JP6671651B1 - Cold water supply system that stores and uses LNG cold heat - Google Patents

Cold water supply system that stores and uses LNG cold heat Download PDF

Info

Publication number
JP6671651B1
JP6671651B1 JP2019566845A JP2019566845A JP6671651B1 JP 6671651 B1 JP6671651 B1 JP 6671651B1 JP 2019566845 A JP2019566845 A JP 2019566845A JP 2019566845 A JP2019566845 A JP 2019566845A JP 6671651 B1 JP6671651 B1 JP 6671651B1
Authority
JP
Japan
Prior art keywords
temperature
chilled water
cold
water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566845A
Other languages
Japanese (ja)
Other versions
JPWO2021064869A1 (en
Inventor
伊藤 信三
信三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EUREKA ENGINEERING INC.
Original Assignee
EUREKA ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EUREKA ENGINEERING INC. filed Critical EUREKA ENGINEERING INC.
Application granted granted Critical
Publication of JP6671651B1 publication Critical patent/JP6671651B1/en
Publication of JPWO2021064869A1 publication Critical patent/JPWO2021064869A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

液化天然ガスが気化するときに生じるLNG冷熱を熱交換するLNG気化器によって産業設備で使用される天然ガスを生成するLNGサテライト基地と、LNGサテライト基地に近接して配置され、LNG冷熱で冷却された冷水を利用する冷水利用部が設けられた冷水利用施設と、LNG気化器と冷水利用施設との間に設けられ、LNG冷熱を蓄熱する蓄熱槽と、LNG気化器における冷凍能力が冷水利用施設における冷熱需要を超えるとき、冷凍能力が冷熱需要を越える余剰冷熱分のLNG冷熱を蓄熱槽に蓄熱し、冷水利用施設における冷熱需要が冷凍能力を超えるとき、冷凍能力が冷熱需要に対して不足する不足冷熱を蓄熱槽から冷水利用部に低温冷水で供給するように制御する制御装置と、を備えたLNG冷熱を蓄熱して利用する冷水供給システムである。The LNG vaporizer, which exchanges the LNG cold heat generated when the liquefied natural gas is vaporized, is used to generate natural gas for use in industrial equipment. The LNG satellite base is placed close to the LNG satellite base and cooled by the LNG cold heat. A cold water utilization facility provided with a cold water utilization unit for utilizing cold water, a heat storage tank provided between the LNG vaporizer and the cold water utilization facility for storing LNG cold heat, and a refrigerating capacity of the LNG vaporizer having a cold water utilization facility. When the cold energy demand exceeds the cold energy demand, the LNG cold energy of the excess cold energy that exceeds the cold energy demand is stored in the heat storage tank, and when the cold energy demand at the cold water utilization facility exceeds the refrigerating capacity, the refrigerating capacity is insufficient for the cold energy demand. Chilled water for storing and utilizing LNG cold heat, which includes a control device for controlling insufficient cold heat from the heat storage tank to be supplied to the cold water utilization unit as low temperature cold water A feeding system.

Description

本発明は、液化天然ガスを気化するLNG気化器で生じるLNG冷熱を利用する冷水供給システムに関する。   The present invention relates to a chilled water supply system that utilizes LNG cold generated by an LNG vaporizer that vaporizes liquefied natural gas.

地球温暖化問題はますます深刻度を増しており、二酸化炭素(CO)排出係数が大きい石炭や石油から排出係数が小さい天然ガスへの燃料シフトが始まっており、多くの液化天然ガス(LNG)サテライト基地が建設されている。LNGサテライト基地では大量のLNG冷熱が発生する。
LNG冷熱は極めて有用であるにも拘わらず、その有効活用はほとんど行われておらず、海水や温水で気化されて捨てられている。
The problem of global warming is becoming more and more serious, and a fuel shift from coal or oil having a large carbon dioxide (CO 2 ) emission factor to natural gas having a small emission factor has begun, and many liquefied natural gas (LNG) ) A satellite base is being built. A large amount of LNG cold heat is generated at the LNG satellite base.
Although LNG refrigeration is extremely useful, it is rarely used effectively and is discarded after being vaporized with seawater or hot water.

また、近年、消費者の食品に対する安全・安心への志向が高まり、これに応えるように人工環境において植物を生産する植物工場に関する技術革新が著しく、植物工場をLNG冷熱で冷房することが行われている。   Also, in recent years, consumers have become more and more interested in food safety and security, and in response to this, there has been remarkable technological innovation in plant factories that produce plants in artificial environments, and plant factories are cooled with LNG heat. ing.

太陽光利用型植物工場は、従来のハウス栽培の延長線上にあり、栽培植物はサラダ菜、リーフレタス等の葉菜類の他、トマト、イチゴ等の果采類である。この方式は平面に限られるので広大な用地を必要とする。また、日射の有無や外気温の変化で室内環境が左右されるので冷熱需要の変化が激しく、夏季の冷房と冬季の暖房に多大なエネルギーを必要とする。   The plant factory utilizing sunlight is an extension of conventional house cultivation, and the cultivated plants are leafy vegetables such as salad vegetables and leaf lettuce, as well as fruits such as tomatoes and strawberries. Since this method is limited to a flat surface, a vast site is required. In addition, since the indoor environment is affected by the presence or absence of solar radiation and changes in the outside air temperature, the demand for cooling heat changes drastically, requiring a large amount of energy for cooling in summer and heating in winter.

完全制御型植物工場の栽培植物は葉菜類に限られるが、天候や場所に左右されず、多層型の栽培が可能で狭い土地で大量生産することができる。しかし、建屋・冷房装置・栽培装置(照明装置を含む)の建設コストが高く、年間を通して必要となる照明用電力および冷暖房用電力の消費量が非常に大きくなる。このように植物工場では電力コストが大きいことが問題であり、液化天然ガスを気化するLNG気化器で生じるLNG冷熱を植物工場において冷房に利用することが行われている。   The cultivated plants of the fully controlled plant factory are limited to leafy vegetables, but they can be multi-layer cultivated and can be mass-produced on narrow land regardless of the weather or location. However, the construction cost of the building, the cooling device, and the cultivation device (including the lighting device) is high, and the consumption of the power for lighting and the power for cooling and heating required throughout the year is extremely large. As described above, there is a problem that power costs are large in a plant factory, and LNG cold generated by an LNG vaporizer that vaporizes liquefied natural gas is used for cooling in the plant factory.

特許文献1には、液化天然ガスを気化させるべく液化天然ガスと第1中間媒体とを熱交換させるLNG気化器と、第1中間媒体と第2中間媒体とを熱交換させる第1熱交換器と、第2中間媒体と植物工場内の空気とを熱交換させる第2熱交換器と、を備えたLNG冷熱を利用する植物工場システムが開示されている。
特許文献2には、栽培植物を栽培する温室内を空調する植物工場における空調システムにおいて、蓄冷熱槽内の水を夜間電力で冷却して蓄冷し、その蓄冷熱槽内の冷水を充填式空調機に導入し、充填式空調機で温室内の局所空間から吸引した空気と熱交換して冷気を局所空間に供給するランニングコストを低減できる植物工場における空調システムが開示されている。
特許文献3には、二酸化炭素の発生源となる産業プラントと、液化天然ガスを貯蔵するLNG基地と、植物を生産する植物工場と、産業プラントで発生した二酸化炭素を液化天然ガスを用いてドライアイスとするドライアイス製造設備とを備え、植物工場は、ドライアイス製造設備が製造したドライアイスを植物への二酸化炭素施用の供給源および冷房用の冷熱源として用いる空調システムが記載されている。
Patent Document 1 discloses an LNG vaporizer for exchanging heat between liquefied natural gas and a first intermediate medium to vaporize liquefied natural gas, and a first heat exchanger for exchanging heat between a first intermediate medium and a second intermediate medium. A plant factory system using LNG cold heat, which includes a second intermediate medium and a second heat exchanger that performs heat exchange between air in the plant factory, is disclosed.
Patent Literature 2 discloses an air conditioning system in a plant factory that air-conditions a greenhouse in which cultivated plants are cultivated. In the air conditioning system, water in a cold storage heat tank is cooled by electric power at night to store cold, and cold water in the cold storage heat tank is filled with air conditioning. There is disclosed an air conditioning system in a plant factory which can reduce the running cost of supplying cold air to a local space by exchanging heat with air sucked from a local space in a greenhouse by a filling type air conditioner.
Patent Document 3 discloses an industrial plant that is a source of carbon dioxide, an LNG base that stores liquefied natural gas, a plant factory that produces plants, and a method of drying carbon dioxide generated in an industrial plant using liquefied natural gas. An air conditioning system is described which includes a dry ice producing facility for producing ice and uses a dry ice produced by the dry ice producing facility as a supply source for applying carbon dioxide to plants and a cold heat source for cooling.

実用新案登録第3209642号Utility Model Registration No. 3209642 特開2000−93010号公報JP 2000-93010 A 特開2011−250759号公報JP 2011-250759 A

LNG冷熱の供給能力(冷凍能力)は、例えば発電量の増減に応じて天然ガス(NG)の消費量が変化するので、一日を通して変化する。LNGを利用する施設の冷熱需要(冷房負荷またはプロセス等の冷却負荷)も一日を通して変化する。この冷凍能力と冷熱需要の変化動向は一致しないので、LNG冷熱を無駄なく有効に利用することが困難であった。   The supply capacity (refrigeration capacity) of LNG cold heat varies throughout the day because, for example, the consumption of natural gas (NG) varies according to the increase or decrease in the amount of power generation. The cooling demand (cooling load or cooling load such as process) of facilities using LNG also changes throughout the day. Since the refrigerating capacity does not coincide with the changing trend of the cold heat demand, it has been difficult to effectively use the LNG cold heat without waste.

特許文献1に記載されたシステムでは、一日を通しての天然ガスの消費量の変化に応じて液化天然ガスの気化量が変化することによるLNG気化器における冷凍能力の変化動向と、植物工場における冷熱需要の変化動向との差異のために植物工場を適切に冷房できない不具合が生じる。従って、植物工場における冷熱需要がLNG気化器における冷凍能力を超えない規模の植物工場しか建設することができない。
特許文献2に記載された装置では、冷水を貯留する蓄冷熱槽内の水を夜間電力で冷却して蓄冷し、その蓄冷熱槽内の冷水を昼間に充填式空調機に導入して空気を冷やし、冷気を温室内に供給するものであるので、夜間の電力使用料は必要である。また、夜間電力の利用だけでは冷凍機および蓄熱槽の容量が大きくなる。
特許文献3に記載されたシステムでは、産業プラントで発生した二酸化炭素をLNG基地から供給される液化天然ガスを用いてドライアイスにし、このドライアイスを植物工場で炭酸ガスにして植物に与えているので、産業プラントで発生した排ガスから二酸化炭素を分離してドライアイスにするドライアイス製造設備が必要になる。
In the system described in Patent Literature 1, a change in the refrigeration capacity of an LNG vaporizer due to a change in the amount of liquefied natural gas vaporized according to a change in natural gas consumption throughout the day, and a change in refrigeration in a plant factory There is a problem that the plant factory cannot be properly cooled due to a difference from a change in demand. Therefore, it is only possible to construct a plant factory of a scale where the cooling demand in the plant factory does not exceed the refrigeration capacity of the LNG vaporizer.
In the device described in Patent Document 2, water in a cold storage tank that stores cold water is cooled by nighttime electric power to store cold water, and the cold water in the cold storage heat tank is introduced into a chargeable air conditioner during the day to remove air. Since it cools and supplies cool air into the greenhouse, nighttime electricity usage fees are required. Further, the capacity of the refrigerator and the heat storage tank is increased only by using the nighttime electric power.
In the system described in Patent Literature 3, carbon dioxide generated in an industrial plant is converted into dry ice using liquefied natural gas supplied from an LNG terminal, and the dry ice is converted into carbon dioxide in a plant factory and given to plants. Therefore, a dry ice production facility for separating carbon dioxide from exhaust gas generated in an industrial plant to produce dry ice is required.

本発明の目的は、産業設備に天然ガスを供給するLNGサテライト基地と冷水利用施設との間に、LNGサテライト基地で生じたLNG冷熱を蓄熱する温度成層式冷水蓄熱槽を備え、一日を通してのLNG気化器における冷凍能力の変化動向と冷水利用施設における冷熱需要の変化動向との差異に拘わらず、LNG冷熱のみによって冷水利用施設で利用するLNG冷熱で冷却された冷水を提供可能なLNG冷熱を蓄熱して利用する冷水供給システムを提供することである。 An object of the present invention is to provide a temperature stratified chilled water heat storage tank for storing LNG chilled heat generated at an LNG satellite base between an LNG satellite base for supplying natural gas to industrial equipment and a chilled water utilization facility, and to provide a heat treatment tank throughout the day. Regardless of the difference between the change trend of the refrigeration capacity in the LNG vaporizer and the change trend of the chilled heat demand in the chilled water utilization facility, the LNG chilled heat capable of providing the chilled water cooled by the LNG chilled heat used in the chilled water utilization facility only by the LNG chilled heat is used. An object of the present invention is to provide a cold water supply system for storing and using heat.

課題を解決するための第1の手段は、液化天然ガスが気化するときに生じるLNG冷熱を前記液化天然ガスと冷水との間で直接熱交換して前記冷水を低温冷水とする冷水式LNG気化器によって産業設備で使用される天然ガスを生成するLNGサテライト基地と、前記LNGサテライト基地に近接して配置され、前記LNG冷熱で冷却された前記低温冷水を利用する冷水利用部が設けられた冷水利用施設と、前記冷水式LNG気化器と前記冷水利用施設との間に設けられ、前記冷水式LNG気化器から供給される前記低温冷水を貯留する低温部と前記冷水利用部から戻される高温冷水を貯留する高温部が形成される温度成層式冷水蓄熱槽と、前記温度成層式冷水蓄熱槽を前記冷水式LNG気化器の冷水流入口に接続する管路に第1三方弁および定流量ポンプが順次介在され、前記第1三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記高温部と前記低温部にそれぞれ接続されて前記冷水を前記冷水式LNG気化器に戻し、前記冷水式LNG気化器から前記低温冷水を前記温度成層式冷水蓄熱槽の前記低温部に供給する第1冷水循環回路と、前記温度成層式冷水蓄熱槽と前記冷水利用部の入口との間に第2三方弁および可変流量ポンプが順次介在され、前記第2三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記低温部および前記高温部にそれぞれ接続され、前記第2三方弁によって混合割合を調整された前記低温冷水と前記高温冷水とを前記冷水利用部に供給し前記LNG冷熱を放出させて前記高温冷水とし、流量を制御する二方弁を介して前記高温冷水を前記冷水利用部の出口から前記温度成層式冷水蓄熱槽の前記高温部に戻す第2冷水循環回路と、前記産業設備に設けられた凝縮部を冷却水または海水で冷却する冷却装置と、前記管路に前記定流量ポンプと前記冷水式LNG気化器との間に設けられ、前記凝縮部で熱交換して昇温した前記冷却水または海水の一部が供給されて、前記冷水式LNG気化器に戻る前記冷水をバックアップして昇温するバックアップ用熱交換器と、前記定流量ポンプで一定流量の前記冷水を前記第1冷水循環回路に循環させ、前記第1三方弁を制御して前記温度成層式冷水蓄熱槽から流出する前記高温冷水と前記低温冷水との混合割合を調整して、前記冷水式LNG気化器から流出して前記温度成層式冷水蓄熱槽の前記低温部に供給される前記低温冷水の温度を制御し、前記第2三方弁を制御して前記温度成層式冷水蓄熱槽から前記可変流量ポンプで汲出される前記高温冷水と前記低温冷水との混合割合を調整するとともに、前記冷水利用部を通って前記高温部に戻される前記高温冷水の流量を前記二方弁で制御して、前記冷水利用部から前記温度成層式冷水蓄熱槽の前記高温部に戻される前記高温冷水の温度を制御し、前記冷水式LNG気化器における冷凍能力が前記冷水利用施設における冷熱需要を超えるとき、前記冷凍能力が前記冷熱需要を越える余剰冷熱分の前記低温冷水を前記温度成層式冷水蓄熱槽に貯留し、前記冷水利用施設における冷熱需要が前記冷水式LNG気化器における冷凍能力を超えるとき、前記冷凍能力が前記冷熱需要に対して不足する不足冷熱を前記温度成層式冷水蓄熱槽に貯留された前記低温冷水で前記冷水利用部に供給するように前記第1冷水循環回路および前記第2冷水循環回路を制御する制御装置と、を備えたLNG冷熱を蓄熱して利用する冷水供給システムである。A first means for solving the problem is a chilled water type LNG vaporization in which LNG cold generated when liquefied natural gas is vaporized is directly exchanged between the liquefied natural gas and chilled water to convert the chilled water to low-temperature chilled water. Chilled water provided with an LNG satellite base for generating natural gas used in industrial equipment by a vessel, and a chilled water utilization unit disposed in close proximity to the LNG satellite base and utilizing the low-temperature chilled water cooled by the LNG chilled heat A low-temperature section for storing the low-temperature chilled water supplied from the chilled-water LNG vaporizer and a high-temperature chilled water returned from the chilled-water usage section, provided between the utilization facility and the chilled water LNG vaporizer and the chilled water utilization facility. A first three-way valve and a temperature-stratified chilled water heat storage tank in which a high-temperature portion for storing water is formed, and a pipe connecting the temperature-stratified chilled water heat storage tank to a chilled water inlet of the chilled water LNG vaporizer. A constant flow pump is sequentially interposed, and two inlets of the first three-way valve are respectively connected to the high temperature part and the low temperature part of the temperature stratified chilled water heat storage tank, and the chilled water is supplied to the chilled water LNG vaporizer. Return, a first chilled water circulation circuit for supplying the low-temperature chilled water from the chilled water LNG vaporizer to the low-temperature portion of the temperature-stratified chilled water storage tank, and a first chilled water circulation tank and an inlet of the chilled water utilization unit. A second three-way valve and a variable flow pump are sequentially interposed therebetween, and two inflow ports of the second three-way valve are connected to the low-temperature part and the high-temperature part of the temperature-stratified cold water storage tank, respectively. The low-temperature chilled water and the high-temperature chilled water, the mixing ratio of which is adjusted by a three-way valve, are supplied to the chilled water utilization part to release the LNG chilled heat to become the high-temperature chilled water, and the high-temperature chilled water is controlled via a two-way valve that controls a flow rate. The cold water A second chilled water circulation circuit for returning from the outlet of the section to the high temperature section of the temperature stratified chilled water heat storage tank, a cooling device for cooling a condensing section provided in the industrial facility with cooling water or seawater, and A part of the cooling water or seawater, which is provided between a constant flow pump and the chilled water LNG vaporizer and is heated by exchanging heat in the condenser, is supplied, and returns to the chilled water LNG vaporizer. A backup heat exchanger that backs up the chilled water and raises the temperature, and circulates the chilled water at a constant flow rate to the first chilled water circulation circuit by the constant flow rate pump, and controls the first three-way valve to control the temperature of the stratified chilled water. The mixing ratio of the high-temperature chilled water and the low-temperature chilled water flowing out of the heat storage tank is adjusted to flow out of the chilled water LNG vaporizer and supplied to the low-temperature portion of the temperature stratified chilled water storage tank. Controlling the temperature, 2 While controlling the three-way valve to adjust the mixing ratio of the high-temperature chilled water and the low-temperature chilled water pumped by the variable flow rate pump from the temperature stratified chilled water heat storage tank, The flow rate of the returned high-temperature chilled water is controlled by the two-way valve to control the temperature of the high-temperature chilled water returned from the chilled water utilization section to the high-temperature section of the temperature-stratified chilled water storage tank, and the chilled water LNG vaporization is performed. When the refrigeration capacity of the vessel exceeds the cold demand in the cold water utilization facility, the low temperature chilled water for the excess refrigeration capacity in which the refrigeration capacity exceeds the cold demand is stored in the temperature stratified chilled water storage tank, and the cold heat in the cold water utilization facility is stored. When the demand exceeds the refrigeration capacity in the chilled water LNG vaporizer, the refrigeration capacity is insufficient for the chilled heat demand before the insufficient chilled heat is stored in the temperature stratified chilled water storage tank. A control device for controlling the first cold water circulating circuit and the second chilled water circulation circuit so as to supply to the cold water utilization unit at low temperature cold is a cold water supply system for use with heat storage of LNG cold with a.

