JP2006061127A - Method for providing carbonic acid gas in greenhouse culture - Google Patents

Method for providing carbonic acid gas in greenhouse culture Download PDF

Info

Publication number
JP2006061127A
JP2006061127A JP2004250787A JP2004250787A JP2006061127A JP 2006061127 A JP2006061127 A JP 2006061127A JP 2004250787 A JP2004250787 A JP 2004250787A JP 2004250787 A JP2004250787 A JP 2004250787A JP 2006061127 A JP2006061127 A JP 2006061127A
Authority
JP
Japan
Prior art keywords
greenhouse
exhaust gas
gas
carbon dioxide
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004250787A
Other languages
Japanese (ja)
Other versions
JP4489536B2 (en
Inventor
Yasushi Tejima
泰 手島
Shigehiro Omori
茂広 大守
Masaharu Kasahara
雅治 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004250787A priority Critical patent/JP4489536B2/en
Publication of JP2006061127A publication Critical patent/JP2006061127A/en
Application granted granted Critical
Publication of JP4489536B2 publication Critical patent/JP4489536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for providing carbonic acid gas in greenhouse culture by which the carbonic acid gas can be provided through year while reducing a running cost. <P>SOLUTION: A waste gas discharged from a flue 2 of a thermal power house 1 to the atmosphere is extracted by a gas-extracting tube 10a connected to the flue 2. The extracted waste gas 3a contains much carbonic acid gas, and nitrogen oxides affecting the growth of the crops are removed by reducing the nitrogen oxides with ammonia by using a catalytic reduction-type denitration device 40. The unreacted ammonia is removed by an ammonia-removing device 50, and the resultant high-humidity treated waste gas 3b is cooled and dehumidified by a dehumidifier 60. The resulting treated waste gas 3c containing the carbonic acid gas is fed to the interior of the greenhouse 4 to provide the carbonic acid gas to a cultivated crop 5 in the greenhouse culture to promote the photosynthesis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温室栽培される作物(栽培植物)に人工的に炭酸ガスを供給して生育を促進する炭酸ガス施与方法に関する。   The present invention relates to a carbon dioxide gas application method for artificially supplying carbon dioxide gas to a greenhouse-grown crop (cultivated plant) to promote growth.

温室内で野菜や果物の作物を土耕栽培、養液栽培する温室栽培(施設栽培、ハウス栽培)は、栽培作物の生育環境(温度、光、湿度、水、風、炭酸ガス)を良好に制御することができることから、園芸栽培にも普及している。温室栽培の場合、日中は温室の側窓や天窓を解放して外気の炭酸ガスを温室内に取り入れて、栽培作物の光合成を促進させることが行われているが、温室内の温度上昇や換気不足などが原因して炭酸ガス不足が生じ、作物の良好な生育が損なわれることがある。また、冬季などで温室を閉め切って栽培作物を光合成させると、温室内の炭酸ガス濃度が大気中の濃度(350ppm程度)より大幅に低下して、栽培作物の生育が抑制されることがある。このようなことから温室栽培においては、温室内に積極的に炭酸ガスを補給して温室内の炭酸ガスが大気中の濃度を超える高濃度(700〜1500ppm程度)になるよう調整して、栽培作物の光合成を活性化して生育を促進し、品質と収穫量を高めることが行われている。   Greenhouse cultivation (facility cultivation, house cultivation) in which the crops of vegetables and fruits are soil-cultivated and hydroponically cultivated in the greenhouse improves the growth environment (temperature, light, humidity, water, wind, carbon dioxide) of the cultivated crop Because it can be controlled, it is also popular in horticulture. In the case of greenhouse cultivation, during the day, the side windows and skylights of the greenhouse are released and carbon dioxide from the outside air is introduced into the greenhouse to promote photosynthesis of cultivated crops. Carbon dioxide shortage may occur due to lack of ventilation, etc., and good growth of crops may be impaired. In addition, when the greenhouse is closed and the cultivated crop is photosynthesized in winter, the concentration of carbon dioxide in the greenhouse is significantly lower than the concentration in the atmosphere (about 350 ppm), and the growth of the cultivated crop may be suppressed. For this reason, in greenhouse cultivation, carbon dioxide is actively replenished in the greenhouse, and the carbon dioxide in the greenhouse is adjusted to a high concentration (about 700 to 1500 ppm) exceeding the concentration in the atmosphere, and cultivation is performed. It promotes the photosynthesis of crops to promote growth and enhances quality and yield.

温室内への炭酸ガス施与は、液化炭酸ガスを収容するガスボンベの純度の高い炭酸ガスや、可燃ガスや灯油を燃焼させて生じる排気ガス中の炭酸ガスを適度な濃度に希釈制御して、温室内に供給する方法、設備が公知である(例えば、特許文献1参照)。
特開2001−296641号公報
Carbon dioxide gas application to the greenhouse is controlled by diluting the carbon dioxide gas in the gas cylinder containing the liquefied carbon dioxide gas and the carbon dioxide gas in the exhaust gas generated by burning flammable gas and kerosene to an appropriate concentration, Methods and equipment for supplying into a greenhouse are known (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 2001-296641

ガスボンベの純度の高い炭酸ガスを温室内に補給する場合、補給する炭酸ガスのコストが高く(約100円/kg)、年間を通じて温室内に補給し、栽培作物の光合成の活性化を期待することが経済的に難しい。また、可燃ガスや灯油を燃焼させて生じる炭酸ガスは、ガスボンベの炭酸ガスに比べてコストが安い(約40円/kg)が、大規模温室に年間を通じて供給するとなると大量の炭酸ガスが必要となって、温室栽培のランニングコストに占める割合がかなり高くなる。   When replenishing high purity carbon dioxide gas in the greenhouse, the cost of replenishing carbon dioxide gas is high (about 100 yen / kg), and replenishing the greenhouse throughout the year to expect photosynthesis activation of cultivated crops Is economically difficult. Carbon dioxide gas produced by burning combustible gas and kerosene is cheaper than gas cylinder carbon dioxide gas (about 40 yen / kg), but a large amount of carbon dioxide gas is required when supplied to a large-scale greenhouse throughout the year. Therefore, the share of the running cost of greenhouse cultivation becomes considerably high.

本発明の目的とするところは、大規模温室にも経済的有利に炭酸ガス施与ができる温室栽培の炭酸ガス施与方法を提供することにある。   An object of the present invention is to provide a greenhouse-grown carbon dioxide application method capable of economically advantageous carbon dioxide application even in a large-scale greenhouse.

本発明は、火力発電設備の煙道から排ガスを抽出し、この抽出した排ガスから温室栽培の作物生育に障害を及ぼす物質を除去した炭酸ガス含有の処理排ガスを温室内に適宜に供給することにより、上記目的を達成するものである。   The present invention extracts a flue gas from a flue of a thermal power generation facility, and appropriately supplies a treated flue gas containing carbon dioxide gas from which the substances that impede the growth of greenhouse-grown crops are removed from the extracted flue gas into the greenhouse. The above object is achieved.

ここで、火力発電設備の煙道は、火力発電所の煙突や、ガスタービン発電装置などのコジェネレーションシステムにおける排気ダクトである。この煙道からは年間を通じて大量の炭酸ガスを含む排ガスが大気中に放出されており、この大気中に放出されていた排ガスを抽出して、温室栽培される作物の光合成を促進する炭酸ガスとして有効利用することで、消費する炭酸ガスのコストが実質的にゼロとなり、大規模温室で炭酸ガスを大量に使用する場合でもランニングコストの大幅な低減が容易となる。また、煙道から大気中に放出される排ガスには炭酸ガスの他に、窒素酸化物などの栽培作物の生育に障害を及ぼす物質が含まれていることから、これら物質のみを除去して排ガスを炭酸ガス含有の処理排ガスとして温室に供給する。   Here, the flue of the thermal power generation facility is an exhaust duct in a cogeneration system such as a chimney of a thermal power plant or a gas turbine power generation device. From this flue, exhaust gas containing a large amount of carbon dioxide gas is released into the atmosphere throughout the year. By extracting the exhaust gas released into the atmosphere, carbon dioxide gas that promotes photosynthesis of crops grown in greenhouses. By using it effectively, the cost of the carbon dioxide to be consumed becomes substantially zero, and it becomes easy to greatly reduce the running cost even when a large amount of carbon dioxide is used in a large-scale greenhouse. In addition to carbon dioxide, the exhaust gas released into the atmosphere from the flue contains substances that impede the growth of cultivated crops, such as nitrogen oxides. Is supplied to the greenhouse as treated exhaust gas containing carbon dioxide.

具体的に本発明方法は、火力発電設備の煙道から排ガスを抽出するガス抽出工程と、このガス抽出工程で抽出した排ガスに含まれる窒素酸化物を接触還元式脱硝装置で除去する窒素酸化物除去工程と、この窒素酸化物除去工程で処理された排ガスに含まれる未反応アンモニアをアンモニア除去装置で除去するアンモニア除去工程と、このアンモニア除去工程で処理された排ガスを除湿器で温室栽培の作物生育に適する温度、湿度に冷却し除湿する冷却・除湿工程を経て、煙道の排ガスを温室に供給することができる。   Specifically, the method of the present invention includes a gas extraction step for extracting exhaust gas from a flue of a thermal power generation facility, and a nitrogen oxide for removing nitrogen oxide contained in the exhaust gas extracted in this gas extraction step by a catalytic reduction type denitration apparatus. A removal step, an ammonia removal step of removing unreacted ammonia contained in the exhaust gas treated in the nitrogen oxide removal step with an ammonia removal device, and a greenhouse-cultivated crop of the exhaust gas treated in the ammonia removal step with a dehumidifier The flue gas can be supplied to the greenhouse through a cooling / dehumidifying process in which it is cooled to a temperature and humidity suitable for growth and dehumidified.

ここでの煙道からの排ガス抽出は、煙道の一部と連通させたガス遮断ダンパ内蔵のガス抽出管(抽出ダクト)で行う。このガス抽出管に接触還元式脱硝装置とアンモニア除去装置と除湿器を直列に連接し、除湿器の排気口と温室内を連通する配管の途中に吸引ファンを設置して、吸引ファンで除湿器からの処理排ガスを温室に給送する。接触還元式脱硝装置は、アンモニアを還元剤として排ガスから窒素酸化物を除去する既存設備が適用でき、この脱硝装置で排ガスの還元処理に使用されずに排ガスに残留した未反応アンモニアをアンモニア除去装置で除去する。アンモニア除去装置は、例えば気体の未反応アンモニアを水の吸収媒体に通して除去するもので、ここで処理された排ガスは高温で湿度の高い炭酸ガス含有の処理排ガスであり、この処理排ガスを除湿器に送って冷却し除湿して温室内に適度な温度、湿度の炭酸ガス含有処理排ガスを供給し、温室内の栽培作物に炭酸ガスを施与する。   The exhaust gas extraction from the flue here is performed by a gas extraction pipe (extraction duct) with a built-in gas cutoff damper communicated with a part of the flue. A catalytic reduction denitration device, an ammonia removal device, and a dehumidifier are connected in series to this gas extraction pipe, and a suction fan is installed in the middle of the piping that connects the exhaust port of the dehumidifier and the greenhouse. The treated exhaust gas from is sent to the greenhouse. The catalytic reduction denitration device can be applied to existing equipment that removes nitrogen oxides from exhaust gas using ammonia as a reducing agent. This denitration device removes unreacted ammonia remaining in the exhaust gas without being used for exhaust gas reduction treatment. Remove with. The ammonia removal device is, for example, for removing gaseous unreacted ammonia through a water absorption medium. The exhaust gas treated here is a high-temperature, high-humidity carbon dioxide-containing treated exhaust gas, and this treated exhaust gas is dehumidified. It is sent to a vessel, cooled and dehumidified, and the treated exhaust gas containing carbon dioxide at an appropriate temperature and humidity is supplied into the greenhouse, and carbon dioxide is applied to the cultivated crops in the greenhouse.

本発明においては、火力発電設備の煙道の排ガス温度によっては、ガス抽出工程から窒素酸化物除去工程に供給される排ガスの温度に基づいて同排ガスを適宜に加温器で加温する加温工程を加えることができる。この加温工程で使用する加温器の熱源は、商用電源の他に火力発電設備の排熱を利用することができる。   In the present invention, depending on the flue gas temperature of the flue of the thermal power generation facility, heating is performed by appropriately heating the flue gas with a heater based on the temperature of the flue gas supplied from the gas extraction step to the nitrogen oxide removal step. Steps can be added. The heat source of the warmer used in this warming process can utilize the exhaust heat of the thermal power generation facility in addition to the commercial power source.

また、本発明においては、冷却・除湿工程で処理された炭酸ガス含有の処理排ガスを吸引ファンと配管,エアーダクトを介して温室内の上部空間に供給し、この上部空間から処理排ガスを温室内の下部空間に設置された栽培作物に向けて吹き付けるようにすることができる。   In the present invention, the treated exhaust gas containing carbon dioxide gas treated in the cooling / dehumidifying process is supplied to the upper space in the greenhouse via the suction fan, the piping, and the air duct, and the treated exhaust gas is supplied from the upper space to the greenhouse. It can be made to spray toward the cultivated crops installed in the lower space of.

温室栽培においては、温室内の床に形成した栽培畝に種蒔きして作物を栽培するのが通常であることから、栽培畝の上方の温室内上部空間に炭酸ガス含有の処理排ガスを供給すると、処理ガス中の比重の大きな炭酸ガスが下方の栽培畝の作物に向けて集中的に吹き付けられる。このように栽培作物に集中的にして効率よく炭酸ガスを施与をすることで、栽培作物の光合成の促進が効果的に行われて、よりよい生育促進、品質改善、収量増大が可能となる。   In greenhouse cultivation, it is normal to plant crops by cultivating crops by cultivating crops formed on the floor in the greenhouse, so if carbon dioxide-containing treated exhaust gas is supplied to the upper space in the greenhouse above the cultivation baskets The carbon dioxide gas having a large specific gravity in the processing gas is intensively sprayed toward the crop of the lower cultivation straw. In this way, by concentrating on the cultivated crops and efficiently applying carbon dioxide gas, the photosynthesis of the cultivated crops is effectively promoted, enabling better growth promotion, quality improvement, and yield increase. .

本発明によれば、火力発電設備の煙道から大気中に放出されていた排ガスを抽出して、温室栽培される作物の光合成を促進する炭酸ガスとして有効利用するため、温室栽培の炭酸ガス施与で消費する炭酸ガスのコストの大幅な低減ができて、年間を通じて温室内に炭酸ガスを補給し栽培作物の光合成を促進することが経済的に容易となり、特に、大規模温室で炭酸ガスを大量に使用する施設においてはランニングコストの大幅な低減が可能となる。また、火力発電設備の煙道から抽出した排ガスから窒素酸化物などの栽培作物の生育に障害を及ぼす物質を除去して、炭酸ガス含有の処理排ガスを温室に供給するため、温室内の栽培作物を障害を及ぼすことなく光合成を促進させることができて、作物の品質改善、収量増大を図ることができる。   According to the present invention, exhaust gas that has been released into the atmosphere from the flue of a thermal power generation facility is extracted and effectively used as carbon dioxide that promotes photosynthesis of greenhouse-grown crops. The cost of carbon dioxide to be consumed can be greatly reduced, and it becomes economically easy to replenish carbon dioxide in the greenhouse throughout the year and promote photosynthesis of cultivated crops, especially in large-scale greenhouses. In facilities used in large quantities, the running cost can be significantly reduced. In addition, in order to supply carbon dioxide-containing treated exhaust gas to the greenhouse by removing substances that interfere with the growth of cultivated crops such as nitrogen oxides from the exhaust gas extracted from the flue of the thermal power generation facility, the cultivated crop in the greenhouse It is possible to promote photosynthesis without causing damage, and to improve crop quality and increase yield.

本発明の実施の形態を図1に基づいて説明する。図1は、火力発電設備1の煙道2から排出される排ガス3aを処理して温室4内に供給するシステムの概要を示すもので、火力発電設備1と温室4の間に脱硝装置40とアンモニア除去装置50と除湿器60が直列に配置され、各々が適宜ダンパや配管10で直列に連結される。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an outline of a system for processing exhaust gas 3 a discharged from a flue 2 of a thermal power generation facility 1 and supplying it into a greenhouse 4, and a denitration device 40 between the thermal power generation facility 1 and the greenhouse 4. The ammonia removing device 50 and the dehumidifier 60 are arranged in series, and each is connected in series by a damper or a pipe 10 as appropriate.

図1においては、火力発電設備の煙道2に連結された配管のガス抽出管10aの途中にガス遮断ダンパ20を設置し、ガス抽出管10aの後流側に加温器30を介して脱硝装置40を連結している。ガス抽出管10aは、ガス遮断ダンパ20の開閉操作により適量の排ガス3aを煙道2から抽出して加温器30に給送する。加温器30は、煙道2から給送された排ガス3aの温度が規定値より低い場合に作動して適温に加温する部所で、火力発電設備1の規模、種類などにより必要に応じ設置される。脱硝装置40は、アンモニアを還元剤として排ガス3aから窒素酸化物NOxを除去する接触還元式の設備で、規模の大小異なる複数種類の既存設備があり、この既存設備を適用することができる。   In FIG. 1, a gas cutoff damper 20 is installed in the middle of a gas extraction pipe 10a connected to a flue 2 of a thermal power generation facility, and denitration is performed via a heater 30 on the downstream side of the gas extraction pipe 10a. The device 40 is connected. The gas extraction pipe 10 a extracts an appropriate amount of the exhaust gas 3 a from the flue 2 by the opening / closing operation of the gas cutoff damper 20 and feeds it to the heater 30. The warmer 30 is a part that operates when the temperature of the exhaust gas 3a fed from the flue 2 is lower than a specified value and warms it to an appropriate temperature. Depending on the scale, type, etc. of the thermal power generation facility 1 Installed. The denitration device 40 is a catalytic reduction type facility that removes nitrogen oxides NOx from the exhaust gas 3a using ammonia as a reducing agent. There are a plurality of types of existing facilities of different scales, and this existing facility can be applied.

脱硝装置40とアンモニア除去装置50が配管10bで連結され、脱硝装置40で窒素酸化物の除去処理された排ガスがアンモニア除去装置50に給送されて、排ガス中の未反応アンモニアが吸収媒体である淡水51に吸収されて除去される。未反応アンモニアを吸収した処理済み水は排水処理部52へと排水される。アンモニア除去装置50の出口と除湿器60の入口が配管10cで連結されて、アンモニア除去装置50で処理された炭酸ガス含有で高湿度の処理排ガス3bが除湿器60に送られ、ここで温室栽培における炭酸ガス施与に適した温度と湿度に冷却・除湿される。この冷却・除湿された炭酸ガス含有の処理排ガス3cが吸引ファン70で吸引され、配管10dを通して温室4内の上部空間Maに供給される。   The denitration device 40 and the ammonia removal device 50 are connected by the pipe 10b, and the exhaust gas from which the nitrogen oxide has been removed by the denitration device 40 is fed to the ammonia removal device 50, and unreacted ammonia in the exhaust gas is the absorption medium. It is absorbed and removed by the fresh water 51. The treated water that has absorbed unreacted ammonia is drained to the waste water treatment unit 52. The outlet of the ammonia removing device 50 and the inlet of the dehumidifier 60 are connected by a pipe 10c, and the treated exhaust gas 3b containing carbon dioxide and treated with the ammonia removing device 50 is sent to the dehumidifier 60, where greenhouse cultivation is performed. Cooled and dehumidified to a temperature and humidity suitable for carbon dioxide application. The cooled and dehumidified treated exhaust gas 3c containing carbon dioxide is sucked by the suction fan 70 and supplied to the upper space Ma in the greenhouse 4 through the pipe 10d.

温室4は、例えば室内の下部空間Mbに多数条に設置した栽培畝6で大量の栽培作物5を栽培する大規模温室で、この室内の上部空間Maに栽培畝6と平行にエアーダクト(図示せず)が設置される。配管10dから温室4内に供給された炭酸ガス含有の処理排ガス3cは炭酸ガス濃度と流量を自動制御する制御装置80を介してエアーダクトに送風され、エアーダクトから下方の栽培作物5に向けて吹き付けられる。制御装置80は配管10dからの処理排ガス3bに温室内の空気を混入させて炭酸ガス濃度を栽培作物5の光合成を促進するに適切な濃度にし、かつ、エアーダクトから栽培作物5への吹付速度が光合成を促進するに適切な速度になるよう流速を制御する。この制御装置80は、温室内に配備した図示しない炭酸ガス濃度センサーや温度センサー、湿度センサーなどの各種制御信号に基づいて作動する。   The greenhouse 4 is, for example, a large-scale greenhouse that grows a large amount of cultivated crops 5 with cultivating rods 6 installed in a large number of rows in the indoor lower space Mb, and an air duct (see FIG. (Not shown) is installed. The treated exhaust gas 3c containing carbon dioxide supplied from the pipe 10d into the greenhouse 4 is blown to the air duct via the control device 80 that automatically controls the concentration and flow rate of carbon dioxide, and is directed from the air duct toward the cultivated crop 5 below. Be sprayed. The control device 80 mixes the air in the greenhouse with the treated exhaust gas 3b from the pipe 10d so that the carbon dioxide concentration is appropriate for promoting the photosynthesis of the cultivated crop 5, and the spraying speed from the air duct to the cultivated crop 5 The flow rate is controlled so that is at an appropriate speed to promote photosynthesis. The control device 80 operates based on various control signals such as a carbon dioxide concentration sensor, a temperature sensor, and a humidity sensor (not shown) provided in the greenhouse.

次に、上記した実施の形態による炭酸ガス施与動作を説明する。   Next, the carbon dioxide application operation according to the above-described embodiment will be described.

栽培作物5の光合成を促進する必要があるときにガス遮断ダンパ20を開き、吸引ファン70を作動させて、炭酸ガス施与の動作を開始させる。すなわち、煙道2から高温の排ガス3aをガス抽出管10aに抽出し(ガス抽出工程)、加温器30を通過させて接触還元式脱硝装置40に送り、脱硝装置40で排ガス中の窒素酸化物NOxを除去する。この窒素酸化物は温室4内の栽培作物5の生育に障害を及ぼす物質であり、これをアンモニアを用いて還元処理して除去する(窒素酸化物除去工程)。脱硝装置40のアンモニアによる窒素酸化物除去処理においては、未反応アンモニアが残留し、この未反応アンモニアも温室4内の栽培作物5の生育に障害を及ぼす物質であることから、これをアンモニア除去装置50で除去する(アンモニア除去工程)。   When the photosynthesis of the cultivated crop 5 needs to be promoted, the gas cutoff damper 20 is opened, the suction fan 70 is operated, and the carbon dioxide application operation is started. That is, high temperature exhaust gas 3a is extracted from the flue 2 to the gas extraction pipe 10a (gas extraction process), passed through the heater 30 and sent to the catalytic reduction denitration device 40, and the denitration device 40 oxidizes nitrogen in the exhaust gas. Product NOx is removed. This nitrogen oxide is a substance that impedes the growth of the cultivated crop 5 in the greenhouse 4 and is removed by reduction using ammonia (nitrogen oxide removal step). In the removal of nitrogen oxides by ammonia in the denitration device 40, unreacted ammonia remains, and this unreacted ammonia is also a substance that impedes the growth of the cultivated crop 5 in the greenhouse 4, so this is removed from the ammonia removal device. 50 (ammonia removal step).

煙道2からの高温の排ガス3aが脱硝装置40とアンモニア除去装置50を通過することで、炭酸ガス含有の処理排ガス3bとなり、この処理排ガス3bを除湿器60で冷却・除湿する(冷却・除湿工程)。除湿器60で除湿された処理排ガス3cを制御装置80を介して温室4内の上部空間Maのエアーダクトに供給し、エアーダクトから炭酸ガス混合空気として栽培作物5に向け吹き付ける。この空気吹き付けで栽培作物5の光合成が促進されると共に、栽培作物5で炭酸ガス拡散が行われて温室4内の下部空間Mbの炭酸ガス濃度が速やかに均一化される。そのため、大規模温室4の床面が大面積であり、栽培畝6が多数条あって多数の栽培作物5が平面的に分布していても、これら栽培作物5の全体を均一な炭酸ガス施与で均一的に光合成促進させることができる。また、大規模温室4には大量の炭酸ガス施与が必要となるが、これらの炭酸ガスは火力発電設備1で年中大量に発生する排ガスから得られるために、極めて低コストで炭酸ガス供与が得られて、年間を通しての炭酸ガス施与がランニングコスト少なくして経済的有利に行える。   The high-temperature exhaust gas 3a from the flue 2 passes through the denitration device 40 and the ammonia removal device 50, so that the treated exhaust gas 3b containing carbon dioxide gas is cooled and dehumidified by the dehumidifier 60 (cooling / dehumidification). Process). The treated exhaust gas 3c dehumidified by the dehumidifier 60 is supplied to the air duct in the upper space Ma in the greenhouse 4 through the control device 80, and blown toward the cultivated crop 5 as carbon dioxide mixed air from the air duct. This air blowing promotes photosynthesis of the cultivated crop 5 and also diffuses carbon dioxide in the cultivated crop 5 so that the carbon dioxide concentration in the lower space Mb in the greenhouse 4 is quickly made uniform. Therefore, even if the floor of the large-scale greenhouse 4 has a large area, there are many cultivated baskets 6 and many cultivated crops 5 are distributed in a plane, the entire cultivated crops 5 are uniformly supplied with carbon dioxide gas. The photosynthesis can be promoted uniformly. In addition, large-scale greenhouse 4 requires a large amount of carbon dioxide, but since these carbon dioxide is obtained from exhaust gas generated in large quantities throughout the year at thermal power generation facility 1, carbon dioxide is supplied at an extremely low cost. As a result, carbon dioxide can be applied throughout the year at an economical advantage with reduced running costs.

火力発電設備1の煙道2から脱硝装置40に延びるガス抽出管10aが長大な場合、あるいは、冬季においては脱硝装置40に給送される排ガス3aの温度が下がり、脱硝処理などのガス処理を効率よく行うことが難しくなることがある。そこで、ガス抽出管10a内の排ガス温度を監視して、所定の低温まで下がると加温器30を作動させて適温まで加温して(加温工程)、脱硝装置40に給送する。   When the gas extraction pipe 10a extending from the flue 2 of the thermal power generation facility 1 to the denitration device 40 is long, or in winter, the temperature of the exhaust gas 3a fed to the denitration device 40 decreases, and gas treatment such as denitration treatment is performed. It can be difficult to do efficiently. Therefore, the temperature of the exhaust gas in the gas extraction pipe 10a is monitored, and when the temperature is lowered to a predetermined low temperature, the warmer 30 is operated to warm up to an appropriate temperature (heating process) and fed to the denitration apparatus 40.

なお、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明の炭酸ガス施与方法を実施する装置の概要を示す正面図である。It is a front view which shows the outline | summary of the apparatus which enforces the carbon dioxide gas application method of this invention.

符号の説明Explanation of symbols

1 火力発電設備
2 煙道
3a 排ガス
3b 処理排ガス
4 温室
5 栽培作物
6 栽培畝
10 配管
10a ガス抽出管
20 ガス遮断ダンパ
30 加温器
40 接触還元式脱硝装置
50 アンモニア除去装置
51 淡水
52 排水処理部
60 除湿器
70 吸引ファン
80 制御装置
DESCRIPTION OF SYMBOLS 1 Thermal power generation equipment 2 Flue 3a Exhaust gas 3b Processed exhaust gas 4 Greenhouse 5 Cultivation crop 6 Cultivation basket 10 Pipe 10a Gas extraction pipe 20 Gas cutoff damper 30 Heater 40 Contact reduction type denitration apparatus 50 Ammonia removal apparatus 51 Fresh water 52 Waste water treatment part 60 Dehumidifier 70 Suction fan 80 Control device

Claims (4)

火力発電設備の煙道から排ガスを抽出し、この抽出した排ガスから温室栽培の作物生育に障害を及ぼす物質を除去した炭酸ガス含有の処理排ガスを温室内に適宜に供給することを特徴とする温室栽培の炭酸ガス施与方法。   A greenhouse characterized by extracting exhaust gas from a flue of a thermal power generation facility, and appropriately supplying treated exhaust gas containing carbon dioxide gas from the extracted exhaust gas, from which substances that hinder the growth of greenhouse-grown crops are removed. Carbon dioxide gas application method for cultivation. 火力発電設備の煙道から排ガスを抽出するガス抽出工程と、このガス抽出工程で抽出した排ガスに含まれる窒素酸化物を接触還元式脱硝装置で除去する窒素酸化物除去工程と、この窒素酸化物除去工程で処理された排ガスに含まれる未反応アンモニアをアンモニア除去装置で除去するアンモニア除去工程と、このアンモニア除去工程で処理された排ガスを除湿器で温室栽培の作物生育に適する温度、湿度に冷却し除湿する冷却・除湿工程とを含み、
前記冷却・除湿工程で処理された炭酸ガス含有の処理排ガスを温室内に供給することを特徴とする請求項1記載の温室栽培の炭酸ガス施与方法。
A gas extraction process for extracting exhaust gas from the flue of a thermal power generation facility, a nitrogen oxide removal process for removing nitrogen oxides contained in the exhaust gas extracted in the gas extraction process with a catalytic reduction denitration device, and the nitrogen oxide An ammonia removal process that removes unreacted ammonia contained in the exhaust gas treated in the removal process with an ammonia removal device, and the exhaust gas treated in this ammonia removal process is cooled to a temperature and humidity suitable for growing greenhouse crops with a dehumidifier Cooling and dehumidifying processes to dehumidify,
The method for applying carbon dioxide in greenhouse cultivation according to claim 1, wherein the treated exhaust gas containing carbon dioxide treated in the cooling / dehumidifying step is supplied into a greenhouse.
前記ガス抽出工程から前記窒素酸化物除去工程に供給される排ガスの温度に基づいて同排ガスを適宜に加温器で加温する加温工程を含むことを特徴とする請求項2に記載の温室栽培の炭酸ガス施与方法。   The greenhouse according to claim 2, further comprising a heating step of appropriately heating the exhaust gas with a heater based on the temperature of the exhaust gas supplied from the gas extraction step to the nitrogen oxide removal step. Carbon dioxide gas application method for cultivation. 前記冷却・除湿工程で処理された炭酸ガス含有の処理排ガスを送風ファンと配管を介して温室内の上部空間に供給し、この上部空間から処理排ガスを前記温室内の下部空間に設置された栽培作物に向けて吹き付けるようにしたことを特徴とする請求項1〜3のいずれかに記載の温室栽培の炭酸ガス施与方法。   The treated exhaust gas containing carbon dioxide gas treated in the cooling / dehumidifying step is supplied to the upper space in the greenhouse via a blower fan and piping, and the treated exhaust gas is installed in the lower space in the greenhouse from this upper space The method for applying carbon dioxide gas for greenhouse cultivation according to any one of claims 1 to 3, wherein the method is sprayed toward a crop.
JP2004250787A 2004-08-30 2004-08-30 Carbon dioxide gas application method for greenhouse cultivation Expired - Fee Related JP4489536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250787A JP4489536B2 (en) 2004-08-30 2004-08-30 Carbon dioxide gas application method for greenhouse cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250787A JP4489536B2 (en) 2004-08-30 2004-08-30 Carbon dioxide gas application method for greenhouse cultivation

Publications (2)

Publication Number Publication Date
JP2006061127A true JP2006061127A (en) 2006-03-09
JP4489536B2 JP4489536B2 (en) 2010-06-23

Family

ID=36108122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250787A Expired - Fee Related JP4489536B2 (en) 2004-08-30 2004-08-30 Carbon dioxide gas application method for greenhouse cultivation

Country Status (1)

Country Link
JP (1) JP4489536B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790944A (en) * 2010-03-30 2010-08-04 满意 Low-carbon emission greenhouse arranged on roof of tunnel kiln
CN102160505A (en) * 2011-03-10 2011-08-24 武汉凯迪工程技术研究总院有限公司 Method and system for providing carbon dioxide and heat for greenhouse
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
JP2017093393A (en) * 2015-11-27 2017-06-01 株式会社タクマ Exhaust gas feeding system and exhaust gas feeding method
CN107278867A (en) * 2017-08-02 2017-10-24 广西壮族自治区农业科学院经济作物研究所 A kind of breeding method of sweet potato seedling
CN108905601A (en) * 2017-11-03 2018-11-30 刘春海 The ecological purification of flue gas utilizes method and its purification facility
JP2020058374A (en) * 2019-12-20 2020-04-16 株式会社タクマ Exhaust gas supply system and exhaust gas supply method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435042A (en) * 1977-08-22 1979-03-14 Nobuhiko Hayashi Air conditioning device for green house
JPH01141528A (en) * 1987-11-27 1989-06-02 Nkk Corp Vegetable plant system
JPH0325591U (en) * 1989-07-18 1991-03-15
JPH03228625A (en) * 1990-01-31 1991-10-09 Kanebo Ltd Air conditioner for plant rearing
JPH03236723A (en) * 1990-02-14 1991-10-22 Toshiba Corp Plant cultivation using thermal exhaust from thermal-power generation and system therefor
JPH0474513A (en) * 1990-07-13 1992-03-09 Hitachi Zosen Corp Simultaneous desulfurization and denitration in furnace
JPH0631136A (en) * 1992-07-22 1994-02-08 Babcock Hitachi Kk Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
WO1997012671A1 (en) * 1995-10-02 1997-04-10 Osaka Gas Company Limited Heat treated activated carbon for denitration, process for preparing the same, method of denitration using the same, and system of denitration using the same
JPH09243050A (en) * 1996-03-01 1997-09-16 Kawasaki Heavy Ind Ltd Exhaust gas treatment method and apparatus
JPH101685A (en) * 1996-06-19 1998-01-06 Mitsubishi Heavy Ind Ltd Production of fuel and energy conversion
JPH10229763A (en) * 1997-02-20 1998-09-02 Toshiba Eng & Constr Co Ltd Greenhouse system
JP2001232144A (en) * 2000-02-28 2001-08-28 Seiden Kogyo:Kk Deodorizing method for organic gas and utilization device
JP2003159511A (en) * 2001-11-26 2003-06-03 Mitsubishi Electric Corp Method for regenerating denitration adsorbent and method and apparatus for exhaust gas treatment
JP2004057145A (en) * 2002-07-31 2004-02-26 Miyoujiyou Cement Kk Composite plant for vegetable cultivation
JP2004218996A (en) * 2003-01-17 2004-08-05 Babcock Hitachi Kk Ammonia-containing waste gas treating device and method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435042A (en) * 1977-08-22 1979-03-14 Nobuhiko Hayashi Air conditioning device for green house
JPH01141528A (en) * 1987-11-27 1989-06-02 Nkk Corp Vegetable plant system
JPH0325591U (en) * 1989-07-18 1991-03-15
JPH03228625A (en) * 1990-01-31 1991-10-09 Kanebo Ltd Air conditioner for plant rearing
JPH03236723A (en) * 1990-02-14 1991-10-22 Toshiba Corp Plant cultivation using thermal exhaust from thermal-power generation and system therefor
JPH0474513A (en) * 1990-07-13 1992-03-09 Hitachi Zosen Corp Simultaneous desulfurization and denitration in furnace
JPH0631136A (en) * 1992-07-22 1994-02-08 Babcock Hitachi Kk Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
WO1997012671A1 (en) * 1995-10-02 1997-04-10 Osaka Gas Company Limited Heat treated activated carbon for denitration, process for preparing the same, method of denitration using the same, and system of denitration using the same
JPH09243050A (en) * 1996-03-01 1997-09-16 Kawasaki Heavy Ind Ltd Exhaust gas treatment method and apparatus
JPH101685A (en) * 1996-06-19 1998-01-06 Mitsubishi Heavy Ind Ltd Production of fuel and energy conversion
JPH10229763A (en) * 1997-02-20 1998-09-02 Toshiba Eng & Constr Co Ltd Greenhouse system
JP2001232144A (en) * 2000-02-28 2001-08-28 Seiden Kogyo:Kk Deodorizing method for organic gas and utilization device
JP2003159511A (en) * 2001-11-26 2003-06-03 Mitsubishi Electric Corp Method for regenerating denitration adsorbent and method and apparatus for exhaust gas treatment
JP2004057145A (en) * 2002-07-31 2004-02-26 Miyoujiyou Cement Kk Composite plant for vegetable cultivation
JP2004218996A (en) * 2003-01-17 2004-08-05 Babcock Hitachi Kk Ammonia-containing waste gas treating device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193765A (en) * 2010-03-18 2011-10-06 Osaka Gas Co Ltd Greenhouse cultivation system
CN101790944A (en) * 2010-03-30 2010-08-04 满意 Low-carbon emission greenhouse arranged on roof of tunnel kiln
CN102160505A (en) * 2011-03-10 2011-08-24 武汉凯迪工程技术研究总院有限公司 Method and system for providing carbon dioxide and heat for greenhouse
JP2017093393A (en) * 2015-11-27 2017-06-01 株式会社タクマ Exhaust gas feeding system and exhaust gas feeding method
CN107278867A (en) * 2017-08-02 2017-10-24 广西壮族自治区农业科学院经济作物研究所 A kind of breeding method of sweet potato seedling
CN107278867B (en) * 2017-08-02 2023-06-20 广西壮族自治区农业科学院经济作物研究所 Breeding method of sweet potato seedlings
CN108905601A (en) * 2017-11-03 2018-11-30 刘春海 The ecological purification of flue gas utilizes method and its purification facility
JP2020058374A (en) * 2019-12-20 2020-04-16 株式会社タクマ Exhaust gas supply system and exhaust gas supply method

Also Published As

Publication number Publication date
JP4489536B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
EP3264883B1 (en) High density soilless plant growth system and method
US9993770B2 (en) Process and apparatus for capturing gaseous ammonia
SI2695513T1 (en) Method and device for providing heat and carbon dioxide to vegetables and/or algae using power station flue gas
JP5515118B2 (en) Plant growth facility
JP4489536B2 (en) Carbon dioxide gas application method for greenhouse cultivation
JP2009273481A (en) Carbon dioxide application device for greenhouse cultivation
WO2019217592A1 (en) Improved growing system mixing box
WO2017199621A1 (en) Plant cultivation apparatus
JP4418886B2 (en) Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility
JP2006067888A (en) Method and device for applying carbon dioxide for greenhouse culture
JP2016220567A (en) Carbon dioxide supply system
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
KR200446814Y1 (en) Heat recovery ventilating device for agricultural facilities
WO2020141978A1 (en) Climate controlled stable
KR20130035761A (en) Mushroom cultivation medulla purification the water supply system
KR100215732B1 (en) The apparatus for regulating heat and humidity and for cleaning air for cultivating mushroom
JP5974481B2 (en) Cultivation facility
JPH10178930A (en) Cultivation house
EP1562414B1 (en) Method for regulating the co2 concentration of the air within an enclosed space within which crops are grown
RU2230996C1 (en) Method of cleaning air atmosphere in cattle-breeding rooms
KR200405902Y1 (en) Air handling apparatus of clean mushroom cultivation house
KR102367130B1 (en) Indoor ventilation system using vertical garden
WO2021235136A1 (en) Gas application device and gas application method for plant
EP1808066A1 (en) System for growth and/or crop boosting conditioning of plants
JP2005218327A (en) Plant-growing system comprising supplying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees