WO2017199621A1 - Plant cultivation apparatus - Google Patents

Plant cultivation apparatus Download PDF

Info

Publication number
WO2017199621A1
WO2017199621A1 PCT/JP2017/014328 JP2017014328W WO2017199621A1 WO 2017199621 A1 WO2017199621 A1 WO 2017199621A1 JP 2017014328 W JP2017014328 W JP 2017014328W WO 2017199621 A1 WO2017199621 A1 WO 2017199621A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
housing
plant
concentration
humidity
Prior art date
Application number
PCT/JP2017/014328
Other languages
French (fr)
Japanese (ja)
Inventor
久保 泰康
恵太 元山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017199621A1 publication Critical patent/WO2017199621A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the present disclosure relates to a plant cultivation device, and relates to a plant cultivation device capable of adjusting air flow and air quality conditions important for plant cultivation.
  • Plant growth devices in an artificial environment in a substantially enclosed space such as so-called plant factories, artificially create and maintain conditions suitable for plant growth, thereby affecting the changes in seasonal and external environmental conditions. Without receiving, stable quality and yield of cultivated products are expected. For this reason, it is important how the conditions can be homogenized and maintained for each cultivated product. In particular, air quality conditions have an important role in plant growth from the viewpoint of leaf transpiration effect and photosynthetic ability, and therefore must be appropriately maintained and managed (see, for example, Patent Document 1).
  • a plant cultivation apparatus is connected to a housing having a space for cultivating a plant therein, and a collection hole of the housing for collecting air in the housing.
  • An air recovery pipe, an air conditioner that adjusts the temperature, humidity, and CO 2 concentration of air recovered from the recovery hole through the air recovery pipe to conditions corresponding to the cultivation of the plant, and the air conditioning An apparatus and a supply hole of the casing, and an air supply pipe for supplying air adjusted by the air conditioner from the supply hole of the casing into the casing.
  • air quality conditions that are the temperature, humidity, and CO 2 concentration of air recovered from the recovery hole of the housing through the air recovery pipe are set to the plant.
  • the air conditioner suitable for plant cultivation is properly homogenized because it is adjusted at one location of the air conditioner to supply the housing with the adjusted air to the conditions corresponding to the cultivation of the plant. Can be maintained.
  • FIG. 1 is an overall schematic diagram of a plant cultivation apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram for explaining the airflow around the plant of the plant cultivation apparatus according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of an airflow direction switching mechanism of the plant cultivation apparatus according to the first embodiment.
  • FIG. 4 is a diagram for explaining a structure and a procedure for adjusting air quality conditions necessary for cultivation in the plant cultivation apparatus according to the first embodiment.
  • FIG. 5: is a figure which shows the state change graph at the time of the air condition adjustment in the plant cultivation apparatus concerning Embodiment 1.
  • FIG. 1 is an overall schematic diagram of a plant cultivation apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram for explaining the airflow around the plant of the plant cultivation apparatus according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of an airflow direction switching mechanism of the plant cultivation apparatus according to the first embodiment.
  • FIG. 4 is a diagram for explaining a structure and a
  • This disclosure provides a plant cultivation apparatus that can appropriately homogenize and maintain air quality conditions suitable for plant cultivation.
  • FIG. 1 is an overall schematic diagram of an air-conditioning circulation type plant cultivation apparatus 100 according to the first embodiment.
  • the plant cultivation apparatus 100 includes at least a housing 1, an air recovery pipe 7, an air conditioner 2, and an air supply pipe 3.
  • the casing 1 has one or a plurality of cultivation shelves 1a arranged in a substantially closed space inside, and is generally kept confidential by the exterior 1b.
  • the sealing process or the like needs to be strict, which causes a cost increase.
  • the confidentiality with the external environment cannot be strictly maintained including the insertion and removal of the plant 5, and it is not necessary to make it more strict than necessary.
  • This can be prevented by slightly increasing the pressure of the air-conditioning air flow sent into the housing 1 to make the inside substantially positive pressure, and taking into consideration that outside air does not directly enter from the outside through the gap of the exterior 1 b of the housing 1.
  • FIG. 1 there is one recovery hole 6 on the top surface of the housing 1, and a plurality of supply holes 4 at the bottom of the housing 1.
  • the air conditioner 2 is disposed outside the housing 1.
  • the air quality condition necessary for cultivation is adjusted, and air is sent into the housing 1 through the air supply pipe 3.
  • the air conditioner 2 so as to optimize the air quality conditions in one place, it is possible to deliver uniform air to the entire area of all the cultivation shelves 1a in the housing 1, thereby making the cultivation quality uniform. It contributes.
  • the cultivation weight changes by 10% when the temperature condition changes by 1 ° C., and uniform air quality conditions are important.
  • the air supply pipe 3 is a pipe for sending air into the housing 1.
  • the function of the air supply pipe 3 is to send adjusted air from the air conditioner 2 into the housing 1, and the shape of the air supply pipe 3 is limited to the cylindrical pipe as shown in FIG. is not. A method of replacing this function by providing an air path in the panel holding the cultivated product in the housing 1 is also conceivable. Further, when the direction of the airflow is reversed, the air supply pipe 3 can function as a pipe for collecting air.
  • a plurality of supply holes 4 are formed in the tip portions 3a of the plurality of air supply pipes 3, and are holes for sending out air around the cultivated product.
  • the supply hole 4 is also an introduction hole for introducing the air whose temperature, humidity, and CO 2 concentration are adjusted by the air conditioner 2 into the housing 1 through the air supply pipe 3.
  • it can function as a piping hole for collecting air.
  • positioning of the supply hole 4, as for the root of the plant 5 in Embodiment 1, lower 1/3 of the height direction in the space which grows the plant 5 comprised by the bed 9 and the inner wall face of the housing
  • a plant 5 which is an example of a cultivated product is arranged on the cultivation shelf 1 a in the housing 1.
  • a recovery hole 6 for recovering air in the housing 1 is disposed on the upper surface of the housing 1.
  • the recovery hole 6 is also a recovery hole for sending air recovered from the inside of the housing 1 to the air conditioner 2 via the air recovery pipe 7.
  • the air recovered from the recovery hole 6 is sent to the air conditioner 2 through the air recovery pipe 7, and the air conditioner 2 adjusts the temperature, humidity, and CO 2 concentration suitable for the cultivation conditions of the plant 5.
  • the air conditioner 2 adjusts the temperature, humidity, and CO 2 concentration suitable for the cultivation conditions of the plant 5.
  • the air conditioner 2 adjusts the temperature, humidity, and CO 2 concentration suitable for the cultivation conditions of the plant 5.
  • the air conditioner 2 adjusts the temperature, humidity, and CO 2 concentration suitable for the cultivation conditions of the plant 5.
  • the collection hole 6 is provided immediately above (directly above) the plant 5.
  • the recovery hole 6 and the air conditioner 2 are connected by an air recovery pipe 7.
  • the air recovery pipe 7 is a pipe for recovering air from the housing 1 to the air conditioner 2.
  • the function of the air recovery pipe 7 is to recover air, and the shape thereof is not limited to the cylindrical pipe as shown in FIG. A method of substituting this function using the upper space of the housing 1 as an air path is also conceivable. Further, if the direction of the airflow is reversed, it can also function as a pipe that feeds air into the housing 1.
  • the lighting device 8 is disposed in the upper space in the housing 1.
  • the lighting device 8 is a device such as an LED that projects light for plant cultivation, and is not limited to the cylindrical shape as shown in FIG. Various shapes such as a spot type or a surface emitting type are conceivable.
  • a bed 9 holding a plant 5 is disposed as a cultivation shelf 1a.
  • the plant 5 is nourished by storing or circulating the cultivation nutrient solution in the bed 9.
  • the bed 9 is provided with a cultivation hole 90 for holding the plant 5.
  • only one cultivation hole 90 is illustrated for simplicity, but a plurality of cultivation holes 90 may be provided.
  • the plant 5 is often held on a resin panel 9 a or the like, and the panel 9 a is often floated on the bed 9.
  • a medium is placed in the bed 9, and the plant 5 is grown thereon.
  • FIG. 2 is a schematic diagram for explaining the airflow around the plant 5 shown in FIG.
  • the illumination device 8 needs to irradiate the plant 5 with illumination light uniformly and efficiently. For this reason, when the some plant 5 adjoins, the illuminating device 8 is arrange
  • FIG. 2 shows an air flow (hereinafter, illustrated as a virtual flow path 10) in which air quality conditions are adjusted from the bottom to the top around the plant 5.
  • the recovery hole 6 for recovering the air provided immediately above the plant 5 has a negative pressure.
  • the collection hole 6 is arranged directly above the plant 5, and the supply hole 4 is arranged at the root of the plant 5 and at a position that does not overlap with the collection hole 6 in plan view.
  • recovery hole 6 is located right above the cultivation hole 90, and is provided in the position which overlaps with the cultivation hole 90 in planar view.
  • the supply hole 4 is arranged around the cultivation hole 90 and at a position that does not overlap with the cultivation hole 90 in plan view.
  • the air quality conditions suitable for the cultivation of the plant 5 can be appropriately homogenized and maintained, and the quality of the plant 5 and the yield increase can be realized.
  • the position which does not overlap shows a position with the distance of at least 1 mm or more and 100 mm or less between both.
  • the plant 5 is assumed to grow from the lower side to the upper side in FIG. 2, and the airflow flowing through the virtual channel 10 also flows in the direction along the outer surface of the leaf by flowing in the direction of the arrow shown in FIG. 2. Since it flows, the damage to the leaves is small and suitable.
  • the direction of the airflow is not limited to this, and the airflow may flow in the direction opposite to the arrow.
  • the effect of swinging the leaves is large, and the effect of promoting transpiration is further enhanced.
  • the growth point of the plant 5 is right above the center part of the plant 5, the effect of promoting growth is high in that it effectively promotes transpiration of the part where growth is vigorous. Therefore, the direction of the airflow is also effective from the viewpoint of effectively enhancing the transpiration effect of the whole plant, for example, by combining these and switching the airflow device 2 alternately at regular intervals.
  • recovery hole 6 is arrange
  • recovery hole 6 is not restricted to this.
  • the collection hole only needs to be arranged above the plant 5.
  • the plurality of collection holes 6 may be arranged at positions that do not overlap with the cultivation holes 90 on the circumference around the cultivation holes 90 in plan view.
  • the recovery hole has a slit-like long hole shape, and the longitudinal direction is a plurality of plants 5 (a plurality of cultivations). You may arrange
  • FIG. 3 is a diagram for explaining an example of an airflow direction switching mechanism 40 that is incorporated in the air conditioner 2 and switches the direction of the airflow.
  • the air conditioner 2 sends air in one direction and switches between two piping paths 35 and 36 connected thereto, thereby switching the air flow direction between forward and reverse.
  • the suction side passage 41 and the first piping route 35 are provided with a first piping path 35 and a second piping path 36 that directly connect the suction side passage 41 and the feeding side passage 42 of the air conditioner 2 respectively.
  • the first valve mechanism 31 is disposed at a connection portion with the second piping path 36
  • the second valve mechanism 32 is disposed at a connection portion between the feeding-side passage 42, the first piping path 35, and the second piping path 36. Yes.
  • the first valve mechanism 31 and the second valve mechanism 32 can be switched simultaneously.
  • the first valve of the first valve mechanism 31 is a solid line position 31a
  • the suction side passage 41 and the second piping path 36 are connected
  • the first valve is a dotted line position 31b
  • the suction side path 41 and the first piping path are connected.
  • 35 is connected.
  • the second valve of the second valve mechanism 32 is at the solid line position 32a
  • the feeding side passage 42 and the first piping path 35 are connected
  • the second valve is at the dotted line position 32b