課題を解決するための第2の手段は、液化天然ガスが気化するときに生じるLNG冷熱を前記液化天然ガスと不凍熱媒体との間で熱交換するLNG気化器によって産業設備で使用される天然ガスを生成するLNGサテライト基地と、前記LNGサテライト基地に近接して配置され、前記LNG冷熱で冷却された低温冷水を利用する冷水利用部が設けられた冷水利用施設と、前記LNG気化器と前記冷水利用施設との間に設けられ、前記低温冷水を貯留する低温部と前記冷水利用部から戻される高温冷水を貯留する高温部が形成される温度成層式冷水蓄熱槽と、前記LNG気化器と前記温度成層式冷水蓄熱槽との間に設けられた熱交換器と、前記LNG気化器と前記熱交換器との間で前記不凍熱媒体を循環させ、前記LNG気化器で生じたLNG冷熱を前記熱交換器で前記不凍熱媒体と冷水とで熱交換して前記低温冷水とし、前記LNG冷熱を放出した前記不凍熱媒体を前記LNG気化器に戻す第1不凍熱媒体循環回路と、前記温度成層式冷水蓄熱槽を前記熱交換器の冷水入口に接続する管路に第1三方弁および定流量ポンプが順次介在され、前記第1三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記高温部と前記低温部にそれぞれ接続されて前記冷水を前記熱交換器に戻し、前記熱交換器から前記低温冷水を前記温度成層式冷水蓄熱槽の前記低温部に供給する第3冷水循環回路と、前記温度成層式冷水蓄熱槽と前記冷水利用部の入口との間に第2三方弁および可変流量ポンプが順次介在され、前記第2三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記低温部および前記高温部にそれぞれ接続され、前記第2三方弁によって混合割合を調整された前記低温冷水と前記高温冷水とを前記冷水利用部に供給し前記LNG冷熱を放出させて前記高温冷水とし、流量を制御する二方弁を介して前記高温冷水を前記冷水利用部の出口から前記温度成層式冷水蓄熱槽の前記高温部に戻す第4冷水循環回路と、前記産業設備に設けられた凝縮部を冷却水または海水で冷却する冷却装置と、前記管路に前記定流量ポンプと前記熱交換器との間に設けられ、前記凝縮部で熱交換して昇温した前記冷却水または海水の一部が供給されて、前記熱交換器に戻る前記冷水をバックアップして昇温するバックアップ用熱交換器と、前記定流量ポンプで一定流量の前記冷水を前記第3冷水循環回路に循環させ、前記第1三方弁を制御して前記温度成層式冷水蓄熱槽から流出する前記高温冷水と前記低温冷水との混合割合を調整して、前記熱交換器から流出して前記温度成層式冷水蓄熱槽の前記低温部に供給される前記低温冷水の温度を制御し、前記第2三方弁を制御して前記温度成層式冷水蓄熱槽から前記可変流量ポンプで汲出される前記高温冷水と前記低温冷水との混合割合を調整するとともに、前記冷水利用部を通って前記高温部に戻される前記高温冷水の流量を前記二方弁で制御して、前記冷水利用部から前記温度成層式冷水蓄熱槽の前記高温部に戻される前記高温冷水の温度を制御し、前記LNG気化器における冷凍能力が前記冷水利用施設における冷熱需要を超えるとき、前記冷凍能力が前記冷熱需要を越える余剰冷熱分の前記低温冷水を前記温度成層式冷水蓄熱槽に貯留し、前記冷水利用施設における冷熱需要が前記LNG気化器における冷凍能力を超えるとき、前記冷凍能力が前記冷熱需要に対して不足する不足冷熱を前記温度成層式冷水蓄熱槽に貯留された前記低温冷水で前記冷水利用部に供給するように前記第3冷水循環回路および第4冷水循環回路を制御する制御装置と、を備えLNG冷熱を蓄熱して利用する冷水供給システムである。A second means for solving the problem is used in industrial equipment by an LNG vaporizer for exchanging LNG cold generated when liquefied natural gas is vaporized between the liquefied natural gas and an antifreeze heat medium. An LNG satellite base for generating natural gas, a chilled water utilization facility provided in close proximity to the LNG satellite base and provided with a chilled water utilization unit utilizing low-temperature chilled water cooled by the LNG chilled heat, and the LNG vaporizer; A temperature stratified chilled water heat storage tank provided between the cold water utilization facility and having a low temperature section for storing the low temperature chilled water and a high temperature section for storing the high temperature chilled water returned from the chilled water utilization section; and the LNG vaporizer. A heat exchanger provided between the LNG vaporizer and the heat stratified chilled water storage tank; and circulating the antifreeze heat medium between the LNG vaporizer and the heat exchanger. A first antifreeze heat medium circulation that returns cold heat to the low temperature cold water by exchanging heat between the antifreeze heat medium and the cold water in the heat exchanger, and returns the antifreeze heat medium that has released the LNG cold heat to the LNG vaporizer. A circuit, a first three-way valve and a constant flow pump are sequentially interposed in a pipe connecting the temperature-stratified chilled water heat storage tank to the chilled water inlet of the heat exchanger, and the two inlets of the first three-way valve are The cold water is returned to the heat exchanger connected to the high-temperature portion and the low-temperature portion of the temperature-stratified cold water storage tank, and the low-temperature chilled water is transferred from the heat exchanger to the low-temperature portion of the temperature-stratified cold water storage tank. A second three-way valve and a variable flow rate pump are sequentially interposed between the third chilled water circulation circuit to be supplied, the temperature stratified chilled water heat storage tank, and the inlet of the chilled water utilization part, and the two flows of the second three-way valve are provided. The inlet is the low temperature section of the temperature stratified cold water storage tank and The low-temperature chilled water and the high-temperature chilled water, each connected to the high-temperature section and having a mixing ratio adjusted by the second three-way valve, are supplied to the chilled water utilization section to discharge the LNG chilled heat to form the high-temperature chilled water, and to adjust the flow rate. A fourth chilled water circulation circuit that returns the high-temperature chilled water from the outlet of the chilled water utilization unit to the high-temperature portion of the temperature-stratified chilled water storage tank via a controlled two-way valve, and cools a condensation unit provided in the industrial equipment. A cooling device that cools with water or seawater, a part of the cooling water or seawater that is provided between the constant flow pump and the heat exchanger in the pipeline and that heats up in the condensing section and heats up. A backup heat exchanger that backs up the chilled water that is supplied and returns to the heat exchanger and raises the temperature, and circulates a constant flow of the chilled water through the third chilled water circulation circuit with the constant flow pump, Before controlling the three-way valve The mixing ratio of the high-temperature chilled water and the low-temperature chilled water flowing out of the temperature-stratified chilled water heat storage tank is adjusted to flow out of the heat exchanger and supplied to the low-temperature portion of the temperature-stratified chilled water heat storage tank. Controlling the temperature of the low-temperature chilled water and controlling the second three-way valve to adjust the mixing ratio of the high-temperature chilled water and the low-temperature chilled water pumped by the variable flow pump from the temperature stratified chilled water heat storage tank; The two-way valve controls the flow rate of the high-temperature chilled water returned to the high-temperature section through the chilled water usage section, and the high-temperature chilled water returned to the high-temperature section of the temperature stratified chilled water storage tank from the chilled water usage section. Controlling the temperature, when the refrigeration capacity of the LNG vaporizer exceeds the cold demand in the chilled water utilization facility, the low-temperature chilled water of the excess refrigeration capacity in which the refrigeration capacity exceeds the cold demand is supplied to the temperature stratified chilled water storage tank. When the cold demand in the cold water utilization facility exceeds the refrigerating capacity in the LNG vaporizer, the low temperature stored in the temperature stratified cold water storage tank is the insufficient cold heat in which the refrigerating capacity is insufficient for the cold demand. A control device for controlling the third chilled water circulation circuit and the fourth chilled water circulation circuit so as to supply the chilled water to the chilled water utilization unit, and a LNG chilled heat is stored and used.

削除 Delete

削除 Delete

本発明のLNG冷熱を蓄熱して利用する冷水供給システムは、LNGサテライト基地におけるLNG冷熱の供給能力である冷凍能力が冷水利用施設における冷熱需要を超えるとき、冷凍能力が冷熱需要を越える余剰冷熱分のLNG冷熱を温度成層式冷水蓄熱槽に貯留し、冷熱水利用施設における冷熱需要がLNGサテライト基地の冷凍能力を超えるとき、冷凍能力が冷熱需要に対して不足する不足冷熱分のLNG冷熱を温度成層式冷水蓄熱槽に蓄熱された低温冷水で冷水利用施設に供給する。これにより、一日を通してのLNGサテライト基地における冷凍能力の変化動向と冷水利用施設における冷熱需要の変化動向との差異に拘わらず、LNG冷熱のみによって冷水利用施設で利用する冷熱を賄うことができ、LNG冷熱を最大限活用でき、省エネ効果が大きい。また、冷水利用施設のランニングコストも低減することができる。
さらに、第1の手段では、定流量ポンプで一定流量の冷水を第1冷水循環回路に循環させ、第1三方弁を制御して温度成層式冷水蓄熱槽から流出する高温冷水と低温冷水との混合割合を調整することによって、冷水式LNG気化器から流出して温度成層式冷水蓄熱槽の低温部に供給される低温冷水の温度を制御することができる。そして、第2三方弁を制御して温度成層式冷水蓄熱槽から可変流量ポンプで汲出される高温冷水と低温冷水との混合割合を調整するとともに、冷水利用部を通って高温部に戻される高温冷水の流量を二方弁で制御することによって、冷水利用部から温度成層式冷水蓄熱槽の高温部に戻される高温冷水の温度を制御することができる。さらに、冷水式LNG気化器に戻る冷水をバックアップして昇温するバックアップ用熱交換器が設けられているので、冷水の温度が冷水式LNG気化器において液化天然ガスを冷水が氷結することなく気化させるために必要な温度より低い場合、冷水の温度をバックアップして昇温させることができる。
第2の手段では、定流量ポンプで一定流量の冷水を第3冷水循環回路に循環させ、第1三方弁を制御して温度成層式冷水蓄熱槽から流出する高温冷水と低温冷水との混合割合を調整することによって、熱交換器から流出して温度成層式冷水蓄熱槽の低温部に供給される低温冷水の温度を制御することができる。そして、第2三方弁を制御して温度成層式冷水蓄熱槽から可変流量ポンプで汲出される高温冷水と低温冷水との混合割合を調整するとともに、冷水利用部を通って高温部に戻される高温冷水の流量を二方弁で制御することによって、冷水利用部から温度成層式冷水蓄熱槽の高温部に戻される高温冷水の温度を制御することができる。さらに、熱交換器に戻る冷水をバックアップして昇温するバックアップ用熱交換器が設けられているので、熱交換器で冷水が氷結しないように冷水の温度をバックアップして昇温させることができる。
The chilled water supply system according to the present invention for storing and utilizing LNG chilled heat, wherein the refrigeration capacity exceeds the chilled heat demand when the refrigeration capacity, which is the LNG chilled heat supply capacity at the LNG satellite base, exceeds the chilled heat demand at the chilled water utilization facility. of the LNG cold is stored in a temperature stratification formula cold water storage tank, when the cold demand in cold water utilization facility exceeds the cooling capacity of the LNG satellite terminals, temperature LNG cold lack cold fraction refrigerating capacity is insufficient for the cold demand The low-temperature chilled water stored in the stratified chilled water storage tank is supplied to the chilled water utilization facility. Thereby, irrespective of the difference between the changing trend of the refrigeration capacity at the LNG satellite base throughout the day and the changing trend of the chilled heat demand at the chilled water utilization facility, the chilled water used at the chilled water utilization facility can be covered only by the LNG chilled heat, LNG cold heat can be used to the maximum and the energy saving effect is great. Further, the running cost of the cold water utilization facility can be reduced.
Further, in the first means, a constant flow pump circulates a constant flow of chilled water through the first chilled water circulation circuit, and controls the first three-way valve so that the high-temperature chilled water and the low-temperature chilled water flowing out of the temperature stratified chilled water heat storage tank are separated. By adjusting the mixing ratio, it is possible to control the temperature of the low-temperature chilled water flowing out of the chilled water LNG vaporizer and supplied to the low-temperature portion of the temperature-stratified chilled water heat storage tank. Then, the second three-way valve is controlled to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water pumped by the variable flow rate pump from the temperature stratified cold water storage tank, and to control the high temperature returned to the high temperature section through the cold water utilization section. By controlling the flow rate of the cold water with the two-way valve, the temperature of the high-temperature cold water returned from the cold water utilization section to the high temperature section of the temperature stratified cold water storage tank can be controlled. Further, since a backup heat exchanger is provided to back up the chilled water returning to the chilled water LNG vaporizer and raise the temperature, the temperature of the chilled water vaporizes the liquefied natural gas in the chilled water LNG vaporizer without freezing the chilled water. If the temperature is lower than the temperature required for cooling, the temperature of the cold water can be backed up and raised.
In the second means, a constant flow pump circulates a constant flow of chilled water through a third chilled water circulation circuit and controls the first three-way valve to mix the high-temperature chilled water and the low-temperature chilled water flowing out of the temperature-stratified chilled water storage tank. , The temperature of the low-temperature chilled water flowing out of the heat exchanger and supplied to the low-temperature portion of the temperature-stratified chilled water heat storage tank can be controlled. Then, the second three-way valve is controlled to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water pumped by the variable flow rate pump from the temperature stratified cold water storage tank, and to control the high temperature returned to the high temperature section through the cold water utilization section. By controlling the flow rate of the cold water with the two-way valve, the temperature of the high-temperature cold water returned from the cold water utilization section to the high temperature section of the temperature stratified cold water storage tank can be controlled. Furthermore, since the backup heat exchanger for backing up the cold water returning to the heat exchanger and raising the temperature is provided, the temperature of the cold water can be backed up and raised so that the cold water does not freeze in the heat exchanger. .

