ガスを冷却水により冷却する潜熱回収型熱交換器を設けると、前記排ガスに含まれる熱および水蒸気を加温された冷却水および冷却により生じたドレンとして除外して供給することができる。つまり、前記排ガスは、前記冷却水による冷却温度において飽和水蒸気を含有する二酸化炭素含有ガスとして前記温室空間に供給することができる。そのため、前記冷却水による冷却温度を制御パラメータとすると、前記二酸化炭素含有ガスに含まれる水蒸気量および前記排ガスの温度を制御することができることになる。すると、二酸化炭素濃度および水蒸気量を適正値に制御することができる。
[Function and effect]
That is, when exhaust gas containing carbon dioxide discharged from the combustion device is supplied into the greenhouse space from the exhaust gas flow path, the exhaust gas becomes a supply source of combustion heat and carbon dioxide and water vapor. At this time, the amount of carbon dioxide contained in the exhaust gas is determined by the operating conditions of the combustion device. When a latent heat recovery heat exchanger that cools the exhaust gas with cooling water is provided in the exhaust gas channel, the heat and water vapor contained in the exhaust gas are excluded as heated cooling water and drain generated by cooling. Can be supplied. That is, the exhaust gas can be supplied to the greenhouse space as a carbon dioxide-containing gas containing saturated water vapor at the cooling temperature by the cooling water. Therefore, when the cooling temperature by the cooling water is a control parameter, the amount of water vapor contained in the carbon dioxide-containing gas and the temperature of the exhaust gas can be controlled. Then, the carbon dioxide concentration and the water vapor amount can be controlled to appropriate values.

ここで、温度条件が水蒸気量の制御の際に固定されてしまうように思われるが、前記排ガスの熱は加温された冷却水として回収できているので、その冷却水を植物に供給する水として与えるか、別途燃焼装置から回収された熱を、温水循環式の温室暖房装置などにより温室空間に与えることにより、前記温度条件の制御も可能となる。   Here, the temperature condition seems to be fixed when the amount of water vapor is controlled, but the heat of the exhaust gas can be recovered as heated cooling water. Alternatively, the temperature condition can be controlled by supplying the heat recovered separately from the combustion apparatus to the greenhouse space by a hot water circulation type greenhouse heating apparatus or the like.

そして、熱交換温度制御機構を設けてあると、前記温室空間内の湿度が温室内の植物の生育に適した湿度以上の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を低下させ、前記排ガスに含まれる水分を十分凝縮させ、排ガスに含まれる水蒸気量を減少させる制御を行うことができ、前記温室空間内の湿度が温室内の植物の生育に適した湿度未満の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を上昇させることにより、前記排ガスに含まれる水分の凝縮量を少なくさせ、排ガスに含まれる水蒸気量を増加させる制御を行うことができ、前記温室空間に供給される水蒸気量および二酸化炭素濃度および温度を植物の育成に適した条件の範囲を外れたときに、適正範囲になるように補正することができるので、適正に制御できることになる。   And if a heat exchange temperature control mechanism is provided, the temperature of the cooling water supplied to the latent heat recovery type heat exchanger when the humidity in the greenhouse space is equal to or higher than the humidity suitable for the growth of plants in the greenhouse Can be controlled to sufficiently condense the moisture contained in the exhaust gas and reduce the amount of water vapor contained in the exhaust gas, and the humidity in the greenhouse space is less than the humidity suitable for the growth of plants in the greenhouse. At a time, by increasing the temperature of the cooling water supplied to the latent heat recovery type heat exchanger, the amount of moisture contained in the exhaust gas is reduced, and the amount of water vapor contained in the exhaust gas is increased. The amount of water vapor, carbon dioxide concentration and temperature supplied to the greenhouse space can be corrected to be within the appropriate range when they are outside the range of conditions suitable for plant growth. It will be possible.

〔構成〕
また、前記温室空間内の温度が、温室内の植物の生育に適した温度未満の時、前記燃焼装置から排出される熱を前記温室空間内に供給するとともに、温室内の植物の生育に適した温度以上の時、前記燃焼装置から排出される熱の前記温室空間内への供給を抑制する供給温室温度制御機構を設けても良い。
〔Constitution〕
In addition, when the temperature in the greenhouse space is lower than the temperature suitable for the growth of plants in the greenhouse, the heat discharged from the combustion device is supplied to the greenhouse space and is suitable for the growth of plants in the greenhouse. A supply greenhouse temperature control mechanism that suppresses supply of heat exhausted from the combustion device into the greenhouse space when the temperature is higher than or equal to the temperature may be provided.

〔作用効果〕
尚、先にも述べたとおり、前記温室空間内の温度を制御するには、種々の方法が考えられるが、前記温室空間に供給される熱を燃焼装置から直接得られると、前記温室栽培システムのエネルギー効率の面から好ましい。また、得られた熱は、前記温室空間内の温度に基づいて決定されると植物の生育条件を適切な範囲内に維持するのに好適である。
[Function and effect]
As described above, various methods are conceivable for controlling the temperature in the greenhouse space. If the heat supplied to the greenhouse space is obtained directly from a combustion device, the greenhouse cultivation system is used. It is preferable from the viewpoint of energy efficiency. Moreover, when the obtained heat is determined based on the temperature in the greenhouse space, it is suitable for maintaining the growth conditions of the plant within an appropriate range.

即ち、前記供給温室温度制御機構を設け、前記温室空間内の温度が、温室内の植物の生育に適した温度未満の時、前記燃焼装置から排出される熱を前記温室空間内に供給することにより、前記温室空間内の温度が、植物の生育に適さない温度に低下するのを防止することができ、温室内の植物の生育に適した温度以上の時、前記燃焼装置から排出される熱の前記温室空間内への供給を抑制することにより、前記温室空間内の温度が植物の育成に適さない高温になるのを防止することができる。   That is, the supply greenhouse temperature control mechanism is provided, and when the temperature in the greenhouse space is lower than the temperature suitable for the growth of plants in the greenhouse, the heat discharged from the combustion device is supplied into the greenhouse space. Thus, the temperature in the greenhouse space can be prevented from decreasing to a temperature unsuitable for plant growth, and the heat discharged from the combustion device when the temperature is higher than the temperature suitable for plant growth in the greenhouse. By suppressing the supply to the greenhouse space, it is possible to prevent the temperature in the greenhouse space from becoming a high temperature unsuitable for plant growth.

〔構成〕
さらに、前記ドレン回収部に回収される水や熱交換された冷却水を温室空間内の植物に供給する温水供給路を設けても良い。
〔Constitution〕
Furthermore, you may provide the warm water supply path which supplies the water collect | recovered by the said drain collection | recovery part, or the heat-exchanged cooling water to the plant in greenhouse space.

〔作用効果〕
つまり、前記ドレン回収部に回収される水や熱交換されて温度の上昇した水は、前記排ガス中から凝縮されたものであり、植物の育成に用いる水として供給することができる。そのため、温水供給路を設けて温室空間内に前記ドレン回収部に回収される水や熱交換されて温度の上昇した水を供給すると、燃焼装置の排熱が前記温室空間内で有効に利用できることになり、エネルギー効率の面から好ましい。
[Function and effect]
That is, the water recovered in the drain recovery part or the water whose temperature has been increased by heat exchange is condensed from the exhaust gas and can be supplied as water used for growing plants. For this reason, when the hot water supply path is provided and the water recovered in the drain recovery unit or the water whose temperature has been increased by heat exchange is supplied into the greenhouse space, the exhaust heat of the combustion device can be effectively used in the greenhouse space. This is preferable from the viewpoint of energy efficiency.

〔構成〕
尚、植物がレタスであり、
前記温室空間に湿度計を設け、
前記熱交換温度制御機構が、前記湿度計の出力湿度がRH70%以下のとき、冷却水温度を上昇させ、前記湿度計の出力湿度がRH90%以上のときに冷却水温度を低下させる温度調整を行うことが好ましい。
〔Constitution〕
The plant is lettuce,
Providing a hygrometer in the greenhouse space;
The heat exchange temperature control mechanism adjusts the temperature to increase the cooling water temperature when the output humidity of the hygrometer is RH 70% or less, and to decrease the cooling water temperature when the output humidity of the hygrometer is RH 90% or more. Preferably it is done.

〔作用効果〕
植物としてレタスを選択した場合、レタスの促成や耐病性の育成条件を考える場合には、湿度管理が最重点事項となるので、上記本発明の温室栽培システムを最も有効に活用できる形態となり、育成条件の管理の難しい植物としてのレタスを、少ない労力で適切な成育条件に管理することができるようになり、生産性の向上、品質の向上に寄与することができた。
[Function and effect]
When lettuce is selected as a plant, humidity management is a top priority when considering the conditions for promoting lettuce and disease resistance, so that the greenhouse cultivation system of the present invention can be used most effectively and nurtured. It became possible to manage lettuce as a plant whose conditions were difficult to be managed under appropriate growth conditions with a small amount of labor, and contributed to the improvement of productivity and quality.

尚、植物とは、光合成する生物一般を指すものとし、野菜、果実等の農作物、花卉、草木等のほか、藻類等の微生物を含む概念である。   In addition, a plant refers to the living organisms generally that are photosynthesizing, and is a concept including microorganisms such as algae in addition to agricultural products such as vegetables and fruits, flowers and plants.

また、燃焼装置とは、内燃機関、外燃機関、燃料電池、バーナ、ボイラ、ヒータ等燃料を燃焼させて熱や動力のエネルギーを得る装置全般を指すものとし、中でも内燃機関とは、燃料の燃焼によって生じた高温高圧のガスを直接ピストン及びタービン羽根などに作用させ,その膨張によって燃料の燃焼熱を機械的仕事に変える熱機関であって,ガスエンジン、ガソリンエンジン、ディーゼルエンジン等に加えて、ガスタービン,ジェットエンジン及びロケットも内燃機関に含めうる。   Combustion devices refer to all devices that obtain heat and power energy by burning fuel such as internal combustion engines, external combustion engines, fuel cells, burners, boilers, and heaters. A heat engine that causes high-temperature and high-pressure gas generated by combustion to directly act on pistons and turbine blades, etc., and to convert the combustion heat of fuel into mechanical work by its expansion. In addition to gas engines, gasoline engines, diesel engines, etc. Gas turbines, jet engines and rockets can also be included in the internal combustion engine.

