JP4922010B2 - CO2 supply device for plant growth using exhaust gas - Google Patents

CO2 supply device for plant growth using exhaust gas Download PDF

Info

Publication number
JP4922010B2
JP4922010B2 JP2007042840A JP2007042840A JP4922010B2 JP 4922010 B2 JP4922010 B2 JP 4922010B2 JP 2007042840 A JP2007042840 A JP 2007042840A JP 2007042840 A JP2007042840 A JP 2007042840A JP 4922010 B2 JP4922010 B2 JP 4922010B2
Authority
JP
Japan
Prior art keywords
exhaust gas
flow path
catalyst layer
oxidation catalyst
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007042840A
Other languages
Japanese (ja)
Other versions
JP2008201649A (en
Inventor
祐介 青▲柳▼
末和 山田
隆司 大濱
裕士 中西
正晃 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007042840A priority Critical patent/JP4922010B2/en
Publication of JP2008201649A publication Critical patent/JP2008201649A/en
Application granted granted Critical
Publication of JP4922010B2 publication Critical patent/JP4922010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Cultivation Of Plants (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、内燃機関又は燃焼装置から排出される排ガスを利用した植物育成用CO供給装置に関するものである。 The present invention relates to a plant growth CO 2 supply device using exhaust gas discharged from an internal combustion engine or a combustion device.

近年、コジェネレーションが広く採用されるようになってきており、これによりエネルギー効率が向上して、地球温暖化の原因となるCOの排出量の低減が図られている。コージェネレーションは、発電時に発生する電気および熱をエネルギー源として利用するものであるが、更に、この時に生成され従来は廃棄されていたCOを有効利用するものとして、トリジェネレーションという形態がある。 In recent years, cogeneration has been widely adopted, thereby improving energy efficiency and reducing CO 2 emissions that cause global warming. Cogeneration uses electricity and heat generated at the time of power generation as energy sources. Further, there is a form called trigeneration that effectively uses CO 2 generated at this time and discarded in the past.

トリジェネレーションは、ガスエンジンをはじめとする内燃機関等から排出される排ガスを浄化して、排ガス中に含まれるCOを積極的に利用するものである。排ガス中には、一酸化炭素(CO)、未燃炭化水素(HC)、窒素酸化物(NOx)等の有害物質が含まれているため、少なくともこれらの濃度を大気汚染防止法等の法令に基づく基準値以下となるように浄化してから排出する必要がある。また、COの用途によっては更に浄化する必要があるが、このような用途として植物の育成促進がある。 Trigeneration purifies exhaust gas discharged from an internal combustion engine such as a gas engine and actively uses CO 2 contained in the exhaust gas. Since exhaust gas contains harmful substances such as carbon monoxide (CO), unburned hydrocarbons (HC), and nitrogen oxides (NOx), at least these concentrations are required by laws and regulations such as the Air Pollution Control Law. It is necessary to discharge it after purifying it so that it is below the standard value. Moreover, although it is necessary to further purify depending on the use of CO 2 , plant growth is promoted as such a use.

排ガスの浄化方法としては、一般的に希薄燃焼や三元触媒による処理といった方法が挙げられるが(例えば特許文献1参照)、希薄燃焼による場合には、COの用途が植物の育成促進であると、有害物質の濃度を使用に適する濃度にまで低減することができないものであった。 The exhaust gas purification method generally includes a method such as lean combustion or a three-way catalyst (see, for example, Patent Document 1). In the case of lean combustion, the use of CO 2 is to promote plant growth. However, the concentration of harmful substances cannot be reduced to a concentration suitable for use.

また、三元触媒による場合には、処理する有害物質のバランスを一定に保った上で、一定の温度で触媒層を加熱する必要があった。そこで、触媒層の加熱を排ガスの保有熱で行おうとすると、熱源となる内燃機関や燃焼装置の近傍、例えばエンジンのパッケージの中に触媒層を設ける必要があり、触媒層や排ガスの流路となる配管を設置するスペースが限られる上に配管を屈曲させなければならず、偏流が発生し易くなり、触媒層を均一に加熱することが困難となってしまうものであった。そこで更に、触媒層を大きくして補おうとすると、不経済となってしまうものであった。   In the case of using a three-way catalyst, it is necessary to heat the catalyst layer at a constant temperature while keeping the balance of harmful substances to be treated constant. Therefore, if heating of the catalyst layer is performed with the retained heat of the exhaust gas, it is necessary to provide a catalyst layer in the vicinity of the internal combustion engine or combustion device that becomes the heat source, for example, in the engine package. In addition, the space for installing the piping is limited and the piping must be bent, so that a drift is likely to occur and it becomes difficult to uniformly heat the catalyst layer. Therefore, further attempts to make the catalyst layer larger would be uneconomical.