冷凍能力が冷熱需要に対して不足する不足冷熱分のLNG冷熱を温度成層式冷水蓄熱槽に貯留されたLNG冷熱から冷水利用施設に供給するので、冷水利用施設の冷熱需要の最大量が、冷水利用施設における冷熱需要がLNGサテライト基地における冷凍能力を超えるときの冷凍能力に限定される必要がなくなり、冷水利用施設を大型化することができる。 Since the LNG refrigeration for the deficient heat of which refrigeration capacity is insufficient for the refrigeration demand is supplied from the LNG refrigeration stored in the temperature stratified chilled water storage tank to the chilled water utilization facility, the maximum amount of refrigeration demand for the chilled water utilization facility is It is not necessary to limit to the refrigeration capacity when the chilled heat demand at the utilization facility exceeds the refrigeration capacity at the LNG satellite base, and the chilled water utilization facility can be enlarged.

通常、施設の冷房には、冷凍機、冷却塔が必要であり、冷却塔で膨大な量の用水(冷却塔補給水)が冷却のために使用されて大気に放出されるが、本発明では冷凍機、冷却塔が不要であり、LNGサテライト基地で生じたLNG冷熱を蓄熱して最大限活用するので、水資源の節約効果が大きい。   Usually, cooling of a facility requires a refrigerator and a cooling tower, and an enormous amount of water (cooling tower makeup water) is used for cooling in the cooling tower and released to the atmosphere. Since a refrigerator and a cooling tower are not required, and the LNG cold generated at the LNG satellite base is stored and utilized to the utmost, the effect of saving water resources is great.

第1実施形態に係るLNG冷熱を蓄熱して利用する冷水供給システムの全体構成を示すブロック図である。It is a block diagram showing the whole cold water supply system composition which accumulates and uses LNG cold energy concerning a 1st embodiment. 冷水式気化器における冷凍能力と完全制御型植物工場の冷房負荷とを一日の時刻別に示す図である。It is a figure which shows the refrigerating capacity in a chilled water type vaporizer, and the cooling load of a complete control type plant factory according to time of day. )温度成層式冷水蓄熱装置を示す図である。It is a figure which shows a) temperature stratification type cold water heat storage device. 第2実施形態に係るLNG冷熱を蓄熱して利用する冷水供給システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the cold water supply system which accumulates and uses LNG cold heat concerning 2nd Embodiment. 冷水式気化器における冷凍能力と太陽光利用型植物工場の冷房負荷とを一日の時刻別に示す図である。It is a figure which shows the refrigerating capacity in a chilled water type vaporizer, and the cooling load of a sunlight utilization type | mold plant factory according to time of day. 第3実施形態に係るLNG冷熱を蓄熱して利用する冷水供給システムの全体構成を示すブロック図である。図である。It is a block diagram showing the whole cold water supply system composition which stores and uses LNG cold energy concerning a 3rd embodiment. FIG. 参考例に係るLNG冷熱を蓄熱して利用する冷水供給システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the cold water supply system which accumulate | stores and uses LNG cold heat concerning a reference example . 参考例における氷蓄熱槽を示す図である。It is a figure which shows the ice heat storage tank in a reference example .

1.第1実施形態の構成
第1実施形態に係るLNG冷熱を蓄熱して利用する冷水供給システム1aは、図1に示すように、液化天然ガス(LNG)を気化する冷水式LNG気化器11を備えたLNGサテライト基地10と、冷水式LNG気化器11で気化された天然ガス(NG)を燃焼させて利用する産業設備としてのGTCC(ガスタービンコンバインドサイクル)発電プラント20と、LNGサテライト基地10とGTCC発電プラント20とに近接して配置された冷水利用施設としての完全制御型の植物工場30と、冷水式LNG気化器11と植物工場30との間に設けられ、低温冷水を貯留する冷水蓄熱槽40と、冷水式LNG気化器11から低温冷水を冷水蓄熱槽40に供給し、冷水蓄熱槽40から冷水を冷水式LNG気化器11に戻す第1冷水循環回路50と、冷水蓄熱槽40からLNG冷熱で冷却された冷水を冷水利用部に供給しLNG冷熱を放出させて高温冷水とし、高温冷水を冷水蓄熱槽40に戻す第2冷水循環回路60と、を備える。
1. Configuration of First Embodiment A chilled water supply system 1a according to the first embodiment that stores and uses LNG cold heat includes a chilled water LNG vaporizer 11 that vaporizes liquefied natural gas (LNG), as shown in FIG. (LNG satellite base 10), a GTCC (Gas Turbine Combined Cycle) power plant 20 as an industrial facility for burning and utilizing natural gas (NG) vaporized by the chilled water LNG vaporizer 11, a LNG satellite base 10 and GTCC A chilled water heat storage tank that is provided between the chilled water LNG vaporizer 11 and the plant factory 30 and that stores low-temperature chilled water. 40, low-temperature chilled water is supplied from the chilled water LNG vaporizer 11 to the chilled water heat storage tank 40, and the chilled water is returned from the chilled water heat storage tank 40 to the chilled water LNG vaporizer 11. The first chilled water circulation circuit 50 and the chilled water cooled by LNG chilled heat from the chilled water storage tank 40 are supplied to the chilled water utilization unit to release the LNG chilled heat to become high-temperature chilled water, and the second chilled water is returned to the chilled water storage tank 40 from the high-temperature chilled water A circulation circuit 60.

LNGサテライト基地10は、産業設備であるGTCC発電プラント20の近傍に設けられ、港湾からLNGタンクローリーで運搬された液化天然ガスを貯留するLNGタンク12と、LNGタンク12から供給された液化天然ガスを12〜30℃の冷水で気化させて天然ガスとする冷水式気化器11を備える。これにより、LNGサテライト基地10は、液化天然ガスが気化するときに生じるLNG冷熱を液化天然ガスと冷水との間で直接熱交換して冷水を低温冷水とする冷水式LNG気化器11によってGTCC発電プラント20で使用される天然ガスを生成する。冷水式気化器11としては、例えば、特許第4422977号公報に記載されている低温液化ガス気化装置を用いる。この低温液化ガス気化装置は、株式会社神戸製鋼所によってKOBELCO冷水式LNG気化器の型式KSHとして販売されている。   The LNG satellite base 10 is provided near a GTCC power plant 20 which is an industrial facility, and stores an LNG tank 12 for storing liquefied natural gas transported from a port by an LNG tank lorry, and a liquefied natural gas supplied from the LNG tank 12. A chilled water vaporizer 11 is provided which is vaporized with cold water at 12 to 30 ° C. to produce natural gas. As a result, the LNG satellite base 10 performs the GTCC power generation by the chilled water LNG vaporizer 11 in which the LNG cold generated when the liquefied natural gas is vaporized is directly exchanged between the liquefied natural gas and the chilled water to make the chilled water the low-temperature chilled water. Generates natural gas used in plant 20. As the chilled water vaporizer 11, for example, a low temperature liquefied gas vaporizer described in Japanese Patent No. 4442297 is used. This low-temperature liquefied gas vaporizer is sold by Kobe Steel Ltd. as KOBELCO cold water type LNG vaporizer model KSH.

GTCC発電プラント20は公知であり、冷水式LNG気化器11から供給された天然ガスの燃焼によって作動されるガスタービン発電装置と、このガスタービンから排出された排気ガスから排熱回収ボイラで熱回収して生成した蒸気で作動される復水タービン発電装置とから構成されている。GTCC発電プラント20には冷却装置21が設けられ、復水タービン発電装置から排出された蒸気は冷却装置21の凝縮部22で復水され、排熱回収ボイラに戻される。冷却装置21は、凝縮部22と冷却塔23との間で冷却水を循環させる循環回路24を備えている。なお、冷却装置21は、冷却水に代えて海水を使用し、海からポンプで海水を汲み上げて凝縮部22に供給し、蒸気を復水させた後に海に放出するようにしてもよい。   The GTCC power generation plant 20 is known, and a gas turbine power generation device is operated by burning natural gas supplied from the chilled water LNG vaporizer 11, and heat is recovered from an exhaust gas discharged from the gas turbine by an exhaust heat recovery boiler. And a condensing turbine power generation device that is operated with the steam generated as a result. A cooling device 21 is provided in the GTCC power generation plant 20, and steam discharged from the condensing turbine power generation device is condensed in a condenser 22 of the cooling device 21 and returned to the exhaust heat recovery boiler. The cooling device 21 includes a circulation circuit 24 that circulates cooling water between the condenser 22 and the cooling tower 23. Note that the cooling device 21 may use seawater instead of the cooling water, pump seawater from the sea with a pump, supply the seawater to the condensing unit 22, and discharge the steam to the sea after condensing the steam.

冷水利用施設である完全制御型の植物工場30は、LNGサテライト基地10およびGTCC発電プラント20に近接して配置され、照明によって明期と暗期を作り、電力、炭酸ガス、水、肥料などを自動的に供給されて植物を人工的に栽培する。植物工場30には、冷房用冷水コイル31とファンを備えた冷房室内機が設けられ、冷房利用施設の冷水利用部である冷房用冷水コイル31には、冷水蓄熱槽40との間で冷水が第2冷水循環回路60によって循環され、LNG冷熱で冷却された冷水を利用して植物工場30を冷房する。   A fully-controlled plant factory 30, which is a chilled water utilization facility, is arranged in close proximity to the LNG satellite base 10 and the GTCC power plant 20, and creates light and dark periods by lighting, and supplies electric power, carbon dioxide, water, fertilizer, and the like. Automatically supplied to grow plants artificially. The plant factory 30 is provided with a cooling indoor unit having a cooling water coil 31 for cooling and a fan, and the cooling water coil 31 for cooling, which is a cooling water utilization unit of the cooling utilization facility, receives cold water between the cooling water storage tank 40 and the cooling water storage tank 40. The plant factory 30 is cooled using cold water circulated by the second cold water circulation circuit 60 and cooled by LNG cold heat.

LNGサテライト基地10と植物工場30との間には、低温冷水を貯留する冷水蓄熱槽40が設けられている。冷水蓄熱槽40は、低温冷水(例えば8℃)を貯留する低温部43と高温冷水(例えば20℃)を貯留する高温部44が形成されている。冷水蓄熱槽としては、特許第3578973号公報に記載されているような上側に高温部が形成され下側に低温部が形成される公知の温度成層式冷水蓄熱槽を用いる。 A cold water storage tank 40 for storing low-temperature cold water is provided between the LNG satellite base 10 and the plant factory 30. The cold water storage tank 40 has a low-temperature section 43 for storing low-temperature cold water (for example, 8 ° C.) and a high-temperature section 44 for storing high-temperature cold water (for example, 20 ° C.). As the cold water heat storage tank, a known temperature stratified cold water heat storage tank having a high-temperature portion formed on the upper side and a low-temperature portion formed on the lower side as described in Japanese Patent No. 3578973 is used.

第1冷水循環回路50は、LNGサテライト基地10の冷水式LNG気化器11の冷水流出口を冷水蓄熱槽40の下側に形成される低温部43に管路51で接続し、冷水蓄熱槽40の上側に形成される高温部44を冷水式LNG気化器11の冷水流入口に管路52で接続する。管路52には第1三方弁53および定流量ポンプ54が上流側から順次介在され、第1三方弁53の2個の流入口に冷水蓄熱槽40の高温部44および低温部43がそれぞれ接続されている。 The first chilled water circulation circuit 50 connects the chilled water outlet of the chilled water LNG vaporizer 11 of the LNG satellite base 10 to a low temperature part 43 formed below the chilled water heat storage tank 40 by a pipe line 51, and Is connected to the cold water inlet of the cold water type LNG vaporizer 11 by a pipe 52. A first three-way valve 53 and a constant flow pump 54 are sequentially interposed in the pipeline 52 from the upstream side, and the high-temperature part 44 and the low-temperature part 43 of the cold water heat storage tank 40 are connected to the two inlets of the first three-way valve 53 , respectively. Have been.

管路52には、定流量ポンプ54と冷水式LNG気化器11との間にバックアップ用熱交換器70が設けられ、冷水蓄熱槽40から冷水式LNG気化器11に戻る冷水がバックアップ用熱交換器70によって昇温されるようになっている。これにより、冷水式LNG気化器11に戻る冷水の温度が冷水式LNG気化器11において液化天然ガスを冷水が氷結することなく気化させるために必要な温度より低い場合、冷水の温度をバックアップして昇温させることができる。   In the pipe line 52, a backup heat exchanger 70 is provided between the constant flow pump 54 and the chilled water LNG vaporizer 11, and the chilled water returning from the chilled water heat storage tank 40 to the chilled water LNG vaporizer 11 is used for the backup heat exchange. The temperature is raised by the vessel 70. Thereby, when the temperature of the chilled water returning to the chilled water LNG vaporizer 11 is lower than the temperature required to vaporize the liquefied natural gas in the chilled water LNG vaporizer 11 without freezing the chilled water, the temperature of the chilled water is backed up. The temperature can be raised.

ガスタービンコンバインドサイクル発電プラント20の冷却装置21の循環回路24の凝縮部22と冷却塔23との中間部分とバックアップ用熱交換器70との間で、凝縮部22で蒸気と熱交換して昇温した冷却水が循環され、冷水式LNG気化器11に戻る冷水をバックアップして昇温させる。   In the gas turbine combined cycle power plant 20, the heat is exchanged with the steam in the condenser 22 between the intermediate portion between the condenser 22 and the cooling tower 23 of the circulation circuit 24 of the cooling device 21 of the cooling device 21 and the backup heat exchanger 70, and the temperature rises. The warmed cooling water is circulated, and the cold water returning to the cold water type LNG vaporizer 11 is backed up and heated.

管路52にはバックアップ用熱交換器70と冷水式LNG気化器11との間に三方弁71が介在され、三方弁71の流入口と流出口が管路52に接続されている。管路52には定流量ポンプ54とバックアップ用熱交換器70との間で戻り管路72の一端が接続され、戻り管路72の他端は三方弁71の他の流入口に接続されている。三方弁71を調整することによりバックアップ用熱交換器70を通る冷水の流量とバックアップ用熱交換器70を通らない冷水の流量とを調整し、冷水式LNG気化器11に戻る冷水の温度を調整する。   A three-way valve 71 is interposed between the backup heat exchanger 70 and the chilled water LNG vaporizer 11 in the pipe 52, and an inlet and an outlet of the three-way valve 71 are connected to the pipe 52. One end of a return pipe 72 is connected to the pipe 52 between the constant flow pump 54 and the backup heat exchanger 70, and the other end of the return pipe 72 is connected to another inlet of the three-way valve 71. I have. By adjusting the three-way valve 71, the flow rate of the chilled water passing through the backup heat exchanger 70 and the flow rate of the chilled water not passing through the backup heat exchanger 70 are adjusted, and the temperature of the chilled water returning to the chilled water LNG vaporizer 11 is adjusted. I do.

第2冷水循環回路60は、冷水蓄熱槽40の低温部43を冷房用冷水コイル31の入口に管路61で接続し、冷房用冷水コイル31の出口を冷水蓄熱槽40の高温部44に管路62で接続する。管路61には第2三方弁63および可変流量ポンプ64が上流側から順次介在され、第2三方弁63の2個の流入口に冷水蓄熱槽40の低温部43および高温部44がそれぞれ接続されている。管路62には二方弁65が介在されている。 The second chilled water circulation circuit 60 connects the low temperature part 43 of the chilled water heat storage tank 40 to the inlet of the cooling chilled water coil 31 via a pipe 61, and connects the outlet of the cooling water coil 31 to the high temperature part 44 of the chilled water heat storage tank 40. The connection is made by the road 62. A second three-way valve 63 and a variable flow pump 64 are sequentially interposed in the pipe 61 from the upstream side, and the low-temperature part 43 and the high-temperature part 44 of the cold water storage tank 40 are connected to the two inlets of the second three-way valve 63 , respectively. Have been. A two-way valve 65 is interposed in the conduit 62.

80は排ガス供給装置で、ガスタービンコンバインドサイクル発電プラント20において天然ガスの燃焼によって生じた100℃以上の排ガスを排ガス冷却装置81で冷却して植物工場30に供給し炭酸ガスを補給する。排ガス冷却装置81は、可変流量ポンプ64が吐出したLNG冷熱で冷却された冷水の一部を二方弁82で流量制御して循環させ、排ガスと熱交換させて高温冷水にして冷水蓄熱槽40の高温部44に戻すように構成されている。   An exhaust gas supply device 80 cools an exhaust gas of 100 ° C. or higher generated by combustion of natural gas in the gas turbine combined cycle power plant 20 with an exhaust gas cooling device 81 and supplies it to the plant factory 30 to supply carbon dioxide gas. The exhaust gas cooling device 81 circulates a portion of the chilled water cooled by the LNG chilled heat discharged from the variable flow rate pump 64 by controlling the flow rate with the two-way valve 82, and exchanging heat with the exhaust gas to convert the chilled water into high-temperature chilled water. Is returned to the high-temperature portion 44 of FIG.

制御装置90は、冷水式LNG気化器11から流出する低温冷水の温度が一定の低温、例えば8℃になるように第1冷水循環回路50を制御する。制御装置90は、定流量ポンプ54で一定流量の冷水を第1冷水循環回路50循環させ、冷水式LNG気化器11から流出した低温冷水の温度T1を計測し、温度T1が例えば8℃となるように第1三方弁53を制御して冷水蓄熱槽40から流出する高温冷水と低温冷水との混合割合を調整して、冷水式LNG気化器11に流入する冷水の温度を制御する。これにより、LNG気化器11における一日を通しての冷凍能力の変化に拘わらず、冷水式LNG気化器11から流出する低温冷水の温度T1を一定(8℃)に維持できる。LNG気化器11における冷凍能力が安定状態で、冷水蓄熱槽40に貯留されている低温冷水および高温冷水の温度が、例えば8℃と20℃である場合、LNG気化器11に流入する冷水の温度は例えば15℃になる。 The control device 90 controls the first chilled water circulation circuit 50 so that the temperature of the low-temperature chilled water flowing out of the chilled water LNG vaporizer 11 becomes a constant low temperature, for example, 8 ° C. Controller 90, to circulate the chilled water at a constant flow rate to the first cold water circulation circuit 50 at a constant flow rate pump 54, to measure the low-temperature cold water temperature T1 flowing from the cold water type LNG vaporizer 11, and the temperature T1 of, for example, 8 ° C. By controlling the first three-way valve 53 so as to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water flowing out of the cold-water heat storage tank 40, the temperature of the cold water flowing into the cold-water LNG vaporizer 11 is controlled. Thus, the temperature T1 of the low-temperature chilled water flowing out of the chilled water type LNG vaporizer 11 can be kept constant (8 ° C.) irrespective of the change in the refrigeration capacity of the LNG vaporizer 11 throughout the day. When the refrigeration capacity of the LNG vaporizer 11 is stable and the temperatures of the low-temperature cold water and the high-temperature cold water stored in the cold water heat storage tank 40 are, for example, 8 ° C. and 20 ° C., the temperature of the cold water flowing into the LNG vaporizer 11 Is 15 ° C., for example.

制御装置90は、植物工場30の室内温度が要求温度(例えば25℃)になり、冷房用冷水コイル31から冷水蓄熱槽40に戻されるLNG冷熱を放出した高温冷水の温度が例えば20℃となるように第2冷水循環回路60を制御する。制御装置90は、植物工場30内の温度T2を計測し、温度T2が例えば25℃となるように、冷水蓄熱槽40から可変流量ポンプ64で吸い出されて冷房用冷水コイル31を通って冷水蓄熱槽40の高温部44に戻される冷水の流量を二方弁65で制御する。冷水蓄熱槽40に貯留されている低温冷水および高温冷水の温度が、例えば8℃と20℃である場合、冷房用冷水コイル31から冷水蓄熱槽40に戻されるLNG冷熱を放出した高温冷水の温度を20℃とするためには、第2三方弁63を制御して冷水蓄熱槽40から流出する高温冷水と低温冷水との混合割合を調整し、冷房用冷水コイル31に流入するLNG冷熱で冷却された冷水の温度を例えば10℃に調整する。これにより、植物工場30の冷房負荷(冷熱需要)が日射の有無や外気温度によって一日を通して変化するにも拘わらず、植物工場30の室内温度を要求温度に維持できる。 The controller 90 sets the indoor temperature of the plant factory 30 to the required temperature (for example, 25 ° C.), and the temperature of the high-temperature chilled water that has released LNG cold returned from the cooling chilled water coil 31 to the chilled water storage tank 40 becomes, for example, 20 ° C. Thus, the second chilled water circulation circuit 60 is controlled. The control device 90 measures the temperature T2 in the plant factory 30 and draws the chilled water from the chilled water storage tank 40 by the variable flow rate pump 64 through the cooling chilled water coil 31 so that the temperature T2 becomes, for example, 25 ° C. The flow rate of the cold water returned to the high temperature section 44 of the heat storage tank 40 is controlled by a two-way valve 65. When the temperatures of the low-temperature cold water and the high-temperature cold water stored in the cold-water heat storage tank 40 are, for example, 8 ° C. and 20 ° C., the temperature of the high-temperature cold water that releases the LNG cold returned from the cooling water coil 31 to the cold water heat storage tank 40 Is controlled to be 20 ° C. by controlling the second three-way valve 63 to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water flowing out of the cold water storage tank 40, and to cool with the LNG cold flowing into the cooling water coil 31 for cooling. The temperature of the cooled water is adjusted to, for example, 10 ° C. Accordingly, the indoor temperature of the plant factory 30 can be maintained at the required temperature, even though the cooling load (cooling heat demand) of the plant factory 30 varies throughout the day depending on the presence or absence of solar radiation and the outside air temperature.

このようにして、制御装置90は、冷水式LNG気化器11における冷凍能力が植物工場30における冷熱需要を超えるとき、冷凍能力が冷熱需要を越える余剰冷熱分の低温冷水を冷水蓄熱槽40に貯留し、植物工場30における冷熱需要が冷水式LNG気化器11における冷凍能力を超えるとき、冷凍能力が冷熱需要に対して不足する不足冷熱を冷水蓄熱槽40に貯留された低温冷水で植物工場30の冷房用冷水コイル31に供給するように第1冷水循環回路50および第2冷水循環回路60を制御する。   In this way, when the refrigeration capacity of the chilled water LNG vaporizer 11 exceeds the chilled heat demand of the plant factory 30, the control device 90 stores the low-temperature chilled water corresponding to the surplus chilled heat whose refrigeration capacity exceeds the chilled heat demand in the chilled water heat storage tank 40. When the cold demand in the plant factory 30 exceeds the refrigerating capacity in the chilled water LNG vaporizer 11, the cold capacity in which the refrigerating capacity is insufficient with respect to the cold demand is reduced by the low-temperature cold water stored in the cold water storage tank 40. The first chilled water circulation circuit 50 and the second chilled water circulation circuit 60 are controlled so as to be supplied to the cooling chilled water coil 31.

2.第1実施形態の作動および効果
第1冷水循環回路50の定流量ポンプ54が駆動されることにより、冷水蓄熱槽40から高温冷水と低温冷水が第1三方弁53で制御される割合で汲出されて混合された冷水が冷水式LNG気化器11に戻される。冷水式LNG気化器11は、液化天然ガスと冷水との間でLNG冷熱を直接熱交換して天然ガスを生成してGTCC発電プラント20に送出するとともに、LNG冷熱を有する低温冷水を冷水蓄熱槽40の低温部43に供給する。このとき、冷水式LNG気化器11から流出した低温冷水の温度T1が計測され、温度T1が、冷水式LNG気化器11における一日を通しての冷凍能力の変化に拘わらず、一定の低温となるように第1三方弁53で制御される。LNG冷熱を蓄熱して利用する冷水供給システム1aの安定運転状態において、冷水式LNG気化器11に流入する冷水の温度は約15℃となる。
2. Operation and effect of the first embodiment When the constant flow pump 54 of the first chilled water circulation circuit 50 is driven, high-temperature chilled water and low-temperature chilled water are pumped from the chilled water heat storage tank 40 at a rate controlled by the first three-way valve 53. The mixed cold water is returned to the cold water type LNG vaporizer 11. The chilled water LNG vaporizer 11 directly exchanges LNG chilled heat between liquefied natural gas and chilled water to generate natural gas and sends it to the GTCC power plant 20. The low-temperature part 43 is supplied to the low-temperature part 43. At this time, the temperature T1 of the low-temperature chilled water flowing out of the chilled water LNG vaporizer 11 is measured, and the temperature T1 is kept at a constant low temperature regardless of the change in the refrigeration capacity of the chilled water LNG vaporizer 11 throughout the day. Is controlled by the first three-way valve 53 . In the stable operation state of the chilled water supply system 1a that stores and uses the LNG chilled heat, the temperature of the chilled water flowing into the chilled water LNG vaporizer 11 is about 15 ° C.

第2冷水循環回路60の可変流量ポンプ64が駆動されることにより、冷水蓄熱槽40から低温冷水(8℃)と高温冷水(20℃)が第2三方弁63で制御される割合で汲出されて混合され、LNG冷熱で冷却された冷水(10℃)が生成される。LNG冷熱で冷却された冷水は冷房用冷水コイル31に送られLNG冷熱を放出して植物工場30の室内温度を要求温度(25℃)に制御し、二方弁65を介して冷水蓄熱槽40の高温部44に戻される。このとき、植物工場30内の温度T2が要求温度となるように、冷水の流量が二方弁65で制御される。可変流量ポンプはLNG冷熱で冷却された冷水の流量を確保する吐出量となるように制御される。冷水蓄熱槽40から冷房用冷水コイル31に供給されるLNG冷熱で冷却された冷水の温度を10℃とするために、第2三方弁63を制御して冷水蓄熱槽40から汲出される低温冷水と高温冷水の割合を調整する。 When the variable flow pump 64 of the second chilled water circulation circuit 60 is driven, low-temperature chilled water (8 ° C.) and high-temperature chilled water (20 ° C.) are pumped from the chilled water heat storage tank 40 at a rate controlled by the second three-way valve 63. To produce cold water (10 ° C.) cooled with LNG cold. The chilled water cooled by the LNG chill is sent to the cooling chill water coil 31 to release the LNG chill to control the indoor temperature of the plant factory 30 to the required temperature (25 ° C.), and the chilled water heat storage tank 40 through the two-way valve 65. Is returned to the high-temperature section 44 of FIG. At this time, the flow rate of the cold water is controlled by the two-way valve 65 so that the temperature T2 in the plant factory 30 becomes the required temperature. The variable flow rate pump is controlled so as to have a discharge rate that ensures the flow rate of the cold water cooled by the LNG cold heat. The low-temperature chilled water pumped out of the chilled water heat storage tank 40 by controlling the second three-way valve 63 so that the temperature of the chilled water cooled by the LNG chill supplied from the chilled water heat storage tank 40 to the cooling chill water coil 31 is set to 10 ° C. And adjust the ratio of hot and cold water.

植物工場30が完全制御型の場合、光源の点灯で照明して明期をつくり、消灯して暗期をつくる。図2に示すように、0時から9時および17時から24時の明期では点灯する光源の発熱を冷却するために冷房が必要であるので、冷熱需要が発生する。しかし、9時から17時の暗期は消灯するので照明による冷熱需要が生じない。天然ガスの使用量は夜間より日中の方が多くなるので、LNGサテライト基地10の冷水式NG気化器11による液化天然ガスの気化量は天然ガスの使用量に連動して増加し、冷水式NG気化器11における冷凍能力は、0時から24時の間で図2に示すように変動する。   When the plant factory 30 is of a complete control type, the light source is illuminated to illuminate to create a light period, and is turned off to create a dark period. As shown in FIG. 2, in the light period from 0 o'clock to 9 o'clock and from 17 o'clock to 24 o'clock, cooling is needed to cool the heat generated by the light source to be turned on, so that cooling demand is generated. However, since the lights are turned off in the dark period from 9:00 to 17:00, there is no need for cooling power by lighting. Since the usage of natural gas is greater during the day than at night, the amount of liquefied natural gas vaporized by the NG carburetor 11 at the LNG satellite base 10 increases in conjunction with the amount of natural gas used, and The refrigerating capacity of the NG vaporizer 11 fluctuates between 0:00 and 24:00 as shown in FIG.

制御装置90は、0時から24時の間、定流量ポンプ54を作動させて冷水式LNG気化器11の冷凍能力に応じて生じる冷熱を有する低温冷水を冷水蓄熱槽40の低温部43に送出し、0時から9時の間および17時から24時の間は可変流量ポンプ64を作動させて冷水蓄熱槽40からLNG冷熱で冷却された冷水を冷房用冷水コイル31に植物工場30における冷熱需要に応じた流量で供給し、冷房用冷水コイル31でLNG冷熱を放出した高温冷水を冷水蓄熱槽40の高温部44に戻す。   The controller 90 operates the constant flow pump 54 from 0:00 to 24:00 to send low-temperature chilled water having cold generated according to the refrigeration capacity of the chilled water LNG vaporizer 11 to the low-temperature portion 43 of the chilled water heat storage tank 40, Between 0 o'clock to 9 o'clock and 17 o'clock to 24 o'clock, the variable flow pump 64 is operated to supply the cold water cooled by the LNG cold from the cold water storage tank 40 to the cooling cold water coil 31 at a flow rate according to the cold demand in the plant factory 30. The high-temperature chilled water that has been supplied and that has released LNG chill in the cooling chilled water coil 31 is returned to the high-temperature portion 44 of the chilled water heat storage tank 40.

このようにして、制御装置90は、冷水式LNG気化器11における冷凍能力が植物工場30における冷熱需要を超える9時から17時の間は、冷凍能力が冷熱需要を越える余剰冷熱分のLNG冷熱を有する低温冷水を冷水蓄熱槽40の低温部43に貯留し、植物工場30における冷熱需要が冷水式LNG気化器11の冷凍能力を超える0時から9時の間および17時から24時の間は、冷凍能力が冷熱需要に対して不足する不足冷熱を冷水蓄熱槽40の低温部43に貯留された低温冷水で植物工場30の冷房用冷水コイル31に供給する。   In this way, the control device 90 has the LNG refrigeration for the surplus refrigeration whose refrigeration capacity exceeds the refrigeration demand from 9:00 to 17:00 when the refrigeration capacity of the chilled water LNG vaporizer 11 exceeds the refrigeration demand in the plant factory 30. The low-temperature chilled water is stored in the low-temperature portion 43 of the chilled water heat storage tank 40, and the refrigeration capacity is low during the period from 0:00 to 9:00 and from 17:00 to 24:00 when the refrigeration demand in the plant factory 30 exceeds the refrigeration capacity of the chilled water LNG vaporizer 11. Insufficient chilled heat that is insufficient for demand is supplied to the cooling chilled water coil 31 of the plant factory 30 with the low-temperature chilled water stored in the low-temperature section 43 of the chilled water heat storage tank 40.

冷凍能力と冷熱需要のバランスが予想より崩れ、冷水式LNG気化器11で熱交換する冷水の温度を高くする必要がある場合、三方弁71を必要度合いに応じた開度で開いて冷水式LNG気化器11に戻る冷水の一部をバックアップ用熱交換器70で加温する。これにより、ガスタービンコンバインドサイクル発電プラント20の冷却装置21の循環回路24から供給される約20℃の冷却水または海水によって冷水が加熱され、冷水式LNG気化器11に供給する冷水の温度を高めることができる。冷却水または海水は約15℃に冷やされて循環回路24に戻る。   When the balance between the refrigeration capacity and the demand for cold heat is more unexpected than expected, and it is necessary to increase the temperature of the cold water to be heat-exchanged in the cold water LNG vaporizer 11, the three-way valve 71 is opened at an opening degree according to the required degree and the cold water LNG is opened. A part of the cold water returning to the vaporizer 11 is heated by the backup heat exchanger 70. Thereby, the chilled water is heated by the cooling water or seawater of about 20 ° C. supplied from the circulation circuit 24 of the cooling device 21 of the gas turbine combined cycle power plant 20, and the temperature of the chilled water supplied to the chilled water type LNG vaporizer 11 is increased. be able to. The cooling water or seawater is cooled to about 15 ° C. and returns to the circulation circuit 24.

ガスタービンコンバインドサイクル発電プラント20において、ガスタービンを駆動し排熱回収ボイラを加熱した後に排出される排ガスを必要に応じて植物工場30に炭酸ガスとして補給する。排ガス供給装置80は、放出される100℃以上の排ガスを排ガス冷却装置81によって約20℃に冷却して植物工場30に供給する。排ガス冷却装置81には、冷水蓄熱槽40の低温部43から低温冷水が供給され、排ガスと熱交換して約20℃に昇温され、冷水蓄熱槽40の高温部44に戻される。これにより、LNG気化器11で液化天然ガスがLNG冷熱を放出して生成された天然ガスが産業設備で燃焼した後に排出される排ガスをLNG冷熱によって冷却して植物工場に炭酸ガスとして補給することができる。   In the gas turbine combined cycle power plant 20, the exhaust gas discharged after driving the gas turbine and heating the exhaust heat recovery boiler is supplied as carbon dioxide to the plant factory 30 as needed. The exhaust gas supply device 80 cools the discharged exhaust gas of 100 ° C. or higher to about 20 ° C. by the exhaust gas cooling device 81 and supplies the exhaust gas to the plant factory 30. Low-temperature cold water is supplied to the exhaust gas cooling device 81 from the low-temperature portion 43 of the cold water heat storage tank 40, exchanges heat with the exhaust gas, raises the temperature to about 20 ° C., and returns to the high temperature portion 44 of the cold water heat storage tank 40. Thereby, the natural gas generated by the liquefied natural gas releasing the LNG cold energy in the LNG vaporizer 11 is burned in the industrial equipment, and the exhaust gas discharged after the natural gas is cooled by the LNG cold energy is supplied to the plant factory as carbon dioxide gas. Can be.

GTCC発電プラント20での天然ガス(NG)の消費量は、発電量に応じて変化するので、冷水式LNG気化器11におけるLNG冷熱の供給能力(冷凍能力)は一日を通して変化する。植物工場30の冷房負荷(冷熱需要)は日射の有無や外気温度によって一日を通して変化する。これにより、一日を通してのLNG気化器11における冷凍能力の変化動向と植物工場30における冷熱需要の変化動向に差異が生じる。第1実施形態によれば、このような一日を通してのLNG気化器11における冷凍能力の変化動向と植物工場30における冷熱需要の変化動向の差異に拘わらず、LNG気化器11で生じる冷熱を有する低温冷水のみによって植物工場30を冷房することができ、冷熱を無駄なく利用でき省エネ効果が大きい。   Since the consumption of natural gas (NG) in the GTCC power plant 20 changes according to the amount of power generation, the supply capacity (refrigeration capacity) of LNG chilled heat in the chilled water LNG vaporizer 11 changes throughout the day. The cooling load (cooling heat demand) of the plant factory 30 varies throughout the day depending on the presence or absence of solar radiation and the outside air temperature. As a result, a difference occurs between the change trend of the refrigeration capacity in the LNG vaporizer 11 and the change trend of the cold heat demand in the plant factory 30 throughout the day. According to the first embodiment, irrespective of the difference between the change trend of the refrigeration capacity in the LNG vaporizer 11 and the change trend of the cold heat demand in the plant factory 30 throughout the day, the LNG vaporizer 11 has the cold generated in the vaporizer 11. The plant factory 30 can be cooled only by the low-temperature cold water, and the cold energy can be used without waste, and the energy saving effect is large.

第1実施形態では、冷水式LNG気化器11を用いているので、冷水式LNG気化器11で生じるLNG冷熱を有する低温冷水を冷水蓄熱層30の低温部43に直接流入させて貯蓄した後に、植物工場30の冷房用冷水コイル31にLNG冷熱で冷却された冷水として供給することができる。これにより、簡素な構成でLNG冷熱で冷却された冷水を植物工場30の冷房に効率よく使用することができる。
さらに、冷水蓄熱槽40を温度成層式冷水蓄熱槽41とすれば、冷水蓄熱槽40をLNGサテライト基地10と植物工場30との間で地上に設置しても、高い蓄熱効率でLNG冷熱を有する低温冷水を貯留することができる。さらに、冷水蓄熱槽40を収納する例えば地下二重スラブ空間を設けなくてよいので、植物工場30を低コストで建設することができ、LNG冷熱を蓄熱して利用する植物生産システム建設のイニシャルコストを低減することができる。
In the first embodiment, since the chilled water LNG vaporizer 11 is used, low-temperature chilled water having LNG chill generated by the chilled water LNG vaporizer 11 is directly flowed into the low-temperature portion 43 of the chilled water heat storage layer 30 and stored. It can be supplied to the cooling water coil 31 of the plant factory 30 as cold water cooled by LNG cold. Thereby, the cold water cooled by the LNG cold with a simple configuration can be efficiently used for cooling the plant factory 30.
Furthermore, if the cold water heat storage tank 40 is a temperature stratified cold water heat storage tank 41, even if the cold water heat storage tank 40 is installed on the ground between the LNG satellite base 10 and the plant factory 30, it has high heat storage efficiency and LNG cold heat. Cold cold water can be stored. Furthermore, since there is no need to provide, for example, an underground double slab space for accommodating the cold water heat storage tank 40, the plant factory 30 can be constructed at low cost, and the initial cost of constructing a plant production system that uses and stores LNG cold heat is used. Can be reduced.

温度成層式冷水蓄熱槽41は、図3に示すように、タンク42の内部に例えば8℃の低温冷水を貯留する低温部43が下側に形成され、例えば20℃の高温冷水を貯留する高温部44が上側に形成されている。タンク42の一方側には、上端が天面と密接し、下端が底面から僅かに離脱した壁45aで囲まれた低温冷水路45が形成され、他方側には、下端が底面と密接し、上端が天面から僅かに離脱した壁46aで囲まれた高温冷水路46が形成されている。低温冷水路45には低温冷水が高温部44の上面と同位に充填されており、高温冷水路46には高温部44の高温冷水が底面まで充填されている。タンク42の天面にはベント47が設けられている。低温冷水路45および高温冷水路46には、第2三方弁63の2個の流入口が接続され、さらに、第1三方弁53の2個の流入口が接続されている。低温冷水路45の下部に冷水式LNG気化器11が管路51で接続され、高温冷水路46の上部に冷房用冷水コイル31の出口が管路62で接続されている。 As shown in FIG. 3, the temperature stratified chilled water heat storage tank 41 has a low-temperature section 43 for storing low-temperature cold water at 8 ° C. formed inside a tank 42 at the lower side, and a high-temperature section for storing high-temperature cold water at 20 ° C. The part 44 is formed on the upper side. On one side of the tank 42, a low-temperature cold water channel 45 surrounded by a wall 45a whose upper end is in close contact with the top surface and whose lower end is slightly separated from the bottom surface is formed, and on the other side, the lower end is in close contact with the bottom surface, A high-temperature cold water channel 46 is formed, which is surrounded by a wall 46a whose upper end is slightly separated from the top surface. The low-temperature chilled water channel 45 is filled with low-temperature chilled water at the same level as the upper surface of the high-temperature portion 44, and the high-temperature chilled water channel 46 is filled with high-temperature chilled water of the high-temperature portion 44 to the bottom surface. A vent 47 is provided on the top surface of the tank 42. Two inflow ports of the second three-way valve 63 are connected to the low-temperature cold water path 45 and the high-temperature cold water path 46, and further, two inflow ports of the first three-way valve 53 are connected. The chilled water LNG vaporizer 11 is connected to the lower part of the low-temperature chilled water channel 45 via a pipe 51, and the outlet of the cooling chilled water coil 31 is connected to the upper part of the high-temperature chilled water channel 46 via a pipe 62.

実施形態1では、冷水式LNG気化器11における冷凍能力が植物工場30における冷熱需要に対して不足する不足冷熱を冷水蓄熱槽40からLNG冷熱で冷却された冷水として植物工場40に供給するので、植物工場30の冷熱需要の最大量が、植物工場30における冷熱需要がLNG気化器11における冷凍能力を超えるときの冷凍能力の大きさに限定される必要がなくなり、植物工場30を大型化することができる。   In the first embodiment, the refrigeration capacity of the chilled water type LNG vaporizer 11 is supplied to the plant factory 40 as the chilled water cooled by the LNG chilled heat from the chilled water heat storage tank 40 because the chilled water that is insufficient for the refrigeration demand at the plant factory 30 is supplied. It is not necessary that the maximum amount of the cold heat demand of the plant factory 30 is limited to the magnitude of the refrigeration capacity when the cold demand in the plant factory 30 exceeds the refrigeration capacity of the LNG vaporizer 11, and the plant factory 30 is enlarged. Can be.

3.第2実施形態の構成
第2実施形態に係るLNG冷熱を蓄熱して利用する植物生産システム1bは、産業設備を淡水化プラント25とし、植物工場30を太陽熱利用型とし、植物工場に暖房用温水コイル86を設けた点以外は第1実施形態と同じであるので、相違点について説明し、第1実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
3. Configuration of Second Embodiment The plant production system 1b according to the second embodiment that stores and uses cold energy of LNG uses a desalination plant 25 as an industrial facility, a solar plant as a plant plant 30, and a heating water plant for a plant plant. Since it is the same as the first embodiment except that the coil 86 is provided, only the differences will be described, and the same reference numerals will be given to the same components as those in the first embodiment, and description thereof will be omitted.

第2実施形態では、図4に示すように、産業設備として淡水化プラント、例えば公知の多段フラッシュ法淡水化プラント25を用いる。多段フラッシュ法淡水化プラント25は、エゼクタを高速で流れる蒸気によって生成した負圧で蒸発器を減圧し、加熱器で蒸気によって加熱された海水を負圧の蒸発器で沸騰蒸発させて発生した水蒸気を凝縮して淡水を生産する。エゼクタを通過した蒸気は、冷却装置26の凝縮部27で海水と熱交換して復水され、排熱回収ボイラに戻される。冷却装置26は、海水をポンプで海から汲み上げ、凝縮部27を経由して海に戻す循環回路28を備えている。淡水化プラント25は、冷水式LNG気化器11から供給された天然ガスの燃焼によって作動されるガスタービンによって駆動されるガスタービン発電装置と並設されるケースが多く、エゼクタを高速で流れる蒸気は、ガスタービンから排出された排気ガスから排熱回収ボイラで熱回収して生成した蒸気を用いる。   In the second embodiment, as shown in FIG. 4, a desalination plant, for example, a known multi-stage flash method desalination plant 25 is used as industrial equipment. The multi-stage flash method desalination plant 25 depressurizes the evaporator with a negative pressure generated by steam flowing through the ejector at a high speed, and steam generated by boiling and evaporating seawater heated by the steam with the heater using the evaporator with a negative pressure. To produce fresh water. The steam that has passed through the ejector exchanges heat with seawater in the condenser 27 of the cooling device 26 to be condensed and returned to the exhaust heat recovery boiler. The cooling device 26 includes a circulation circuit 28 that pumps seawater from the sea with a pump and returns the seawater to the sea via the condensing unit 27. The desalination plant 25 is often provided in parallel with a gas turbine power generator driven by a gas turbine driven by the combustion of natural gas supplied from the chilled water LNG vaporizer 11, and steam flowing at high speed through the ejector is In addition, steam generated by heat recovery from an exhaust gas discharged from a gas turbine by an exhaust heat recovery boiler is used.

淡水化プラント25に設けられた冷却装置26の凝縮部27と植物工場30に設けられた暖房用温水コイル86との間にヒートポンプ85が設けられている。ヒートポンプ85は、凝縮部27で昇温した海水の一部から熱を吸収し、暖房用温水コイル86を循環する熱媒体に温熱を供給し、植物工場30の室内を必要に応じて暖房する。   A heat pump 85 is provided between the condenser 27 of the cooling device 26 provided in the desalination plant 25 and the heating hot water coil 86 provided in the plant factory 30. The heat pump 85 absorbs heat from a part of the seawater heated in the condensing section 27, supplies hot heat to the heat medium circulating in the heating hot water coil 86, and heats the interior of the plant factory 30 as necessary.

4.第2実施形態の作動および効果
植物工場30が太陽光利用型の場合、植物工場30における冷熱需要は日射の有無や外気温度に従って変動し、外気温度は夜明けから日没の間に上昇する。従って、太陽光利用型の植物工場30における冷熱需要は、図5に示すように時刻によって変動し、0時から8時までの間および18時から24時までの間は0であり、8時から18時の間に急増する。冷水式NG気化器11の冷凍能力の変動は、完全制御型の植物工場30の場合と同じである。
4. Operation and effects of the second embodiment When the plant factory 30 is of the solar light type, the cold demand in the plant factory 30 varies according to the presence or absence of solar radiation and the outside air temperature, and the outside air temperature rises from dawn to sunset. Therefore, the cold heat demand in the plant factory 30 of the solar light type fluctuates depending on the time as shown in FIG. 5, and is 0 between 0:00 and 8:00 and between 18:00 and 24:00, and is 8:00. It increases rapidly between 18:00 and 18:00. The fluctuation of the refrigeration capacity of the chilled water NG vaporizer 11 is the same as that of the completely controlled plant factory 30.

制御装置90は、0時から24時の間、定流量ポンプ54を作動させて冷水式LNG気化器11における冷凍能力に応じて生じる冷熱を有する低温冷水を冷水蓄熱槽40の低温部43に送出し、8時から18時の間は可変流量ポンプ64を作動させて冷水蓄熱槽40からLNG冷熱で冷却された冷水を冷房用冷水コイル31に植物工場30における冷熱需要に応じた流量で供給し、冷房用冷水コイル31でLNG冷熱を放出した高温冷水を冷水蓄熱槽40の高温部44に戻す。   The control device 90 operates the constant flow pump 54 from 0:00 to 24:00 to send low-temperature chilled water having chill generated according to the refrigeration capacity of the chilled water LNG vaporizer 11 to the low-temperature portion 43 of the chilled water heat storage tank 40, Between 8:00 and 18:00, the variable flow pump 64 is operated to supply the cold water cooled by LNG cold from the cold water storage tank 40 to the cooling cold water coil 31 at a flow rate corresponding to the cold demand in the plant factory 30. The high-temperature cold water that has released the LNG cold heat by the coil 31 is returned to the high-temperature portion 44 of the cold water heat storage tank 40.

このようにして、制御装置90は、冷水式LNG気化器11における冷凍能力が太陽光利用型の植物工場30における冷熱需要を超える0時から8時の間および18時から24時の間は、冷凍能力が冷熱需要を越える余剰冷熱分のLNG冷熱を有する低温冷水を冷水蓄熱槽40の低温部43に貯留し、植物工場30における冷熱需要が冷水式LNG気化器11における冷凍能力を超える8時から18時の間は、冷凍能力が冷熱需要に対して不足する不足冷熱を冷水蓄熱槽40の低温部43から低温冷水で植物工場30の冷房用冷水コイル31に供給するように第1冷水循環回路50および第2冷水循環回路60を制御する。   In this manner, the control device 90 sets the refrigeration capacity to be lower than 0:00 to 8:00 and from 18:00 to 24:00 when the refrigeration capacity of the chilled water type LNG vaporizer 11 exceeds the demand for refrigeration in the plant plant 30 using sunlight. The low-temperature chilled water having the LNG chill of the surplus chill exceeding the demand is stored in the low-temperature portion 43 of the chilled water storage tank 40, and the chill demand in the plant factory 30 exceeds the refrigerating capacity of the chilled water LNG vaporizer 11 from 8:00 to 18:00. The first chilled water circulation circuit 50 and the second chilled water so that the chilled water whose refrigeration capacity is insufficient with respect to the chilled heat demand is supplied from the low temperature part 43 of the chilled water storage tank 40 to the chilled water coil 31 of the plant factory 30 with the low temperature chilled water. The circuit 60 is controlled.

太陽光利用型の植物工場30を暖房する場合は、ヒートポンプ85を起動する。これにより、約20℃の海水が冷却装置26の循環回路28からヒートポンプ85に供給され、熱媒体と熱交換して温熱を放出した後、温度が約15℃になって循環回路28に戻される。ヒートポンプ85で温熱を得て約50℃に加熱された熱媒体は植物工場30の暖房用温水コイル86に供給されて温熱を放出した後、温度が約45℃に低下してヒートポンプ85に戻される。   When heating the plant factory 30 using sunlight, the heat pump 85 is started. As a result, the seawater of about 20 ° C. is supplied from the circulation circuit 28 of the cooling device 26 to the heat pump 85 and exchanges heat with the heat medium to release heat, and then the temperature is reduced to about 15 ° C. and returned to the circulation circuit 28. . The heat medium heated by the heat pump 85 and heated to about 50 ° C. is supplied to the heating hot water coil 86 of the plant factory 30 to release the heat, and then the temperature is reduced to about 45 ° C. and returned to the heat pump 85. .

第1実施形態と第2実施形態において、産業設備としてのガスタービンコンバインドサイクル発電プラント20と淡水化プラント25とを入れ替えても良い。入れ替えた場合でも、産業設備に設けられた凝縮部22、25は、冷却水または海水で冷却されることになる。   In the first embodiment and the second embodiment, the gas turbine combined cycle power plant 20 and the desalination plant 25 as the industrial facilities may be interchanged. Even in the case of replacement, the condensing units 22 and 25 provided in the industrial equipment are cooled by cooling water or seawater.

第2実施形態は第1実施形態と同様の効果を奏する。さらに、冷水式LNG気化器11で生成された天然ガスが燃焼して排出される排ガスによって排熱回収ボイラで生成された蒸気を水に凝縮させる産業設備の凝縮部27を冷却する冷却水または海水からヒートポンプ85で熱を吸収し、植物工場30に設けられた暖房用温水コイル86で放出して植物工場30の室内を必要に応じて暖房するので、植物工場30のランニングコストを低減することができる。   The second embodiment has the same effects as the first embodiment. Furthermore, cooling water or seawater that cools the condensing section 27 of the industrial equipment that condenses steam generated in the exhaust heat recovery boiler into water with exhaust gas generated by burning natural gas generated in the chilled water LNG vaporizer 11. Since the heat is absorbed by the heat pump 85 and is released by the heating hot water coil 86 provided in the plant factory 30 to heat the interior of the plant factory 30 as necessary, the running cost of the plant factory 30 can be reduced. it can.

5.第3実施形態の構成
第3実施形態にかかるLNG冷熱を蓄熱して利用する植物生産システム1cは、図6に示すように、液化天然ガスを気化させる気化器が、LNG冷熱を液化天然ガスと不凍熱媒体との間で熱交換するLNG気化器15であり、LNG気化器15と冷水蓄熱槽40との間に熱交換器16を設けた点以外は第1実施形態と同じであるので、相違点について説明し、第1実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
5. Configuration of Third Embodiment As shown in FIG. 6, the plant production system 1c according to the third embodiment that stores and uses LNG cold heat includes a vaporizer that vaporizes liquefied natural gas. This is an LNG vaporizer 15 that exchanges heat with an antifreeze heat medium, and is the same as the first embodiment except that a heat exchanger 16 is provided between the LNG vaporizer 15 and the cold water storage tank 40. Differences will be described, and the same components as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

LNGサテライト基地10は、LNGタンク12から供給された液化天然ガスを不凍熱媒体で気化させて天然ガスとするLNG気化器15を備える。LNG気化器15と冷水蓄熱槽40との間には熱交換器16が設けられ、LNG気化器15と熱交換器16とは不凍熱媒体が循環する第1不凍熱媒体循環回路75で接続されている。   The LNG satellite base 10 includes an LNG vaporizer 15 that vaporizes the liquefied natural gas supplied from the LNG tank 12 with an antifreeze heat medium to produce natural gas. A heat exchanger 16 is provided between the LNG vaporizer 15 and the cold water heat storage tank 40, and the LNG vaporizer 15 and the heat exchanger 16 are connected by a first antifreeze heat medium circulating circuit 75 in which the antifreeze heat medium circulates. It is connected.

第1不凍熱媒体循環回路75には、LNG気化器15の熱媒体出口側と熱交換器16の熱媒体入口側との間に定流量ポンプ79が介在され、一定流量の不凍熱媒体を第1不凍熱媒体循環回路75を循環させる。これにより、LNG気化器15で液化天然ガスの気化で生じるLNG冷熱によって例えば−5℃に低下された不凍熱媒体は熱交換器16に供給され、冷水蓄熱槽40から熱交換器16に戻った冷水と熱交換して温度が例えば2℃に上昇される。熱交換器15で不凍熱媒体と熱交換して温度が例えば4℃に低下した低温冷水は冷水蓄熱槽40の低温部43に供給される。   In the first antifreeze heat medium circulation circuit 75, a constant flow rate pump 79 is interposed between the heat medium outlet side of the LNG vaporizer 15 and the heat medium inlet side of the heat exchanger 16, so that the constant flow rate of the antifreeze heat medium is maintained. In the first antifreeze heat medium circulation circuit 75. Thereby, the antifreeze heat medium reduced to, for example, −5 ° C. by the LNG cold generated by the vaporization of the liquefied natural gas in the LNG vaporizer 15 is supplied to the heat exchanger 16 and returned from the cold water storage tank 40 to the heat exchanger 16. The temperature is raised to, for example, 2 ° C. by heat exchange with the cold water. The low-temperature chilled water whose temperature has been reduced to, for example, 4 ° C. by heat exchange with the antifreeze heat medium in the heat exchanger 15 is supplied to the low-temperature section 43 of the chilled water heat storage tank 40.

第3実施形態の第3冷水循環回路55は、第1実施形態の第1冷水循環回路50が冷水式LNG気化器11と冷水蓄熱槽40との間に設けられているのに対し、熱交換器16と冷水蓄熱槽40との間に設けられている。第三冷水循環回路55には、定流量ポンプ54と熱交換器16の冷水入口側との間にバックアップ用熱交換器70および三方弁71が上流側から順次介在され、定流量ポンプ54とバックアップ用熱交換器70との間に戻り管路72の一端が接続されている。戻り管路72の他端は三方弁71の他の流入口に接続されている。なお、バックアップ用熱交換器70、三方弁71および戻り管路72は、第3冷水循環回路55に設けることなく、第1不凍熱媒体循環回路75の熱交換器16の熱媒体出口側とLNG気化器15の熱媒体入口側との間に設けてもよい。   The third chilled water circulation circuit 55 of the third embodiment is different from the chilled water LNG vaporizer 11 and the chilled water heat storage tank 40 in that the first chilled water circulation circuit 50 of the first embodiment is provided with heat exchange. It is provided between the vessel 16 and the cold water heat storage tank 40. In the third cold water circulation circuit 55, a backup heat exchanger 70 and a three-way valve 71 are sequentially interposed between the constant flow pump 54 and the cold water inlet side of the heat exchanger 16 from the upstream side. One end of the return pipe 72 is connected to the heat exchanger 70 for use. The other end of the return line 72 is connected to another inflow port of the three-way valve 71. The backup heat exchanger 70, the three-way valve 71, and the return line 72 are not provided in the third chilled water circulation circuit 55, and are connected to the heat medium outlet side of the heat exchanger 16 of the first antifreeze heat medium circulation circuit 75. It may be provided between the LNG vaporizer 15 and the heat medium inlet side.

6.第3実施形態の作動および効果
制御装置90は、熱交換器16から流出する低温冷水の温度が一定の低温、例えば4℃になるように第3冷水循環回路55を制御する。制御装置90は、定流量ポンプ54で一定流量の冷水を第3冷水循環回路55循環させ、熱交換器16から流出した低温冷水の温度T1を計測し、温度T1が例えば4℃となるように第1三方弁53を制御して冷水蓄熱槽40から流出する高温冷水と低温冷水との混合割合を調整して、熱交換器16に流入する冷水の温度を制御する。これにより、LNG気化器15における一日を通しての冷凍能力の変化に拘わらず、LNG気化器15からLNG冷熱を移転された熱交換器16から流出する低温冷水の温度T1を一定(4℃)に維持できる。LNG気化器15における冷凍能力が安定状態で、冷水蓄熱槽40に貯留されている低温冷水および高温冷水の温度が、例えば4℃と18℃である場合、熱交換器16に流入する冷水の温度は例えば11℃になる。
6. Operation and Effect of Third Embodiment The control device 90 controls the third chilled water circulation circuit 55 so that the temperature of the low-temperature chilled water flowing out of the heat exchanger 16 becomes a constant low temperature, for example, 4 ° C. The control device 90 causes the constant flow pump 54 to circulate a constant flow of chilled water in the third chilled water circulation circuit 55 and measures the temperature T1 of the low-temperature chilled water flowing out of the heat exchanger 16 so that the temperature T1 becomes, for example, 4 ° C. The temperature of the cold water flowing into the heat exchanger 16 is controlled by controlling the first three-way valve 53 to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water flowing out of the cold water heat storage tank 40. Thus, the temperature T1 of the low-temperature chilled water flowing out of the heat exchanger 16 to which the LNG cryogenic heat has been transferred from the LNG vaporizer 15 is kept constant (4 ° C.) regardless of the change in the refrigeration capacity of the LNG vaporizer 15 throughout the day. Can be maintained. When the refrigerating capacity of the LNG vaporizer 15 is in a stable state and the temperatures of the low-temperature cold water and the high-temperature cold water stored in the cold water heat storage tank 40 are, for example, 4 ° C. and 18 ° C., the temperature of the cold water flowing into the heat exchanger 16 Becomes 11 ° C., for example.

制御装置90は、植物工場30の室内温度が要求温度(例えば25℃)になり、冷房用冷水コイル31から冷水蓄熱槽40に戻されるLNG冷熱を放出した高温冷水の温度が例えば18℃となるように第4冷水循環回路66を制御する。制御装置90は、植物工場30内の温度T2を計測し、温度T2が例えば25℃となるように、冷水蓄熱槽40から可変流量ポンプ64で吸い出されて冷房用冷水コイル31を通って冷水蓄熱槽40の高温部44に戻される冷水の流量を二方弁65で制御する。冷水蓄熱槽40に貯留されている低温冷水および高温冷水の温度が、例えば4℃と18℃である場合、冷房用冷水コイル31から冷水蓄熱槽40に戻されるLNG冷熱を放出した高温冷水の温度を18℃とするためには、第2三方弁63を制御して冷水蓄熱槽40から流出する高温冷水と低温冷水との混合割合を調整し、冷房用冷水コイル31に流入するLNG冷熱で冷却された冷水の温度を例えば6℃に調整する。これにより、植物工場30の冷房負荷(冷熱需要)が日射の有無や外気温度によって一日を通して変化するにも拘わらず、植物工場30の室内温度を要求温度に維持できる。 The controller 90 sets the indoor temperature of the plant factory 30 to the required temperature (for example, 25 ° C.), and the temperature of the high-temperature chilled water that has released LNG cold returned from the cooling chilled water coil 31 to the chilled water storage tank 40 becomes, for example, 18 ° C. The fourth cold water circulation circuit 66 is controlled as described above. The control device 90 measures the temperature T2 in the plant factory 30 and draws the chilled water from the chilled water storage tank 40 by the variable flow rate pump 64 through the cooling chilled water coil 31 so that the temperature T2 becomes, for example, 25 ° C. The flow rate of the cold water returned to the high temperature section 44 of the heat storage tank 40 is controlled by a two-way valve 65. When the temperatures of the low-temperature cold water and the high-temperature cold water stored in the cold-water storage tank 40 are, for example, 4 ° C. and 18 ° C., the temperature of the high-temperature cold water that releases the LNG cold returned from the cooling water coil 31 to the cold-water storage tank 40 To 18 ° C., the second three-way valve 63 is controlled to adjust the mixing ratio of the high-temperature cold water and the low-temperature cold water flowing out of the cold water storage tank 40, and is cooled by the LNG cold flowing into the cooling cold water coil 31. The temperature of the cooled water is adjusted to, for example, 6 ° C. Accordingly, the indoor temperature of the plant factory 30 can be maintained at the required temperature, even though the cooling load (cooling heat demand) of the plant factory 30 varies throughout the day depending on the presence or absence of solar radiation and the outside air temperature.

このようにして、制御装置90は、LNG気化器15における冷凍能力が植物工場30における冷熱需要を超えるとき、冷凍能力が冷熱需要を越える余剰冷熱分の低温冷水を冷水蓄熱槽40に貯留し、植物工場30における冷熱需要がLNG気化器15における冷凍能力を超えるとき、冷凍能力が冷熱需要に対して不足する不足冷熱を冷水蓄熱槽40に貯留された低温冷水で植物工場30の冷房用冷水コイル31に供給するように第3冷水循環回路55および第4冷水循環回路66を制御する。   In this way, when the refrigeration capacity of the LNG vaporizer 15 exceeds the cold demand in the plant factory 30, the control device 90 stores the low-temperature chilled water corresponding to the surplus chill that exceeds the cold demand in the cold water storage tank 40, When the cold demand in the plant factory 30 exceeds the refrigerating capacity in the LNG vaporizer 15, the cooling capacity of the plant factory 30 is reduced by the low-temperature cold water stored in the cold water heat storage tank 40 with the insufficient cold heat in which the refrigerating capacity is insufficient for the cold demand. The third chilled water circulating circuit 55 and the fourth chilled water circulating circuit 66 are controlled so as to be supplied to the first cooling water 31.

LNG気化器15と冷水蓄熱槽40との間に熱交換器16を介在させたことにより、LNG気化器15で不凍熱交換媒体を使用することが可能となり、熱交換器16で氷結することなくLNG冷熱を不凍熱媒体と例えば11℃の冷水との間で熱交換して冷水を4℃の低温冷水にすることができ、低温冷水と高温冷水の温度差を第1実施形態における12℃から14℃に広げることができる。冷水蓄熱槽40は、低温部43に貯留される低温冷水と高温部44に貯留される高温冷水の温度差を大きくすることにより、蓄熱する冷熱量が同じであれば体積を小さくすることができる。さらに、低温冷水の温度を4℃と低くできるので、冷水利用施設での冷房のエネルギー効率を高くすることができる。   By interposing the heat exchanger 16 between the LNG vaporizer 15 and the cold water heat storage tank 40, it becomes possible to use the antifreeze heat exchange medium in the LNG vaporizer 15 and to freeze in the heat exchanger 16. LNG cold heat can be exchanged between the antifreeze heat medium and the cold water at, for example, 11 ° C. to convert the cold water into low-temperature cold water at 4 ° C., and the temperature difference between the low-temperature cold water and the high-temperature cold water to 12 ° in the first embodiment. Can be extended from ℃ to 14 ℃. By increasing the temperature difference between the low-temperature cold water stored in the low-temperature section 43 and the high-temperature cold water stored in the high-temperature section 44, the volume of the cold water storage tank 40 can be reduced if the amount of cold stored is the same. . Furthermore, since the temperature of the low-temperature chilled water can be lowered to 4 ° C., the energy efficiency of cooling in the chilled water utilization facility can be increased.

第3実施形態において、第2実施形態のように産業設備を淡水化プラント25とし、植物工場30を太陽熱利用型とし、植物工場30に暖房用温水コイル86を設けてもよい。第3実施形態にかかるLNG冷熱を蓄熱して利用する冷水供給システム1cのその他の構成、作用および効果は、第1実施形態のものと同様であるので説明を省略する。   In the third embodiment, as in the second embodiment, the industrial equipment may be a desalination plant 25, the plant factory 30 may be of a solar heat utilization type, and the plant factory 30 may be provided with a heating hot water coil 86. Other configurations, operations, and effects of the chilled water supply system 1c according to the third embodiment for storing and using LNG cold heat are the same as those of the first embodiment, and thus description thereof is omitted.

7.参考例の構成
参考例にかかるLNG冷熱を蓄熱して利用する植物生産システム1dは、図7に示すように、冷水式LNG気化器11を、LNG冷熱を液化天然ガスと不凍熱媒体との間で熱交換するLNG気化器15とし、冷水蓄熱槽40を氷蓄熱槽91とし、第1冷水循環回路を第2不凍熱媒体循環回路76とした点以外は第1実施形態と同じであるので、相違点について説明し、第1実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。第5冷水循環回路67は第3実施形態の第4冷水循環回路66と同じである。
7. Configuration of Reference Example
As shown in FIG. 7, the plant production system 1d according to the reference example that stores and uses the LNG cold heat exchanges the cold water LNG vaporizer 11 between the liquefied natural gas and the antifreeze heat medium by using the LNG cold heat. This is the same as the first embodiment except that the LNG vaporizer 15 is used, the cold water heat storage tank 40 is the ice heat storage tank 91, and the first cold water circulation circuit is the second antifreeze heat medium circulation circuit 76. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The fifth chilled water circulation circuit 67 is the same as the fourth chilled water circulation circuit 66 of the third embodiment.

LNGサテライト基地10は、液化天然ガスを不凍熱媒体で気化させて天然ガスとするLNG気化器11を備える。LNG気化器15と氷蓄熱槽42との間には、不凍熱媒体が定流量ポンプ79によって循環される第2不凍熱媒体循環回路76が設けられている。第2不凍熱媒体循環回路76には、LNG気化器15内で液化天然ガスと不凍熱媒体との間で熱交換させて不凍熱媒体を例えば−20℃に冷却する熱交換コイルと、氷蓄熱槽41内で不凍熱媒体と製氷部97の冷水との間で熱交換させて製氷部97の冷水を氷結させ、不凍熱媒体を例えば−13℃に昇温させる熱交換コイル77が設けられている。   The LNG satellite base 10 includes an LNG vaporizer 11 which vaporizes liquefied natural gas with an antifreezing heat medium to produce natural gas. Between the LNG vaporizer 15 and the ice heat storage tank 42, a second antifreeze heat medium circulation circuit 76 in which the antifreeze heat medium is circulated by the constant flow pump 79 is provided. The second antifreeze heat medium circulation circuit 76 includes a heat exchange coil that exchanges heat between the liquefied natural gas and the antifreeze heat medium in the LNG vaporizer 15 to cool the antifreeze heat medium to, for example, −20 ° C. A heat exchange coil for exchanging heat between the antifreeze heat medium and the cold water of the ice making unit 97 in the ice heat storage tank 41 to freeze the cold water of the ice making unit 97 and raise the temperature of the antifreeze heat medium to, for example, -13 ° C. 77 are provided.

氷蓄熱槽91は、図8に示すように、タンク92の内部に例えば4℃の低温冷水を貯留する低温部93が下端部に形成され、例えば18℃の高温冷水を貯留する高温部94が上端部に形成されている。タンク92の上下方向中央部には製氷部97が形成され、製氷部97に第2不凍熱媒体循環回路76の熱交換コイル77が配置されている。タンク92の一方側には、上端が天面と密接し、下端が底面から僅かに離脱した壁95aで囲まれた低温冷水路95が形成され、他方側には、下端が底面と密接し、上端が天面から僅かに離脱した壁96aで囲まれた高温冷水路96が形成されている。低温冷水路95には低温冷水が高温部94の上面と同位に充填されており、高温冷水路94には高温部94の高温冷水が底面まで充填されている。タンク92の天面にはベント98が設けられている。低温冷水路95に第5冷水循環回路67の管路61が接続され、管路61に第2三方弁63および可変流量ポンプ64が上流側から順次介在されている。第2三方弁63の他の流入口には高温冷水路96が接続されている。高温冷水路96に接続された管路62には植物工場30内の冷房用冷水コイル31の出口が二方弁65を介して接続されている。 As shown in FIG. 8, the ice heat storage tank 91 has a low-temperature section 93 for storing low-temperature cold water at 4 ° C. formed at the lower end thereof inside a tank 92, and a high-temperature section 94 for storing high-temperature cold water at 18 ° C. for example. It is formed at the upper end. An ice making unit 97 is formed at the center in the up-down direction of the tank 92, and the heat exchange coil 77 of the second antifreezing heat medium circulation circuit 76 is arranged in the ice making unit 97. On one side of the tank 92, a low-temperature chilled water channel 95 surrounded by a wall 95a whose upper end is in close contact with the top surface and whose lower end is slightly separated from the bottom surface is formed, and on the other side, the lower end is in close contact with the bottom surface, A high-temperature cold water channel 96 is formed which is surrounded by a wall 96a whose upper end is slightly separated from the top surface. The low-temperature chilled water channel 95 is filled with low-temperature chilled water at the same level as the upper surface of the high-temperature portion 94, and the high-temperature chilled water channel 94 is filled with the high-temperature chilled water of the high-temperature portion 94 up to the bottom surface. A vent 98 is provided on the top surface of the tank 92. The pipe 61 of the fifth chilled water circulation circuit 67 is connected to the low-temperature chilled water channel 95, and the second three-way valve 63 and the variable flow pump 64 are sequentially interposed in the pipe 61 from the upstream side. A high-temperature cold water channel 96 is connected to another inflow port of the second three-way valve 63 . The outlet of the cooling water coil 31 for cooling in the plant factory 30 is connected to the pipe line 62 connected to the high temperature cooling water path 96 via a two-way valve 65.

第2不凍熱媒体循環回路76には、熱交換コイル77の熱媒体出口側とLNG気化器15の熱媒体入口側との間にバックアップ用熱交換器70および三方弁71が上流側から順次介在され、熱交換コイル77の熱媒体出口側とバックアップ用熱交換器70との間に戻り管路72の一端が接続されている。戻り管路72の他端は三方弁71の他の流入口に接続されている。第2不凍熱媒体循環回路76には、LNG気化器15の熱媒体出口側と熱交換コイル77の熱媒体入口側との間に定流量ポンプ79が介在されている。   In the second antifreeze heat medium circulation circuit 76, a backup heat exchanger 70 and a three-way valve 71 are sequentially provided from the upstream side between the heat medium outlet side of the heat exchange coil 77 and the heat medium inlet side of the LNG vaporizer 15. One end of the return pipe 72 is connected between the heat medium outlet side of the heat exchange coil 77 and the backup heat exchanger 70. The other end of the return line 72 is connected to another inflow port of the three-way valve 71. In the second antifreeze heat medium circulation circuit 76, a constant flow pump 79 is interposed between the heat medium outlet side of the LNG vaporizer 15 and the heat medium inlet side of the heat exchange coil 77.

8.参考例の作動
第2不凍熱媒体循環回路76の定流量ポンプ79が駆動されることにより、熱交換コイル77で製氷し、例えば−13℃に昇温した不凍熱媒体がLNG気化器15に戻される。LNG気化器15は、液化天然ガスと不凍熱媒体との間でLNG冷熱を熱交換して天然ガスを生成してGTCC発電プラント20に送出するとともに、LNG冷熱を有する不凍熱媒体を製氷部97の熱交換コイル77に供給する。
8. Operation of Reference Example When the constant flow pump 79 of the second antifreeze heat medium circulation circuit 76 is driven, ice is made by the heat exchange coil 77, and the antifreeze heat medium heated to, for example, −13 ° C. is supplied to the LNG vaporizer 15. Is returned to. The LNG vaporizer 15 heat-exchanges LNG cold heat between the liquefied natural gas and the antifreeze heat medium to generate natural gas and sends it to the GTCC power plant 20, and also makes the antifreeze heat medium having LNG cold heat into ice. The heat is supplied to the heat exchange coil 77 of the section 97.

これにより、LNG気化器15における冷凍能力が安定状態で、冷水蓄熱槽40に貯留されている低温冷水および高温冷水の温度が、例えば4℃と18℃である場合、LNG気化器15に流入する不凍熱媒体の温度は例えば−13℃になる。   Thus, when the refrigeration capacity of the LNG vaporizer 15 is in a stable state and the temperatures of the low-temperature cold water and the high-temperature cold water stored in the cold water heat storage tank 40 are, for example, 4 ° C. and 18 ° C., the gas flows into the LNG vaporizer 15. The temperature of the antifreeze heat medium is, for example, −13 ° C.

そして、制御装置90は、LNG気化器15における冷凍能力が植物工場30における冷熱需要を超えるとき、冷凍能力が冷熱需要を越える余剰冷熱分のLNG冷熱によって製氷部97の冷水を氷結させ、植物工場30における冷熱需要がLNG気化器15における冷凍能力を超えるとき、冷凍能力が冷熱需要に対して不足する不足冷熱を氷結部97での解凍で補充するように第2不凍熱媒体循環回路76および第5冷水循環回路67を制御する。   Then, when the refrigerating capacity of the LNG vaporizer 15 exceeds the cold demand in the plant factory 30, the control device 90 freezes the cold water of the ice making unit 97 by the LNG cold heat corresponding to the surplus cold heat in which the refrigerating capacity exceeds the cold demand, and When the refrigeration demand at 30 exceeds the refrigeration capacity at the LNG vaporizer 15, the second antifreeze heat medium circulation circuit 76 and The fifth chilled water circulation circuit 67 is controlled.

LNG気化器15と氷蓄熱槽91との間で不凍熱媒体を循環させるようにしたことにより、LNG冷熱を氷結の潜熱(融解熱80Kcal/Kg)で大量に蓄熱することができるので、蓄熱量が同じである場合、蓄熱槽の容積を大幅に縮小することができる。さらに、低温冷水の温度を4℃と低くできるので、冷水利用施設での冷房のエネルギー効率を高くすることができる。   By circulating an antifreeze heat medium between the LNG vaporizer 15 and the ice heat storage tank 91, a large amount of LNG cold heat can be stored with the latent heat of freezing (heat of fusion of 80 Kcal / Kg). If the amount is the same, the volume of the heat storage tank can be significantly reduced. Furthermore, since the temperature of the low-temperature chilled water can be lowered to 4 ° C., the energy efficiency of cooling in the chilled water utilization facility can be increased.

参考例において、第2実施形態のように産業設備を淡水化プラント25とし、植物工場30を太陽熱利用型とし、植物工場30に暖房用温水コイル86を設けてもよい。参考例にかかるLNG冷熱を蓄熱して利用する冷水供給システム1dのその他の構成、作用および効果は、第1実施形態あるいは第3実施形態のものと同様であるので説明を省略する。 In the reference example , as in the second embodiment, the industrial equipment may be a desalination plant 25, the plant factory 30 may be of a solar heat utilization type, and the plant factory 30 may be provided with a heating hot water coil 86. Other configurations, operations, and effects of the cold water supply system 1d according to the reference example for storing and utilizing LNG cold heat are the same as those of the first embodiment or the third embodiment, and thus description thereof is omitted.

上記実施形態では、冷水利用施設を完全制御型または太陽光利用型の植物工場としたが、これに限定されるものではない。冷水利用施設をデータセンター又はスパコン解析センターとする場合、本冷水供給システムは、冷房用およびCPU冷却用にLNG冷熱で冷却された冷水を供給し、産業設備であるGTCC発電プラントに隣接する。冷水利用施設を電力多消費型精密環境工場(例えば半導体工場)とする場合、本冷水供給システムは、冷房用およびプロセス冷却用にLNG冷熱で冷却された冷水を供給し、LNGサテライト基地と自家発電システムで構成されるエナジーセンターの一部にする。冷水利用施設を大規模空港施設とする場合、本冷水供給システムは、施設の冷房用にLNG冷熱で冷却された冷水を供給し、LNGサテライト基地と自家発電システムで構成されるエナジーセンターの一部にする。冷水利用施設を市街化再開発地域とする場合、本冷水供給システムは、地域冷房用にLNG冷熱で冷却された冷水を供給し、LNGサテライト基地と自家発電システムで構成されるエナジーセンターの一部にする。冷水利用施設を冷蔵倉庫または醸造工場など低温室内環境を必要とする施設とする場合、本冷水供給システムは、施設の冷房用にLNG冷熱で冷却された冷水を供給し、産業設備であるGTCC発電プラントに隣接して設ける。   In the above embodiment, the cold water utilization facility is a plant factory of the complete control type or the sunlight utilization type. However, the present invention is not limited to this. When the chilled water utilization facility is a data center or a supercomputer analysis center, the chilled water supply system supplies chilled water cooled by LNG chilled heat for cooling and CPU cooling, and is adjacent to a GTCC power plant that is an industrial facility. When the chilled water utilization facility is a power-consuming high-precision environmental factory (for example, a semiconductor factory), the chilled water supply system supplies chilled water cooled by LNG cryogenic heat for cooling and process cooling, and the LNG satellite base and private power generation. Make it a part of the energy center composed of the system. If the chilled water utilization facility is a large-scale airport facility, this chilled water supply system supplies chilled water cooled by LNG chilled heat for cooling the facility, and is part of an energy center consisting of an LNG satellite base and an in-house power generation system. To If the chilled water utilization facility is an urbanized redevelopment area, this chilled water supply system supplies chilled water cooled by LNG chilled heat for district cooling, and is part of an energy center consisting of an LNG satellite base and an in-house power generation system. To When the chilled water utilization facility is a facility requiring a low-temperature indoor environment such as a refrigerated warehouse or a brewery, the chilled water supply system supplies chilled water cooled by LNG cryogenic heat for cooling the facility, and the GTCC power generation as an industrial facility. Installed next to the plant.

1a〜1d:LNG冷熱を蓄熱して利用する冷水供給システム、10:LNGサテライト基地、11:冷水式LNG気化器、12:LNGタンク、15:LNG気化器、16熱交換器、20:ガスタービンコンバインドサイクル発電プラント(産業設備)、25:淡水化プラント(産業設備)、21,26:冷却装置、22,27:凝縮部、23:冷却塔、24,28:循環回路、30:植物工場、31:冷房用冷水コイル、40:冷水蓄熱槽、41:温度成層式冷水蓄熱槽、43:低温部、44:高温部、50:第1冷水循環回路、53:第1三方弁,63:第2三方弁、54:定流量ポンプ、55:第3冷水循環回路、60:第2冷水循環回路、64:可変流量ポンプ、65,82:二方弁、66:第4冷水循環回路、67:第5冷水循環回路、70:バックアップ用熱交換器、71:三方弁、72:戻り管路、75:第1不凍熱媒体循環回路、76:第2不凍熱媒体循環回路、79:定流量ポンプ、80:排ガス供給装置、81:排ガス冷却装置、85:ヒートポンプ、86:暖房用温水コイル、90:制御装置、91:氷蓄熱槽、93:低温部、94:高温部、97:製氷部。 1a to 1d: Cold water supply system for storing and using LNG cold heat, 10: LNG satellite base, 11: Cold water type LNG vaporizer, 12: LNG tank, 15: LNG vaporizer, 16 heat exchanger, 20: Gas turbine Combined cycle power plant (industrial equipment), 25: desalination plant (industrial equipment), 21, 26: cooling device, 22, 27: condenser, 23: cooling tower, 24, 28: circulation circuit, 30: plant factory, 31: cooling water coil for cooling, 40: cold water heat storage tank, 41: temperature stratification type cold water heat storage tank, 43: low temperature part, 44: high temperature part, 50: first cold water circulation circuit, 53: first three-way valve, 63: first 2 three-way valve , 54: constant flow pump, 55: third chilled water circulation circuit, 60: second chilled water circulation circuit, 64: variable flow pump, 65, 82: two-way valve, 66: fourth chilled water circulation circuit, 67: Fifth cold water circulation Ring circuit, 70: backup heat exchanger, 71: three-way valve, 72: return line, 75: first antifreeze heat medium circuit, 76: second antifreeze heat medium circuit, 79: constant flow pump, 80: exhaust gas supply device, 81: exhaust gas cooling device, 85: heat pump, 86: heating hot water coil, 90: control device, 91: ice heat storage tank, 93: low temperature section, 94: high temperature section, 97: ice making section.

Claims (4)

液化天然ガスが気化するときに生じるLNG冷熱を前記液化天然ガスと冷水との間で直接熱交換して前記冷水を低温冷水とする冷水式LNG気化器によって産業設備で使用される天然ガスを生成するLNGサテライト基地と、
前記LNGサテライト基地に近接して配置され、前記LNG冷熱で冷却された前記低温冷水を利用する冷水利用部が設けられた冷水利用施設と、
前記冷水式LNG気化器と前記冷水利用施設との間に設けられ、前記冷水式LNG気化器から供給される前記低温冷水を貯留する低温部と前記冷水利用部から戻される高温冷水を貯留する高温部が形成される温度成層式冷水蓄熱槽と、
前記温度成層式冷水蓄熱槽を前記冷水式LNG気化器の冷水流入口に接続する管路に第1三方弁および定流量ポンプが順次介在され、前記第1三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記高温部と前記低温部にそれぞれ接続されて前記冷水を前記冷水式LNG気化器に戻し、前記冷水式LNG気化器から前記低温冷水を前記温度成層式冷水蓄熱槽の前記低温部に供給する第1冷水循環回路と、
前記温度成層式冷水蓄熱槽と前記冷水利用部の入口との間に第2三方弁および可変流量ポンプが順次介在され、前記第2三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記低温部および前記高温部にそれぞれ接続され、前記第2三方弁によって混合割合を調整された前記低温冷水と前記高温冷水とを前記冷水利用部に供給し前記LNG冷熱を放出させて前記高温冷水とし、流量を制御する二方弁を介して前記高温冷水を前記冷水利用部の出口から前記温度成層式冷水蓄熱槽の前記高温部に戻す第2冷水循環回路と、
前記産業設備に設けられた凝縮部を冷却水または海水で冷却する冷却装置と、
前記管路に前記定流量ポンプと前記冷水式LNG気化器との間に設けられ、前記凝縮部で熱交換して昇温した前記冷却水または海水の一部が供給されて、前記冷水式LNG気化器に戻る前記冷水をバックアップして昇温するバックアップ用熱交換器と、
前記定流量ポンプで一定流量の前記冷水を前記第1冷水循環回路に循環させ、前記第1三方弁を制御して前記温度成層式冷水蓄熱槽から流出する前記高温冷水と前記低温冷水との混合割合を調整して、前記冷水式LNG気化器から流出して前記温度成層式冷水蓄熱槽の前記低温部に供給される前記低温冷水の温度を制御し、前記第2三方弁を制御して前記温度成層式冷水蓄熱槽から前記可変流量ポンプで汲出される前記高温冷水と前記低温冷水との混合割合を調整するとともに、前記冷水利用部を通って前記高温部に戻される前記高温冷水の流量を前記二方弁で制御して、前記冷水利用部から前記温度成層式冷水蓄熱槽の前記高温部に戻される前記高温冷水の温度を制御し、前記冷水式LNG気化器における冷凍能力が前記冷水利用施設における冷熱需要を超えるとき、前記冷凍能力が前記冷熱需要を越える余剰冷熱分の前記低温冷水を前記温度成層式冷水蓄熱槽に貯留し、前記冷水利用施設における冷熱需要が前記冷水式LNG気化器における冷凍能力を超えるとき、前記冷凍能力が前記冷熱需要に対して不足する不足冷熱を前記温度成層式冷水蓄熱槽に貯留された前記低温冷水で前記冷水利用部に供給するように前記第1冷水循環回路および前記第2冷水循環回路を制御する制御装置と、
を備えたLNG冷熱を蓄熱して利用する冷水供給システム。
LNG cold generated when liquefied natural gas is vaporized is directly heat-exchanged between the liquefied natural gas and chilled water to produce natural gas used in industrial equipment by a chilled water LNG vaporizer that uses the chilled water as low-temperature chilled water. LNG satellite base
A chilled water utilization facility that is disposed in proximity to the LNG satellite base and includes a chilled water utilization unit that utilizes the low-temperature chilled water cooled by the LNG cryogenic heat;
A low-temperature section that is provided between the chilled water LNG vaporizer and the chilled water utilization facility and stores the low-temperature chilled water supplied from the chilled water LNG vaporizer and a high-temperature section that stores the high-temperature chilled water returned from the chilled water utilization section. A temperature stratified cold water heat storage tank in which a part is formed ,
A first three-way valve and a constant flow pump are sequentially interposed in a pipe connecting the temperature stratified chilled water heat storage tank to the chilled water inlet of the chilled water LNG vaporizer, and the two inlets of the first three-way valve are The cold water is returned to the cold water LNG vaporizer connected to the high temperature part and the low temperature part of the temperature stratified cold water heat storage tank, and the low temperature cold water is discharged from the cold water LNG vaporizer to the temperature stratified cold water heat storage tank. A first chilled water circulation circuit for supplying to the low temperature section ;
A second three-way valve and a variable flow pump are sequentially interposed between the temperature-stratified cold water storage tank and the inlet of the cold water utilization section, and two inlets of the second three-way valve are connected to the temperature-stratified cold water storage tank. The low-temperature chilled water and the high-temperature chilled water, which are connected to the low-temperature portion and the high-temperature portion, respectively, and whose mixing ratios are adjusted by the second three-way valve, are supplied to the chilled water utilization portion to release the LNG chilled heat, and A second chilled water circulation circuit that returns the high-temperature chilled water from the outlet of the chilled water utilization unit to the high-temperature portion of the temperature-stratified chilled water storage tank through a two-way valve that controls the flow rate, as cold water,
A cooling device that cools the condensing section provided in the industrial facility with cooling water or seawater,
A part of the cooling water or seawater, which is provided between the constant flow pump and the chilled water LNG vaporizer in the conduit and exchanges heat in the condensing section and is heated, is supplied to the chilled water LNG. A backup heat exchanger that backs up the cold water and raises the temperature back to the vaporizer;
Mixing the high-temperature chilled water and the low-temperature chilled water flowing out of the temperature-stratified chilled-water heat storage tank by controlling the first three-way valve by circulating the chilled water at a constant flow rate with the constant-flow pump and controlling the first three-way valve. The ratio is adjusted to control the temperature of the low-temperature chilled water flowing out of the chilled water LNG vaporizer and supplied to the low-temperature portion of the temperature-stratified chilled water heat storage tank, and controlling the second three-way valve to control the temperature. While adjusting the mixing ratio of the high-temperature chilled water and the low-temperature chilled water pumped by the variable flow rate pump from the temperature stratified chilled water heat storage tank, the flow rate of the high-temperature chilled water returned to the high-temperature portion through the chilled water utilization unit is adjusted. The two-way valve controls the temperature of the high-temperature chilled water returned from the chilled water utilization section to the high-temperature section of the temperature-stratified chilled water heat storage tank, and the refrigeration capacity of the chilled water LNG vaporizer increases the chilled water utilization. In the facility That when more than cold demand, the refrigerating capacity storing the said cold cold water excess cold fraction exceeds the cold demand to the temperature stratification formula cold heat storage tank, cold heat demand in the chilled water LNG vaporizers in the cold water utilization facility When the refrigeration capacity exceeds the refrigeration capacity, the first chilled water circulation is configured to supply insufficient chilled heat that is insufficient for the chilled heat demand to the chilled water utilization unit with the low-temperature chilled water stored in the temperature-stratified chilled water heat storage tank. A control device for controlling a circuit and the second chilled water circulation circuit;
A chilled water supply system that stores and uses LNG cryogenic heat, comprising
液化天然ガスが気化するときに生じるLNG冷熱を前記液化天然ガスと不凍熱媒体との間で熱交換するLNG気化器によって産業設備で使用される天然ガスを生成するLNGサテライト基地と、
前記LNGサテライト基地に近接して配置され、前記LNG冷熱で冷却された低温冷水を利用する冷水利用部が設けられた冷水利用施設と、
前記LNG気化器と前記冷水利用施設との間に設けられ、前記低温冷水を貯留する低温部と前記冷水利用部から戻される高温冷水を貯留する高温部が形成される温度成層式冷水蓄熱槽と、
前記LNG気化器と前記温度成層式冷水蓄熱槽との間に設けられた熱交換器と、
前記LNG気化器と前記熱交換器との間で前記不凍熱媒体を循環させ、前記LNG気化器で生じたLNG冷熱を前記熱交換器で前記不凍熱媒体と冷水とで熱交換して前記低温冷水とし、前記LNG冷熱を放出した前記不凍熱媒体を前記LNG気化器に戻す第1不凍熱媒体循環回路と、
前記温度成層式冷水蓄熱槽を前記熱交換器の冷水入口に接続する管路に第1三方弁および定流量ポンプが順次介在され、前記第1三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記高温部と前記低温部にそれぞれ接続されて前記冷水を前記熱交換器に戻し、前記熱交換器から前記低温冷水を前記温度成層式冷水蓄熱槽の前記低温部に供給する第3冷水循環回路と、
前記温度成層式冷水蓄熱槽と前記冷水利用部の入口との間に第2三方弁および可変流量ポンプが順次介在され、前記第2三方弁の2個の流入口が前記温度成層式冷水蓄熱槽の前記低温部および前記高温部にそれぞれ接続され、前記第2三方弁によって混合割合を調整された前記低温冷水と前記高温冷水とを前記冷:水利用部に供給し前記LNG冷熱を放出させて前記高温冷水とし、流量を制御する二方弁を介して前記高温冷水を前記冷水利用部の出口から前記温度成層式冷水蓄熱槽の前記高温部に戻す第4冷水循環回路と、
前記産業設備に設けられた凝縮部を冷却水または海水で冷却する冷却装置と、
前記管路に前記定流量ポンプと前記熱交換器との間に設けられ、前記凝縮部で熱交換して昇温した前記冷却水または海水の一部が供給されて、前記熱交換器に戻る前記冷水をバックアップして昇温するバックアップ用熱交換器と、
前記定流量ポンプで一定流量の前記冷水を前記第3冷水循環回路に循環させ、前記第1三方弁を制御して前記温度成層式冷水蓄熱槽から流出する前記高温冷水と前記低温冷水との混合割合を調整して、前記熱交換器から流出して前記温度成層式冷水蓄熱槽の前記低温部に供給される前記低温冷水の温度を制御し、前記第2三方弁を制御して前記温度成層式冷水蓄熱槽から前記可変流量ポンプで汲出される前記高温冷水と前記低温冷水との混合割合を調整するとともに、前記冷水利用部を通って前記高温部に戻される前記高温冷水の流量を前記二方弁で制御して、前記冷水利用部から前記温度成層式冷水蓄熱槽の前記高温部に戻される前記高温冷水の温度を制御し、前記LNG気化器における冷凍能力が前記冷水利用施設における冷熱需要を超えるとき、前記冷凍能力が前記冷熱需要を越える余剰冷熱分の前記低温冷水を前記温度成層式冷水蓄熱槽に貯留し、前記冷水利用施設における冷熱需要が前記LNG気化器における冷凍能力を超えるとき、前記冷凍能力が前記冷熱需要に対して不足する不足冷熱を前記温度成層式冷水蓄熱槽に貯留された前記低温冷水で前記冷水利用部に供給するように前記第3冷水循環回路および第4冷水循環回路を制御する制御装置と、
を備えLNG冷熱を蓄熱して利用する冷水供給システム。
An LNG satellite base for producing natural gas used in industrial equipment by an LNG vaporizer for exchanging LNG cold generated when liquefied natural gas is vaporized between the liquefied natural gas and the antifreeze heat medium;
A chilled water utilization facility that is disposed in proximity to the LNG satellite base and includes a chilled water utilization unit that utilizes low-temperature chilled water cooled by the LNG cryogenic heat;
A temperature stratified chilled water heat storage tank provided between the LNG vaporizer and the chilled water utilization facility, wherein a low temperature section for storing the low temperature chilled water and a high temperature section for storing the high temperature chilled water returned from the chilled water utilization section are formed; ,
A heat exchanger provided between the LNG vaporizer and the temperature-stratified cold water storage tank;
Circulating the antifreeze heat medium between the LNG vaporizer and the heat exchanger, and exchanging LNG cold generated by the LNG vaporizer between the antifreeze heat medium and cold water in the heat exchanger. A first antifreeze heat medium circulation circuit that returns the antifreeze heat medium that has released the LNG cold heat to the LNG vaporizer as the low-temperature chilled water;
A first three-way valve and a constant flow pump are sequentially interposed in a pipe connecting the temperature-stratified cold water storage tank to the cold water inlet of the heat exchanger, and two inlets of the first three-way valve are connected to the temperature-stratified type. The cold water storage tank is connected to the high temperature section and the low temperature section, respectively, to return the cold water to the heat exchanger, and to supply the low temperature cold water from the heat exchanger to the low temperature section of the temperature stratified cold water storage tank . 3 chilled water circulation circuit,
A second three-way valve and a variable flow pump are sequentially interposed between the temperature-stratified cold water storage tank and the inlet of the cold water utilization section, and two inlets of the second three-way valve are connected to the temperature-stratified cold water storage tank. The low-temperature chilled water and the high-temperature chilled water which are respectively connected to the low-temperature portion and the high-temperature portion, and the mixing ratio of which is adjusted by the second three-way valve, are supplied to the chilled / water utilization portion to discharge the LNG chilled heat. A fourth chilled water circulation circuit that returns the high-temperature chilled water from the outlet of the chilled water utilization unit to the high-temperature portion of the temperature-stratified chilled water storage tank through a two-way valve that controls the flow rate, as the high-temperature chilled water ,
A cooling device that cools the condensing section provided in the industrial facility with cooling water or seawater,
A part of the cooling water or the seawater, which is provided between the constant flow pump and the heat exchanger in the conduit and exchanges heat in the condensing part and is heated, is supplied and returns to the heat exchanger. A backup heat exchanger that backs up the cold water and raises the temperature,
Mixing the high-temperature chilled water and the low-temperature chilled water flowing out of the temperature-stratified chilled-water heat storage tank by controlling the first three-way valve by circulating the chilled water at a constant flow rate through the third chilled water circulation circuit with the constant flow pump. Controlling the temperature of the low-temperature chilled water flowing out of the heat exchanger and supplied to the low-temperature portion of the temperature-stratified chilled water heat storage tank, and controlling the second three-way valve to control the temperature stratification. The mixing ratio of the high-temperature cold water and the low-temperature cold water pumped by the variable flow rate pump from the chilled water heat storage tank is adjusted, and the flow rate of the high-temperature cold water returned to the high-temperature section through the cold water utilization section is adjusted to the second value. And controlling the temperature of the high-temperature chilled water returned from the chilled water utilization section to the high-temperature section of the temperature stratified chilled water heat storage tank, so that the refrigeration capacity of the LNG vaporizer is reduced by the demand for chilled heat in the chilled water utilization facility. Over Rutoki, the refrigerating capacity storing the said cold cold water excess cold fraction exceeds the cold demand to the temperature stratification formula cold water storage tank, when the cold heat demand in the cold water utilization facility exceeds refrigerating capacity in the LNG vaporizer, The third chilled water circulation circuit and the fourth chilled water circulation so that the chilled water whose refrigeration capacity is insufficient with respect to the chilled heat demand is supplied to the chilled water utilization unit with the low-temperature chilled water stored in the temperature-stratified chilled water heat storage tank. A control device for controlling the circuit;
A chilled water supply system comprising:
前記凝縮部で昇温した前記冷却装置の前記冷却水または前記海水の一部から熱を吸収し、前記冷水利用施設に設けられた暖房用温水コイルに温熱を供給するヒートポンプを備えた請求項1または請求項2に記載のLNG冷熱を蓄熱して利用する冷水供給システム。 2. A heat pump that absorbs heat from a part of the cooling water or the seawater of the cooling device heated in the condensing unit and supplies hot heat to a heating hot water coil provided in the cold water utilization facility. 3. A chilled water supply system for storing and utilizing the LNG chilled heat according to claim 2 . 前記冷水利用施設は植物工場であり、
前記温度成層式冷水蓄熱槽から前記LNG冷熱で冷却された前記冷水が供給され、前記産業設備において前記天然ガスの燃焼によって生じた排ガスを前記LNG冷熱で冷却された前記冷水で冷却する排ガス冷却装置を備え、前記排ガスを前記排ガス冷却装置で冷却して前記植物工場に供給する排ガス供給装置を備えた請求項1乃至のいずれか1項に記載のLNG冷熱を蓄熱して利用する冷水供給システム。
The cold water utilization facility is a plant factory,
The cold water cooled by the LNG cold heat is supplied from the temperature stratified cold water heat storage tank, and the exhaust gas cooling device cools the exhaust gas generated by the combustion of the natural gas in the industrial facility with the cold water cooled by the LNG cold heat. The cold water supply system according to any one of claims 1 to 3 , further comprising: an exhaust gas supply device that cools the exhaust gas with the exhaust gas cooling device and supplies the exhaust gas to the plant factory. .
JP2019566845A 2019-10-01 2019-10-01 Cold water supply system that stores and uses LNG cold heat Active JP6671651B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038786 WO2021064869A1 (en) 2019-10-01 2019-10-01 Cold water supply system for storing and using lng cold heat

Publications (2)

Publication Number Publication Date
JP6671651B1 true JP6671651B1 (en) 2020-03-25
JPWO2021064869A1 JPWO2021064869A1 (en) 2021-11-04

Family

ID=70000911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566845A Active JP6671651B1 (en) 2019-10-01 2019-10-01 Cold water supply system that stores and uses LNG cold heat

Country Status (2)

Country Link
JP (1) JP6671651B1 (en)
WO (1) WO2021064869A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129211A (en) * 1992-10-21 1994-05-10 Shimizu Corp Thermoelectric supply system
JPH06313687A (en) * 1993-04-27 1994-11-08 Osaka Gas Co Ltd Liquefied natural gas vaporizer using accumulated cold heat
JPH11218390A (en) * 1998-02-03 1999-08-10 Agency Of Ind Science & Technol Liquefied natural gas evaporator and cold heat system employing same
CN101344354A (en) * 2007-09-29 2009-01-14 上海海事大学 LNG cold energy utilization method
US20100175426A1 (en) * 2009-01-09 2010-07-15 Hunton Energy Holdings, LLC Power Management For Gasification Facility
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
JP2014508899A (en) * 2011-01-28 2014-04-10 エクソンモービル アップストリーム リサーチ カンパニー Regasification plant
US20160010899A1 (en) * 2014-06-27 2016-01-14 Surna, Inc. Climate control systems and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129211A (en) * 1992-10-21 1994-05-10 Shimizu Corp Thermoelectric supply system
JPH06313687A (en) * 1993-04-27 1994-11-08 Osaka Gas Co Ltd Liquefied natural gas vaporizer using accumulated cold heat
JPH11218390A (en) * 1998-02-03 1999-08-10 Agency Of Ind Science & Technol Liquefied natural gas evaporator and cold heat system employing same
CN101344354A (en) * 2007-09-29 2009-01-14 上海海事大学 LNG cold energy utilization method
US20100175426A1 (en) * 2009-01-09 2010-07-15 Hunton Energy Holdings, LLC Power Management For Gasification Facility
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
JP2014508899A (en) * 2011-01-28 2014-04-10 エクソンモービル アップストリーム リサーチ カンパニー Regasification plant
US20160010899A1 (en) * 2014-06-27 2016-01-14 Surna, Inc. Climate control systems and methods

Also Published As

Publication number Publication date
WO2021064869A1 (en) 2021-04-08
JPWO2021064869A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
EP2122257B1 (en) Co2 based district energy system
US4813242A (en) Efficient heater and air conditioner
CN102239372B (en) System for providing steam compression circulation and method for controlling steam compression circulation
KR100619444B1 (en) Chilled water storage type hybrid heating and cooling system using a solar heat system
Ghorbani et al. Concentrated solar energy system and cold thermal energy storage (process development and energy analysis)
US9702634B1 (en) Waste heat recovery and optimized systems performance
Jabari et al. Biogas fueled combined cooling, desalinated water and power generation systems
US10883728B2 (en) Broad band district heating and cooling system
US6889520B2 (en) Inter-region thermal complementary system by distributed cryogenic and thermal devices
KR20130059070A (en) Air conditioning and heating system and method for greenhouse
Ismail et al. Utilizing the solar ice storage system in improving the energy, exergy, economic and environmental assessment of conventional air conditioning system
Fong et al. Investigation of climatic effect on energy performance of trigeneration in building application
Titlov et al. Development of cooling systems on the basis of absorption water-ammonia refrigerating machines of low refrigeration capacity
KR101500489B1 (en) Ocean Thermal Energy Conversion System Using Discharge of Seawater Heat Pump
JP6671651B1 (en) Cold water supply system that stores and uses LNG cold heat
KR101938745B1 (en) Greenhouse complex air conditioning system
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
KR101933057B1 (en) Heating and cooling system and method for greenhouse multiple complex
Broniszewski et al. Energy efficiency modernizations at the industrial plant: A case study
US20230375280A1 (en) Integrated Heat Storage System into Heat Recovery
US11754347B2 (en) Multiple channel heat exchanger
Joemann et al. All-weather snow machine driven by solar energy
Jabari et al. Risk-Constrained Scheduling of a Solar Ice Harvesting System Using Information Gap Decision Theory
JPH0370945A (en) Heat pump system
Tsoy et al. Development of autonomous cooling systems on the basis of renewable and waste sources of heat energy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191211

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6671651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250