従って、前記冷却水の温度を管理するだけの簡単な構成により、前記温室空間内の植物育成条件を容易に適正に維持することができるようになり、植物の育成条件の面からも、トリジェネレーションとしてエネルギーの有効利用の観点からも好適な温室栽培システムを提供することができるようになった。   Therefore, a simple configuration that only manages the temperature of the cooling water makes it possible to easily and properly maintain plant growth conditions in the greenhouse space. From the viewpoint of plant growth conditions, trigeneration is also possible. As a result, it has become possible to provide a suitable greenhouse cultivation system from the viewpoint of effective use of energy.

温室栽培システムの概略図である。It is the schematic of a greenhouse cultivation system. レタスの栽培制御のフロー図である。It is a flowchart of cultivation control of lettuce. 菜類植物の栽培制御のフロー図である。It is a flowchart of cultivation control of a vegetable plant.

以下に、本発明の温室栽培システムを説明する。以下、本発明の一実施形態について図面に基づいて説明する。   Below, the greenhouse cultivation system of this invention is demonstrated. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明の温室栽培システムは、温室にコジェネレーション装置1を備えて構成される。前記コジェネレーション装置1は、炭化水素燃料として都市ガスを用いるガスエンジン11に、発電機12を設けるとともに、ガスエンジン11を冷却するエンジン冷却水11aと熱交換して貯湯する貯湯タンク13を設けて構成されている。前記発電機12は、インバータ12aを備え、後述の冷却水温度調整装置23や外部の電力消費部14の消費電力をまかなうように電力を出力可能に構成される。また、前記貯湯タンク13は、前記エンジン冷却水11aの熱をエンジン冷却水熱交換器15により熱交換し、貯湯タンク13内の湯水を加熱する構成とし、さらに、エンジン排ガス11bから熱回収する排ガス熱交換器16を備え、その排ガス熱交換器16での熱交換によっても貯湯タンク13内の湯水を加熱する構成としてある。尚、貯湯タンク13には例えば給湯装置などの熱消費部17を接続するほか、種々の熱回路を接続し、熱回路の湯水の流れを、開閉弁、制御弁等で制御する構成を採用するが、種々公知の構成を採用することができるので、ここでは説明を省略する。   The greenhouse cultivation system of the present invention includes a cogeneration apparatus 1 in a greenhouse. The cogeneration apparatus 1 includes a generator 12 in a gas engine 11 that uses city gas as a hydrocarbon fuel, and a hot water storage tank 13 that stores hot water by exchanging heat with an engine cooling water 11 a that cools the gas engine 11. It is configured. The generator 12 includes an inverter 12a, and is configured to be able to output power so as to cover power consumption of a cooling water temperature adjusting device 23 and an external power consumption unit 14 described later. The hot water storage tank 13 is configured to heat-exchange the heat of the engine cooling water 11a by the engine cooling water heat exchanger 15 to heat the hot water in the hot water storage tank 13, and further, exhaust gas that recovers heat from the engine exhaust gas 11b. A heat exchanger 16 is provided, and the hot water in the hot water storage tank 13 is also heated by heat exchange in the exhaust gas heat exchanger 16. The hot water storage tank 13 is connected to, for example, a heat consuming unit 17 such as a hot water supply device, and is connected to various heat circuits to control the flow of hot water in the heat circuit with an open / close valve, a control valve, and the like. However, since various known configurations can be adopted, description thereof is omitted here.

前記ガスエンジン11の排ガス路18には、排ガス浄化触媒部19が設けられ、前記排ガス11b中の植物に対する有害性分を除去、無害化する構成とする。また、前記排ガス路18には、無害化された排ガス11bの一部または全部を温室2に導く排ガス分配部20を設けるとともに温室に対する排ガス供給路21を接続してある。前記排ガス分配部20の排ガス分配率を調整することにより、前記温室2内の二酸化炭素濃度が適正に調整される。前記排ガス供給路21には、温室ガス熱交換器22を設けて、前記排ガス11bの温度を調整可能に構成する。   An exhaust gas purification catalyst unit 19 is provided in the exhaust gas path 18 of the gas engine 11 to remove and detoxify harmful components to plants in the exhaust gas 11b. The exhaust gas path 18 is provided with an exhaust gas distribution unit 20 that guides part or all of the detoxified exhaust gas 11b to the greenhouse 2 and is connected to an exhaust gas supply path 21 for the greenhouse. By adjusting the exhaust gas distribution ratio of the exhaust gas distribution unit 20, the carbon dioxide concentration in the greenhouse 2 is adjusted appropriately. The exhaust gas supply path 21 is provided with a greenhouse gas heat exchanger 22 so that the temperature of the exhaust gas 11b can be adjusted.