また、触媒層の加熱を排ガスの保有熱で行わない場合、触媒層の周囲に電気ヒータ等の加熱手段を設けて加熱することになるが、この時、触媒層の周囲と中心部とでは温度が不均一となり、中心部を最適な温度とするべく加熱すると周囲の温度が適度な温度よりも相当高い温度となるように保つ必要が生じ、非効率な運転となってしまうものであった。
特開2005−193175号公報
In addition, when the catalyst layer is not heated with the retained heat of the exhaust gas, heating is performed by providing a heating means such as an electric heater around the catalyst layer. When the center portion is heated to an optimum temperature, it is necessary to keep the ambient temperature at a considerably higher temperature than an appropriate temperature, resulting in an inefficient operation.
JP 2005-193175 A

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、排ガス中の有害物質の濃度を低減させると共に排ガスの温度を使用に適した温度として、COを含む排ガスを育成する植物に供給するにあたり、触媒層を均一に加熱して排ガスを効率良く浄化することができる排ガスを利用した植物育成用CO供給装置を提供することにある。 The present invention has been made in view of the above, it is an object of the temperature suitable for the use temperature of the exhaust gas with reducing the concentration of harmful substances in the exhaust gas, the exhaust gas containing CO 2 An object of the present invention is to provide a plant-growing CO 2 supply device using exhaust gas that can efficiently purify the exhaust gas by heating the catalyst layer uniformly when supplying it to the plant to be grown.

上記課題を解決するために請求項1に係る排ガスを利用した植物育成用CO供給装置にあっては、内燃機関11又は燃焼装置12から排出される排ガスの流路3の少なくとも一部を上流側が下側となり下流側が上側となる縦型流路31とし、前記縦型流路31に下側より順に酸化触媒層5と熱交換器7とを設けて成ることを特徴とするものである。 In order to solve the above problem, in the plant growth CO 2 supply device using exhaust gas according to claim 1, at least a part of the flow path 3 of exhaust gas discharged from the internal combustion engine 11 or the combustion device 12 is upstream. The vertical channel 31 has a lower side and an upper side on the downstream side. The vertical channel 31 is provided with an oxidation catalyst layer 5 and a heat exchanger 7 in order from the lower side.

このような構成とすることで、排ガス中の有害物質の一酸化炭素、未燃炭化水素、窒素酸化物を低減させると共に排ガスの温度を使用に適した温度として、COを含む排ガスを育成する植物に供給することができ、これにあたり、触媒層を均一に加熱して排ガスを効率良く浄化することができるものである。 By adopting such a configuration, carbon monoxide, unburned hydrocarbons and nitrogen oxides in the exhaust gas are reduced, and the exhaust gas containing CO 2 is nurtured with the temperature of the exhaust gas being suitable for use. In this case, the catalyst layer can be heated uniformly to purify the exhaust gas efficiently.

また、請求項2に係る発明にあっては、請求項1に係る発明において、縦型流路31の熱交換器7より下方で且つ酸化触媒層5より上方の部位に熱交換器7で生成されるドレンを回収するドレン回収部6を設けて成ることを特徴とするものである。   Further, in the invention according to claim 2, in the invention according to claim 1, the vertical flow path 31 is generated by the heat exchanger 7 at a position below the heat exchanger 7 and above the oxidation catalyst layer 5. The drain collecting part 6 for collecting the drain to be collected is provided.

このような構成とすることで、熱交換器7で生成されたドレンが下方の酸化触媒層5に落下して付着してしまうのを防止することが可能となる。   With such a configuration, it is possible to prevent the drain generated in the heat exchanger 7 from dropping and adhering to the lower oxidation catalyst layer 5.

また、請求項3に係る発明にあっては、請求項1又は2に係る発明において、排ガスの流路3の酸化触媒層5よりも上流側に排ガスを加熱する加熱部21を設けて成ることを特徴とするものである。   In the invention according to claim 3, in the invention according to claim 1 or 2, the heating unit 21 for heating the exhaust gas is provided upstream of the oxidation catalyst layer 5 of the exhaust gas flow path 3. It is characterized by.

このような構成とすることで、酸化触媒層5の温度を適温とするのに排ガスの保有熱に依存しなくても済むものである。   By adopting such a configuration, it is not necessary to depend on the retained heat of the exhaust gas to make the temperature of the oxidation catalyst layer 5 appropriate.

また、請求項4に係る発明にあっては、請求項1乃至3のいずれかに係る発明において、排ガスの流路3に窒素酸化物を吸着除去するための活性炭あるいは活性炭繊維からなる吸着除去層8を設けて成ることを特徴とするものである。   Further, in the invention according to claim 4, in the invention according to any one of claims 1 to 3, an adsorption removal layer made of activated carbon or activated carbon fibers for adsorbing and removing nitrogen oxides in the exhaust gas flow path 3 8 is provided.

このような構成とすることで、排ガス中の還元されなかった窒素酸化物を吸着除去することが可能となる。   With such a configuration, it is possible to adsorb and remove nitrogen oxides that have not been reduced in the exhaust gas.

本発明によれば、排ガス中の有害物質の一酸化炭素、未燃炭化水素、窒素酸化物を低減させると共に排ガスの温度を使用に適した温度として、COを含む排ガスを育成する植物に供給することができると共に作業者への安全性も確保することができ、これにあたり、触媒層を均一に加熱して排ガスを効率良く浄化することができるものである。 According to the present invention, carbon monoxide, unburned hydrocarbons, and nitrogen oxides in the exhaust gas are reduced, and the temperature of the exhaust gas is set to a temperature suitable for use, and supplied to the plant that grows the exhaust gas containing CO 2. In addition, the safety to the operator can be ensured. In this case, the exhaust gas can be purified efficiently by heating the catalyst layer uniformly.

以下、本発明の一実施形態について添付図面に基づいて説明する。図1に、本発明の排ガスを利用した植物育成用CO供給装置2の構成図を示し、図2に、本発明の排ガスを利用した植物育成用CO供給装置2を用いたシステムの概略全体構成図を示す。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. Figure 1 shows a gas block diagram of a plant for growing CO 2 supply device 2 using the present invention, in FIG. 2, a schematic of a system using the plant growth for CO 2 supply device 2 using the exhaust gas of the present invention An overall configuration diagram is shown.

図中の符号1は天然ガスやガソリンをはじめ様々な燃料の燃焼が行われる内燃機関11又は燃焼装置12からなる排ガス供給源で、内燃機関11の場合には図示しない発電機を駆動して発電し、燃焼装置12の場合には図示しないボイラ等の熱交換部の被加熱部を加熱するものである。そして、これら内燃機関11や燃焼装置12において燃焼が行なわれた際に排出される排ガスは、浄化されて排ガス中の一酸化炭素(CO)、未燃炭化水素(HC)、窒素酸化物(NOx)等の有害物質の濃度を低減させてから排出するものである。内燃機関11又は燃焼装置12から排出される排ガスの流路3を構成する管部4は、少なくとも一部が縦管部41で形成されていて、この縦管部41内の流路3が縦型流路31となっている。この縦型流路31は、上流側が下側となり下流側が上側となるように構成される。   Reference numeral 1 in the figure denotes an exhaust gas supply source including an internal combustion engine 11 or a combustion device 12 in which various fuels such as natural gas and gasoline are burned. In the case of the internal combustion engine 11, a generator (not shown) is driven to generate power. In the case of the combustion device 12, the heated part of the heat exchange part such as a boiler (not shown) is heated. The exhaust gas discharged when combustion is performed in the internal combustion engine 11 and the combustion device 12 is purified and carbon monoxide (CO), unburned hydrocarbon (HC), nitrogen oxide (NOx) in the exhaust gas. ) And other harmful substances are discharged after being reduced. The pipe part 4 constituting the flow path 3 of the exhaust gas discharged from the internal combustion engine 11 or the combustion device 12 is at least partially formed by a vertical pipe part 41, and the flow path 3 in the vertical pipe part 41 is vertical. A mold channel 31 is formed. The vertical flow path 31 is configured such that the upstream side is the lower side and the downstream side is the upper side.

そして、縦型流路31には、下側より順に酸化触媒層5と熱交換器7とを設けてある。   The vertical channel 31 is provided with the oxidation catalyst layer 5 and the heat exchanger 7 in order from the lower side.

酸化触媒層5は、触媒としての貴金属を担持させたハニカムで構成され、上述した排ガス中の一酸化炭素や、エチレン等をはじめとする炭化水素といった不完全燃焼成分を表面の触媒作用によって酸化させ、一酸化炭素を二酸化炭素とすると共に、炭化水素を二酸化炭素と水にする。   The oxidation catalyst layer 5 is composed of a honeycomb supporting a noble metal as a catalyst, and oxidizes incomplete combustion components such as carbon monoxide and hydrocarbons such as ethylene in the exhaust gas by the catalytic action on the surface. Carbon monoxide is changed to carbon dioxide, and hydrocarbons are changed to carbon dioxide and water.

また、排ガス中の窒素酸化物は、吸着等により除去してもよい。これは例えば、活性炭や活性炭繊維、あるいはゼオライト等を充填してなる吸着除去層8を設け(図4参照)、排ガス中に含まれる窒素酸化物を吸着除去するものである。この吸着除去層8は、本実施形態では排ガスの流路3の縦型流路31の下流側の部分か、縦型流路31の熱交換器7よりも下流側の部分に配設される。なお、この吸着除去層8は、COを供給する植物が窒素酸化物等の酸性ガスに対する耐性を有する植物であれば、活性炭や活性炭繊維の充填量を減らしたり、あるいは図1に示すように吸着除去層8を無くして空気との混合希釈により一定濃度以下まで低減させてもよい。 Further, nitrogen oxides in the exhaust gas may be removed by adsorption or the like. For example, an adsorption removal layer 8 filled with activated carbon, activated carbon fiber, zeolite, or the like is provided (see FIG. 4) to adsorb and remove nitrogen oxides contained in the exhaust gas. In the present embodiment, the adsorption removal layer 8 is disposed on the downstream side of the vertical flow path 31 of the exhaust gas flow path 3 or on the downstream side of the heat exchanger 7 of the vertical flow path 31. . In addition, if the plant supplying CO 2 is a plant having resistance to acidic gas such as nitrogen oxide, the adsorption removal layer 8 may reduce the filling amount of activated carbon or activated carbon fiber, or as shown in FIG. The adsorption removal layer 8 may be eliminated and the concentration may be reduced to a certain level or less by mixing and dilution with air.

またなお、吸着除去層8に活性炭素繊維触媒を用いると、NOxが優先して処理され、吸着によるCO濃度の低下は見られず、安定したCO濃度の排ガスを供給することが可能となる。 In addition, when an activated carbon fiber catalyst is used for the adsorption removal layer 8, NOx is preferentially treated, and a decrease in CO 2 concentration due to adsorption is not seen, and exhaust gas with a stable CO 2 concentration can be supplied. Become.

熱交換器7は、縦型流路31の酸化触媒層5よりも上側(下流側)の部分に配設され、排ガスの排熱を回収して冷却し、植物育成用のCOを含んだ排ガスとして適した温度にしてから供給するものである。熱交換器7にて回収した熱は、COを供給する植物が収容されている温室Hの暖房等に利用される。そしてこの時、熱交換器7の表面(流路3に面している表面)に排ガス中の水蒸気が凝縮してドレン(凝縮水)が発生する。熱交換器7は上述したように縦型流路31の酸化触媒層5よりも上側の部分に配設してあり、熱交換器7の表面に付着しているドレンが落下して酸化触媒層5に付着するのを防止するため、縦型流路31の熱交換器7より下方で且つ酸化触媒層5より上方の部位に、熱交換器7で生成されるドレンを回収するドレン回収部6を設けてある。これについては後で説明する。 The heat exchanger 7 is disposed on the upper side (downstream side) of the vertical catalyst 31 with respect to the oxidation catalyst layer 5, collects exhaust heat of the exhaust gas, cools it, and contains CO 2 for plant growth. It is supplied after the temperature is suitable as exhaust gas. The heat recovered by the heat exchanger 7 is used for heating the greenhouse H in which a plant supplying CO 2 is accommodated. At this time, water vapor in the exhaust gas is condensed on the surface of the heat exchanger 7 (the surface facing the flow path 3) to generate drain (condensed water). As described above, the heat exchanger 7 is disposed in a portion above the oxidation catalyst layer 5 of the vertical flow path 31, and the drain adhering to the surface of the heat exchanger 7 falls to cause the oxidation catalyst layer. In order to prevent the liquid from adhering to the drain 5, the drain collecting section 6 that collects the drain generated by the heat exchanger 7 at a position below the heat exchanger 7 and above the oxidation catalyst layer 5 in the vertical flow path 31. Is provided. This will be described later.

また本実施形態では、排ガスの流路3の酸化触媒層5よりも上流側の部分に、排ガスを加熱する加熱部21を設けてある。加熱部21としては、図1に示すような燃焼バーナ21aや、図3に示すような電気ヒータ21b等、特に限定されない。加熱部21は、酸化触媒層5を適温の200℃〜300℃とするために、酸化触媒層5を通過する排ガスを加熱して高温にすることで酸化触媒層5を加熱して前記適温とするものである。なお、酸化触媒層5の種類によっては400℃〜500℃付近の温度や、その他の温度範囲が適温となる場合もある。   In the present embodiment, a heating unit 21 for heating the exhaust gas is provided at a portion upstream of the oxidation catalyst layer 5 of the exhaust gas flow path 3. The heating unit 21 is not particularly limited, such as a combustion burner 21a as shown in FIG. 1 or an electric heater 21b as shown in FIG. In order to set the oxidation catalyst layer 5 to an appropriate temperature of 200 ° C. to 300 ° C., the heating unit 21 heats the exhaust gas passing through the oxidation catalyst layer 5 to a high temperature, thereby heating the oxidation catalyst layer 5 to the appropriate temperature. To do. Depending on the type of the oxidation catalyst layer 5, a temperature in the vicinity of 400 ° C. to 500 ° C. and other temperature ranges may be appropriate temperatures.

上記のように、内燃機関11又は燃焼装置12から排出される排ガスの流路3の一部を縦型流路31とし、前記縦型流路31に下側より順に酸化触媒層5と熱交換器7とを設けたことで、酸化触媒層5により排ガス中の有害物質の一酸化炭素、未燃炭化水素を低減させると共に、熱交換器7により排ガスの温度を使用に適した温度として、COを含む(少なくとも空気より高濃度に含む)排ガスを育成する植物に供給することができ、COを供給する植物が収容されている温室内にいる作業者への安全性も確保することができる。これにあたり、触媒層を均一に加熱して排ガスを効率良く浄化することができるものである。 As described above, a part of the flow path 3 of the exhaust gas discharged from the internal combustion engine 11 or the combustion device 12 is a vertical flow path 31, and heat exchange with the oxidation catalyst layer 5 is sequentially performed in the vertical flow path 31 from the lower side. In addition to reducing the harmful carbon monoxide and unburned hydrocarbons in the exhaust gas by the oxidation catalyst layer 5, the heat exchanger 7 makes the temperature of the exhaust gas suitable for use as a temperature suitable for use. Can be supplied to plants that grow exhaust gas containing 2 (at least at a higher concentration than air), and can also ensure safety for workers in the greenhouse in which the plant supplying CO 2 is housed it can. In this case, the exhaust gas can be purified efficiently by heating the catalyst layer uniformly.

また、本CO供給装置2は、内燃機関11又は燃焼装置12とは独立して設けるものであるため、複数の内燃機関11又は燃焼装置12の設備の排ガスを総合的に処理することができ、酸化触媒層5における触媒の充填量を変更して排ガス量の増減に対応することができる。 Further, since the CO 2 supply device 2 is provided independently of the internal combustion engine 11 or the combustion device 12, exhaust gas from the facilities of the plurality of internal combustion engines 11 or the combustion devices 12 can be comprehensively processed. The amount of exhaust gas can be increased or decreased by changing the amount of catalyst in the oxidation catalyst layer 5.

また、本CO供給装置2の主要構成をなす酸化触媒層5と熱交換器7(とドレン回収部6)を収容する流路3を縦型の縦管部41で構成したことで、平面視における設置面積を減らしてコンパクトにすることができる。 Further, the flow path 3 that accommodates the oxidation catalyst layer 5 and the heat exchanger 7 (and the drain recovery unit 6), which are the main components of the present CO 2 supply device 2, is configured by the vertical vertical pipe portion 41, and thus the plane It can be made compact by reducing the installation area in view.

実際に、酸化触媒層と吸着層に活性炭素繊維触媒を設けた実機による試験を行い、その結果を表1に示す   Actually, a test using an actual machine in which an activated carbon fiber catalyst was provided in the oxidation catalyst layer and the adsorption layer was performed, and the results are shown in Table 1.

Figure 0004922010
Figure 0004922010

この結果より、有害物質のCO、NOとも十分に低減できていると共に、COは高濃度を維持していることが確認された。 From these results, it was confirmed that both CO and NO 2 as harmful substances could be sufficiently reduced, and that CO 2 maintained a high concentration.

以下、ドレン回収部6について図5に基づいて説明する。   Hereinafter, the drain collecting unit 6 will be described with reference to FIG.

ドレン回収部6は、上受部61と下受部62と、排水部63とで主体が構成され、本実施形態では外殻をなす筒状ケーシング60に取付けられる。上受部61は、熱交換器7の下方に配置されて、その上面が熱交換器7の表面から落下するドレンを受ける受け面(便宜上「上受け面61a」という)となる。この上受け面61aを傾斜させることで、上受け面61aで受けたドレンが上受け面61aの下側の端部61bへと流下する。上受け面61aは、縦型流路31の断面の一部に配置されて、残りの部分が排ガスの流路3となる。本実施形態では、縦管部41内の縦型流路31にその流れ方向から見て略矩形状をした二枚の板部を、中央部に排ガスの流路3となる隙間が形成されるように両側にそれぞれ配置し、中央部側の端部が下側の端部61bとなるように傾斜させて、流れ方向と直交する方向から見て略逆ハ字状に配設してある。なお本実施形態では、ドレン回収部6の外殻を筒状ケーシング60で構成して、この筒状ケーシング60に上受部61となる二枚の板部の端縁部を固定している。   The drain collecting part 6 is mainly composed of an upper receiving part 61, a lower receiving part 62, and a drainage part 63, and is attached to a cylindrical casing 60 forming an outer shell in this embodiment. The upper receiving portion 61 is disposed below the heat exchanger 7, and its upper surface serves as a receiving surface (referred to as an “upper receiving surface 61 a” for convenience) that receives the drain falling from the surface of the heat exchanger 7. By tilting the upper receiving surface 61a, the drain received by the upper receiving surface 61a flows down to the lower end portion 61b of the upper receiving surface 61a. The upper receiving surface 61a is disposed in a part of the cross section of the vertical flow path 31, and the remaining portion becomes the exhaust gas flow path 3. In the present embodiment, two plate portions having a substantially rectangular shape when viewed from the flow direction are formed in the vertical flow channel 31 in the vertical tube portion 41, and a gap serving as the exhaust gas flow channel 3 is formed in the central portion. In this way, they are arranged on both sides, inclined so that the end on the center side becomes the lower end 61b, and are arranged in a substantially inverted C shape when viewed from the direction orthogonal to the flow direction. In the present embodiment, the outer shell of the drain collecting unit 6 is constituted by the cylindrical casing 60, and the edge portions of the two plate portions that become the upper receiving portions 61 are fixed to the cylindrical casing 60.

下受部62は、上受部61の下方に配置されて、その上面が熱交換器7の表面から落下するドレンおよび上受部61から落下するドレンを受ける受け面(便宜上「下受け面62a」という)となる。この下受け面62aを傾斜させることで、下受け面62aで受けたドレンが下受け面62aの下側の端部62bへと流下する。下受け面62aは、縦型流路31の断面の一部に配置されて、残りの部分が排ガスの流路3となる。本実施形態では下受部62は、縦管部41内の縦型流路31にその流れ方向から見て略矩形状をするとともに、流れ方向と直交する方向から見て略V字状をした板状部からなるもので、上受部61の板部の間に形成される排ガスの流路3の下方に下受け面62aが位置するように配置され、下受部62の両側が排ガスの流路3となる。これにより、平面視において排ガスの流路3は上受部61と下受部62とで閉塞される状態となり、熱交換器7から鉛直下方に落下するドレンが上受部61か下受部62の受け面で受けられる。   The lower receiving portion 62 is disposed below the upper receiving portion 61, and the upper surface of the lower receiving portion 62 receives a drain falling from the surface of the heat exchanger 7 and a drain falling from the upper receiving portion 61 (for convenience, the “lower receiving surface 62 a "). By tilting the lower receiving surface 62a, the drain received by the lower receiving surface 62a flows down to the lower end portion 62b of the lower receiving surface 62a. The lower receiving surface 62a is disposed in a part of the cross section of the vertical flow path 31, and the remaining portion becomes the exhaust gas flow path 3. In the present embodiment, the receiving portion 62 has a substantially rectangular shape when viewed from the flow direction in the vertical flow path 31 in the vertical tube portion 41 and is substantially V-shaped when viewed from a direction orthogonal to the flow direction. It consists of a plate-like part, and is arranged so that the lower receiving surface 62a is located below the exhaust gas flow path 3 formed between the plate parts of the upper receiving part 61, and both sides of the lower receiving part 62 are exhausted. It becomes the flow path 3. As a result, the exhaust gas flow path 3 is closed by the upper receiving portion 61 and the lower receiving portion 62 in plan view, and the drain that falls vertically downward from the heat exchanger 7 is either the upper receiving portion 61 or the lower receiving portion 62. Can be received at the receiving surface.

また、筒状ケーシング60自体を下方へ行く程その平面視における断面積が小さくなるようにテーパ状とし、テーパ面を受け面と同様に機能させるものでもよい。   Alternatively, the cylindrical casing 60 itself may be tapered so that the cross-sectional area in plan view becomes smaller as it goes downward, and the tapered surface may function in the same manner as the receiving surface.

そして本実施形態では、下受部62の長手方向の両端部、すなわち略V字状に見える方向の両端部を筒状ケーシング60に固定している。また、下受部62は長手方向に傾斜させてあり、下受け面62aで受けてその略V字の谷底に溜まったドレンが長手方向の下側の端部62bに向けて流下するものである。そして、下受部62の下側の端部62bには、筒状ケーシング60外に連通するように筒状ケーシング60に貫通穴60aが穿設してあり、下受部62の下側の端部62bに溜まったドレンが貫通穴60aを介して筒状ケーシング60外に排出される。また、筒状ケーシング60の外側には、前記貫通穴60aを介して排出されたドレンを誘導して排水するための排水部63が設けてある。   In the present embodiment, both end portions in the longitudinal direction of the receiving portion 62, that is, both end portions in a direction that appears to be substantially V-shaped, are fixed to the cylindrical casing 60. The lower receiving portion 62 is inclined in the longitudinal direction, and the drain received on the lower receiving surface 62a and accumulated in the substantially V-shaped valley bottom flows down toward the lower end portion 62b in the longitudinal direction. . The lower end 62 b of the lower receiving part 62 has a through hole 60 a formed in the cylindrical casing 60 so as to communicate with the outside of the cylindrical casing 60, and the lower end of the lower receiving part 62. The drain accumulated in the portion 62b is discharged out of the cylindrical casing 60 through the through hole 60a. Further, on the outside of the cylindrical casing 60, a drainage part 63 for guiding and draining the drain discharged through the through hole 60a is provided.

また、本実施形態では、上受部61と下受部62とを連絡する連絡棒64が設けてある。これは、上受部61の上受け面61aで受けられて下側の端部61bに流下したドレンをスムーズに下受部62の下受け面62aへと誘導するためのもので、本実施形態では上受部61の二枚の板部の下側の端部61bの長手方向に複数(本実施形態では二つ)の連絡棒64の上端部を位置させると共に、連絡棒64の下端部を下受部62の下受け面62aに接して又は近接して配置する。これにより、上受部61の上受け面61aで受けられて下側の端部62bに流下したドレンが、連絡棒64の表面を伝って下受部62の下受け面62aへとスムーズに確実に流下させることができ、また、下受部62の下受け面62aへと流下したドレンが跳ねたりするのを抑えることもできる。   In the present embodiment, a connecting rod 64 for connecting the upper receiving portion 61 and the lower receiving portion 62 is provided. This is for smoothly guiding the drain received by the upper receiving surface 61a of the upper receiving portion 61 and flowing down to the lower end portion 61b to the lower receiving surface 62a of the lower receiving portion 62. This embodiment Then, the upper ends of a plurality of (two in this embodiment) connecting rods 64 are positioned in the longitudinal direction of the lower end portions 61b of the two plate portions of the upper receiving portion 61, and the lower ends of the connecting rods 64 are It arrange | positions in contact with or close to the lower receiving surface 62a of the lower receiving part 62. FIG. As a result, the drain received by the upper receiving surface 61a of the upper receiving portion 61 and flowing down to the lower end portion 62b is smoothly and reliably transferred to the lower receiving surface 62a of the lower receiving portion 62 through the surface of the connecting rod 64. It is also possible to prevent the drained water from splashing onto the lower receiving surface 62a of the lower receiving portion 62.

上記のようなドレン回収部6を設けたことで、熱交換器7で生成されたドレンが下方の酸化触媒層5に落下して付着してしまうのを防止することができる。   By providing the drain recovery unit 6 as described above, it is possible to prevent the drain generated by the heat exchanger 7 from dropping and adhering to the lower oxidation catalyst layer 5.

本発明の一実施形態の要部の構成図である。It is a block diagram of the principal part of one Embodiment of this invention. 同上の実施形態におけるCO供給装置を用いたシステムの概略全体構成図である。Id is a schematic overall structural view of a system using a CO 2 supply device in the embodiment. 他例の加熱部を用いた場合の構成図である。It is a block diagram at the time of using the heating part of another example. 他の実施形態の構成図である。It is a block diagram of other embodiment. ドレン回収部を示し、(a)は平面図であり、(b)はA−A断面図であり、(c)はB−B断面図である。A drain collection part is shown, (a) is a top view, (b) is AA sectional drawing, (c) is BB sectional drawing.

符号の説明Explanation of symbols

11 内燃機関
12 燃焼装置
2 植物育成用CO供給装置
3 流路
31 縦型流路
5 酸化触媒層
7 熱交換器
11 internal combustion engine 12 combustion device 2 for cultivating plant CO 2 supply device 3 the channel 31 vertical channel 5 oxidation catalyst layer 7 heat exchanger

Claims (4)

内燃機関又は燃焼装置から排出される排ガスの流路の少なくとも一部を上流側が下側となり下流側が上側となる縦型流路とし、前記縦型流路に下側より順に酸化触媒層と熱交換器とを設けて成ることを特徴とする排ガスを利用した植物育成用CO供給装置。 At least a part of the flow path of the exhaust gas discharged from the internal combustion engine or the combustion apparatus is a vertical flow path with the upstream side on the lower side and the downstream side on the upper side, and heat exchange with the oxidation catalyst layer in order from the lower side to the vertical flow path A plant growth CO 2 supply device using exhaust gas, characterized by comprising a vessel. 縦型流路の熱交換器より下方で且つ酸化触媒層より上方の部位に熱交換器で生成されるドレンを回収するドレン回収部を設けて成ることを特徴とする請求項1記載の排ガスを利用した植物育成用CO供給装置。 2. The exhaust gas according to claim 1, wherein a drain recovery unit that recovers drain generated by the heat exchanger is provided at a position below the heat exchanger of the vertical flow path and above the oxidation catalyst layer. Utilized CO 2 supply device for plant growth. 排ガスの流路の酸化触媒層よりも上流側に排ガスを加熱する加熱部を設けて成ることを特徴とする請求項1又は2記載の排ガスを利用した植物育成用CO供給装置。 The plant growth CO 2 supply apparatus using exhaust gas according to claim 1 or 2, wherein a heating unit for heating the exhaust gas is provided upstream of the oxidation catalyst layer in the exhaust gas flow path. 排ガスの流路に窒素酸化物を吸着除去するための活性炭あるいは活性炭繊維からなる吸着除去層を設けて成ることを特徴とする請求項1乃至3のいずれかに記載の排ガスを利用した植物育成用CO供給装置。 The plant for growing plants using exhaust gas according to any one of claims 1 to 3, wherein an adsorption removal layer made of activated carbon or activated carbon fibers for adsorbing and removing nitrogen oxides is provided in the exhaust gas flow path. CO 2 supply device.
JP2007042840A 2007-02-22 2007-02-22 CO2 supply device for plant growth using exhaust gas Expired - Fee Related JP4922010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042840A JP4922010B2 (en) 2007-02-22 2007-02-22 CO2 supply device for plant growth using exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042840A JP4922010B2 (en) 2007-02-22 2007-02-22 CO2 supply device for plant growth using exhaust gas

Publications (2)

Publication Number Publication Date
JP2008201649A JP2008201649A (en) 2008-09-04
JP4922010B2 true JP4922010B2 (en) 2012-04-25

Family

ID=39779538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042840A Expired - Fee Related JP4922010B2 (en) 2007-02-22 2007-02-22 CO2 supply device for plant growth using exhaust gas

Country Status (1)

Country Link
JP (1) JP4922010B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102210247B (en) 2011-04-02 2012-10-31 武汉凯迪控股投资有限公司 Method and equipment for providing heat and carbon dioxide for vegetables and/or algae by using flue gas of power plant
JP6359881B2 (en) * 2014-06-10 2018-07-18 フタバ産業株式会社 Carbon dioxide application equipment
JP6774167B2 (en) * 2014-08-07 2020-10-21 Jfeエンジニアリング株式会社 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities
JP6190784B2 (en) * 2014-09-04 2017-08-30 本田技研工業株式会社 Carbon dioxide recovery device
JP6254917B2 (en) * 2014-09-04 2017-12-27 本田技研工業株式会社 Carbon dioxide recovery device
JP6190785B2 (en) * 2014-09-04 2017-08-30 本田技研工業株式会社 Carbon dioxide recovery device
JP6162087B2 (en) * 2014-09-04 2017-07-12 本田技研工業株式会社 Carbon dioxide recovery device
JP6190786B2 (en) * 2014-09-04 2017-08-30 本田技研工業株式会社 Carbon dioxide recovery device
JP6366456B2 (en) * 2014-10-10 2018-08-01 ヤンマー株式会社 Energy supply equipment for horticultural facilities
KR101652876B1 (en) 2015-04-15 2016-09-01 주식회사다온알에스 Catalytic combustor and Generator for carbon dioxide using catalytic combusion
KR101875526B1 (en) * 2016-06-23 2018-07-06 주식회사 다온알에스 Catalytic combustor and Generator for carbon dioxide by catalytic combustion
KR102629633B1 (en) * 2021-02-23 2024-01-29 정필수 Carbon-dioxide Supplier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740549Y2 (en) * 1989-07-18 1995-09-20 中央造機株式会社 Open / close valve drive for knotless braiding machine
JP2000312532A (en) * 1999-04-30 2000-11-14 Miura Co Ltd Supply of exhaust gas to facility for cultivating plant
JP5024717B2 (en) * 2000-10-20 2012-09-12 株式会社Ihi CO removal method and apparatus for polymer electrolyte fuel cell
JP2004248565A (en) * 2003-02-19 2004-09-09 Toshiba Corp Apparatus for supplying carbon dioxide and warm water to greenhouse
JP2005193175A (en) * 2004-01-08 2005-07-21 Tokyo Gas Co Ltd Method and apparatus for treating exhaust gas from gas engine
JP4382770B2 (en) * 2005-06-16 2009-12-16 大陽日酸株式会社 Carbon dioxide purification method

Also Published As

Publication number Publication date
JP2008201649A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4922010B2 (en) CO2 supply device for plant growth using exhaust gas
JP5039651B2 (en) Carbon dioxide recovery system in exhaust gas
JP4875522B2 (en) CO2 recovery device and waste extraction method
JP6072055B2 (en) Exhaust gas treatment system and method
US9308496B2 (en) System and method for controlling and reducing NOx emissions
EP2514510B1 (en) Exhaust gas treating system using polymer membrane for carbon dioxide capture process
JP5635802B2 (en) Internal combustion engine drive control method and greenhouse cultivation system
ES2349709T3 (en) PROCEDURE AND DEVICE FOR CATALYTIC PURIFICATION OF BIOGEN OR ANTHROPOGEN GASES CONTAINING METHANE.
CN109432936A (en) Sintering flue gas processing method and processing system
NO332812B1 (en) Amine emission control
JP7221262B2 (en) Exhaust system for power plant
JP2004237244A (en) Method and system for removing mercury in exhaust gas
WO2011152552A1 (en) Exhaust gas treatment system and method
EP2823876B1 (en) System for chemically absorbing carbon dioxide in combustion exhaust gas
JP5525992B2 (en) Thermal power plant with carbon dioxide absorber
JP2009247932A (en) Method for removing carbon dioxide using exhaust gas heat source
JP4326276B2 (en) Gas purification device and flue gas desulfurization system
CN104998543B (en) A kind of waste gas processing method peculiar to vessel and its device
KR101165646B1 (en) Energy reducing system of nox reducing apparatus using waste-heat and steam type gas heater
KR101361152B1 (en) Carbon dioxide generator for cultivation of plants
CN104399370A (en) Lower temperature flue gas SCR (Selective Catalytic Reduction) denitration system and process
EP3386611B1 (en) Method and system for removing impurities from a gas
JP2016036334A (en) Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production
JP2009108764A (en) Exhaust emission control device
KR102391330B1 (en) Apparatus for reducing air pollutant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees