JP5635802B2 - Internal combustion engine drive control method and greenhouse cultivation system - Google Patents

Internal combustion engine drive control method and greenhouse cultivation system Download PDF

Info

Publication number
JP5635802B2
JP5635802B2 JP2010106495A JP2010106495A JP5635802B2 JP 5635802 B2 JP5635802 B2 JP 5635802B2 JP 2010106495 A JP2010106495 A JP 2010106495A JP 2010106495 A JP2010106495 A JP 2010106495A JP 5635802 B2 JP5635802 B2 JP 5635802B2
Authority
JP
Japan
Prior art keywords
exhaust gas
greenhouse
internal combustion
combustion engine
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010106495A
Other languages
Japanese (ja)
Other versions
JP2011236750A (en
Inventor
和伸 小林
和伸 小林
良胤 ▲高▼島
良胤 ▲高▼島
大樹 田中
大樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010106495A priority Critical patent/JP5635802B2/en
Publication of JP2011236750A publication Critical patent/JP2011236750A/en
Application granted granted Critical
Publication of JP5635802B2 publication Critical patent/JP5635802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Greenhouses (AREA)

Description

本発明は、排ガス浄化部を備えた排ガス流路を介して、炭化水素を燃焼させて二酸化炭素を含む排ガスを温室に供給する内燃機関の駆動制御方法および炭化水素を燃料とする燃焼装置から排出される二酸化炭素を含む排ガスを温室空間の植物に供給する排ガス流路を備えた温室栽培システムに関する。   The present invention relates to a driving control method for an internal combustion engine that supplies hydrocarbons with exhaust gas containing carbon dioxide to a greenhouse through an exhaust gas flow path having an exhaust gas purification unit, and exhaust from a combustion apparatus using hydrocarbons as fuel. The present invention relates to a greenhouse cultivation system having an exhaust gas flow path for supplying exhaust gas containing carbon dioxide to a plant in a greenhouse space.

近年、コジェネレーションが広く採用されるようになってきており、これによりエネルギー効率が向上して、地球温暖化の原因となる二酸化炭素の排出量の低減が図られている。コジェネレーションは、発電時に発生する電力および熱をエネルギー源として利用するものであるが、更に、この時に生成され従来は廃棄されていた二酸化炭素を有効利用するものとして、トリジェネレーションという形態がある。   In recent years, cogeneration has been widely adopted, thereby improving energy efficiency and reducing carbon dioxide emissions that cause global warming. Cogeneration uses power and heat generated during power generation as an energy source, and there is another form of trigeneration that effectively uses carbon dioxide generated at this time and discarded in the past.

前記排ガスは、重油や灯油のほかLPガスや都市ガス等の炭化水素燃料を燃焼させたものであるから、大気中よりも高濃度の二酸化炭素を含んでいる。トリジェネレーションは、ガスエンジンをはじめとする内燃機関等から排出される排ガスを浄化して、排ガス中に含まれる二酸化炭素を温室内で光合成の原料の一つとして積極的に植物の育成促進等の目的で温室栽培システム等に利用するものである(特許文献1、2参照)。   Since the exhaust gas is obtained by burning hydrocarbon fuel such as LP gas and city gas in addition to heavy oil and kerosene, it contains carbon dioxide at a higher concentration than in the atmosphere. Trigeneration purifies exhaust gas emitted from internal combustion engines such as gas engines, and actively promotes the growth of plants using carbon dioxide contained in the exhaust gas as one of the raw materials for photosynthesis in the greenhouse. It is used for a greenhouse cultivation system for the purpose (see Patent Documents 1 and 2).

特開2008−201649号公報JP 2008-201649 A 特開2004−344154号公報JP 2004-344154 A

温室内の植物の好適な育成環境としては、ある程度高濃度(700ppm〜1500ppm)の二酸化炭素を有するほうが促成栽培等の観点から好ましいといわれている。しかし、内燃機関の駆動効率を良くすべく、希薄燃焼で駆動して、発生する排ガスを温室に供給しようとすると、その希薄燃焼では排出量が少ないものの、排ガスには、植物の成長に好ましくない許容限度を超える窒素酸化物が含有されてしまうという問題があり、排ガスからこのような窒素酸化物を除去するために、触媒を用いても、前記窒素酸化物濃度を十分減少させることが困難であった。また、前記窒素酸化物濃度を十分減少させることを優先して、前記内燃機関をストイキ燃焼駆動すると、排ガス中に含まれる窒素酸化物を三元触媒によって除去することができるものの、内燃機関の駆動効率が低下してしまうという問題があり、内燃機関の駆動効率の向上と、窒素酸化物濃度の低減とを両立させることは困難である実情であった。   As a suitable growing environment for plants in a greenhouse, it is said that it is preferable to have carbon dioxide with a certain level of high concentration (700 ppm to 1500 ppm) from the viewpoint of forcing cultivation and the like. However, in order to improve the driving efficiency of the internal combustion engine, when it is driven by lean combustion and the exhaust gas generated is supplied to the greenhouse, the exhaust gas is small in the lean combustion, but the exhaust gas is not preferable for the growth of plants. There is a problem that nitrogen oxides exceeding the allowable limit are contained, and even if a catalyst is used to remove such nitrogen oxides from exhaust gas, it is difficult to sufficiently reduce the nitrogen oxide concentration. there were. In addition, when the internal combustion engine is driven by stoichiometric combustion with priority given to sufficiently reducing the nitrogen oxide concentration, the nitrogen oxide contained in the exhaust gas can be removed by the three-way catalyst, but the internal combustion engine is driven. There is a problem that the efficiency is lowered, and it has been difficult to achieve both improvement in driving efficiency of the internal combustion engine and reduction in nitrogen oxide concentration.

本発明の目的は、上記実情に鑑み、内燃機関の駆動効率を高く維持しつつ、温室に供給される排ガス中の窒素酸化物濃度を低減させることができる内燃機関の駆動制御方法および温室栽培システムを提供することにある。   In view of the above circumstances, an object of the present invention is to provide an internal combustion engine drive control method and a greenhouse cultivation system that can reduce the nitrogen oxide concentration in exhaust gas supplied to a greenhouse while maintaining high drive efficiency of the internal combustion engine. Is to provide.

〔構成〕
上記目的を達成するための本発明の内燃機関の駆動制御方法の特徴構成は、排ガス浄化部を備えた排ガス流路を介して、炭化水素を燃焼させて二酸化炭素を含む排ガスを温室に供給する内燃機関の駆動制御方法として、
前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときは、前記内燃機関をストイキ燃焼駆動するとともに、前記内燃機関からの排ガスを浄化する三元触媒を設けた排ガス浄化部を備えた排ガス流路を介して温室に供給する一方、
前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲よりも低いときは、前記内燃機関を希薄燃焼駆動するとともに、前記内燃機関からの一酸化炭素を除去する酸化触媒を設けた排ガス浄化部を備えた排ガス流路を介して温室に供給する点にある。
〔Constitution〕
In order to achieve the above object, the characteristic configuration of the internal combustion engine drive control method of the present invention is to supply hydrocarbons to a greenhouse by burning hydrocarbons and exhausting carbon dioxide through an exhaust gas flow path having an exhaust gas purification unit. As a drive control method for an internal combustion engine,
When the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse and the nitrogen oxide concentration in the greenhouse is equal to or higher than the nitrogen oxide concentration range required in the greenhouse, the internal combustion engine While supplying to the greenhouse via an exhaust gas flow path provided with an exhaust gas purification unit provided with a three-way catalyst for purifying exhaust gas from the internal combustion engine,
When the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse and the nitrogen oxide concentration in the greenhouse is lower than the nitrogen oxide concentration range required in the greenhouse, the internal combustion The engine is driven by lean combustion, and is supplied to the greenhouse via an exhaust gas flow path provided with an exhaust gas purification unit provided with an oxidation catalyst for removing carbon monoxide from the internal combustion engine .

〔作用効果〕
つまり、内燃機関を駆動する場合に、ストイキ燃焼駆動させると、窒素酸化物の濃度が低い排ガスを供給することができ、逆に、希薄燃焼駆動すると、温室に導入される排ガス中の窒素酸化物の濃度は上昇してしまうが、効率の良い駆動状態で内燃機関を駆動することができる。
[Function and effect]
In other words, when driving an internal combustion engine, if stoichiometric combustion driving is performed, exhaust gas with a low concentration of nitrogen oxides can be supplied, and conversely, if lean combustion driving is performed, nitrogen oxides in exhaust gas introduced into the greenhouse However, the internal combustion engine can be driven in an efficient driving state.

温室では、植物の二酸化炭素消費や、温室内から温室外への不可避的な換気条件から二酸化炭素濃度が低下する。そして、二酸化炭素濃度が低下した場合、前記内燃機関の排ガスを導入することにより前記温室内の二酸化炭素濃度を上昇させることができる。この際、前記温室内の窒素酸化物濃度も上昇するが、その上昇度が低い場合、やはり、前記内燃機関は駆動効率の高い駆動方法で駆動することが好ましく、即ち、希薄燃焼で駆動することができる。   In the greenhouse, the concentration of carbon dioxide decreases due to carbon dioxide consumption by plants and inevitable ventilation conditions from inside the greenhouse to outside the greenhouse. And when carbon dioxide concentration falls, the carbon dioxide concentration in the said greenhouse can be raised by introduce | transducing the exhaust gas of the said internal combustion engine. At this time, the nitrogen oxide concentration in the greenhouse also increases, but if the increase is low, the internal combustion engine is preferably driven by a driving method with high driving efficiency, that is, driven by lean combustion. Can do.

さらに、二酸化炭素の供給を行う場合に、前記温室内の窒素酸化物濃度が上昇してしまうと、前記温室内の窒素酸化物濃度が上昇して植物に悪影響を与え始めることになるので、窒素酸化物濃度の低い排ガスを供給することが好ましい。そこで、前記内燃機関としては、このような環境になった場合にはじめて、駆動効率を犠牲にしても、排ガス中の窒素酸化物濃度が低くなるように運転すればよい。即ち、このとき内燃機関をストイキ燃焼駆動する。   Furthermore, when supplying nitrogen dioxide, if the nitrogen oxide concentration in the greenhouse rises, the nitrogen oxide concentration in the greenhouse rises and begins to adversely affect plants. It is preferable to supply exhaust gas having a low oxide concentration. Therefore, the internal combustion engine only needs to be operated so that the concentration of nitrogen oxides in the exhaust gas becomes low, even when the driving efficiency is sacrificed, when such an environment is reached. That is, at this time, the internal combustion engine is driven by stoichiometric combustion.

このように、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときにのみ、内燃機関の駆動方法を、ストイキ燃焼駆動とし、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲よりも低いときに、希薄燃焼駆動させることにより、運転効率低下を最小限に抑えつつ、温室に供給される排ガスの窒素酸化物濃度を低く抑えた内燃機関の運転方法を実現することができる。 Thus, when the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse and the nitrogen oxide concentration in the greenhouse is equal to or greater than the nitrogen oxide concentration range required in the greenhouse. The internal combustion engine drive method is stoichiometric combustion drive , the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse, and the nitrogen oxide concentration in the greenhouse is determined in the greenhouse. An operating method of an internal combustion engine that suppresses a reduction in operating efficiency and suppresses a nitrogen oxide concentration of exhaust gas supplied to a greenhouse to a low level by driving a lean burn when the concentration is lower than a nitrogen oxide concentration range. Can be realized.

尚、内燃機関の各燃焼状態において、排ガス中の窒素酸化物濃度は、温室に導入されるまでに可能な範囲で低減させられることが好ましく、現実的にも触媒燃焼、吸着等の作用により窒素酸化物は低減させられる。しかし、一般に、希薄燃焼により発生する排ガスからの窒素酸化物除去のほうが、ストイキ燃焼により発生する排ガスからの窒素酸化物除去を考える場合よりも、適用可能な窒素酸化物除去手段が限られ、能力的にも低くなりがちである。そのため、排ガス中の窒素酸化物の低減処理を行ったとしても、やはり、内燃機関をストイキ燃焼させた場合のほうが希薄燃焼させた場合よりも窒素酸化物の濃度の低い排ガスを供給することができる。   In each combustion state of the internal combustion engine, the nitrogen oxide concentration in the exhaust gas is preferably reduced as much as possible until it is introduced into the greenhouse. Oxides are reduced. However, in general, removal of nitrogen oxides from exhaust gas generated by lean combustion has a limited number of applicable nitrogen oxide removal means compared with the case of considering removal of nitrogen oxides from exhaust gas generated by stoichiometric combustion. Tend to be low. Therefore, even when nitrogen oxides in the exhaust gas are reduced, exhaust gas having a lower nitrogen oxide concentration can be supplied when the internal combustion engine is stoichiometrically burned than when lean combustion is performed. .

また、前記内燃機関の燃焼駆動状態に応じてその内燃機関から発生する排ガスをそれぞれの燃焼状態に適した排ガス浄化触媒の備えられた排ガス流路に流通させているから、ストイキ燃焼ではその排ガスから窒素酸化物、一酸化炭素を除去することができ、希薄燃焼ではその排ガスから一酸化炭素を除去することができる。また、希薄燃焼はもともと排ガス中に含まれる窒素酸化物の濃度が比較的低い燃焼方式である。そのため、前記内燃機関のいずれの燃焼駆動状態であっても、前記温室に供給される排ガスは、窒素酸化物の濃度を十分に低く抑えたものとなっており、各運転駆動状態において温室内の窒素酸化物濃度が上昇しにくい環境での排ガス供給が行える。
Further, since the are allowed to flow exhaust gas generated from the internal combustion engine in the exhaust gas line provided with an exhaust gas purifying catalyst suitable for each combustion state according to the combustion driving state of the internal combustion engine, the stoichiometric combustion from the gas Nitrogen oxide and carbon monoxide can be removed, and in lean combustion, carbon monoxide can be removed from the exhaust gas. In addition, lean combustion is a combustion method in which the concentration of nitrogen oxides contained in the exhaust gas is relatively low. Therefore, in any combustion driving state of the internal combustion engine, the exhaust gas supplied to the greenhouse has a sufficiently low concentration of nitrogen oxides. The exhaust gas can be supplied in an environment where the concentration of nitrogen oxides is difficult to increase.

〔構成〕
また、前記排ガス流路に、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低くない場合において前記内燃機関を希薄燃焼駆動したときの排ガスを、温室内以外の空間に放出する排気部を設けてあることが好ましい。
〔Constitution〕
In addition, when the carbon dioxide concentration in the greenhouse is not lower than the carbon dioxide concentration range required in the greenhouse, the exhaust gas when the internal combustion engine is driven by lean combustion is placed in a space other than the greenhouse. It is preferable that an exhaust part for discharging is provided.

〔作用効果〕
上述の構成において、温室では、適正濃度以下の二酸化炭素濃度になったときに内燃機関からの排ガスを供給すると、二酸化炭素濃度を上昇させ、適正値にすることができ、二酸化炭素濃度が適正値よりも上昇した場合、前記排ガスの供給を停止すれば、二酸化炭素の消費に伴い二酸化炭素の濃度が適正値に回復する。
[Function and effect]
In the above configuration, when the exhaust gas from the internal combustion engine is supplied when the carbon dioxide concentration is less than or equal to the appropriate concentration in the greenhouse, the carbon dioxide concentration can be increased to an appropriate value, and the carbon dioxide concentration is an appropriate value. When the supply of the exhaust gas is stopped, the concentration of carbon dioxide recovers to an appropriate value as the carbon dioxide is consumed.

したがって、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲より低くない、十分量の二酸化炭素が温室内に存在するときは、前記温室内には排ガスを導入する必要は無いから、前記内燃機関は駆動効率の高い駆動方法で駆動するとともに排ガスを温室内以外の空間に放出することが好ましく、即ち、内燃機関は、希薄燃焼駆動するとともに、排ガスを排気部から放出することが好ましい。このように内燃機関を運転駆動することにより、前記内燃機関を高効率で運転しつつ、前記温室内の二酸化炭素濃度を適正濃度範囲に維持することができる。   Therefore, when the carbon dioxide concentration in the greenhouse is not lower than the carbon dioxide concentration range required in the greenhouse and there is a sufficient amount of carbon dioxide in the greenhouse, it is not necessary to introduce exhaust gas into the greenhouse. The internal combustion engine is preferably driven by a driving method with high driving efficiency and emits exhaust gas to a space other than inside the greenhouse. In other words, the internal combustion engine is driven by lean combustion and emits exhaust gas from the exhaust section. preferable. By driving the internal combustion engine in this way, it is possible to maintain the carbon dioxide concentration in the greenhouse in an appropriate concentration range while operating the internal combustion engine with high efficiency.

〔構成〕
また、本発明の温室栽培システムの特徴構成は、炭化水素を燃料とする内燃機関から排出される二酸化炭素を含む排ガスを、温室空間の植物に供給する排ガス流路を備えた温室栽培システムであって、
前記内燃機関が希薄燃焼運転とストイキ燃焼運転とに切替可能に構成されるとともに、
前記排ガス流路に希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを設け、
前記内燃機関の燃焼運転状態に応じて前記希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを切り換える排ガス流路切替部を設け、
前記希薄燃焼排ガス流路に酸化触媒を設けた排ガス浄化部を備え、ストイキ燃焼排ガス流路に三元触媒を設けた排ガス浄化部を備え、
前記温室に二酸化炭素濃度検知部および窒素酸化物検知部を設けるとともに、
前記二酸化炭素濃度検知部および窒素酸化物検知部からの検知出力に基き、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときは、前記内燃機関をストイキ燃焼駆動するとともに、それ以外のときは、前記内燃機関を希薄燃焼駆動するように切り替える切替制御部を設けた点にある。
〔Constitution〕
The characteristic configuration of the greenhouse cultivation system of the present invention is a greenhouse cultivation system provided with an exhaust gas flow path for supplying exhaust gas containing carbon dioxide discharged from an internal combustion engine fueled with hydrocarbons to plants in the greenhouse space. And
The internal combustion engine is configured to be switchable between a lean combustion operation and a stoichiometric combustion operation,
A lean combustion exhaust gas channel and a stoichiometric combustion exhaust gas channel are provided in the exhaust gas channel,
An exhaust gas flow path switching unit that switches between the lean combustion exhaust gas flow path and the stoichiometric combustion exhaust gas flow path according to the combustion operation state of the internal combustion engine,
An exhaust gas purification unit provided with an oxidation catalyst in the lean combustion exhaust gas channel, and an exhaust gas purification unit provided with a three-way catalyst in the stoichiometric combustion exhaust gas channel,
While providing a carbon dioxide concentration detector and a nitrogen oxide detector in the greenhouse,
Based on the detection output from the carbon dioxide concentration detector and the nitrogen oxide detector, the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse, and the nitrogen oxide concentration in the greenhouse Is provided with a switching control unit that switches the internal combustion engine to stoichiometric combustion when it is above the nitrogen oxide concentration range required in the greenhouse, and to switch the internal combustion engine to lean combustion drive otherwise It is in.

〔作用効果〕
炭化水素を燃料とする内燃機関から排出される二酸化炭素を含む排ガスを、温室空間の植物に供給する排ガス流路を備えるから、排ガス中の二酸化炭素を供給して、温室内を高濃度に二酸化炭素を含む環境として植物を栽培することができる。
[Function and effect]
Since it has an exhaust gas flow path for supplying exhaust gas containing carbon dioxide emitted from an internal combustion engine fueled with hydrocarbons to plants in the greenhouse space, the carbon dioxide in the exhaust gas is supplied, and the greenhouse has a high concentration of carbon dioxide. Plants can be cultivated as an environment containing carbon.

このとき、排ガスを供給する際に、前記内燃機関が希薄燃焼運転とストイキ燃焼運転とに切替可能に構成されると、前記内燃機関は、運転効率の高い希薄燃焼運転と、排ガスを比較的清浄にできる、窒素酸化物をほとんど含まないストイキ燃焼運転とに切り換えることができ、排ガスの供給ニーズに応じて前記内燃機関の運転状態を切り換えることができる。   At this time, when the exhaust gas is supplied, if the internal combustion engine is configured to be switchable between a lean combustion operation and a stoichiometric combustion operation, the internal combustion engine performs a lean combustion operation with high operating efficiency and a relatively clean exhaust gas. The operation mode of the internal combustion engine can be switched according to the exhaust gas supply needs.

また、前記排ガス流路に希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを設けて前記内燃機関の燃焼運転状態に応じて前記希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを切り換える排ガス流路切替部を設けることによって、前記内燃機関の各運転駆動状態において、発生する排ガスをそれぞれ別の流路を介して温室に供給することができ、前記希薄燃焼排ガス流路に酸化触媒を設けた排ガス浄化部を備え、ストイキ燃焼排ガス流路に三元触媒を設けた排ガス浄化部を備えることによって、前記内燃機関の運転駆動状態に応じて適した触媒により、ストイキ燃焼では排ガスから窒素酸化物や一酸化炭素の除去を行い、希薄燃焼では一酸化炭素の除去を行う。さらに希薄燃焼はもともと排ガス中に含まれる窒素酸化物の濃度が比較的低い燃焼方式であるので、前記内燃機関の各運転駆動状態において窒素酸化物の濃度の低い排ガスを温室に供給することができる。   Further, the exhaust gas flow path is provided with a lean combustion exhaust gas flow path and a stoichiometric combustion exhaust gas flow path, and the exhaust gas switching between the lean combustion exhaust gas flow path and the stoichiometric combustion exhaust gas flow path according to the combustion operation state of the internal combustion engine By providing the flow path switching unit, the generated exhaust gas can be supplied to the greenhouse through different flow paths in each operation driving state of the internal combustion engine, and an oxidation catalyst is provided in the lean combustion exhaust gas flow path. In the stoichiometric combustion, nitrogen oxides are emitted from the exhaust gas by a catalyst suitable for the operation driving state of the internal combustion engine. And carbon monoxide are removed. In lean combustion, carbon monoxide is removed. Furthermore, since lean combustion is a combustion system in which the concentration of nitrogen oxides contained in the exhaust gas is relatively low, exhaust gas having a low concentration of nitrogen oxides can be supplied to the greenhouse in each driving state of the internal combustion engine. .

さらに、前記温室に二酸化炭素濃度検知部および窒素酸化物検知部を設けるとともに、前記二酸化炭素濃度検知部および窒素酸化物検知部からの検知出力に基き、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときは、前記内燃機関をストイキ燃焼駆動するとともに、それ以外のときは、前記内燃機関を希薄燃焼駆動するように切り替える切替制御部を設けてあると、上記内燃機関の駆動制御方法が適切に行え、内燃機関の駆動状態を可能な限り高効率に維持しながら、温室内の窒素酸化物濃度を低く維持することができる。   Further, a carbon dioxide concentration detection unit and a nitrogen oxide detection unit are provided in the greenhouse, and the carbon dioxide concentration in the greenhouse is increased in the greenhouse based on detection outputs from the carbon dioxide concentration detection unit and the nitrogen oxide detection unit. When the nitrogen dioxide concentration in the greenhouse is lower than the required carbon dioxide concentration range and is greater than or equal to the nitrogen oxide concentration range required in the greenhouse, the internal combustion engine is driven for stoichiometric combustion, and otherwise Is provided with a switching control unit that switches to drive the internal combustion engine to perform lean combustion, the internal combustion engine drive control method can be appropriately performed, while maintaining the drive state of the internal combustion engine as highly efficient as possible, The nitrogen oxide concentration in the greenhouse can be kept low.

〔構成〕
尚、前記内燃機関からの熱を温室内の加熱に用いても良く、
前記内燃機関で発電を行うとともに、前記発電で得られる電力を前記温室で使用しても良い。
〔Constitution〕
The heat from the internal combustion engine may be used for heating in the greenhouse,
While generating with the said internal combustion engine, you may use the electric power obtained by the said power generation in the said greenhouse.

〔作用効果〕
つまり、これらの構成を採用すると内燃機関の消費するエネルギーを二酸化炭素のみならず、熱や電力としても前記温室で利用することが出来るので、システム全体として独立して効率よくエネルギー利用が出来ることになった。
[Function and effect]
In other words, if these configurations are adopted, the energy consumed by the internal combustion engine can be used not only in carbon dioxide but also in the greenhouse as heat and power, so that the entire system can be used efficiently and efficiently. became.

従って、前記温室空間内の植物育成条件を容易に適正に維持しつつ内燃機関の運転駆動状態を良好に制御することができるので、植物の育成条件の面からも、トリジェネレーションとしてエネルギーの有効利用の観点からも好適な温室栽培システムを提供することができるようになった。   Accordingly, the operation driving state of the internal combustion engine can be well controlled while maintaining the plant growth conditions in the greenhouse space easily and appropriately, so that the effective use of energy as a trigeneration also from the aspect of plant growth conditions From this point of view, a suitable greenhouse cultivation system can be provided.

温室栽培システムの概略図である。It is the schematic of a greenhouse cultivation system. 温室栽培システムの栽培制御のフロー図である。It is a flowchart of cultivation control of a greenhouse cultivation system.

以下に、本発明の温室栽培システムを説明する。以下、本発明の一実施形態について図面に基づいて説明する。   Below, the greenhouse cultivation system of this invention is demonstrated. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明の温室栽培システムは、コジェネレーション装置1を温室2に備えて構成される。前記コジェネレーション装置1は、内燃機関の一例としてのガスエンジン11に、発電機12を設け、電力を生成するとともに、ガスエンジン11から発生する排ガス11aを流通する排ガス流路13、前記ガスエンジン11および排ガス11aを冷却するエンジン冷却水11bを流通させる冷却水流路14を設け、前記ガスエンジン11および排ガス11aから排ガス熱交換器15により排熱を回収して熱を利用可能に構成している。また、前記ガスエンジン11に対する燃料供給部16には、ガスエンジン11に供給される燃料と空気の比率を調整して前記ガスエンジン11の燃焼駆動状態を変更制御自在にする燃料供給弁16aを備え、後述の制御装置3により流量制御自在に構成してある。   The greenhouse cultivation system of the present invention is configured with a cogeneration apparatus 1 provided in a greenhouse 2. The cogeneration apparatus 1 is provided with a generator 12 in a gas engine 11 as an example of an internal combustion engine to generate electric power, and an exhaust gas passage 13 through which an exhaust gas 11a generated from the gas engine 11 circulates, and the gas engine 11. Further, a cooling water flow path 14 for circulating engine cooling water 11b for cooling the exhaust gas 11a is provided, and exhaust heat is recovered from the gas engine 11 and the exhaust gas 11a by an exhaust gas heat exchanger 15 so that heat can be used. The fuel supply unit 16 for the gas engine 11 includes a fuel supply valve 16a that adjusts the ratio of fuel and air supplied to the gas engine 11 so that the combustion drive state of the gas engine 11 can be changed and controlled. The flow rate can be controlled by a control device 3 described later.

前記温室2は、温室空間2aに植物を栽培する栽培部21を備え、さらに前記栽培部21に対する電力駆動の暖房装置22a、換気装置22b、照明(植物育成の光源)等の電力消費機器22を備え、前記発電機12によって生成された電力によって、前記温室空間2aを植物の生育に適した環境にすべく制御可能に構成する。また、温室2には前記ガスエンジン11の排ガス流路13が接続されており、前記ガスエンジン11の駆動に伴い発生する排ガス11a中の二酸化炭素を温室空間2a内に供給可能に構成してある。   The greenhouse 2 includes a cultivating unit 21 that cultivates plants in the greenhouse space 2a, and further includes a power consuming device 22 such as a power-driven heating device 22a, a ventilation device 22b, and illumination (light source for plant growth) for the cultivating unit 21. And the electric power generated by the generator 12 is configured to be controllable so that the greenhouse space 2a becomes an environment suitable for plant growth. Further, an exhaust gas flow path 13 of the gas engine 11 is connected to the greenhouse 2, and carbon dioxide in the exhaust gas 11a generated when the gas engine 11 is driven can be supplied into the greenhouse space 2a. .

また、前記温室空間2aには、二酸化炭素濃度を検知する二酸化炭素検知部23および、窒素酸化物濃度を検知する窒素酸化物検知部24を設けてある。   The greenhouse space 2a is provided with a carbon dioxide detector 23 for detecting the carbon dioxide concentration and a nitrogen oxide detector 24 for detecting the nitrogen oxide concentration.

前記ガスエンジン11の排ガス流路13は、流路切替部17にて分岐して希薄燃焼排ガス流路13Aおよびストイキ燃焼排ガス流路13Bを設けて構成され、ガスエンジン11の運転状態に応じて前記排ガス流路13を切り換えて排ガス11aを流通させられる構成としてある。前記希薄燃焼排ガス流路13Aには、酸化触媒を充填した排ガス浄化部18A、前記ストイキ燃焼排ガス流路13Bには、三元触媒を充填した排ガス浄化部18B(以下第一、第二排ガス浄化部と称する)を備え、前記ガスエンジン11の各燃焼状態に応じて生成される排ガス11aを、その性状に対応して適した浄化触媒で排ガス浄化(18Aでは窒素酸化物と一酸化炭素、18Bでは一酸化炭素を除去)することができるように構成する。さらに、各排ガス浄化部18A,18Bの下流側には排ガス熱交換器15を備え、前記両排ガス浄化部18A,18Bを通過した高温の排ガス11aを、冷却水11bと熱交換して、温室空間2aに適した温度まで冷却するとともに、前記冷却水11bに熱回収して、熱供給部25としての前記栽培部21に供給できる構成となっている。   The exhaust gas flow path 13 of the gas engine 11 is branched by a flow path switching unit 17 to provide a lean combustion exhaust gas flow path 13A and a stoichiometric combustion exhaust gas flow path 13B. The exhaust gas flow path 13 of the gas engine 11 depends on the operating state of the gas engine 11. The exhaust gas flow path 13 is switched to allow the exhaust gas 11a to flow. The lean combustion exhaust gas passage 13A is filled with an exhaust gas purification unit 18A, and the stoichiometric combustion exhaust gas passage 13B is filled with a three way catalyst (hereinafter referred to as the first and second exhaust gas purification units). The exhaust gas 11a produced according to each combustion state of the gas engine 11 is purified with an appropriate purification catalyst corresponding to the nature of the exhaust gas 11a (18A for nitrogen oxides and carbon monoxide, 18B for It is configured such that carbon monoxide can be removed. Further, an exhaust gas heat exchanger 15 is provided on the downstream side of each exhaust gas purification unit 18A, 18B, and the high temperature exhaust gas 11a that has passed through both the exhaust gas purification units 18A, 18B is heat exchanged with the cooling water 11b, thereby While cooling to the temperature suitable for 2a, it is the structure which can collect | recover heat to the said cooling water 11b, and can supply to the said cultivation part 21 as the heat supply part 25.

二酸化炭素検知部23および窒素酸化物検知部24は、前記温室2空間内の二酸化炭素濃度および窒素酸化物濃度を検知して検知出力を制御装置3に伝達する。前記制御装置3では、前記二酸化炭素検知部23および窒素酸化物検知部24の出力に応じて燃料供給弁16aの開度を調節し、前記ガスエンジン11の運転駆動状態を、希薄燃焼駆動とストイキ燃焼駆動とに切替駆動可能に構成してあるとともに、そのガスエンジン11の駆動状態に従って、前記流路切替部17を切り替え制御される。   The carbon dioxide detector 23 and the nitrogen oxide detector 24 detect the carbon dioxide concentration and the nitrogen oxide concentration in the greenhouse 2 space and transmit the detection output to the control device 3. In the control device 3, the opening degree of the fuel supply valve 16 a is adjusted according to the outputs of the carbon dioxide detector 23 and the nitrogen oxide detector 24, and the operation driving state of the gas engine 11 is changed to lean combustion driving and stoichiometric. The flow path switching unit 17 is controlled to be switched according to the driving state of the gas engine 11.

前記ガスエンジン11を希薄燃焼駆動すると、排ガス11aは、前記排ガス流路13を流路切替部17にて分岐して、前記希薄燃焼排ガス流路13Aを流れる。前記希薄燃焼排ガス流路13Aに流入した排ガス11aは、前記第一排ガス浄化部18Aで浄化されるとともに、前記排ガス熱交換器15にて冷却水11bと熱交換して冷却され、温室に達する。尚、後述のガスエンジン11の燃焼駆動制御を行う際に、ガスエンジン11を希薄燃焼駆動させた場合、排ガス11aを温室空間2aに導入しない制御を行う場合があるが、このような場合、前記希薄燃焼排ガス流路13Aの排ガス熱交換器15と温室2との間に設けられる排気部19より、排ガス11aを外部に放出可能に構成してある。   When the gas engine 11 is driven by lean combustion, the exhaust gas 11a branches the exhaust gas flow path 13 at the flow path switching unit 17 and flows through the lean combustion exhaust gas flow path 13A. The exhaust gas 11a flowing into the lean combustion exhaust gas passage 13A is purified by the first exhaust gas purification unit 18A, and is cooled by exchanging heat with the cooling water 11b in the exhaust gas heat exchanger 15, and reaches the greenhouse. In addition, when performing the combustion drive control of the gas engine 11 which will be described later, when the gas engine 11 is driven by lean combustion, there is a case where control is performed so that the exhaust gas 11a is not introduced into the greenhouse space 2a. The exhaust gas 11a can be discharged to the outside from the exhaust part 19 provided between the exhaust gas heat exchanger 15 of the lean combustion exhaust gas flow path 13A and the greenhouse 2.

また、前記ガスエンジン11をストイキ燃焼駆動すると、排ガス11aは、前記排ガス流路13を流路切替部17にて分岐して、前記ストイキ燃焼排ガス流路13Bを流れる。前記ストイキ燃焼排ガス流路13Bに流入した排ガスは、前記第二排ガス浄化部18Bで浄化されるとともに、前記排ガス熱交換器15にて冷却水11bと熱交換して冷却され、温室に達する。   Further, when the gas engine 11 is driven by stoichiometric combustion, the exhaust gas 11a branches the exhaust gas flow path 13 at the flow path switching unit 17 and flows through the stoichiometric combustion exhaust gas flow path 13B. The exhaust gas that has flowed into the stoichiometric combustion exhaust gas flow path 13B is purified by the second exhaust gas purification unit 18B, is cooled by exchanging heat with the cooling water 11b in the exhaust gas heat exchanger 15, and reaches the greenhouse.

上記ガスエンジン11の燃焼駆動制御は、図2に示すフローに従って行われる。   The combustion drive control of the gas engine 11 is performed according to the flow shown in FIG.

すなわち、温室2に設けた二酸化炭素検知部23からの二酸化炭素検知出力が、二酸化炭素濃度1500ppmを超えている場合(#1)、前記温室2には排ガス11aを導入する必要がなく、前記制御装置3は前記燃料供給弁16aを絞り空燃比を上げ、前記ガスエンジン11は希薄燃焼駆動により高効率で駆動される(#2)。また、排ガス11aは、前記排気部19から外部に放出され、温室2内には導入されない。そのため、前記温室2内の二酸化炭素濃度はこれ以上上昇しない。   That is, when the carbon dioxide detection output from the carbon dioxide detector 23 provided in the greenhouse 2 exceeds the carbon dioxide concentration of 1500 ppm (# 1), it is not necessary to introduce the exhaust gas 11a into the greenhouse 2, and the control The device 3 throttles the fuel supply valve 16a to increase the air-fuel ratio, and the gas engine 11 is driven with high efficiency by lean combustion drive (# 2). Further, the exhaust gas 11 a is released to the outside from the exhaust part 19 and is not introduced into the greenhouse 2. Therefore, the carbon dioxide concentration in the greenhouse 2 does not increase any more.

次に、前記温室2内の植物が光合成により二酸化炭素を消費するなどして、温室2内の二酸化炭素濃度が低下した場合、前記温室2には排ガス11aを導入する必要があるが、窒素酸化物濃度(#4)が低ければ、前記制御装置3は前記ガスエンジン11を、まだ希薄燃焼駆動し、前記制御装置3は前記燃料供給弁16aを絞り、空燃比を上げ、前記ガスエンジン11は高効率で駆動される(#5)とともに、希薄燃焼排ガス流路13Aを介して、温室2に排ガス11aが導入される(#6)。   Next, if the plant in the greenhouse 2 consumes carbon dioxide by photosynthesis or the like, and the concentration of carbon dioxide in the greenhouse 2 decreases, it is necessary to introduce the exhaust gas 11a into the greenhouse 2; If the substance concentration (# 4) is low, the control device 3 still drives the gas engine 11 in lean combustion, the control device 3 throttles the fuel supply valve 16a to increase the air-fuel ratio, and the gas engine 11 While being driven with high efficiency (# 5), the exhaust gas 11a is introduced into the greenhouse 2 through the lean combustion exhaust gas passage 13A (# 6).

前記希薄燃焼排ガス路13Aから温室2に希薄燃焼排ガス11aを導入し続けると、希薄燃焼の排ガス中の窒素酸化物の濃度がもともと低いとはいえ、ストイキ燃焼の排ガスを排ガス浄化部18Bで除去される窒素酸化物濃度に比べると濃度は高いので、温室2内の窒素酸化物濃度が徐々に上昇する。そこで、温室2内の前記窒素酸化物濃度が2ppm以上になると(#4)、前記制御装置3は、前記ガスエンジン11をストイキ燃焼駆動に駆動状態を変更する(#7)。即ち、前記制御装置3は、前記燃料供給弁16aを開き、空燃比を下げ、ガスエンジン11の駆動状態を、発電効率は低下するが、排ガス11a中の窒素酸化物濃度が低くなるように変更する。これにより前記ガスエンジン11の排ガス11aは、ストイキ燃焼排ガス流路13Aを介して三元触媒の充填される第二排ガス浄化部18Bに達し、窒素酸化物をほとんど含まない清浄な排ガスとして温室2に供給される(#6)。従って、前記温室2では、二酸化炭素の供給を続けつつ、温室2内の窒素酸化物濃度を低下させる運転が行える。   If the lean combustion exhaust gas 11a is continuously introduced into the greenhouse 2 from the lean combustion exhaust gas passage 13A, the exhaust gas of the stoichiometric combustion is removed by the exhaust gas purification unit 18B although the concentration of nitrogen oxides in the exhaust gas of the lean combustion is originally low. Since the concentration is higher than the nitrogen oxide concentration, the nitrogen oxide concentration in the greenhouse 2 gradually increases. Therefore, when the nitrogen oxide concentration in the greenhouse 2 becomes 2 ppm or more (# 4), the control device 3 changes the driving state of the gas engine 11 to stoichiometric combustion drive (# 7). That is, the control device 3 opens the fuel supply valve 16a, lowers the air-fuel ratio, and changes the driving state of the gas engine 11 so that the power generation efficiency is reduced but the nitrogen oxide concentration in the exhaust gas 11a is lowered. To do. As a result, the exhaust gas 11a of the gas engine 11 reaches the second exhaust gas purification unit 18B filled with the three-way catalyst through the stoichiometric combustion exhaust gas passage 13A, and enters the greenhouse 2 as clean exhaust gas containing almost no nitrogen oxides. (# 6). Accordingly, the greenhouse 2 can be operated to reduce the nitrogen oxide concentration in the greenhouse 2 while continuing to supply carbon dioxide.

尚、上記実例では、二酸化炭素濃度は、植物の促成栽培に適するといわれる700ppm〜1500ppmになるよう前記温室2内を制御している。また、窒素酸化物濃度としては、植物の成長の妨げとならない2ppm未満になるように制御される。これらの温室内に求められる管理数値は、植物の種類などに応じて適宜設定可能である。   In the above example, the inside of the greenhouse 2 is controlled so that the carbon dioxide concentration is 700 ppm to 1500 ppm, which is said to be suitable for the forcing cultivation of plants. Further, the nitrogen oxide concentration is controlled to be less than 2 ppm which does not hinder plant growth. The management values required in these greenhouses can be set as appropriate according to the type of plant.

本発明により、温室栽培システムの温室内環境の管理が、より的確かつきめ細かく行えるようになるとともに、内燃機関の運転駆動効率を高く維持できるので、少ない労力で、品質管理の行き届いた植物を、エネルギー効率よく生産できるようになった。   According to the present invention, the management of the greenhouse environment of the greenhouse cultivation system can be performed more precisely and finely, and the driving efficiency of the internal combustion engine can be maintained at a high level. It became possible to produce efficiently.

18A,18B 排ガス浄化部
13 排ガス流路
11a 排ガス
2 温室
11 内燃機関
18A, 18B Exhaust gas purification unit 13 Exhaust gas passage 11a Exhaust gas 2 Greenhouse 11 Internal combustion engine

Claims (5)

排ガス浄化部を備えた排ガス流路を介して、炭化水素を燃焼させて二酸化炭素を含む排ガスを温室に供給する内燃機関の駆動制御方法であって、
前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときは、前記内燃機関をストイキ燃焼駆動するとともに、前記内燃機関からの排ガスを浄化する三元触媒を設けた排ガス浄化部を備えた排ガス流路を介して温室に供給する一方、
前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲よりも低いときは、前記内燃機関を希薄燃焼駆動するとともに、前記内燃機関からの一酸化炭素を除去する酸化触媒を設けた排ガス浄化部を備えた排ガス流路を介して温室に供給する内燃機関の駆動制御方法。
An internal combustion engine drive control method for supplying exhaust gas containing carbon dioxide to a greenhouse by burning hydrocarbons through an exhaust gas flow path provided with an exhaust gas purification unit,
When the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse and the nitrogen oxide concentration in the greenhouse is equal to or higher than the nitrogen oxide concentration range required in the greenhouse, the internal combustion engine While supplying to the greenhouse via an exhaust gas flow path provided with an exhaust gas purification unit provided with a three-way catalyst for purifying exhaust gas from the internal combustion engine,
When the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse and the nitrogen oxide concentration in the greenhouse is lower than the nitrogen oxide concentration range required in the greenhouse, the internal combustion A drive control method for an internal combustion engine, which drives the engine in lean combustion and supplies it to a greenhouse via an exhaust gas flow path provided with an exhaust gas purification unit provided with an oxidation catalyst for removing carbon monoxide from the internal combustion engine.
前記排ガス流路に、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低くない場合において前記内燃機関を希薄燃焼駆動したときの排ガスを、温室内以外の空間に放出する排気部を設けた請求項1に記載の内燃機関の駆動制御方法。 When the carbon dioxide concentration in the greenhouse is not lower than the carbon dioxide concentration range required in the greenhouse, the exhaust gas when the internal combustion engine is driven with lean combustion is discharged into a space other than the greenhouse in the exhaust gas passage. The internal combustion engine drive control method according to claim 1, further comprising an exhaust section. 炭化水素を燃料とする内燃機関から排出される二酸化炭素を含む排ガスを、温室空間の植物に供給する排ガス流路を備えた温室栽培システムであって、
前記内燃機関が希薄燃焼運転とストイキ燃焼運転とに切替可能に構成されるとともに、
前記排ガス流路に希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを設け、
前記内燃機関の燃焼運転状態に応じて前記希薄燃焼排ガス流路と、ストイキ燃焼排ガス流路とを切り換える排ガス流路切替部を設け、
前記希薄燃焼排ガス流路に酸化触媒を設けた排ガス浄化部を備え、ストイキ燃焼排ガス流路に三元触媒を設けた排ガス浄化部を備え、
前記温室に二酸化炭素濃度検知部および窒素酸化物検知部を設けるとともに、
前記二酸化炭素濃度検知部および窒素酸化物検知部からの検知出力に基き、前記温室内の二酸化炭素濃度が温室内に求められる二酸化炭素濃度範囲よりも低く、かつ、前記温室内の窒素酸化物濃度が温室内に求められる窒素酸化物濃度範囲以上のときは、前記内燃機関をストイキ燃焼駆動するとともに、それ以外のときは、前記内燃機関を希薄燃焼駆動するように切り替える切替制御部を設けた温室栽培システム。
A greenhouse cultivation system having an exhaust gas flow path for supplying exhaust gas containing carbon dioxide discharged from an internal combustion engine fueled with hydrocarbons to plants in a greenhouse space,
The internal combustion engine is configured to be switchable between a lean combustion operation and a stoichiometric combustion operation,
A lean combustion exhaust gas channel and a stoichiometric combustion exhaust gas channel are provided in the exhaust gas channel,
An exhaust gas flow path switching unit that switches between the lean combustion exhaust gas flow path and the stoichiometric combustion exhaust gas flow path according to the combustion operation state of the internal combustion engine,
An exhaust gas purification unit provided with an oxidation catalyst in the lean combustion exhaust gas channel, and an exhaust gas purification unit provided with a three-way catalyst in the stoichiometric combustion exhaust gas channel,
While providing a carbon dioxide concentration detector and a nitrogen oxide detector in the greenhouse,
Based on the detection output from the carbon dioxide concentration detector and the nitrogen oxide detector, the carbon dioxide concentration in the greenhouse is lower than the carbon dioxide concentration range required in the greenhouse, and the nitrogen oxide concentration in the greenhouse Is provided with a switching controller that switches the internal combustion engine to stoichiometric combustion, and otherwise switches the internal combustion engine to lean combustion. Cultivation system.
前記内燃機関からの熱を温室内の加熱に用いる請求項3に記載の温室栽培システム。 The greenhouse cultivation system according to claim 3, wherein heat from the internal combustion engine is used for heating in the greenhouse. 前記内燃機関で発電を行うとともに、前記発電で得られる電力を前記温室で使用する請求項3または4に記載の温室栽培システム。 The greenhouse cultivation system of Claim 3 or 4 which uses the electric power obtained by the said electric power generation in the said greenhouse while generating electric power with the said internal combustion engine.
JP2010106495A 2010-05-06 2010-05-06 Internal combustion engine drive control method and greenhouse cultivation system Active JP5635802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106495A JP5635802B2 (en) 2010-05-06 2010-05-06 Internal combustion engine drive control method and greenhouse cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106495A JP5635802B2 (en) 2010-05-06 2010-05-06 Internal combustion engine drive control method and greenhouse cultivation system

Publications (2)

Publication Number Publication Date
JP2011236750A JP2011236750A (en) 2011-11-24
JP5635802B2 true JP5635802B2 (en) 2014-12-03

Family

ID=45325010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106495A Active JP5635802B2 (en) 2010-05-06 2010-05-06 Internal combustion engine drive control method and greenhouse cultivation system

Country Status (1)

Country Link
JP (1) JP5635802B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948054B2 (en) * 2011-12-27 2016-07-06 ヤンマー株式会社 Horticultural facilities
JP2013133771A (en) * 2011-12-27 2013-07-08 Yanmar Co Ltd Horticultural facility
KR101361152B1 (en) 2013-01-22 2014-02-14 전남대학교산학협력단 Carbon dioxide generator for cultivation of plants
JP6162087B2 (en) * 2014-09-04 2017-07-12 本田技研工業株式会社 Carbon dioxide recovery device
JP6560951B2 (en) * 2015-10-13 2019-08-14 東京瓦斯株式会社 Plant growth promotion device
JP6560950B2 (en) * 2015-10-13 2019-08-14 東京瓦斯株式会社 Plant growth promotion device
KR101769438B1 (en) 2016-03-15 2017-08-21 한국기계연구원 Tri-gen system for horticulture utilizing ultra low emission gas engine skill with low pressure fuel condition
JP6603619B2 (en) * 2016-06-07 2019-11-06 東京瓦斯株式会社 Plant growth promotion device
JP7026477B2 (en) * 2016-10-20 2022-02-28 株式会社桂精機製作所 Integrated environmental control system for horticultural house and house heating method
JP7112074B2 (en) * 2018-08-01 2022-08-03 矢橋工業株式会社 plant cultivation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500318A (en) * 1995-02-17 1996-10-01 Gastec Nv Optimization scheme for gas engines with three-way catalytic converter.
JPH09144531A (en) * 1995-11-22 1997-06-03 Riken Corp Device and method for supervising exhaust emission control system
JPH10229763A (en) * 1997-02-20 1998-09-02 Toshiba Eng & Constr Co Ltd Greenhouse system
JP2009213414A (en) * 2008-03-11 2009-09-24 Osaka Gas Co Ltd Carbon dioxide supplying system

Also Published As

Publication number Publication date
JP2011236750A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5635802B2 (en) Internal combustion engine drive control method and greenhouse cultivation system
JP5451473B2 (en) Greenhouse cultivation system
KR101044375B1 (en) Combined heat and power system with heat recovery steam generator for greenhouse carbon dioxide enrichment
KR20160110005A (en) Selective catalytic reduction system
KR101569677B1 (en) Tri-generation system using high lean burn operation and control method thereof
JP4922010B2 (en) CO2 supply device for plant growth using exhaust gas
JP2012514151A (en) Power plant with CO2 recovery unit
GB2449578A (en) Method and plant for removing carbon dioxide from flue gas
KR101784896B1 (en) Tri-gen system for horticulture utilizing carbon monoxide sensor
RU2014128769A (en) CONTROL METHOD AND CONTROL DEVICE FOR GAS TURBINE WITH LOWER FUEL SUPPLY
JP3783024B2 (en) Sludge treatment system and method
US20160010899A1 (en) Climate control systems and methods
KR102026596B1 (en) Energy supply system for horticulture utilizing technology
US20150121849A1 (en) Engine emissions control system using ion transport membrane
EP2686525B1 (en) Cogeneration power plant
JP2022534189A (en) Modularized catalytic converter and method for improving catalytic converter efficiency
JPH10229763A (en) Greenhouse system
US20220290636A1 (en) Trigeneration system using dme
KR102291722B1 (en) Control method for engine supplying CO2 for reducing starting time
JP2017093393A (en) Exhaust gas feeding system and exhaust gas feeding method
JP4846632B2 (en) Tri-generation system of greenhouse for horticulture
CA2780103A1 (en) Growing microorganisms using exhaust gas as a nutrient supply
JP4607720B2 (en) Gas turbine fuel control system
JP2019097543A (en) Exhaust supply system and exhaust supply method
JP6552762B1 (en) Combined plant and excess heat recovery method for combined plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5635802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150