  • the feeding side passage 42 and the second piping path 35 are connected.
  • the piping path 36 is connected.
  • the first pipe end 33 is connected to the air recovery pipe 7, and the second pipe end 34 is connected to the air supply pipe 3.
  • the first piping end 33 is set when the respective valves of the first valve mechanism 31 and the second valve mechanism 32 are in the solid line positions 31 a and 32 a. From the air conditioner 2, air is sucked into the second pipe end 34 from the air supply apparatus 42 toward the suction side passage 41. Therefore, the first pipe end 33 becomes a suction port, and air is sent out toward the second pipe end 34.
  • the valve is in the positions of the dotted line positions 31 b and 32 b, air is sucked into the air conditioning device 2 from the second piping end 34 toward the suction side passage 41 via the first piping route 35, and from the air conditioning device 2.
  • Air is fed from the feed-side passage 42 to the first pipe end 33 via the second pipe path 36. Therefore, the second pipe end 34 becomes a suction port, and sends out air toward the first pipe end 33. In this way, the direction of the airflow can be switched by switching the state of the valve. Thereby, the function of the supply hole 4 and the collection
  • FIG. 4 is a diagram for explaining a structure and a procedure for creating air quality conditions necessary for cultivation.
  • the air conditioner 2 includes a sensor 11, a cooling blower 12, a CO 2 adder 14 (an example of a CO 2 concentration adjuster), a filter 15, The humidifier 16 is arranged in series in order.
  • the sensor 11 is a sensor for measuring the air quality state of the air sucked into the air conditioner 2. Specifically, the state is grasped in order to adjust air quality conditions such as a temperature sensor, a humidity sensor, and a CO 2 concentration sensor.
  • the air quality is accompanied by changes in the process of passage through the cultivation channel. A change in temperature due to illumination or outside air, a change in humidity due to transpiration of the plant 5, or a change in CO 2 concentration due to photosynthesis or respiration of the plant 5 can be considered.
  • the sensor 11 measures the temperature, humidity, and CO 2 concentration state in order to calculate the adjustment amount in the air conditioner 2 immediately after the final stage at the final stage of the collected air.
  • the control unit 91 of the air conditioner 2 adjusts air quality conditions including temperature, humidity, and CO 2 concentration based on the information.
  • the air conditioner 2 includes a cooling blower 12 as an example of a temperature adjuster described later, a humidifier 16 as an example of a humidity adjuster, and a CO 2 concentration adjuster. Any or all of the CO 2 adder 14 as an example is appropriately driven and controlled by the control unit 91 to adjust the air quality condition.
  • the cooling air blower 12 (an example of a temperature adjusting machine) is illuminated during the flow of air through the housing 1.
  • the temperature increases due to the thermal effect of the device 8 or the like. Therefore, it plays a role of appropriately cooling this and pumps air.
  • the cooling blower 12 include a spot cooler or an air conditioner indoor unit.
  • the cooling air blower 12 has an outside air acquisition pipe 13 that acquires outside air that is air outside the housing 1.
  • the pressure of the air-conditioning air flow sent into the housing 1 is slightly increased so that the inside of the housing 1 becomes a substantially positive pressure, and outside air is directly supplied from the outside of the housing 1 through the gap between the exterior 1b of the housing 1.
  • outside air is partially introduced.
  • the air quality of the air circulating in the housing 1 is accompanied by a change in the process of passing through the flow path of cultivation, but generally the change is slight, and it is necessary for the condition adjustment compared with the condition adjustment from the outside.
  • the material and energy costs are low.
  • the air conditioner 2 acquires outside air, which is air outside the housing 1, from the outside air acquisition pipe 13, and combines the acquired outside air and the air collected from the housing 1 by the air recovery pipe 7 into the air conditioner 2.
  • the air after that is adjusted to conditions corresponding to the cultivation of the plant 5, and the adjusted adjusted air is sent to the air supply pipe 3.
  • CO 2 is often supplied in the form of a high-pressure cylinder or the like. Therefore, the air from the CO 2 gas and the housing 1 which is supplied through a pipe from the cylinder are merged in a CO 2 addition 14, the CO 2 discharge quantity in a CO 2 added 14 to flow management pipe middle The required amount is discharged and mixed by opening and closing the valve.
  • An example of the discharge control will be described later with reference to FIG.
  • a filter 15 is disposed between the CO 2 adder 14 and the humidifier 16. Necessary for filtering the gas from the cooling air blower 12 that is easy for bacteria to propagate due to the outside air and complicated structure containing bacteria, and for circulating clean air, for example, HEPA filter (High Efficiency Particulate Air Filter) Such a high cleaning effect or a sterilization filter is used.
  • HEPA filter High Efficiency Particulate Air Filter
  • the reason for arranging the humidifier 16 is as follows. In the process in which air circulates inside the housing 1, the humidity of the air tends to increase due to the influence of humidity improvement due to the transpiration effect of the plant 5. Therefore, normally, since the cooling air blower 12 in the previous stage serves to remove excess humidity components with respect to the humidity that is higher than the initial state, there is no need for humidification. However, in the light-out time zone, which is called the dark period of several hours in one day, the plant does not carry out photosynthesis, closes the pores and reduces the amount of transpiration, and may be in a low humidity state. In order to compensate for this, a nozzle device for spraying mist or an ultrasonic humidifier 16 is provided to spray a necessary amount.
  • the filter 15 Since the air immediately after humidification is likely to condense, the filter 15 is not placed close to the humidifier 16 or installed upstream of the humidifier 16. In general, it is difficult to adjust the temperature while keeping the humidity constant.If the temperature is adjusted, excess humidity is removed according to the dew point. Therefore, there is a method to control the temperature upstream and the humidity downstream. It is a method to realize the optimal air quality condition. That is, a temperature adjuster 12 for adjusting the temperature is provided on the upstream side of the flow path through which the air flows, and a humidifier 16 for adjusting the humidity is provided on the downstream side.
  • the filter 15 cleans the air sent into the housing 1 and is preferably disposed as close to the housing 1 as possible.
  • the humidifier 16 is placed downstream of the filter 15 to prevent wetting due to humidification.
  • the filter 15 is arranged on the upstream side of the humidifier 16 in the flow path in the air conditioner 2.
  • the airflow flows through the virtual flow path 10 in the housing 1.
  • Condition adjustment is performed along the flow toward the vessel 16.
  • FIG. 5 is a diagram showing a state change graph when adjusting the air condition.
  • the state change at the time of spraying to the air which flows through is shown.
  • the horizontal axis of the CO 2 concentration change graph indicates time, and the vertical axis indicates the CO 2 concentration.
  • the two-dot chain line indicates the target value 19 of the CO 2 concentration suitable for cultivation.
  • the CO 2 concentration is adjusted using this as a target value.
  • the upper curve graph of the CO 2 concentration change graph of FIG. 5 shows an example of the change 20 of the CO 2 concentration of air after adjustment.
  • the lower curve graph of the CO 2 concentration change graph of FIG. 5 shows an example of the change 21 of the CO 2 concentration change 21 of the introduced outside air, which is one of the CO 2 concentration change factors.
  • the CO 2 concentration in the outside air is generally about 400 ppm, which is slightly lower than the conditions suitable for plant cultivation.
  • the CO 2 concentration in the outside air changes significantly depending on the exhalation of human beings, and may change drastically, for example, when it is rapidly increased when there are workers around.
  • outside air is introduced into the housing 1, such influences are temporarily received.
  • the CO 2 concentration of the outside air is normally confined to a level of about 400 ppm, it is practical for cultivation of the plant 5. There is no effect.
  • the bar graph in the CO 2 concentration change graph of FIG. 5 indicates the CO 2 amount 22 discharged from the CO 2 adder 14.
  • the discharge amount per one time from the CO 2 adder 14 is set according to the amount of air leaking from the housing 1 to the outside and the cultivation phase of the plant 5.
  • the leakage amount of air from within the housing 1 is a slight and and a certain amount, because growth changes in plant 5 is also slow, the discharge of the CO 2 from the CO 2 adding device 14 It does not need to be done frequently and can be covered with a cycle every 5 to 15 minutes.
  • sensing of the CO 2 concentration by the sensor 11 is performed in a shorter cycle such as every other minute, and the target value of the CO 2 concentration suitable for cultivation is obtained. against 19, when exceeding a certain margin, immediately suspend CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91.
  • the upper curve graph which is an example of the change 20 of the adjusted CO 2 concentration of air, exceeds a certain margin with respect to the target value 19 of the CO 2 concentration suitable for cultivation.
  • the point where the CO 2 concentration has increased that is, the point 23 where the CO 2 concentration target value has been exceeded is shown.
  • 1100 ppm is set as a determination threshold (that is, the upper limit side margin with respect to the target value of 1000 ppm is set to 100 ppm). immediately shall be paused CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91.
  • CO 2 concentration change graph of FIG. 5 the target value 19 of the CO 2 concentration suitable for cultivation, the change in CO 2 concentration in the air after adjustment 20, that the CO 2 concentration is reduced beyond a certain margin That is, a point 24 that is lower than the CO 2 concentration target value is shown.
  • the control unit 91 determines that the lower limit side margin is set to 100 ppm with respect to the target value of 1000 ppm for the CO 2 concentration target value of 1000 ppm (that is, the lower limit margin for the target value of 1000 ppm is set to 100 ppm). to immediately resume CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91.
  • the air state is measured by the sensor 11 in a relatively short time cycle (for example, every other minute) and determined by the control unit 91 and compared.
  • the basis of the control law in the control unit 91 is that the control unit 91 adjusts the air quality condition in a long time cycle (for example, every 5 to 15 minutes).
  • the temperature and humidity are also controlled by the control unit 91 in the same manner as the CO 2 concentration.
  • control of each structure of said plant cultivation apparatus is performed by the control part 91 by a computer etc.
  • the control unit 91 includes one or a plurality of memories or processors, and a predetermined program is stored so as to perform the above-described operation.
  • the stable cultivation of a plant is realizable.
  • the air conditioner is configured so that the temperature, humidity, and CO 2 concentration of the air recovered from the recovery hole 6 of the housing 1 through the air recovery pipe 7 are the air quality conditions corresponding to the cultivation of the plant 5. 2 is adjusted at one place, and the adjusted air is supplied to the housing 1. Therefore, the air quality conditions suitable for the cultivation of the plant 5 can be appropriately homogenized and maintained, and the plant 5 can contribute to stable quality and increased yield.
  • an airflow is flowed to the virtual flow path 10 along the path
  • the plant cultivation apparatus 100 how to appropriately control the fluctuating external environment and how to flow the airflow in an appropriate position and direction with respect to the plant 5. Can be considered. Thereby, the air quality conditions suitable for cultivation of the plant 5 can be appropriately homogenized and maintained, and the quality of the plant 5 and the yield increase can be realized.
  • the plant cultivation apparatus is not limited to the above-described embodiment, and can be implemented in various other aspects.
  • the sensor 11 is arranged in the air conditioner 2, it is only necessary to detect the state of the air collected in the air conditioner 2, so that it is arranged in the air recovery pipe 7 outside the air conditioner 2, for example. It may be.
  • the plant cultivation apparatus can appropriately homogenize and maintain air quality conditions suitable for plant cultivation in an environment where plants are cultivated with high efficiency such as a plant factory. For this reason, the plant cultivation apparatus according to the aspect of the present disclosure contributes not only to the plant cultivation apparatus or the plant cultivation system business but also to various social activities and industrial activities such as agriculture, research and development, or school education using these. To do.

Abstract

This plant cultivation apparatus is provided with: a housing having an internal space for cultivating plants; air recovery ductwork that recovers air in the housing and that is connected to a recovery hole in the housing; an air-conditioning device that adjusts the temperature, humidity, and CO2 concentration of the air recovered from the recovery hole via the air recovery ductwork, said parameters being adjusted to conditions compatible with plant cultivation; and air supply ductwork that connects the air-conditioning device and a supply hole in the housing, and that supplies the air that has been adjusted by the air-conditioning device into the housing from the supply hole in the housing.

Description

植物栽培装置Plant cultivation equipment
 本開示は、植物栽培装置に関し、植物栽培に重要な空気の気流、空質条件を調整可能な植物栽培装置に関するものである。 The present disclosure relates to a plant cultivation device, and relates to a plant cultivation device capable of adjusting air flow and air quality conditions important for plant cultivation.
 いわゆる植物工場のような、略閉鎖空間の人工環境における植物育成装置は、植物の育成に適した諸条件を人工的に作り出し、これを維持することによって、季節及び外部環境条件の変動に影響を受けることなく、栽培品の安定した品質と収穫量とが期待されるものである。このため、如何にその諸条件を栽培品ごとに均質化し、条件維持できるかが重要である。特に、空質条件は、葉の蒸散効果及び光合成能の観点から、植物の育成に重要な役割を持つため、適切に維持管理する必要がある(例えば、特許文献1参照)。 Plant growth devices in an artificial environment in a substantially enclosed space, such as so-called plant factories, artificially create and maintain conditions suitable for plant growth, thereby affecting the changes in seasonal and external environmental conditions. Without receiving, stable quality and yield of cultivated products are expected. For this reason, it is important how the conditions can be homogenized and maintained for each cultivated product. In particular, air quality conditions have an important role in plant growth from the viewpoint of leaf transpiration effect and photosynthetic ability, and therefore must be appropriately maintained and managed (see, for example, Patent Document 1).
特開2015-208296号公報Japanese Patent Laid-Open No. 2015-208296
 上記目的を達成するために、本開示の1つの態様にかかる植物栽培装置は、植物を栽培する空間を内部に有する筐体と、前記筐体内の空気を回収する前記筐体の回収穴と連結された空気回収用配管と、前記回収穴から前記空気回収用配管を介して回収した空気の温度、湿度、及びCO濃度を前記植物の栽培に対応した条件に調整する空調装置と、前記空調装置と前記筐体の供給穴とを連結して、前記空調装置で調整後の空気を前記筐体の前記供給穴から前記筐体内に供給する空気供給用配管と、を備える。 In order to achieve the above object, a plant cultivation apparatus according to one aspect of the present disclosure is connected to a housing having a space for cultivating a plant therein, and a collection hole of the housing for collecting air in the housing. An air recovery pipe, an air conditioner that adjusts the temperature, humidity, and CO 2 concentration of air recovered from the recovery hole through the air recovery pipe to conditions corresponding to the cultivation of the plant, and the air conditioning An apparatus and a supply hole of the casing, and an air supply pipe for supplying air adjusted by the air conditioner from the supply hole of the casing into the casing.
 以上のように、本開示の前記態様によれば、前記筐体の前記回収穴から前記空気回収用配管を介して回収した空気の温度、湿度、及びCO濃度である空質条件を前記植物の栽培に対応した条件に、前記空調装置の一箇所で調整して、調整後の空気を前記筐体に供給するようにしているので、植物の栽培に適した空質条件を適正に均質化して維持することができる。 As described above, according to the aspect of the present disclosure, air quality conditions that are the temperature, humidity, and CO 2 concentration of air recovered from the recovery hole of the housing through the air recovery pipe are set to the plant. The air conditioner suitable for plant cultivation is properly homogenized because it is adjusted at one location of the air conditioner to supply the housing with the adjusted air to the conditions corresponding to the cultivation of the plant. Can be maintained.
図1は、実施の形態1にかかる植物栽培装置の全体概略図である。FIG. 1 is an overall schematic diagram of a plant cultivation apparatus according to a first embodiment. 図2は、実施の形態1にかかる植物栽培装置の植物周りの気流を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the airflow around the plant of the plant cultivation apparatus according to the first embodiment. 図3は、実施の形態1にかかる植物栽培装置の気流方向の切替え機構の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of an airflow direction switching mechanism of the plant cultivation apparatus according to the first embodiment. 図4は、実施の形態1にかかる植物栽培装置において栽培に必要な空質条件を調整する構造および手順を説明するための図である。FIG. 4 is a diagram for explaining a structure and a procedure for adjusting air quality conditions necessary for cultivation in the plant cultivation apparatus according to the first embodiment. 図5は、実施の形態1にかかる植物栽培装置における空気の条件調整時の状態変化グラフを示す図である。FIG. 5: is a figure which shows the state change graph at the time of the air condition adjustment in the plant cultivation apparatus concerning Embodiment 1. FIG.
 実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。 Prior to the description of the embodiment, the problems in the prior art will be briefly described.
 一般的な植物育成システムにおいては、光合成に寄与度の高い照明装置の配置又は照射条件等への配慮はあるが、空質条件への配慮が手薄で片手落ちである。空調に配慮した植物育成装置として、装置内に気流を流し、葉の蒸散効果を促すものもあるが、植物の栽培に適した空質条件である温度、湿度、及びCO濃度をそれぞれ適正に均質化して維持することができる装置は無かった。 In general plant breeding systems, consideration is given to the arrangement of illumination devices or irradiation conditions that contribute to photosynthesis, but consideration to air quality conditions is weak and one hand falls off. Some plant-growing devices that take into account air-conditioning flow air flow through the device and promote the transpiration effect of the leaves. However, the temperature, humidity, and CO 2 concentration, which are air quality conditions suitable for plant cultivation, are set appropriately. There was no device that could be homogenized and maintained.
 本開示は、植物の栽培に適した空質条件を適正に均質化して維持することができる植物栽培装置を提供する。 This disclosure provides a plant cultivation apparatus that can appropriately homogenize and maintain air quality conditions suitable for plant cultivation.
 以下、実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (実施の形態1)
 図1は、実施の形態1にかかる空調循環型の植物栽培装置100の全体概略図である。植物栽培装置100は、少なくとも、筐体1と、空気回収用配管7と、空調装置2と、空気供給用配管3とを備えて構成されている。
(Embodiment 1)
FIG. 1 is an overall schematic diagram of an air-conditioning circulation type plant cultivation apparatus 100 according to the first embodiment. The plant cultivation apparatus 100 includes at least a housing 1, an air recovery pipe 7, an air conditioner 2, and an air supply pipe 3.
 筐体1は、内部の略閉鎖された空間内に1個又は複数の栽培棚1aを配置して、外装1bにより、凡その機密性が保たれている。筐体1において、外部からの雑菌侵入を防止するために、厳密な機密性を保とうとすると、シール処理等を厳密にする必要があり、コストアップ要因となる。現実的には、筐体1においては、植物5の投入及び取出しを含めて、外部環境との機密性を厳密に維持できないケースも多く、必要以上に厳密にする必要はない。筐体1内に送る空調気流の圧力を僅かに高めて内部を略正圧とし、筐体1の外装1bの隙間を通じて外部から直接外気が侵入しないように配慮することで、これを防止することができる。一例として、図1では、筐体1の上面には1個の回収穴6があり、筐体1の下部には複数個の供給穴4がある。 The casing 1 has one or a plurality of cultivation shelves 1a arranged in a substantially closed space inside, and is generally kept confidential by the exterior 1b. In order to prevent the entry of germs from the outside in the housing 1, if strict confidentiality is to be maintained, the sealing process or the like needs to be strict, which causes a cost increase. Actually, in the case 1, there are many cases in which the confidentiality with the external environment cannot be strictly maintained including the insertion and removal of the plant 5, and it is not necessary to make it more strict than necessary. This can be prevented by slightly increasing the pressure of the air-conditioning air flow sent into the housing 1 to make the inside substantially positive pressure, and taking into consideration that outside air does not directly enter from the outside through the gap of the exterior 1 b of the housing 1. Can do. As an example, in FIG. 1, there is one recovery hole 6 on the top surface of the housing 1, and a plurality of supply holes 4 at the bottom of the housing 1.
 空調装置2は、筐体1の外部に配置されている。空調装置2の中で、栽培に必要な空質条件を調整し、筐体1内へ空気供給用配管3を通じて空気を送り込むための装置である。空調装置2は、一箇所で空質条件を最適化するように調整することにより、均質な空気を筐体1内の全ての栽培棚1aの全域に届けることが出来、栽培品質の均一化に寄与するものである。例えば、レタス栽培の実験の一例として、温度条件が1℃変化した場合には栽培重量が10%変化する事例があり、空質条件の均一化は重要である。 The air conditioner 2 is disposed outside the housing 1. In the air conditioner 2, the air quality condition necessary for cultivation is adjusted, and air is sent into the housing 1 through the air supply pipe 3. By adjusting the air conditioner 2 so as to optimize the air quality conditions in one place, it is possible to deliver uniform air to the entire area of all the cultivation shelves 1a in the housing 1, thereby making the cultivation quality uniform. It contributes. For example, as an example of an experiment for lettuce cultivation, there is an example in which the cultivation weight changes by 10% when the temperature condition changes by 1 ° C., and uniform air quality conditions are important.
 空気供給用配管3は、筐体1内へ空気を送り込むための配管である。空気供給用配管3の機能は、調整された空気を空調装置2から筐体1内へ送ることであり、空気供給用配管3の形状は、図1に記載のような円筒配管に限定するものではない。筐体1内の栽培品を保持するパネル内に空路を設けて、この機能を代替する方法なども考えられる。また、気流の方向を逆にすると、空気供給用配管3により空気を回収する配管として機能することも可能である。 The air supply pipe 3 is a pipe for sending air into the housing 1. The function of the air supply pipe 3 is to send adjusted air from the air conditioner 2 into the housing 1, and the shape of the air supply pipe 3 is limited to the cylindrical pipe as shown in FIG. is not. A method of replacing this function by providing an air path in the panel holding the cultivated product in the housing 1 is also conceivable. Further, when the direction of the airflow is reversed, the air supply pipe 3 can function as a pipe for collecting air.
 供給穴4は、複数の空気供給用配管3の先端部3aに複数個形成され、栽培品の周辺に、空気を送り出すための穴である。供給穴4は、空調装置2で温度、湿度、及びCO濃度の調整された空気を空気供給用配管3を介して筐体1内に導入する導入穴でもある。前記の通り、気流の方向を逆にすると、空気を回収する配管穴として機能することも可能である。供給穴4の配置の一例としては、植物5の根元(実施の形態1において、ベッド9と筐体1の内壁面とで構成された植物5を栽培する空間における高さ方向の下1/3に対応する領域)かつ、平面視で回収穴6と重複しない位置に配される。 A plurality of supply holes 4 are formed in the tip portions 3a of the plurality of air supply pipes 3, and are holes for sending out air around the cultivated product. The supply hole 4 is also an introduction hole for introducing the air whose temperature, humidity, and CO 2 concentration are adjusted by the air conditioner 2 into the housing 1 through the air supply pipe 3. As described above, if the direction of the airflow is reversed, it can function as a piping hole for collecting air. As an example of arrangement | positioning of the supply hole 4, as for the root of the plant 5 (in Embodiment 1, lower 1/3 of the height direction in the space which grows the plant 5 comprised by the bed 9 and the inner wall face of the housing | casing 1) And an area that does not overlap with the collection hole 6 in plan view.
 筐体1内の栽培棚1aには、栽培品の一例である植物5が配置されている。 A plant 5 which is an example of a cultivated product is arranged on the cultivation shelf 1 a in the housing 1.
 筐体1の上面には、筐体1内の空気を回収するための回収穴6が配置されている。回収穴6は、筐体1の内部から回収した空気を空気回収用配管7を介して空調装置2に送るための回収穴でもある。回収穴6から回収された空気は、空気回収用配管7を介して空調装置2に送られ、空調装置2で植物5の栽培条件に適した温度、湿度、及びCO濃度に調整される。前記の通り、気流の方向を逆にすると、空気を送り出すための配管穴として機能することも可能である。回収穴6の配置位置の一例としては、植物5の直上(真上)に設けている。 A recovery hole 6 for recovering air in the housing 1 is disposed on the upper surface of the housing 1. The recovery hole 6 is also a recovery hole for sending air recovered from the inside of the housing 1 to the air conditioner 2 via the air recovery pipe 7. The air recovered from the recovery hole 6 is sent to the air conditioner 2 through the air recovery pipe 7, and the air conditioner 2 adjusts the temperature, humidity, and CO 2 concentration suitable for the cultivation conditions of the plant 5. As described above, if the direction of the airflow is reversed, it can function as a piping hole for sending out air. As an example of the arrangement position of the collection hole 6, the collection hole 6 is provided immediately above (directly above) the plant 5.
 回収穴6と空調装置2とは空気回収用配管7で連結されている。空気回収用配管7は、筐体1内から空調装置2に空気を回収するための配管である。空気回収用配管7の機能は、空気を回収することであり、その形状は、図1に記載のような円筒配管に限定するものではない。筐体1の上部空間を空路として、この機能を代替する方法なども考えられる。また、気流の方向を逆にすると、空気を筐体1内に送り込む配管として機能することも可能である。 The recovery hole 6 and the air conditioner 2 are connected by an air recovery pipe 7. The air recovery pipe 7 is a pipe for recovering air from the housing 1 to the air conditioner 2. The function of the air recovery pipe 7 is to recover air, and the shape thereof is not limited to the cylindrical pipe as shown in FIG. A method of substituting this function using the upper space of the housing 1 as an air path is also conceivable. Further, if the direction of the airflow is reversed, it can also function as a pipe that feeds air into the housing 1.
 照明装置8は、筐体1内の上部空間に配置されている。照明装置8は、植物栽培のために投光するLEDなどの装置であり、図1に記載のような円筒型に限らない。スポット型又は面発光型等、様々な形状が考えられる。 The lighting device 8 is disposed in the upper space in the housing 1. The lighting device 8 is a device such as an LED that projects light for plant cultivation, and is not limited to the cylindrical shape as shown in FIG. Various shapes such as a spot type or a surface emitting type are conceivable.
 筐体1内には、栽培棚1aとして、植物5を保持するベッド9が配置されている。水耕式の栽培装置の場合、ベッド9の中に栽培養液を溜めたり回流するなどすることにより、植物5に栄養を与える。ベッド9には、植物5を保持するための栽培穴90が設けられる。図1では、簡単のため、1個の栽培穴90のみを図示するが、栽培穴90は、複数個設けられても良い。一般に植物5は、樹脂製のパネル9a等に保持され、当該パネル9aがベッド9上に浮かべられることが多い。土耕式の栽培装置の場合、ベッド9内に培地が置かれ、その上で植物5が育てられる。 In the housing 1, a bed 9 holding a plant 5 is disposed as a cultivation shelf 1a. In the case of a hydroponic cultivation apparatus, the plant 5 is nourished by storing or circulating the cultivation nutrient solution in the bed 9. The bed 9 is provided with a cultivation hole 90 for holding the plant 5. In FIG. 1, only one cultivation hole 90 is illustrated for simplicity, but a plurality of cultivation holes 90 may be provided. In general, the plant 5 is often held on a resin panel 9 a or the like, and the panel 9 a is often floated on the bed 9. In the case of a soil cultivation type cultivation apparatus, a medium is placed in the bed 9, and the plant 5 is grown thereon.
 図2は、図1で示す植物5の周りの気流を説明するための模式図である。照明装置8は、植物5に対して均質かつ効率的に照明光を照射する必要がある。このため、複数の植物5が隣接する場合には偏りが出ないよう、植物5の中間近傍に照明装置8を配置する。更に、筐体1の外装1bの内面を反射材にすることで、照射効率と均質性とを高めることもできる。 FIG. 2 is a schematic diagram for explaining the airflow around the plant 5 shown in FIG. The illumination device 8 needs to irradiate the plant 5 with illumination light uniformly and efficiently. For this reason, when the some plant 5 adjoins, the illuminating device 8 is arrange | positioned in the middle vicinity of the plant 5 so that deviation may not come out. Furthermore, by using the inner surface of the exterior 1b of the housing 1 as a reflective material, it is possible to improve the irradiation efficiency and the homogeneity.
 図2において、植物5の周囲において下から上に向けて、空質条件が整えられた空気の気流(以下、仮想流路10として図示する)を示している。空気を送り出すための供給穴4から噴出した空気は拡散しようとするが、植物5の直上に設けられた、空気を回収するための回収穴6が負圧であるため、ここへ向かう仮想流路10に従い進行する。すなわち、回収穴6は、植物5の真上に配され、供給穴4は、植物5の根元かつ、平面視で回収穴6と重複しない位置に配される。もしくは、回収穴6は、栽培穴90の真上に位置し、平面視において、栽培穴90と重複する位置に設けられる。また、供給穴4は、栽培穴90の周囲かつ、平面視で栽培穴90と重複しない位置に配される。 FIG. 2 shows an air flow (hereinafter, illustrated as a virtual flow path 10) in which air quality conditions are adjusted from the bottom to the top around the plant 5. Although the air ejected from the supply hole 4 for sending out the air tries to diffuse, the recovery hole 6 for recovering the air provided immediately above the plant 5 has a negative pressure. Proceed according to 10. That is, the collection hole 6 is arranged directly above the plant 5, and the supply hole 4 is arranged at the root of the plant 5 and at a position that does not overlap with the collection hole 6 in plan view. Or the collection | recovery hole 6 is located right above the cultivation hole 90, and is provided in the position which overlaps with the cultivation hole 90 in planar view. The supply hole 4 is arranged around the cultivation hole 90 and at a position that does not overlap with the cultivation hole 90 in plan view.
 これにより、空気は植物5の葉を外側からなでるように空気が進行する。このため、植物5の葉に対して全周にわたり、その蒸散を均質かつ効果的に促すことになる。従って、このように構成することにより、変動する外部環境に対して、如何にこれを適切に制御し、植物5に対して如何に適切な位置及び方向に気流を流すかという観点で配慮することができ、植物5の栽培に適した空質条件を適正に均質化して維持することができ、植物5の品質安定及び収穫増量が実現できる。なお、重複しない位置とは、両者の間に少なくとも1mm以上かつ100mm以下の距離がある位置を示す。 This causes the air to travel so that the leaves of the plant 5 are stroked from the outside. For this reason, the transpiration is promoted uniformly and effectively over the entire circumference of the leaves of the plant 5. Therefore, with this configuration, consideration should be given to how to properly control the changing external environment and how to flow the airflow in an appropriate position and direction with respect to the plant 5. The air quality conditions suitable for the cultivation of the plant 5 can be appropriately homogenized and maintained, and the quality of the plant 5 and the yield increase can be realized. In addition, the position which does not overlap shows a position with the distance of at least 1 mm or more and 100 mm or less between both.
 植物5は、図2の下方から上方に向かって成長することを前提にしており、仮想流路10を流れる気流も、図2に記載の矢印の向きに流すことにより葉の外面に沿う方向に流れるため、葉へのダメージが少なく好適である。 The plant 5 is assumed to grow from the lower side to the upper side in FIG. 2, and the airflow flowing through the virtual channel 10 also flows in the direction along the outer surface of the leaf by flowing in the direction of the arrow shown in FIG. 2. Since it flows, the damage to the leaves is small and suitable.
 ただし、気流の方向はこれに限定するものではなく、矢印と逆の方向に流すこともある。この場合、気流の一部は葉と葉の間に入り込もうとするため、葉を揺動させる効果が大きく、蒸散を促す効果もより強くなる。また、植物5の成長点は植物5の中心部真上にあるため、成長盛んな当該部の蒸散を効果的に促す点で、成長促進の効果が高い。従って、気流の方向は、例えば、これらを組み合わせて、空調装置2で一定時間おきに交互に切替えることも、植物全体の蒸散効果を効果的に高める観点で効果がある。 However, the direction of the airflow is not limited to this, and the airflow may flow in the direction opposite to the arrow. In this case, since a part of the airflow tries to enter between the leaves, the effect of swinging the leaves is large, and the effect of promoting transpiration is further enhanced. Moreover, since the growth point of the plant 5 is right above the center part of the plant 5, the effect of promoting growth is high in that it effectively promotes transpiration of the part where growth is vigorous. Therefore, the direction of the airflow is also effective from the viewpoint of effectively enhancing the transpiration effect of the whole plant, for example, by combining these and switching the airflow device 2 alternately at regular intervals.
 また、図1および図2において、回収穴6は植物5の真上に配置され、平面視において、栽培穴90と重複する位置に配置されているが、回収穴6の配置はこれに限らない。回収穴は、植物5の上方に配置されていればよい。例えば、複数の回収穴6が、平面視において栽培穴90を中心とする円周上の、栽培穴90とは重複しない位置に配置されていてもよい。あるいは、例えば、複数の植物5(複数の栽培穴90)が一列に配置されるような場合、回収穴は、スリット状の長穴形状を有し、長手方向が複数の植物5(複数の栽培穴90)の列に沿うように配置されていてもよい。すなわち、供給穴4から噴出した空気が植物5の葉を外側からなでるように空気が進行するように、回収穴が配置されていればよい。 Moreover, in FIG. 1 and FIG. 2, although the collection | recovery hole 6 is arrange | positioned just above the plant 5 and is arrange | positioned in the planar view in the position which overlaps with the cultivation hole 90, arrangement | positioning of the collection | recovery hole 6 is not restricted to this. . The collection hole only needs to be arranged above the plant 5. For example, the plurality of collection holes 6 may be arranged at positions that do not overlap with the cultivation holes 90 on the circumference around the cultivation holes 90 in plan view. Alternatively, for example, when a plurality of plants 5 (a plurality of cultivation holes 90) are arranged in a line, the recovery hole has a slit-like long hole shape, and the longitudinal direction is a plurality of plants 5 (a plurality of cultivations). You may arrange | position so that the row | line | column of the hole 90) may be followed. That is, the recovery hole may be arranged so that the air jetted from the supply hole 4 travels so that the leaves of the plant 5 are stroked from the outside.
 図3は、空調装置2に組み込まれた、気流の方向を切替える気流方向切替機構40の一例を説明するための図である。空調装置2は、一方向に空気を送り、これに接続される2つの配管経路35,36を切替えることで、その気流方向を正逆切替えるものである。すなわち、空調装置2の吸込側通路41と送込側通路42とをそれぞれ個別に直結する第1配管経路35と第2配管経路36とを備えるとともに、吸込側通路41と第1配管経路35と第2配管経路36との接続部に第1バルブ機構31を配置し、送込側通路42と第1配管経路35と第2配管経路36との接続部に第2バルブ機構32を配置している。第1バルブ機構31と第2バルブ機構32とは同時に切り替えることができる。第1バルブ機構31の第1バルブが実線位置31aでは、吸込側通路41と第2配管経路36とが接続される一方、第1バルブが点線位置31bでは、吸込側通路41と第1配管経路35とが接続される。第2バルブ機構32の第2バルブが実線位置32aでは、送込側通路42と第1配管経路35とが接続される一方、第2バルブが点線位置32bでは、送込側通路42と第2配管経路36とが接続される。第1配管端33は空気回収用配管7に接続され、第2配管端34は空気供給用配管3に接続されている。よって、空調装置2が図3の矢印の通り右向きに送風する場合、第1バルブ機構31及び第2バルブ機構32のそれぞれのバルブが実線位置31a及び32aの状態にあるとき、第1配管端33から吸込側通路41に向けて空気が空調装置2内に吸い込まれ、空調装置2から送込側通路42から第2配管端34に空気を送り込む。よって、第1配管端33は吸込口となり、空気を第2配管端34に向かって送り出すことになる。また、バルブが点線位置31b及び32bの状態にあるとき、第2配管端34から第1配管経路35を介して吸込側通路41に向けて空気が空調装置2内に吸い込まれ、空調装置2から送込側通路42から第2配管経路36を介して第1配管端33に空気を送り込む。よって、第2配管端34は吸込口となり、空気を第1配管端33に向かって送り出す。このように、バルブの状態を切替えることによって、気流の方向を切替えることが可能となる。これにより、供給穴4及び回収穴6の機能を排気口と吸気口とで入れ替えられる。 FIG. 3 is a diagram for explaining an example of an airflow direction switching mechanism 40 that is incorporated in the air conditioner 2 and switches the direction of the airflow. The air conditioner 2 sends air in one direction and switches between two piping paths 35 and 36 connected thereto, thereby switching the air flow direction between forward and reverse. In other words, the suction side passage 41 and the first piping route 35 are provided with a first piping path 35 and a second piping path 36 that directly connect the suction side passage 41 and the feeding side passage 42 of the air conditioner 2 respectively. The first valve mechanism 31 is disposed at a connection portion with the second piping path 36, and the second valve mechanism 32 is disposed at a connection portion between the feeding-side passage 42, the first piping path 35, and the second piping path 36. Yes. The first valve mechanism 31 and the second valve mechanism 32 can be switched simultaneously. When the first valve of the first valve mechanism 31 is a solid line position 31a, the suction side passage 41 and the second piping path 36 are connected, while when the first valve is a dotted line position 31b, the suction side path 41 and the first piping path are connected. 35 is connected. When the second valve of the second valve mechanism 32 is at the solid line position 32a, the feeding side passage 42 and the first piping path 35 are connected, while when the second valve is at the dotted line position 32b, the feeding side passage 42 and the second piping path 35 are connected. The piping path 36 is connected. The first pipe end 33 is connected to the air recovery pipe 7, and the second pipe end 34 is connected to the air supply pipe 3. Therefore, when the air conditioner 2 blows rightward as indicated by the arrow in FIG. 3, the first piping end 33 is set when the respective valves of the first valve mechanism 31 and the second valve mechanism 32 are in the solid line positions 31 a and 32 a. From the air conditioner 2, air is sucked into the second pipe end 34 from the air supply apparatus 42 toward the suction side passage 41. Therefore, the first pipe end 33 becomes a suction port, and air is sent out toward the second pipe end 34. When the valve is in the positions of the dotted line positions 31 b and 32 b, air is sucked into the air conditioning device 2 from the second piping end 34 toward the suction side passage 41 via the first piping route 35, and from the air conditioning device 2. Air is fed from the feed-side passage 42 to the first pipe end 33 via the second pipe path 36. Therefore, the second pipe end 34 becomes a suction port, and sends out air toward the first pipe end 33. In this way, the direction of the airflow can be switched by switching the state of the valve. Thereby, the function of the supply hole 4 and the collection | recovery hole 6 is replaced by an exhaust port and an intake port.
 図4は、栽培に必要な空質条件を作りこむ構造及び手順を説明するための図である。空調装置2は、空気の流路93の上流側から下流側に向けて、センサ11と、冷却送風装置12と、CO添加器14(CO濃度調整機の一例)と、フィルタ15と、加湿器16とを順に直列的に配置している。 FIG. 4 is a diagram for explaining a structure and a procedure for creating air quality conditions necessary for cultivation. From the upstream side to the downstream side of the air flow path 93, the air conditioner 2 includes a sensor 11, a cooling blower 12, a CO 2 adder 14 (an example of a CO 2 concentration adjuster), a filter 15, The humidifier 16 is arranged in series in order.
 センサ11は、空調装置2に吸い込まれた空気の空質状態を計測するためのセンサである。具体的には、温度センサ、湿度センサ、及びCO濃度センサなど、空質条件を調整するために状態把握を行うものである。空質状態は、栽培の流路通過過程で、変化を伴う。照明又は外気による温度変化、植物5の蒸散による湿度変化、又は、植物5の光合成又は呼吸によるCO濃度変化等が考えられる。これらの変化の累積結果として、回収した空気の最終段で、最終段直後の空調装置2内での調整量を算出するために、温度、湿度、及びCO濃度状態をセンサ11で計測する。センサ11で計測された温度、湿度、及びCO濃度の情報は、空調装置2の制御部91に送られる。空調装置2の制御部91は、当該情報に基づいて温度、湿度、及びCO濃度で構成される空質条件を調整する。具体的には、空調装置2は、空質条件を調整するため、後述の温度調整機の一例としての冷却送風装置12と、湿度調整機の一例としての加湿器16と、CO濃度調整機の一例としてのCO添加器14とのいずれか又は全てを制御部91で適宜駆動制御して、空質条件を調整する。 The sensor 11 is a sensor for measuring the air quality state of the air sucked into the air conditioner 2. Specifically, the state is grasped in order to adjust air quality conditions such as a temperature sensor, a humidity sensor, and a CO 2 concentration sensor. The air quality is accompanied by changes in the process of passage through the cultivation channel. A change in temperature due to illumination or outside air, a change in humidity due to transpiration of the plant 5, or a change in CO 2 concentration due to photosynthesis or respiration of the plant 5 can be considered. As a cumulative result of these changes, the sensor 11 measures the temperature, humidity, and CO 2 concentration state in order to calculate the adjustment amount in the air conditioner 2 immediately after the final stage at the final stage of the collected air. Information on the temperature, humidity, and CO 2 concentration measured by the sensor 11 is sent to the controller 91 of the air conditioner 2. The control unit 91 of the air conditioner 2 adjusts air quality conditions including temperature, humidity, and CO 2 concentration based on the information. Specifically, in order to adjust air quality conditions, the air conditioner 2 includes a cooling blower 12 as an example of a temperature adjuster described later, a humidifier 16 as an example of a humidity adjuster, and a CO 2 concentration adjuster. Any or all of the CO 2 adder 14 as an example is appropriately driven and controlled by the control unit 91 to adjust the air quality condition.
 冷却送風装置12(温度調整機の一例)は、植物5の栽培に好適な温度に対して、外気温がそれと同等か、それ以上であれば、筐体1内を気流が流れる間に、照明装置8の温熱効果などによって、気温が高くなる。従って、これを適切に冷却する役割を担い、空気を圧送するものである。外気温が栽培に好適な温度に対して低い場合は、暖房機能を有する必要がある。冷却送風装置12として、例えばスポットクーラー又はエアコンの室内機が挙げられる。 If the outside air temperature is equal to or higher than the temperature suitable for cultivation of the plant 5, the cooling air blower 12 (an example of a temperature adjusting machine) is illuminated during the flow of air through the housing 1. The temperature increases due to the thermal effect of the device 8 or the like. Therefore, it plays a role of appropriately cooling this and pumps air. When the outside air temperature is lower than the temperature suitable for cultivation, it is necessary to have a heating function. Examples of the cooling blower 12 include a spot cooler or an air conditioner indoor unit.
 冷却送風装置12には、筐体1の外部の空気である外気を取得する外気取得配管13を有している。前述の通り、筐体1内に送る空調気流の圧力を僅かに高めて筐体1の内部を略正圧とし、筐体1の外装1bの隙間を通じて筐体1の外部から直接外気が筐体1内に侵入しないようにする場合、筐体1から抜け出る空気があり、これを補うために、外気を部分的に導入する。筐体1内で回流する空気の空質状態は、栽培の流路通過過程で変化を伴うが、概してその変化は僅かであり、外気を一から条件調整するのに比べると、条件調整に必要な物質的及びエネルギ的コストは低い。空調装置2は、筐体1の外部の空気である外気を外気取得配管13から取得し、取得した外気と筐体1から空気回収用配管7で空調装置2に回収された空気とを合わせたのちの空気を、植物5の栽培に対応した条件に調整し、調整した調整後の空気を空気供給用配管3に送っている。 The cooling air blower 12 has an outside air acquisition pipe 13 that acquires outside air that is air outside the housing 1. As described above, the pressure of the air-conditioning air flow sent into the housing 1 is slightly increased so that the inside of the housing 1 becomes a substantially positive pressure, and outside air is directly supplied from the outside of the housing 1 through the gap between the exterior 1b of the housing 1. In order not to enter the interior 1, there is air that escapes from the housing 1, and in order to compensate for this, outside air is partially introduced. The air quality of the air circulating in the housing 1 is accompanied by a change in the process of passing through the flow path of cultivation, but generally the change is slight, and it is necessary for the condition adjustment compared with the condition adjustment from the outside. The material and energy costs are low. The air conditioner 2 acquires outside air, which is air outside the housing 1, from the outside air acquisition pipe 13, and combines the acquired outside air and the air collected from the housing 1 by the air recovery pipe 7 into the air conditioner 2. The air after that is adjusted to conditions corresponding to the cultivation of the plant 5, and the adjusted adjusted air is sent to the air supply pipe 3.
 CO添加器14(CO濃度調整機の一例)として、COは、高圧ボンベなどでの形態で供給されることが多い。このため、ボンベから配管を介して供給されるCOガスと筐体1からの空気とをCO添加器14で合流させ、CO添加器14でCO吐出量を流量管理し、配管途中のバルブを開閉するなどで、必要量を吐出及び混合する構成とする。吐出制御の一例については、図5を用いて後述する。 As the CO 2 adder 14 (an example of a CO 2 concentration adjuster), CO 2 is often supplied in the form of a high-pressure cylinder or the like. Therefore, the air from the CO 2 gas and the housing 1 which is supplied through a pipe from the cylinder are merged in a CO 2 addition 14, the CO 2 discharge quantity in a CO 2 added 14 to flow management pipe middle The required amount is discharged and mixed by opening and closing the valve. An example of the discharge control will be described later with reference to FIG.
 CO添加器14と加湿器16との間には、フィルタ15が配置されている。雑菌を含む外気及び複雑構造のために雑菌が繁殖しやすい冷却送風装置12からの気体をろ過し、清浄な空気を循環させるために必要であり、例えば、HEPAフィルタ(High Efficiency Particulate Air Filter)のような清浄効果の高いものや、除菌フィルタを用いる。 A filter 15 is disposed between the CO 2 adder 14 and the humidifier 16. Necessary for filtering the gas from the cooling air blower 12 that is easy for bacteria to propagate due to the outside air and complicated structure containing bacteria, and for circulating clean air, for example, HEPA filter (High Efficiency Particulate Air Filter) Such a high cleaning effect or a sterilization filter is used.
 加湿器16(湿度調整機の一例)を配置する理由は、以下の通りである。筐体1内を空気が回流する過程で、植物5の蒸散効果による湿度向上の影響を受け、空気の湿度は高まる傾向にある。したがって、通常は、初期状態よりも高くなる湿度に対し、前段の冷却送風装置12が余剰な湿度成分を除去する役割を果たすために、加湿の必要はない。但し、一日のうちで数時間の暗期と呼ぶ消灯時間帯は、植物は光合成をせず、気孔を閉じて蒸散量も減るため、低湿な状態になることがある。これを補うために、ミストを噴霧するノズル装置又は超音波式の加湿器16を備え、必要量を噴霧する。加湿直後の空気は結露しやすいため、フィルタ15は加湿器16に近接させないか、加湿器16よりも上流側に設置する。湿度を一定にして温度を調整することは一般に困難であり、温度を調整すると、その露点に応じて余分な湿度は除去されるため、上流で温度を制御し、下流で湿度を制御する方式が最適な空質条件を実現する方法である。すなわち、空気の流れる流路の上流側に温度を調整する温度調整機12が備えられ、下流側に湿度を調整する加湿器16が備えられる。 The reason for arranging the humidifier 16 (an example of a humidity controller) is as follows. In the process in which air circulates inside the housing 1, the humidity of the air tends to increase due to the influence of humidity improvement due to the transpiration effect of the plant 5. Therefore, normally, since the cooling air blower 12 in the previous stage serves to remove excess humidity components with respect to the humidity that is higher than the initial state, there is no need for humidification. However, in the light-out time zone, which is called the dark period of several hours in one day, the plant does not carry out photosynthesis, closes the pores and reduces the amount of transpiration, and may be in a low humidity state. In order to compensate for this, a nozzle device for spraying mist or an ultrasonic humidifier 16 is provided to spray a necessary amount. Since the air immediately after humidification is likely to condense, the filter 15 is not placed close to the humidifier 16 or installed upstream of the humidifier 16. In general, it is difficult to adjust the temperature while keeping the humidity constant.If the temperature is adjusted, excess humidity is removed according to the dew point. Therefore, there is a method to control the temperature upstream and the humidity downstream. It is a method to realize the optimal air quality condition. That is, a temperature adjuster 12 for adjusting the temperature is provided on the upstream side of the flow path through which the air flows, and a humidifier 16 for adjusting the humidity is provided on the downstream side.
 また、フィルタ15は、筐体1内に送る空気を清浄化するものであり、筐体1に極力近接配置することが望ましいが、加湿による湿潤防止のため、加湿器16はフィルタ15の後段に置く。すなわち、空調装置2における前記流路における加湿器16の上流側に、フィルタ15を配置する。筐体1内では、気流は、仮想流路10を流れると前述したが、図2に記載の矢印にて示す仮想流路10の向きと逆に流す場合においても、回収空気はセンサ11から加湿器16へ向かう方向の流れに沿って条件調整される。 The filter 15 cleans the air sent into the housing 1 and is preferably disposed as close to the housing 1 as possible. However, the humidifier 16 is placed downstream of the filter 15 to prevent wetting due to humidification. Put. That is, the filter 15 is arranged on the upstream side of the humidifier 16 in the flow path in the air conditioner 2. As described above, the airflow flows through the virtual flow path 10 in the housing 1. However, even when flowing in the direction opposite to the direction of the virtual flow path 10 indicated by the arrow in FIG. Condition adjustment is performed along the flow toward the vessel 16.
 図5は、空気の条件調整時の状態変化グラフを示す図である。ここでは、COの濃度をセンサ11で読み取り、読み取ったCO濃度を基に、制御部91でCO添加器14を制御して、CO添加器14からCOガスを、空調装置2を流れる空気に噴霧する場合の状態変化を示す。CO濃度変化グラフの横軸は時間を示し、縦軸はCO濃度を示す。 FIG. 5 is a diagram showing a state change graph when adjusting the air condition. Here, read the concentration of CO 2 in the sensor 11, based on CO 2 concentration read, to control the CO 2 added 14 in the control unit 91, CO 2 gas from the CO 2 addition 14, air conditioner 2 The state change at the time of spraying to the air which flows through is shown. The horizontal axis of the CO 2 concentration change graph indicates time, and the vertical axis indicates the CO 2 concentration.
 図5のCO濃度変化グラフにおいて、二点鎖線は栽培に適するCO濃度の目標値19を示している。CO消費とのコストパフォーマンスを考慮すると、1000ppm程度が適切な値の一例である。空質条件のうち、CO濃度については、これを目標値として、調整するものとする。 In the CO 2 concentration change graph of FIG. 5, the two-dot chain line indicates the target value 19 of the CO 2 concentration suitable for cultivation. Considering cost performance with CO 2 consumption, about 1000 ppm is an example of an appropriate value. Among the air quality conditions, the CO 2 concentration is adjusted using this as a target value.
 図5のCO濃度変化グラフのうちの上側の曲線グラフは、調整後の空気のCO濃度の変化20の一例を示している。 The upper curve graph of the CO 2 concentration change graph of FIG. 5 shows an example of the change 20 of the CO 2 concentration of air after adjustment.
 図5のCO濃度変化グラフのうちの下側の曲線グラフは、CO濃度の変化要因の1つである、導入外気のCO濃度の変化21の変化の一例を示している。外気のCO濃度は一般に400ppm程度であり、植物栽培に好適な条件と比べるとやや低い。僅かながらも外気を筐体1内に導入すると、筐体1内のCO濃度が低下するため、これを調整する必要がある。また、外気のCO濃度は、ヒトの呼気によっても著しく変化するため、周囲に作業者らがいると急激に高まるなど、激しく変化することがある。外気を筐体1内に導入すると、こういった影響を一時的に受けることになるが、外気のCO濃度は平常時は400ppm程度のレベルに収れんするため、植物5の栽培に実質的な影響を及ぼすことはない。 The lower curve graph of the CO 2 concentration change graph of FIG. 5 shows an example of the change 21 of the CO 2 concentration change 21 of the introduced outside air, which is one of the CO 2 concentration change factors. The CO 2 concentration in the outside air is generally about 400 ppm, which is slightly lower than the conditions suitable for plant cultivation. The introduction of outside air even slightly into the housing 1, since the concentration of CO 2 in the housing 1 decreases, it is necessary to adjust this. In addition, the CO 2 concentration in the outside air changes significantly depending on the exhalation of human beings, and may change drastically, for example, when it is rapidly increased when there are workers around. When outside air is introduced into the housing 1, such influences are temporarily received. However, since the CO 2 concentration of the outside air is normally confined to a level of about 400 ppm, it is practical for cultivation of the plant 5. There is no effect.
 図5のCO濃度変化グラフのうちの棒グラフは、CO添加器14から吐出されるCO量22を示している。筐体1から外部に漏れる空気の量と、植物5の栽培フェーズに応じて、CO添加器14からの一回あたりの吐出量は設定される。通常の運用においては、筐体1内からの空気の漏れ量は、僅かでありかつ一定量であり、植物5の成長変化も緩やかであるため、CO添加器14からのCOの吐出を頻繁に行う必要はなく、5~15分毎のサイクルで賄える。これに対して、CO濃度は激しく変化する可能性があるため、センサ11によるCO濃度のセンシングは、1分おきなど、より短時間のサイクルで行い、栽培に適するCO濃度の目標値19に対して、一定のマージンを超えたら、制御部91の制御によりCO添加器14からのCO吐出を直ちに休止する。 The bar graph in the CO 2 concentration change graph of FIG. 5 indicates the CO 2 amount 22 discharged from the CO 2 adder 14. The discharge amount per one time from the CO 2 adder 14 is set according to the amount of air leaking from the housing 1 to the outside and the cultivation phase of the plant 5. In normal operation, the leakage amount of air from within the housing 1 is a slight and and a certain amount, because growth changes in plant 5 is also slow, the discharge of the CO 2 from the CO 2 adding device 14 It does not need to be done frequently and can be covered with a cycle every 5 to 15 minutes. On the other hand, since the CO 2 concentration may change drastically, sensing of the CO 2 concentration by the sensor 11 is performed in a shorter cycle such as every other minute, and the target value of the CO 2 concentration suitable for cultivation is obtained. against 19, when exceeding a certain margin, immediately suspend CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91.
 図5のCO濃度変化グラフにおいて、栽培に適するCO濃度の目標値19に対して、調整後の空気のCO濃度の変化20の一例である上側の曲線グラフが、一定のマージンを超えてCO濃度が上昇した点、すなわち、CO濃度目標値を超えた点23を示している。一例として、制御部91においては、目標値1000ppmに対して、1100ppmを判定閾値とし(すなわち、目標値1000ppmに対する上限側のマージンを100ppmとし)、これを超えたと制御部91で判定した際に、制御部91の制御によりCO添加器14からのCO吐出を直ちに休止するものとする。また、空気のCO濃度が低減したり、植物5が光合成によって筐体1内のCO濃度が一定レベルまで低減したと制御部91で判定したら、制御部91の制御によりCO添加器14からのCO吐出を再開する。 In the CO 2 concentration change graph of FIG. 5, the upper curve graph, which is an example of the change 20 of the adjusted CO 2 concentration of air, exceeds a certain margin with respect to the target value 19 of the CO 2 concentration suitable for cultivation. The point where the CO 2 concentration has increased, that is, the point 23 where the CO 2 concentration target value has been exceeded is shown. As an example, in the control unit 91, with respect to the target value of 1000 ppm, 1100 ppm is set as a determination threshold (that is, the upper limit side margin with respect to the target value of 1000 ppm is set to 100 ppm). immediately shall be paused CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91. You can also reduce the CO 2 concentration in the air, when the plants 5 is determined by the control unit 91 and the CO 2 concentration in the housing 1 has been reduced to a certain level by the photosynthesis, CO 2 added device by the control of the control unit 91 14 The CO 2 discharge from is restarted.
 図5のCO濃度変化グラフにおいて、栽培に適するCO濃度の目標値19に対して、調整後の空気のCO濃度の変化20が、一定のマージンを超えてCO濃度が低減した点、すなわち、CO濃度目標値を下回った点24を示している。一例として、制御部91において、CO濃度目標値1000ppmに対して、900ppmを判定閾値とし(すなわち、目標値1000ppmに対する下限側のマージンを100ppmとし)、これを下回ったと制御部91で判定した際に、制御部91の制御によりCO添加器14からのCO吐出を直ちに再開する。 In CO 2 concentration change graph of FIG. 5, the target value 19 of the CO 2 concentration suitable for cultivation, the change in CO 2 concentration in the air after adjustment 20, that the CO 2 concentration is reduced beyond a certain margin That is, a point 24 that is lower than the CO 2 concentration target value is shown. As an example, when the control unit 91 determines that the lower limit side margin is set to 100 ppm with respect to the target value of 1000 ppm for the CO 2 concentration target value of 1000 ppm (that is, the lower limit margin for the target value of 1000 ppm is set to 100 ppm). to immediately resume CO 2 discharged from the CO 2 adding device 14 by the control of the control unit 91.
 このように、植物5の状態変化は緩やかであることを前提に、空気の状態を比較的短い時間サイクル(例えば1分おき)でセンサ11により計測して制御部91で判定し、これを比較的長い時間サイクル(例えば5~15分毎のサイクル)で制御部91が空質条件を調整することを、制御部91における制御則の基本とする。温湿度についても制御部91でCO濃度と同様に制御するものであり、植物5の例としてレタスなど葉物野菜では、一般に、900~1100ppmのCO濃度、21~22℃の温度、70~80%の相対湿度が好適と言われ、これを目安に空気の温度、湿度、及びCO濃度の状態計測と制御とをセンサ11と制御部91とで行うものとする。 As described above, on the assumption that the state change of the plant 5 is gradual, the air state is measured by the sensor 11 in a relatively short time cycle (for example, every other minute) and determined by the control unit 91 and compared. The basis of the control law in the control unit 91 is that the control unit 91 adjusts the air quality condition in a long time cycle (for example, every 5 to 15 minutes). The temperature and humidity are also controlled by the control unit 91 in the same manner as the CO 2 concentration. For leafy vegetables such as lettuce as an example of the plant 5, a CO 2 concentration of 900 to 1100 ppm, a temperature of 21 to 22 ° C., 70 It is said that a relative humidity of ˜80% is preferred, and the sensor 11 and the control unit 91 perform measurement and control of air temperature, humidity, and CO 2 concentration using this as a guide.
 なお、上記の植物栽培装置の各構成の制御は、コンピュータ等による制御部91によって行われる。制御部91には、1又は複数のメモリ又はプロセッサが備わり、これらには、上述の動作が行われるよう所定のプログラムが記憶されている。 In addition, control of each structure of said plant cultivation apparatus is performed by the control part 91 by a computer etc. The control unit 91 includes one or a plurality of memories or processors, and a predetermined program is stored so as to perform the above-described operation.
 なお、上記の植物栽培装置を用いて、上述の動作及び処理を行うことで、植物栽培方法を実行してもよい。これにより、植物の安定栽培を実現できる。 In addition, you may perform a plant cultivation method by performing the above-mentioned operation | movement and process using said plant cultivation apparatus. Thereby, the stable cultivation of a plant is realizable.
 前記実施形態によれば、筐体1の回収穴6から空気回収用配管7を介して回収した空気の温度、湿度、及びCO濃度を植物5の栽培に対応した空質条件に、空調装置2の一箇所で調整して、調整後の空気を筐体1に供給するようにしている。よって、植物5の栽培に適した空質条件を適正に均質化して維持することができ、植物5の品質安定及び収穫増量に寄与することができる。 According to the above-described embodiment, the air conditioner is configured so that the temperature, humidity, and CO 2 concentration of the air recovered from the recovery hole 6 of the housing 1 through the air recovery pipe 7 are the air quality conditions corresponding to the cultivation of the plant 5. 2 is adjusted at one place, and the adjusted air is supplied to the housing 1. Therefore, the air quality conditions suitable for the cultivation of the plant 5 can be appropriately homogenized and maintained, and the plant 5 can contribute to stable quality and increased yield.
 また、前記実施形態では、栽培対象の植物5の周辺部と、植物5の直上部とを結ぶ経路に沿って仮想流路10へ気流を流し、筐体1から回収した気流は、再び、その空質条件を適切に調整したのち、筐体1に循環させる構成とすることで、植物5の栽培に適した空質条件を適正に均質化して維持することができる。 Moreover, in the said embodiment, an airflow is flowed to the virtual flow path 10 along the path | route which connects the peripheral part of the plant 5 of cultivation object, and the direct upper part of the plant 5, and the airflow collect | recovered from the housing | casing 1 is again the After appropriately adjusting the air quality condition, the air quality condition suitable for cultivation of the plant 5 can be appropriately homogenized and maintained by circulating the air condition in the housing 1.
 よって、実施形態にかかる植物栽培装置100によれば、変動する外部環境に対して、如何にこれを適切に制御し、植物5に対して如何に適切な位置及び方向に気流を流すかという観点で配慮することができる。これにより、植物5の栽培に適した空質条件を適正に均質化して維持することができて、植物5の品質安定及び収穫増量が実現できる。 Therefore, according to the plant cultivation apparatus 100 according to the embodiment, how to appropriately control the fluctuating external environment and how to flow the airflow in an appropriate position and direction with respect to the plant 5. Can be considered. Thereby, the air quality conditions suitable for cultivation of the plant 5 can be appropriately homogenized and maintained, and the quality of the plant 5 and the yield increase can be realized.
 なお、本開示に係る植物栽培装置は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、センサ11は空調装置2内に配置しているが、空調装置2内に回収される空気の状態を検出すればよいので、例えば、空調装置2外の空気回収用配管7に配置するようにしてもよい。 Note that the plant cultivation apparatus according to the present disclosure is not limited to the above-described embodiment, and can be implemented in various other aspects. For example, although the sensor 11 is arranged in the air conditioner 2, it is only necessary to detect the state of the air collected in the air conditioner 2, so that it is arranged in the air recovery pipe 7 outside the air conditioner 2, for example. It may be.
 なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。 It should be noted that, by appropriately combining any of the various embodiments or modifications, the effects possessed by them can be produced. In addition, combinations of the embodiments, combinations of the examples, or combinations of the embodiments and examples are possible, and combinations of features in different embodiments or examples are also possible.
 本開示の前記態様にかかる植物栽培装置は、植物工場のような高効率に植物を栽培するような環境において、植物の栽培に適した空質条件を適正に均質化して維持することができる。このため、本開示の前記態様にかかる植物栽培装置は、植物栽培装置又は植物栽培システム事業のみならず、これらを用いた農業、研究開発、又は学校教育等、様々な社会活動及び産業活性に寄与するものである。 The plant cultivation apparatus according to the above aspect of the present disclosure can appropriately homogenize and maintain air quality conditions suitable for plant cultivation in an environment where plants are cultivated with high efficiency such as a plant factory. For this reason, the plant cultivation apparatus according to the aspect of the present disclosure contributes not only to the plant cultivation apparatus or the plant cultivation system business but also to various social activities and industrial activities such as agriculture, research and development, or school education using these. To do.
   1:筐体
   1a:栽培棚
   1b:外装
   2:空調装置
   3:空気供給用配管
   3a:先端部
   4:供給穴
   5:植物
   6:回収穴
   7:空気回収用配管
   8:照明装置
   9:ベッド
  10:仮想流路
  11:センサ
  12:冷却送風装置(温度調整機)
  13:外気取得配管
  14:CO添加器(CO濃度調整機)
  15:フィルタ
  16:加湿器(湿度調整機)
  19:栽培に適するCO濃度の目標値
  20:調整後の空気のCO濃度の変化
  21:導入外気のCO濃度の変化
  22:CO添加器から吐出されるCO
  23:CO濃度目標値を超えた点
  24:CO濃度目標値を下回った点
  31:第1バルブ機構
  31a、32a、:実線位置
  31b,32b:点線位置
  32:第2バルブ機構
  33:第1配管端
  34:第2配管端
  35,36:配管経路
  40:気流方向切替機構
  90:栽培穴
  91:制御部
  93:流路
  100:植物栽培装置
1: Housing 1a: Cultivation shelf 1b: Exterior 2: Air conditioner 3: Air supply pipe 3a: Tip part 4: Supply hole 5: Plant 6: Recovery hole 7: Air recovery pipe 8: Lighting device 9: Bed 10 : Virtual flow path 11: Sensor 12: Cooling blower (temperature adjuster)
13: Outside air acquisition piping 14: CO 2 adder (CO 2 concentration adjuster)
15: Filter 16: Humidifier (humidity adjuster)
19: suitable for cultivation CO 2 concentration of the target value 20: changes in CO 2 concentration in the air after adjustment 21: introduction of outside air CO 2 concentration change of 22: discharged from the CO 2 adding device the amount of CO 2 23: CO 2 Point where concentration target value was exceeded 24: Point below CO 2 concentration target value 31: First valve mechanism 31a, 32a: Solid line position 31b, 32b: Dotted line position 32: Second valve mechanism 33: First piping end 34 : Second piping end 35, 36: piping path 40: airflow direction switching mechanism 90: cultivation hole 91: control unit 93: flow path 100: plant cultivation device

Claims (7)

  1.  植物を栽培する空間を内部に有する筐体と、
     前記筐体内の空気を回収する前記筐体の回収穴と連結された空気回収用配管と、
     前記回収穴から前記空気回収用配管を介して回収した空気の温度、湿度、及びCO濃度を前記植物の栽培に対応した条件に調整する空調装置と、
     前記空調装置と前記筐体の供給穴とを連結して、前記空調装置で調整後の空気を前記筐体の前記供給穴から前記筐体内に供給する空気供給用配管と、を備える、植物栽培装置。
    A housing having a space for cultivating plants therein;
    An air recovery pipe connected to a recovery hole of the casing for recovering air in the casing;
    And the air conditioning apparatus for adjusting the recovery holes from the air recovered through the air collection piping temperature, humidity, and CO 2 concentration in the conditions corresponding to the cultivation of the plants,
    Plant cultivation comprising: an air supply pipe that connects the air conditioner and a supply hole of the housing and supplies air adjusted by the air conditioner from the supply hole of the housing into the housing apparatus.
  2.  前記回収穴は、前記植物の上方に配され、
     前記供給穴は、前記植物の根元かつ、平面視で前記回収穴と重複しない位置に配される、請求項1に記載の植物栽培装置。
    The collection hole is arranged above the plant,
    The plant cultivation device according to claim 1, wherein the supply hole is arranged at a base of the plant and a position that does not overlap with the recovery hole in a plan view.
  3.  前記空調装置は、前記筐体の外部の空気である外気を取得する外気取得配管を有し、
     前記外気取得配管から取得した外気と前記筐体から前記空気回収用配管で前記空調装置に回収された空気とを合わせたのちの空気を、前記植物の栽培に対応した条件に調整し、調整後の空気を前記空気供給用配管を介して前記供給穴に送る、請求項1又は2に記載の植物栽培装置。
    The air conditioner has outside air acquisition piping that acquires outside air that is air outside the housing,
    Adjust the air after combining the outside air acquired from the outside air acquisition pipe and the air recovered from the housing by the air recovery pipe to the air conditioner to a condition corresponding to the cultivation of the plant, after adjustment The plant cultivation apparatus according to claim 1, wherein the air is sent to the supply hole through the air supply pipe.
  4.  前記筐体内の空気の温度、湿度、及びCO濃度を計測するセンサをさらに備え、
     前記空調装置は、前記センサの情報に基づいて前記筐体内の空気の温度、湿度、及びCO濃度の調整を行う、請求項1~3のいずれか1項に記載の植物栽培装置。
    A sensor that measures the temperature, humidity, and CO 2 concentration of the air in the housing;
    The air conditioning system, on the basis of the information of the sensor housing of the air temperature, humidity, and CO 2 to adjust the concentration, the plant cultivation device according to any one of claims 1 to 3.
  5.  前記空調装置は、空気の流れる流路を有し、前記流路の上流側に温度を調整する温度調整機、前記流路の下流側に湿度を調整する湿度調整機を有する、請求項1~4のいずれか1項に記載の植物栽培装置。 The air conditioner has a flow path through which air flows, and includes a temperature adjuster that adjusts the temperature upstream of the flow path, and a humidity adjuster that adjusts humidity downstream of the flow path. The plant cultivation apparatus according to any one of 4.
  6.  前記空調装置は、フィルタを有する、請求項1~5のいずれか1項に記載の植物栽培装置。 The plant cultivation apparatus according to any one of claims 1 to 5, wherein the air conditioner includes a filter.
  7.  前記空調装置は、前記筐体内の空気の温度を調整する温度調整機と、前記筐体内の空気の湿度を調整する湿度調整機と、前記筐体内の空気のCO濃度を調整するCO濃度調整機とを有し、
     前記センサは、前記空調装置に回収する空気の温度、湿度、及びCO濃度を計測し、
     前記センサの計測間隔よりも長い時間間隔で、前記空調装置の前記温度調整機と前記湿度調整機と前記CO濃度調整機とを制御して、前記空調装置に回収した空気の温度、湿度、及びCO濃度を前記植物の栽培に対応した条件に調整するように制御する制御部をさらに備え、
     前記制御部は、前記計測間隔で前記センサにより計測された空気の温度、湿度、及びCO濃度をそれぞれ判定し、それぞれの判定結果に基づいて前記空調装置の前記温度調整機と前記湿度調整機と前記CO濃度調整機とを制御することにより、前記空調装置に回収した空気の温度、湿度、及びCO濃度を、前記植物が葉物野菜である場合に、21~22℃の温度、70~80%の相対湿度、900~1100ppmのCO濃度に調整する、請求項4に記載の植物栽培装置。
    The air conditioner includes a temperature adjuster that adjusts the temperature of air in the housing, a humidity adjuster that adjusts the humidity of air in the housing, and a CO 2 concentration that adjusts the CO 2 concentration of air in the housing. An adjustment machine,
    The sensor temperature of the air and collected in the air conditioning system, humidity, and CO 2 concentration is measured,
    By controlling the temperature adjuster, the humidity adjuster, and the CO 2 concentration adjuster of the air conditioner at a time interval longer than the measurement interval of the sensor, the temperature, humidity of the air collected in the air conditioner, And a control unit that controls to adjust the CO 2 concentration to a condition corresponding to the cultivation of the plant,
    The controller determines the temperature, humidity, and CO 2 concentration of the air measured by the sensor at the measurement interval, and the temperature adjuster and the humidity adjuster of the air conditioner based on the respective determination results And the CO 2 concentration adjuster to control the temperature, humidity, and CO 2 concentration of the air collected in the air conditioner at a temperature of 21-22 ° C. when the plant is a leafy vegetable, The plant cultivation apparatus according to claim 4, which is adjusted to a relative humidity of 70 to 80% and a CO 2 concentration of 900 to 1100 ppm.
PCT/JP2017/014328 2016-05-19 2017-04-06 Plant cultivation apparatus WO2017199621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100667 2016-05-19
JP2016100667A JP2017205072A (en) 2016-05-19 2016-05-19 Plant cultivation apparatus

Publications (1)

Publication Number Publication Date
WO2017199621A1 true WO2017199621A1 (en) 2017-11-23

Family

ID=60325815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014328 WO2017199621A1 (en) 2016-05-19 2017-04-06 Plant cultivation apparatus

Country Status (2)

Country Link
JP (1) JP2017205072A (en)
WO (1) WO2017199621A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009989B2 (en) * 2017-12-28 2022-01-26 株式会社テヌート Plant cultivation equipment
TWI707632B (en) * 2019-01-16 2020-10-21 銥光農業科技股份有限公司 Airflow system with temperature and humidity control
US20220201945A1 (en) * 2019-05-09 2022-06-30 Shinwa Controls Co., Ltd Air conditioning system for plant cultivation, air conditioning system for mushroom cultivation, and air conditioning system with carbon dioxide concentration regulating function
JP7237353B2 (en) * 2019-05-09 2023-03-13 伸和コントロールズ株式会社 Air Conditioning System for Plant Cultivation, Air Conditioning System for Mushroom Cultivation and Air Conditioning System with Carbon Dioxide Concentration Adjustment Function
JP2022057363A (en) 2020-09-30 2022-04-11 Mirai株式会社 Cultivation environment control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837944A (en) * 1994-07-26 1996-02-13 Komatsu Ltd Plant raising device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis
US20090158647A1 (en) * 2006-02-24 2009-06-25 Juergen Kleinwaechter Greenhouse, Greenhouse Covering, Filter System, Lighting System, Conducting System, Use and Feeder Apparatus
JP5871025B2 (en) * 2014-04-28 2016-03-01 新菱冷熱工業株式会社 Energy-saving plant cultivation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837944A (en) * 1994-07-26 1996-02-13 Komatsu Ltd Plant raising device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis
US20090158647A1 (en) * 2006-02-24 2009-06-25 Juergen Kleinwaechter Greenhouse, Greenhouse Covering, Filter System, Lighting System, Conducting System, Use and Feeder Apparatus
JP5871025B2 (en) * 2014-04-28 2016-03-01 新菱冷熱工業株式会社 Energy-saving plant cultivation system

Also Published As

Publication number Publication date
JP2017205072A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2017199621A1 (en) Plant cultivation apparatus
US10674680B2 (en) Fan coil for greenhouse
JP5467438B2 (en) Plant cultivation facility
GB2234415A (en) Plant cultivation and apparatus therefor
KR100366000B1 (en) Automatic apparatus for growing mushroom without bacilli
KR101367816B1 (en) Environment-friendly plant system for cultivating mushroom
KR20160081120A (en) Automatically controlled growing conditions and plant nutrient solution supply plant cultivating device
KR20120110493A (en) Container type plant factory
KR20180124391A (en) Plant Grower Cooling System with Vaporizing Heat Cooling
KR101281110B1 (en) A wall type bio-filtration system by air blower
CN203797863U (en) Air purifying, oxygen adding and humidifying plant tank
KR200475073Y1 (en) Thermo-hygristat for Mushroom Culture
CN113661910A (en) Planting environment control system
JP2019198261A (en) Composite culture plant
RU188785U1 (en) Device for the cultivation of plants
RU2676316C1 (en) Device for plant cultivation
WO2020039268A1 (en) Domestic agricultural machinery with the ability to geoponics, hydroponics, and aeroponics, equipped with ultraviolet ray disinfectant system and recycling water system
KR20130035761A (en) Mushroom cultivation medulla purification the water supply system
JP2013021938A (en) Mist sprinkling apparatus in plant factory
CN113287577B (en) Air treatment system applied to air supply of breeding room
JP7361523B2 (en) plant cultivation equipment
JP2002142585A (en) Method for cultivating plant
JP6248256B2 (en) Fully artificial light plant cultivation equipment
WO2019181464A1 (en) Gas feeding device and method for using same, and plant cultivation system
JP2016073263A (en) Carbon dioxide application facility and application method for crops grown in house, and the like

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799055

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799055

Country of ref document: EP

Kind code of ref document: A1