前記温室ガス熱交換器22は潜熱回収型熱交換器とし、前記排ガス11b中の水蒸気をドレンとして除去する構成となっている。前記温室ガス熱交換器22は、前記排ガス11bと排ガス冷却水23aとの間で熱交換を行うとともに、水蒸気の一部をドレンとして除去された排ガス11cを温室空間に供給するとともに、熱交換された排ガス冷却水23bを温室空間2bにおいて植物の栽培される栽培部2aに供給する構成としてある。また、前記排ガス冷却水23aの供給路24には、冷却水温度調整装置23が設けてある。前記冷却水温度調整装置23は、前記発電機12からの電力によって駆動されるヒートポンプ装置等からなる熱交換温度制御機構23cを備え、排ガス冷却水23aの温度は、前記温室2に設けられる湿度センサ25の出力に基き、前記温室2内の湿度を適正に維持するよう制御装置27により制御される。前記温室ガス熱交換器22から生じたドレンは、ドレン回収部22aにより温室の栽培部2aに供給される。   The greenhouse gas heat exchanger 22 is a latent heat recovery type heat exchanger, and is configured to remove water vapor in the exhaust gas 11b as drain. The greenhouse gas heat exchanger 22 performs heat exchange between the exhaust gas 11b and the exhaust gas cooling water 23a, and supplies the exhaust gas 11c, which has been removed with a part of water vapor as drainage, to the greenhouse space and is also heat-exchanged. The exhaust gas cooling water 23b is supplied to the cultivation unit 2a where plants are cultivated in the greenhouse space 2b. A cooling water temperature adjusting device 23 is provided in the supply passage 24 for the exhaust gas cooling water 23a. The cooling water temperature adjusting device 23 includes a heat exchange temperature control mechanism 23c including a heat pump device driven by electric power from the generator 12, and the temperature of the exhaust gas cooling water 23a is a humidity sensor provided in the greenhouse 2. Based on the output of 25, the controller 27 controls the humidity in the greenhouse 2 to be maintained appropriately. The drain generated from the greenhouse gas heat exchanger 22 is supplied to the cultivation unit 2a of the greenhouse by the drain recovery unit 22a.

また、前記温室2内部の温室空間2bには、前記貯湯タンク13からの温水循環により温室に熱を供給する温室暖房装置28を設け、温室空間2bを加熱可能に構成してある。前記温室空間2bの温度は、前記温室2に設けられる温度センサ26の出力に基き、前記温室2内の温度を適正に維持するよう前記制御装置27により制御される。つまり、前記制御装置27により前記冷却水温度調整装置23を動作制御するように、供給温室温度制御機構が構成されている。   Further, a greenhouse heating device 28 for supplying heat to the greenhouse by hot water circulation from the hot water storage tank 13 is provided in the greenhouse space 2b inside the greenhouse 2, so that the greenhouse space 2b can be heated. The temperature of the greenhouse space 2b is controlled by the control device 27 so as to maintain the temperature in the greenhouse 2 appropriately based on the output of the temperature sensor 26 provided in the greenhouse 2. That is, the supply greenhouse temperature control mechanism is configured such that the control device 27 controls the operation of the cooling water temperature adjusting device 23.

以下に、植物の一例としてレタスを促成栽培する温室の温室空間2b内の環境を制御する場合の制御フローを示す。   Below, the control flow in the case of controlling the environment in the greenhouse space 2b of the greenhouse which forcibly cultivates lettuce as an example of a plant is shown.

レタスの栽培では、温室空間2b内の湿度制御が必要になる。そこで、図2に示すように、温室空間2b内の湿度を計測(#1)し、RH70%以下のとき(#2)湿度を上げ、RH90%以上のとき(#4)湿度を下げる制御を行う。湿度を上げる制御は、排ガスの露点を上げることによって行うことができるので、冷却水温度を上げる(#3)ことにより制御できる。具体的に冷却水温度を上げるには、例えば、前記熱交換温度制御機構23cとしての前記ヒートポンプ装置の大気中からの熱回収量を増大させるなどして、供給される排ガス冷却水を加熱する。逆に湿度を下げる制御は、排ガスの露点を下げることによって行うことができ、冷却水温度を下げる(#5)ことにより制御できる。具体的に冷却水温度を下げるには、例えば、前記熱交換温度制御機構23cとしての前記ヒートポンプ装置の熱回路を切替え、前記冷却水から熱を回収して大気中に放熱すればよい。
温室空間2b内湿度がRH70〜90%である場合は、そのまま冷却水温度を維持する(#6)。
In the cultivation of lettuce, humidity control in the greenhouse space 2b is necessary. Therefore, as shown in FIG. 2, the humidity in the greenhouse space 2b is measured (# 1), and when RH is 70% or less (# 2), the humidity is increased, and when RH is 90% or more (# 4), the humidity is decreased. Do. Since the control for increasing the humidity can be performed by increasing the dew point of the exhaust gas, it can be controlled by increasing the cooling water temperature (# 3). In order to raise the cooling water temperature specifically, for example, the exhaust gas cooling water to be supplied is heated by increasing the amount of heat recovered from the atmosphere of the heat pump device as the heat exchange temperature control mechanism 23c. Conversely, the control for lowering the humidity can be performed by lowering the dew point of the exhaust gas, and can be controlled by lowering the cooling water temperature (# 5). Specifically, for example, the cooling water temperature may be lowered by switching the heat circuit of the heat pump device as the heat exchange temperature control mechanism 23c, recovering heat from the cooling water, and radiating it to the atmosphere.
When the humidity in the greenhouse space 2b is RH 70 to 90%, the cooling water temperature is maintained as it is (# 6).

また、温室内に精密機器を設置した環境下での菜類植物を促成栽培するための温室空間内環境制御のフローを示す。   Moreover, the flow of the environmental control in the greenhouse space for forcing cultivation of the vegetable plant in the environment which installed the precision instrument in the greenhouse is shown.

精密機器設置下での菜類の栽培では、温度および湿度の制御が必要になる。そこで、図3に示すように、温室空間2b内の湿度を計測(#11)し、RH30%以下のとき(#12)湿度を上げる制御を行い、RH80%以上のとき(#13)湿度を下げる制御を行う。湿度を上げる制御は、室内温度を下げるか、排ガスの露点を上げることによって行うことができるが、温室空間内の温度が下がりすぎると好ましくないので、温室空間2b内の温度を計測し(#14)、温度が15℃以下のときは冷却水温度を上げる(#16)ことにより露点を上げる制御をし、そうでなければ室内温度を下げる(#17)ことにより制御できる(#15)。逆に湿度を下げる制御は、室内温度を上げるか、排ガスの露点を下げることによって行うことができるが、室内温度を上げすぎると好ましくないので、温室空間2b内の温度を計測し(#18)、温度が25℃未満のときは室内温度を上げ(#20)、それ以外の場合は、冷却水温度を下げる(#21)ことにより露点を下げる制御ができる(#19)。温室空間内の湿度がRH30%〜80%であのときは、温室温度および湿度をそのまま維持する(#22)。   In the cultivation of vegetables under the installation of precision equipment, it is necessary to control the temperature and humidity. Therefore, as shown in FIG. 3, the humidity in the greenhouse space 2b is measured (# 11), and when RH is 30% or less (# 12), the humidity is controlled to be increased, and when RH is 80% or more (# 13), the humidity is increased. Control to lower. The control for increasing the humidity can be performed by lowering the room temperature or raising the dew point of the exhaust gas. However, if the temperature in the greenhouse space is too low, it is not preferable, so the temperature in the greenhouse space 2b is measured (# 14 When the temperature is 15 ° C. or less, the dew point is controlled to be raised by raising the cooling water temperature (# 16). Otherwise, the room temperature is lowered (# 17) (# 15). Conversely, the control to lower the humidity can be performed by raising the room temperature or lowering the dew point of the exhaust gas, but it is not preferable to raise the room temperature too much, so the temperature in the greenhouse space 2b is measured (# 18). When the temperature is lower than 25 ° C., the room temperature is raised (# 20), and otherwise, the dew point can be lowered by lowering the cooling water temperature (# 21) (# 19). When the humidity in the greenhouse space is RH 30% to 80%, the greenhouse temperature and humidity are maintained as they are (# 22).

尚、上記実例では、二酸化炭素濃度は、植物の促成栽培に適するといわれる700ppm〜1500ppmになるよう前記排ガス分配部の排ガス分配率を制御している。   In the above example, the exhaust gas distribution rate of the exhaust gas distribution unit is controlled so that the carbon dioxide concentration is 700 ppm to 1500 ppm, which is said to be suitable for forcing cultivation of plants.

また、制御フローは種々変更可能であり、植物の種類等によって管理数値を設定変更する。   The control flow can be variously changed, and the management numerical value is set and changed depending on the type of plant.

本発明により、温室栽培システムの温室内環境の管理が、より適格かつきめ細かく行えるようになるので、少ない労力で、品質管理の行き届いた植物を生産性高く生産できるようになった。   According to the present invention, since the management of the greenhouse environment of the greenhouse cultivation system can be performed more appropriately and finely, plants with good quality control can be produced with low productivity and high productivity.

1 コジェネレーション装置
2 温室
2a 栽培部
18 排ガス路
22 温室ガス熱交換器
23 冷却水温度調整装置
25 湿度センサ
27 制御装置
DESCRIPTION OF SYMBOLS 1 Cogeneration apparatus 2 Greenhouse 2a Cultivation part 18 Exhaust gas path 22 Greenhouse gas heat exchanger 23 Cooling water temperature adjustment apparatus 25 Humidity sensor 27 Control apparatus

Claims (5)

炭化水素を燃料とする燃焼装置から排出される二酸化炭素を含む排ガスを温室空間の植物に供給する排ガス流路を備えた温室栽培システムであって、
前記排ガス流路に前記排ガスを冷却水により冷却する潜熱回収型熱交換器を設けるとともに、前記潜熱回収型熱交換器で生成されるドレンを回収するドレン回収部を設け、前記潜熱回収型熱交換器で加温された冷却水の保有熱を温室に供給し、
前記温室空間内の湿度が温室内の植物の生育に適した湿度以上の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を低下させ、前記温室空間内の湿度が温室内の植物の生育に適した湿度未満の時、前記潜熱回収型熱交換器に供給される前記冷却水の温度を上昇させる熱交換温度制御機構を設けた温室栽培システム。
A greenhouse cultivation system including an exhaust gas flow path for supplying exhaust gas containing carbon dioxide discharged from a combustion apparatus using hydrocarbon as fuel to a plant in a greenhouse space,
A latent heat recovery type heat exchanger that cools the exhaust gas with cooling water is provided in the exhaust gas flow path, and a drain recovery unit that recovers drain generated by the latent heat recovery type heat exchanger is provided, and the latent heat recovery type heat exchange is provided. Supply the heat stored in the cooling water heated by the vessel to the greenhouse,
When the humidity in the greenhouse space is higher than the humidity suitable for the growth of plants in the greenhouse, the temperature of the cooling water supplied to the latent heat recovery heat exchanger is lowered, and the humidity in the greenhouse space is increased in the greenhouse. The greenhouse cultivation system which provided the heat exchange temperature control mechanism which raises the temperature of the said cooling water supplied to the said latent heat recovery type heat exchanger when it is less than the humidity suitable for growth of the plant of this.
前記温室空間内の温度が、温室内の植物の生育に適した温度未満の時、前記燃焼装置から排出される熱を前記温室空間内に供給するとともに、温室内の植物の生育に適した温度以上の時、前記燃焼装置から排出される熱の前記温室空間内への供給を抑制する供給温室温度制御機構を設けた請求項1に記載の温室栽培システム。   When the temperature in the greenhouse space is lower than the temperature suitable for the growth of plants in the greenhouse, the heat discharged from the combustion device is supplied to the greenhouse space and the temperature suitable for the growth of plants in the greenhouse. The greenhouse cultivation system of Claim 1 which provided the supply greenhouse temperature control mechanism which suppresses supply to the said greenhouse space of the heat | fever discharged | emitted from the said combustion apparatus at the above time. 前記ドレン回収部に回収される水または熱交換された冷却水を温室空間内の植物に供給する温水供給路を設けた請求項1または2に記載の温室栽培システム。   The greenhouse cultivation system of Claim 1 or 2 which provided the warm water supply path which supplies the water collect | recovered by the said drain collection | recovery part or the heat-exchanged cooling water to the plant in greenhouse space. 前記植物がレタスであり、
前記温室空間に湿度計を設け、
前記熱交換温度制御機構が、前記湿度計の出力湿度がRH70%以下のとき、冷却水温度を上昇させ、前記湿度計の出力湿度がRH90%以上のときに冷却水温度を低下させる温度調整を行う、
請求項1〜3のいずれか1項に記載の温室栽培システム。
The plant is lettuce,
Providing a hygrometer in the greenhouse space;
The heat exchange temperature control mechanism adjusts the temperature to increase the cooling water temperature when the output humidity of the hygrometer is RH 70% or less, and to decrease the cooling water temperature when the output humidity of the hygrometer is RH 90% or more. Do,
The greenhouse cultivation system of any one of Claims 1-3.
前記熱交換温度制御機構が、大気から熱を回収して冷却水に付与するヒートポンプ装置である請求項1〜4のいずれか1項に記載の温室栽培システム。   The greenhouse cultivation system according to any one of claims 1 to 4, wherein the heat exchange temperature control mechanism is a heat pump device that recovers heat from the atmosphere and applies the heat to cooling water.
JP2010062536A 2010-03-18 2010-03-18 Greenhouse cultivation system Expired - Fee Related JP5451473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062536A JP5451473B2 (en) 2010-03-18 2010-03-18 Greenhouse cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062536A JP5451473B2 (en) 2010-03-18 2010-03-18 Greenhouse cultivation system

Publications (2)

Publication Number Publication Date
JP2011193765A true JP2011193765A (en) 2011-10-06
JP5451473B2 JP5451473B2 (en) 2014-03-26

Family

ID=44872752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062536A Expired - Fee Related JP5451473B2 (en) 2010-03-18 2010-03-18 Greenhouse cultivation system

Country Status (1)

Country Link
JP (1) JP5451473B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132256A (en) * 2011-12-27 2013-07-08 Yanmar Co Ltd Horticultural facility
WO2014010561A1 (en) * 2012-07-10 2014-01-16 株式会社デンソー Carbon dioxide supply device
KR101361152B1 (en) 2013-01-22 2014-02-14 전남대학교산학협력단 Carbon dioxide generator for cultivation of plants
KR101484715B1 (en) 2013-07-04 2015-01-20 한국에너지기술연구원 Poly-generation system with CO2 enrichment supplying system
KR101509672B1 (en) * 2013-09-27 2015-04-07 전남대학교산학협력단 Independent plant factory using internal combustion engine
CN105009993A (en) * 2015-06-05 2015-11-04 柳州市山泰气体有限公司 Carbon dioxide supply apparatus
KR20160030621A (en) * 2014-09-11 2016-03-21 한국기계연구원 Gas engine heat pump control system for variable load
JP2016119896A (en) * 2014-12-24 2016-07-07 吉佳エンジニアリング株式会社 Method for utilizing resources and energy
CN106659128A (en) * 2014-06-10 2017-05-10 双叶产业株式会社 Carbon dioxide application device
JP2017093393A (en) * 2015-11-27 2017-06-01 株式会社タクマ Exhaust gas feeding system and exhaust gas feeding method
JP2017147996A (en) * 2016-02-25 2017-08-31 株式会社デンソー Carbon dioxide supply system
CN109417957A (en) * 2017-08-31 2019-03-05 双叶产业株式会社 Carbon dioxide application equipment
CN109644740A (en) * 2019-01-28 2019-04-19 徐浩 A kind of biomass energy recycles intelligent agricultural greenhouse
JP2019180253A (en) * 2018-04-02 2019-10-24 株式会社東芝 Carbon dioxide supply system and carbon dioxide supply method
JP6671651B1 (en) * 2019-10-01 2020-03-25 株式会社 ユーリカ エンジニアリング Cold water supply system that stores and uses LNG cold heat
JP2020058374A (en) * 2019-12-20 2020-04-16 株式会社タクマ Exhaust gas supply system and exhaust gas supply method
KR20200046228A (en) * 2018-10-23 2020-05-07 한국기계연구원 Quad-generation system having dehydrating structure and method for operating the system
CN112021045A (en) * 2020-08-06 2020-12-04 李军 Cherry planting spraying device and using method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031260B1 (en) 2019-04-08 2019-10-11 농업회사법인 인워터솔루션 주식회사 Smart farm capable of reducing air pollution by eco-cleaning boiler flue gas

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260162U (en) * 1985-10-03 1987-04-14
JPS62166820A (en) * 1986-01-15 1987-07-23 吉田 厚生 Air conditioner of greenhouse equipped with apparatus for storing co2 of combustion exhaust gas
JPS6349650A (en) * 1986-08-15 1988-03-02 Nippon Telegr & Teleph Corp <Ntt> Control of air conditioner
JP2004248565A (en) * 2003-02-19 2004-09-09 Toshiba Corp Apparatus for supplying carbon dioxide and warm water to greenhouse
JP2004344154A (en) * 2003-05-23 2004-12-09 Nepon Inc Carbon dioxide feed system combined with exhaust heat recovery in greenhouse for protected horticulture
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
JP2007020524A (en) * 2005-07-20 2007-02-01 Keiyo Gas Kk Energy supply system for plant cultivation green house
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
WO2009044855A1 (en) * 2007-10-03 2009-04-09 Sasakura Engineering Co., Ltd. Air-conditioning facility, radiation air-conditioning system, and radiation air-conditioning system control method
JP2009257600A (en) * 2008-04-11 2009-11-05 Takasago Thermal Eng Co Ltd Outside air intake system
JP2010002118A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Air conditioning system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260162U (en) * 1985-10-03 1987-04-14
JPS62166820A (en) * 1986-01-15 1987-07-23 吉田 厚生 Air conditioner of greenhouse equipped with apparatus for storing co2 of combustion exhaust gas
JPS6349650A (en) * 1986-08-15 1988-03-02 Nippon Telegr & Teleph Corp <Ntt> Control of air conditioner
JP2004248565A (en) * 2003-02-19 2004-09-09 Toshiba Corp Apparatus for supplying carbon dioxide and warm water to greenhouse
JP2004344154A (en) * 2003-05-23 2004-12-09 Nepon Inc Carbon dioxide feed system combined with exhaust heat recovery in greenhouse for protected horticulture
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
JP2007020524A (en) * 2005-07-20 2007-02-01 Keiyo Gas Kk Energy supply system for plant cultivation green house
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
WO2009044855A1 (en) * 2007-10-03 2009-04-09 Sasakura Engineering Co., Ltd. Air-conditioning facility, radiation air-conditioning system, and radiation air-conditioning system control method
JP2009257600A (en) * 2008-04-11 2009-11-05 Takasago Thermal Eng Co Ltd Outside air intake system
JP2010002118A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Air conditioning system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132256A (en) * 2011-12-27 2013-07-08 Yanmar Co Ltd Horticultural facility
JPWO2014010561A1 (en) * 2012-07-10 2016-06-23 株式会社デンソー Carbon dioxide supply device
WO2014010561A1 (en) * 2012-07-10 2014-01-16 株式会社デンソー Carbon dioxide supply device
KR20150027126A (en) * 2012-07-10 2015-03-11 가부시키가이샤 덴소 Carbon dioxide supply device
CN104427858A (en) * 2012-07-10 2015-03-18 株式会社电装 Carbon dioxide supply device
KR101681601B1 (en) 2012-07-10 2016-12-01 가부시키가이샤 덴소 Carbon dioxide supply device
KR101361152B1 (en) 2013-01-22 2014-02-14 전남대학교산학협력단 Carbon dioxide generator for cultivation of plants
KR101484715B1 (en) 2013-07-04 2015-01-20 한국에너지기술연구원 Poly-generation system with CO2 enrichment supplying system
KR101509672B1 (en) * 2013-09-27 2015-04-07 전남대학교산학협력단 Independent plant factory using internal combustion engine
CN106659128A (en) * 2014-06-10 2017-05-10 双叶产业株式会社 Carbon dioxide application device
KR101903297B1 (en) * 2014-06-10 2018-10-01 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device
KR101629765B1 (en) * 2014-09-11 2016-06-14 한국기계연구원 Gas engine heat pump control system for variable load
KR20160030621A (en) * 2014-09-11 2016-03-21 한국기계연구원 Gas engine heat pump control system for variable load
JP2016119896A (en) * 2014-12-24 2016-07-07 吉佳エンジニアリング株式会社 Method for utilizing resources and energy
CN105009993A (en) * 2015-06-05 2015-11-04 柳州市山泰气体有限公司 Carbon dioxide supply apparatus
JP2017093393A (en) * 2015-11-27 2017-06-01 株式会社タクマ Exhaust gas feeding system and exhaust gas feeding method
JP2017147996A (en) * 2016-02-25 2017-08-31 株式会社デンソー Carbon dioxide supply system
CN109417957A (en) * 2017-08-31 2019-03-05 双叶产业株式会社 Carbon dioxide application equipment
CN109417957B (en) * 2017-08-31 2021-05-07 双叶产业株式会社 Carbon dioxide application apparatus
JP2019180253A (en) * 2018-04-02 2019-10-24 株式会社東芝 Carbon dioxide supply system and carbon dioxide supply method
JP7043325B2 (en) 2018-04-02 2022-03-29 株式会社東芝 Carbon dioxide supply system and carbon dioxide supply method
KR20200046228A (en) * 2018-10-23 2020-05-07 한국기계연구원 Quad-generation system having dehydrating structure and method for operating the system
KR102110891B1 (en) * 2018-10-23 2020-05-18 한국기계연구원 Quad-generation system having dehydrating structure and method for operating the system
CN109644740A (en) * 2019-01-28 2019-04-19 徐浩 A kind of biomass energy recycles intelligent agricultural greenhouse
JP6671651B1 (en) * 2019-10-01 2020-03-25 株式会社 ユーリカ エンジニアリング Cold water supply system that stores and uses LNG cold heat
WO2021064869A1 (en) * 2019-10-01 2021-04-08 株式会社 ユーリカ エンジニアリング Cold water supply system for storing and using lng cold heat
JP2020058374A (en) * 2019-12-20 2020-04-16 株式会社タクマ Exhaust gas supply system and exhaust gas supply method
CN112021045A (en) * 2020-08-06 2020-12-04 李军 Cherry planting spraying device and using method thereof

Also Published As

Publication number Publication date
JP5451473B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5451473B2 (en) Greenhouse cultivation system
RU2548951C1 (en) Method and device for providing plants and/or algae with heat and carbon dioxide with application of power plant flue gases
KR101509672B1 (en) Independent plant factory using internal combustion engine
JP5635802B2 (en) Internal combustion engine drive control method and greenhouse cultivation system
JP4827810B2 (en) Automatic operation control system for house for plant cultivation
KR101254622B1 (en) Energy regeneration system
KR101063372B1 (en) Combined heat and power system for greenhouse carbon dioxide enrichment
KR101044375B1 (en) Combined heat and power system with heat recovery steam generator for greenhouse carbon dioxide enrichment
KR101569677B1 (en) Tri-generation system using high lean burn operation and control method thereof
RU2007120220A (en) GAS REDUCTION VALVE AND SYSTEM OF PRODUCTION AND MANAGEMENT OF ENERGY, INCLUDING GAS REDUCTION VALVE
CN107027554A (en) A kind of thermal power plant&#39;s energy and carbon dioxide Application way and system based on plant factor
JP2014223050A (en) Greenhouse heater with power generation function using heat for heating added
JP5109024B2 (en) Plant production system
US20160010899A1 (en) Climate control systems and methods
JP2016151273A (en) Cogeneration type heating device for house provided with co2 reservoir
KR20190143045A (en) Plant Growth System Linked to Distributed Generation System
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
CN206821479U (en) A kind of thermal power plant&#39;s energy and carbon dioxide based on plant factor utilize system
JPS62166820A (en) Air conditioner of greenhouse equipped with apparatus for storing co2 of combustion exhaust gas
KR20210041732A (en) Fuel cell power generation system for greenhouse
KR101931441B1 (en) CO2 generation and temperature control device using methanol
JP3224596U (en) Pyrolysis equipment
JP6864068B2 (en) Exhaust gas supply system and exhaust gas supply method
CN202411079U (en) Cooling water circulating system for garbage treatment equipment
NL1023408C2 (en) Device for supplying energy, heating and carbon dioxide to greenhouses.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5451473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees