JPH0631136A - Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler - Google Patents

Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler

Info

Publication number
JPH0631136A
JPH0631136A JP4195072A JP19507292A JPH0631136A JP H0631136 A JPH0631136 A JP H0631136A JP 4195072 A JP4195072 A JP 4195072A JP 19507292 A JP19507292 A JP 19507292A JP H0631136 A JPH0631136 A JP H0631136A
Authority
JP
Japan
Prior art keywords
nox
gas turbine
control
outlet
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4195072A
Other languages
Japanese (ja)
Inventor
Koichiro Kuroda
功一郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4195072A priority Critical patent/JPH0631136A/en
Publication of JPH0631136A publication Critical patent/JPH0631136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To accurately control NOx at the outlet of a denitrator and unreacted ammonia and to further reduce the outlet NOx and unreacted ammonia by adding the fluctuation factor of the NOx at the denitrator inlet as the preceding predictive value for controlling the injection of ammonia to control the denitrator outlet NOx. CONSTITUTION:The denitrator for catalytically reducing the NOx in the exhaust gas in the presence of ammonia into harmless N2 is provided in a circulating system as the combination of a gas turbine 2 and a waste heat recovery boiler 1. The control signal for the injection of ammonia necessary to denitration reaction and calculated from the set NOx content in the exhaust gas at the denitrator outlet and the NOx content in the exhaust gas at the denitrator inlet, an NOx control signal for the gas turbine 2 as the fluctuation factor of the NOx content at the denitrator inlet and a control signal 25 as the fluctuation factor of the NOx content at the outlet of the gas turbine 2 are used as the anticipator for controlling the NOx content at the denitrator outlet and the injection of ammonia is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンと廃熱回収
ボイラとを組み合わせた、いわゆるコンバインドサイク
ル系における脱硝装置のアンモニア注入制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia injection control method for a denitration device in a so-called combined cycle system, which is a combination of a gas turbine and a waste heat recovery boiler.

【0002】[0002]

【従来の技術】従来の排ガス中のNOxをアンモニアの
存在下で脱硝触媒により無害の窒素に接触還元する脱硝
装置のアンモニア注入量制御方法において、特に負荷変
動の激しい燃焼装置の排ガスの出口NOx濃度の変動を
少なくする負荷追従性の良好な脱硝装置のアンモニア注
入制御方法が提案されている(特開昭59−10242
6号公報)。また、アンモニアを用いた触媒還元法によ
る脱硝は、乾式であることおよび装置構成が簡単である
ことなどにより、火力発電用の大型ボイラおよびガスタ
ービンと廃熱回収ボイラとを組み合わせたコンバインド
サイクル系の排ガスの脱硝に多く用いられている。(特
公平1−48054号公報)。これらの脱硝方法におい
ては、その脱硝性能はアンモニアの注入量に大きく依存
しており、脱硝装置を安定して運転するためにはアンモ
ニアの注入量の精密な制御が重要な課題となっている。
すなわち、アンモニア注入量が少ないと当然に脱硝性能
が低下し、またアンモニア注入量が多過ぎるとアンモニ
アが未反応のまま脱硝装置の触媒層から流出することに
なる。特に、コンバインドサイクル系に用いられる脱硝
装置においては、ガスタービン出口のNOx値の変動に
対応しなければならないが、ガスタービン出口のNOx
値は、ガスタービンのNOx制御および保炎制御、さら
に燃料発熱量、大気温度、大気湿度等によって大きく変
動する。また、この変動は、比例的な変動ではなく、反
比例の変動または不規則な変動など多様である。従来の
脱硝技術は、脱硝装置の出口NOxの制御に、負荷変動
と、脱硝装置入口NOx濃度と、O2濃度と、ガス量と、
温度と、ガスタービン燃焼器の切替え信号等を加え、こ
れらの値を先行値として用いてアンモニア注入量を制御
しているがいまだ満足できる結果が得られていない。
2. Description of the Related Art In the conventional method for controlling the injection amount of ammonia in a denitration device, in which NOx in the exhaust gas is catalytically reduced to harmless nitrogen by a denitration catalyst in the presence of ammonia, the NOx concentration at the exhaust gas outlet of a combustion device in which the load changes drastically A method for controlling ammonia injection of a denitration device that has a good load followability and that reduces fluctuations in temperature has been proposed (Japanese Patent Laid-Open No. 59-10242).
No. 6). In addition, denitration by the catalytic reduction method using ammonia is a dry type and has a simple device configuration, so that a large-scale boiler for thermal power generation and a combined cycle system combining a gas turbine and a waste heat recovery boiler are used. It is often used for denitration of exhaust gas. (Japanese Patent Publication No. 1-48054). In these denitration methods, the denitration performance largely depends on the injection amount of ammonia, and precise control of the injection amount of ammonia is an important subject for stable operation of the denitration device.
That is, when the amount of injected ammonia is small, the denitration performance is naturally deteriorated, and when the amount of injected ammonia is too large, ammonia flows out from the catalyst layer of the denitration device in an unreacted state. In particular, in the denitration device used in the combined cycle system, it is necessary to deal with the fluctuation of the NOx value at the gas turbine outlet, but the NOx at the gas turbine outlet is required.
The value fluctuates greatly depending on NOx control and flame holding control of the gas turbine, the calorific value of fuel, atmospheric temperature, atmospheric humidity and the like. Further, this fluctuation is not proportional, but various such as inversely proportional fluctuation or irregular fluctuation. The conventional denitration technology controls load NOx concentration, denitration device inlet NOx concentration, O 2 concentration, and gas amount for controlling the NOx outlet NOx.
Although the temperature and the signal for switching the gas turbine combustor are added and these values are used as the preceding values to control the ammonia injection amount, satisfactory results have not yet been obtained.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく、従来
の脱硝装置のアンモニア注入制御方法において、脱硝装
置出口NOx制御に、ガスタービンのNOx制御信号の一
部を取り込んでいるが、脱硝装置入口NOxの変動に対
する出口NOx制御の先行値としては不充分であり、ま
た脱硝装置出口のNOx制御に、ガスタービン出口のN
Ox(脱硝装置の入口NOxとなる)が変動する要因につ
いてのすべての信号を先行値として取り入れていなかっ
た。すなわち、ガスタービン出口NOxの変動要因とし
ては、次のものがあり、それぞれの変動は、正比例する
もの、反比例するもの、あるいは不規則に変化するもの
などさまざまである。その中で、 (1)緩慢な変動要因として、大気温度または湿度の信
号があり、 (2)比較的急な変動要因として、空燃比制御(AF
C)信号、燃料流量または燃料の併入信号、燃料流
量調節弁開度信号または開度制御信号などがあり、 (3)急激な変動要素として、燃焼器失火信号、ガ
スタービン入口案内翼開度信号、空気流量信号または
流量制御信号、起動燃焼器と負荷燃焼器(低NOx燃
焼器)の切替え制御信号、燃料発熱量信号などがあ
り、これらの変動要因を、脱硝装置出口NOx制御の先
行値として取り入れていなかった。このため、脱硝装置
出口NOx値が、上記のガスタービン出口NOxの変動要
因の影響を受けて大きく変わり、低NOx運転を安定し
て継続することができなかった。
As described above, in the conventional ammonia injection control method for the denitration apparatus, the NOx control at the denitration apparatus outlet incorporates a part of the NOx control signal from the gas turbine. Is insufficient as a leading value of the outlet NOx control for the fluctuation of NOx, and the Nx of the gas turbine outlet is used for the NOx control of the denitration device outlet.
Not all the signals concerning the factors causing the fluctuation of Ox (which becomes the NOx at the entrance of the denitration device) were taken in as the preceding values. That is, there are the following factors as the fluctuation factors of the gas turbine outlet NOx, and the fluctuations thereof are various, such as those that are directly proportional, those that are inversely proportional, and those that change irregularly. Among them, (1) there is a signal of the atmospheric temperature or humidity as a slow fluctuation factor, and (2) an air-fuel ratio control (AF
C) signal, fuel flow rate or fuel co-injection signal, fuel flow rate control valve opening signal or opening control signal, etc. (3) Combustor misfire signal, gas turbine inlet guide blade opening Signals, air flow rate signals or flow rate control signals, start-up combustor and load combustor (low NOx combustor) switching control signals, fuel calorific value signals, etc. These fluctuation factors are the leading values of NOx control at the NOx removal device outlet. Was not adopted as. Therefore, the NOx value at the outlet of the denitration device changes greatly under the influence of the above-mentioned fluctuation factor of the NOx at the outlet of the gas turbine, and the low NOx operation cannot be stably continued.

【0004】本発明の目的は、上記ガスタービン出口N
Ox変動要因を、脱硝装置出口NOx制御の先行値として
取り入れ、脱硝装置入口NOxの急激な変動が起こって
から制御信号をフイードバックするのではなく、ガスタ
ービン出口NOxの変動要因を示す各制御信号により脱
硝装置出口NOxの変動値を予測して、先行的にアンモ
ニア注入量を制御し、脱硝装置出口NOxが設定値を大
幅に超えたり、また未反応アンモニアが警告点を超えた
りしないように制御することができるガスタービンと廃
熱回収ボイラとの組合せ循環系における脱硝装置のアン
モニア注入制御方法を提供することにある。
The object of the present invention is to provide a gas turbine outlet N as described above.
The Ox fluctuation factor is taken in as a preceding value of the NOx control outlet NOx control, and the control signal is not fed back after a sudden fluctuation of the NOx removal device inlet NOx occurs, but by each control signal indicating the fluctuation factor of the gas turbine outlet NOx. By predicting the fluctuation value of the NOx at the outlet of the denitration device, the amount of ammonia injection is controlled in advance, and the NOx at the outlet of the denitration device is controlled so as not to greatly exceed the set value and the unreacted ammonia does not exceed the warning point. It is an object of the present invention to provide a method for controlling ammonia injection of a denitration device in a combined circulation system of a gas turbine and a waste heat recovery boiler, which can be performed.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するため、本発明のガスタービンと廃熱回収ボイラとの
組合せ循環系における脱硝装置のアンモニア注入制御方
法において、脱硝装置出口NOxの先行制御に、(1)
脱硝装置入口NOxの変動要因として、負荷変動、NOx
濃度、O2濃度、排ガス量、排ガス温度またはガスター
ビン燃焼器の切替え信号などの制御信号の他に、(2)
ガスタービン出口NOxの変動要因として、大気温度ま
たは湿度信号、AFC信号、燃料流量または燃料併入信
号、燃料流量調節弁開度信号または開度制御信号、燃焼
器失火信号、ガスタービン入口案内翼開度信号、空気流
量または空気流量制御信号、起動燃焼器と負荷燃焼器
(低NOx燃焼器)の切替え信号または燃料発熱量信号
などの制御信号を、脱硝装置出口NOxの先行制御に用
いるものである。そして、上記(1)脱硝装置入口NO
xの変動要因および(2)ガスタービン出口NOxの変動
要因におけるそれぞれの変動値を、ステップ応答で確認
し、脱硝装置出口NOx制御の先行値の予測値とする。
また、各要因の変動が、正比例するもの、反比例するも
の、あるいは変動が不規則なものを見極め、脱硝装置出
口NOx制御の先行値の予測値として設定する。なお、
ステップ応答できないものについては、理論値または経
時変化値を用いる。上記のガスタービン出口NOxの変
動要因の変化により、直ちに脱硝装置出口NOxを制御
するアンモニア注入量の制御に、上記の各制御信号を先
行予測値として取り入れ、アンモニア注入量を調整する
ことにより脱硝制御の遅れが無くなる。特に、反比例の
変動をするものについて先行予測値として取り入れる脱
硝効果は極めて大きい。
In order to achieve the above-mentioned object of the present invention, in the method for controlling ammonia injection of the denitrification apparatus in the combined circulation system of the gas turbine and the waste heat recovery boiler of the present invention, the NOx exit NOx is preceded. For control, (1)
Load fluctuations, NOx
In addition to control signals such as concentration, O 2 concentration, exhaust gas amount, exhaust gas temperature or gas turbine combustor switching signal, (2)
The factors of fluctuation of NOx at the gas turbine outlet are atmospheric temperature or humidity signal, AFC signal, fuel flow rate or co-fuel signal, fuel flow rate control valve opening signal or opening control signal, combustor misfire signal, gas turbine inlet guide blade opening. A control signal such as a temperature signal, an air flow rate or an air flow rate control signal, a switching signal between the start-up combustor and the load combustor (low NOx combustor), or a fuel calorific value signal is used for advanced control of the NOx removal device NOx. . Further, the above (1) NOx removal device inlet NO
The respective fluctuation values of the fluctuation factor of x and the fluctuation factor of (2) NOx of the gas turbine outlet are confirmed by the step response and set as the predicted value of the preceding value of the NOx control at the NOx outlet.
Further, the variation of each factor is directly proportional, inversely proportional, or irregularly varied, and is set as a predicted value of the preceding value of the NOx control at the NOx removal device outlet. In addition,
For those that cannot make a step response, the theoretical value or the time-dependent change value is used. Due to the change in the fluctuation factor of the NOx at the gas turbine outlet, the above NOx control signals are immediately taken into the control of the ammonia injection amount for controlling the NOx outlet NOx, and the ammonia injection amount is adjusted to adjust the NOx removal control. There is no delay. In particular, the denitrification effect that is incorporated as a pre-estimation value for those that vary inversely is extremely large.

【0006】[0006]

【作用】本発明のガスタービンと廃熱回収ボイラとの組
合せ循環系における脱硝装置のアンモニア注入制御方法
は、ガスタービンの出口NOx変動要因、すなわち、脱
硝装置入口NOx変動要因を、脱硝装置出口NOx制御の
ためのアンモニア注入量制御の先行予測値として加える
ことにより、脱硝装置出口NOxの制御および未反応ア
ンモニアの制御をより的確に行うことができ、出口NO
xおよび未反応アンモニアのいっそうの低減をはかるこ
とができる。
The ammonia injection control method of the denitration device in the combined circulation system of the gas turbine and the waste heat recovery boiler according to the present invention has the NOx fluctuation factor of the gas turbine, that is, the NOx fluctuation factor of the denitration device as the NOx fluctuation factor. By adding the ammonia injection amount control for control as a predictive predictive value, it is possible to more accurately control the NOx outlet NOx and unreacted ammonia.
Further reduction of x and unreacted ammonia can be achieved.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、さらに詳細に
説明する。図1は、本発明のガスタービンと廃熱回収ボ
イラとの組合せ循環系における脱硝装置のアンモニア注
入制御方法を示す系統図である。図において、ガスター
ビン2は、発電機3および蒸気タービン4に連結されて
おり、ガスタービン2は、ガスタービンNOx制御装置
20により制御されている。一方、ガスタービン2の排
ガスは廃熱回収ボイラ1に導入される。廃熱回収ボイラ
1は、過熱器、高圧蒸発器および高圧節炭器等からなる
高圧ドラム6系と、低圧蒸発器、低圧節炭器等からなる
低圧ドラム7系とにより構成されており、一対の高圧蒸
発器の間に、脱硝触媒を充填した脱硝装置が設けられて
おり、その前流側にアンモニア注入ノズル5が配設され
ている。廃熱回収ボイラ1の排ガス入口部、すなわち脱
硝装置の前流側には、排ガス流量計23、排ガス中のN
Ox濃度を検出するNOx計11、O2濃度を検出するO2
計14、排ガスの温度を検出する温度計16等が設けら
れており、廃熱回収ボイラ1の出口側、すなわち脱硝装
置の後流側には、排ガス流量計24、脱硝した後の排ガ
ス中のNOxを検出するNOx計12、脱硝した排ガス中
の未反応のアンモニアを検出するNH3計13、排ガス
中のO2濃度を検出するO2計15等が配設されている。
そして、脱硝装置におけるアンモニア注入量の制御は、
脱硝装置入口の排ガス中のO2、NOx濃度および温度の
測定値と、 脱硝装置出口の排ガス中のO2、NOx、N
3の測定値を、脱硝制御装置19にフイードバックし
て、脱硝装置出口NOx制御の先行値として用いアンモ
ニア注入量の制御を行うものである。ここまでは、従来
の脱硝装置におけるアンモニア注入制御方法とほほ同じ
であるが、本発明のガスタービンと廃熱回収ボイラとの
組合せ循環系における脱硝装置のアンモニア注入量制御
方法は、さらに脱硝装置入口NOxの変動要因であるガ
スタービンのNOx制御信号、およびガスタービン出口
のNOxの変動要因となるすべての信号を先行値として
取り入れ、脱硝装置出口NOx制御を行うものである。
すなわち、脱硝装置入口のNOx値変動要因であるガス
タービンNOx制御装置20からの制御信号、およびガ
スタービン出口NOxの変動要因となる大気温度また
は湿度の信号、AFC信号、燃料流量または燃料の
併入信号、燃料流量調節弁開度信号または開度制御信
号、燃焼器失火信号、ガスタービン入口案内翼開度
信号、空気流量信号または流量制御信号、起動燃焼
器と負荷燃焼器(低NOx燃焼器)の切替え制御信号、
または燃料発熱量信号などのガスタービン出口NOx
の変動要因となる信号23を、先行値として脱硝制御装
置19に入力し、脱硝装置入口のO2、NOx温度および
脱硝装置出口のO2、NOx、NH3等の測定値をフイー
ドバックして脱硝装置のアンモニア注入量の先行制御を
行う方法である。本発明のガスタービンと廃熱回収ボイ
ラとの組合せ循環系における脱硝装置のアンモニア注入
制御装置によれば、ガスタービン出口NOxの変動要因
となるすべての信号を取り入れ、脱硝装置のアンモニア
注入量の先行制御を行っているので、ガスタービンの出
口NOxの急激な変動があっても脱硝装置出口NOx値を
低いレベルに維持することができ、かつ未反応のリーク
アンモニア量も極めて少量に保持することができ、脱硝
装置の長期安定運転が可能となる。
EXAMPLES The present invention will be described in more detail below with reference to examples. FIG. 1 is a system diagram showing an ammonia injection control method of a denitration device in a combined circulation system of a gas turbine and a waste heat recovery boiler of the present invention. In the figure, a gas turbine 2 is connected to a generator 3 and a steam turbine 4, and the gas turbine 2 is controlled by a gas turbine NOx control device 20. On the other hand, the exhaust gas of the gas turbine 2 is introduced into the waste heat recovery boiler 1. The waste heat recovery boiler 1 is composed of a high pressure drum 6 system including a superheater, a high pressure evaporator and a high pressure economizer, and a low pressure drum 7 system including a low pressure evaporator and a low pressure economizer. A denitration device filled with a denitration catalyst is provided between the high pressure evaporators, and an ammonia injection nozzle 5 is provided on the upstream side thereof. At the exhaust gas inlet of the waste heat recovery boiler 1, that is, on the upstream side of the denitration device, the exhaust gas flow meter 23 and N in the exhaust gas are provided.
O 2 for detecting a NOx meter 11, O 2 concentration for detecting the Ox concentration
A total of 14, a thermometer 16 for detecting the temperature of the exhaust gas, and the like are provided. On the outlet side of the waste heat recovery boiler 1, that is, on the downstream side of the denitration device, the exhaust gas flow meter 24, the exhaust gas after denitration, An NOx meter 12 for detecting NOx, an NH 3 meter 13 for detecting unreacted ammonia in the denitrated exhaust gas, an O 2 meter 15 for detecting the O 2 concentration in the exhaust gas, and the like are provided.
And, the control of the ammonia injection amount in the denitration device is
Measured values of O 2 and NOx concentration and temperature in the exhaust gas at the denitration device inlet, and O 2 , NOx, N in the exhaust gas at the denitration device outlet
The measured value of H 3 is fed back to the denitration control device 19 to be used as a leading value for NOx control at the denitration device outlet to control the ammonia injection amount. Up to this point, the method is almost the same as the ammonia injection control method in the conventional denitration device, but the ammonia injection amount control method of the denitration device in the combined circulation system of the gas turbine and the waste heat recovery boiler of the present invention is further the denitration device inlet NOx. The NOx control signal of the gas turbine, which is the fluctuation factor of NOx, and all the signals that are the fluctuation factors of NOx of the gas turbine outlet are taken in as preceding values to perform NOx control of the NOx removal device outlet.
That is, a control signal from the gas turbine NOx control device 20, which is a factor for varying the NOx value at the inlet of the denitration device, and an atmospheric temperature or humidity signal, which is a factor for varying the NOx value at the gas turbine outlet, an AFC signal, a fuel flow rate, or a combination of fuel. Signal, fuel flow control valve opening signal or opening control signal, combustor misfire signal, gas turbine inlet guide vane opening signal, air flow signal or flow control signal, starter combustor and load combustor (low NOx combustor) Switching control signal of
Or NOx for gas turbine outlet such as fuel calorific value signal
The signal 23, which is a factor of fluctuation, is input to the denitration control device 19 as a preceding value, and the denitration is performed by feeding back the measured values of O 2 , NOx temperature at the denitration device inlet and O 2 , NOx, NH 3 at the denitration device outlet. This is a method of performing advance control of the ammonia injection amount of the device. According to the ammonia injection control device of the denitration device in the combined circulation system of the gas turbine and the waste heat recovery boiler of the present invention, all the signals that cause the fluctuation of the gas turbine outlet NOx are taken in, and the ammonia injection amount of the denitration device is preceded. Since the control is performed, the NOx value at the outlet of the denitration device can be maintained at a low level even if there is a sudden change in the NOx at the outlet of the gas turbine, and the amount of unreacted leaked ammonia can be maintained at an extremely small amount. Therefore, the denitration device can be stably operated for a long period of time.

【0008】[0008]

【発明の効果】本発明のガスタービンと廃熱回収ボイラ
との組合せ循環系における脱硝装置のアンモニア注入制
御方法によれば、脱硝装置入口NOxの変動要因である
ガスタービンのNOx制御信号、およびガスタービン出
口NOxの変動要因を取り入れ、脱硝装置のアンモニア
注入量を先行制御しているので、ガスタービン出口NO
xの大きな変動があっても、極めて効率よく脱硝反応を
維持することができ、低NOxで、低未反応リークアン
モニア量の脱硝排ガスが得られ、脱硝運転を長期にわた
り安定して継続することが可能となる。
According to the ammonia injection control method of the denitrification device in the combined circulation system of the gas turbine and the waste heat recovery boiler of the present invention, the NOx control signal of the gas turbine, which is a factor for varying the NOx at the denitration device inlet, and the gas. Since the factor of varying NOx at the turbine outlet is introduced and the amount of ammonia injected into the denitration device is controlled in advance, NO at the gas turbine outlet
Even if there is a large fluctuation in x, the denitration reaction can be maintained extremely efficiently, low NOx, low unreacted leakage ammonia amount of denitration exhaust gas can be obtained, and denitration operation can be continued stably for a long period of time. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示したガスタービンと廃熱
回収ボイラとの組合せ循環系における脱硝装置のアンモ
ニア注入制御装置の構成を示す系統図。
FIG. 1 is a system diagram showing a configuration of an ammonia injection control device of a denitration device in a combined circulation system of a gas turbine and a waste heat recovery boiler exemplified in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…廃熱回収ボイラ 2…ガスタービン 3…発電機 4…蒸気タービン 5…アンモニア注入ノズル 6…高圧ドラム 7…低圧ドラム 8…復水器 9…高圧給水ポンプ 10…給水ポンプ 11,12…NOx計 13…NH3計 14,15…O2計 16…温度計 17…NH3注入制御部 18…NH3注入制御弁 19…脱硝制御装置 20…ガスタービンNOx制御装置 21…O2、NOx、温度信号 22…O2、NOx、NH3信号 23,24…排ガス流量計 25…ガスタービン出口NOxの変動要因となる信号1 ... Waste heat recovery boiler 2 ... Gas turbine 3 ... Generator 4 ... Steam turbine 5 ... Ammonia injection nozzle 6 ... High pressure drum 7 ... Low pressure drum 8 ... Condenser 9 ... High pressure water supply pump 10 ... Water supply pump 11, 12 ... NOx Total 13 ... NH 3 Total 14, 15 ... O 2 Total 16 ... Thermometer 17 ... NH 3 injection control unit 18 ... NH 3 injection control valve 19 ... Denitration control device 20 ... Gas turbine NOx control device 21 ... O 2 , NOx, Temperature signal 22 ... O 2 , NOx, NH 3 signal 23, 24 ... Exhaust gas flow meter 25 ... Signal that causes fluctuation of NOx at gas turbine outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンと廃熱回収ボイラとを組み合
わせた循環系に設けられた、排ガス中のNOxをアンモ
ニアの存在下で触媒により接触還元して無害のN2とす
る脱硝装置のアンモニア注入制御方法において、設定さ
れた脱硝装置の出口排ガス中のNOx量と入口排ガス中
のNOx量とにより算出された脱硝反応に必要とするア
ンモニア注入量の制御信号と、脱硝装置入口NOx値の
変動要因となるガスタービンのNOx制御信号およびガ
スタービン出口NOx値の変動要因となる制御信号を、
脱硝装置出口NOx制御の先行値として用いアンモニア
注入量を制御することを特徴とするガスタービンと廃熱
回収ボイラとの組合せ循環系における脱硝装置のアンモ
ニア注入制御方法。
1. A provided the circulatory system of a combination of a waste heat recovery boiler and a gas turbine, the ammonia injection denitration apparatus for the NOx in the exhaust gas and N 2 harmless to catalytic reduction with a catalyst in the presence of ammonia In the control method, the control signal of the ammonia injection amount required for the denitration reaction calculated by the set NOx amount in the outlet exhaust gas of the denitration device and the NOx amount in the inlet exhaust gas, and the variation factor of the denitration device inlet NOx value The gas turbine NOx control signal and the gas turbine outlet NOx value fluctuation control signal,
A method for controlling ammonia injection of a denitration device in a combined circulation system of a gas turbine and a waste heat recovery boiler, characterized by controlling an amount of ammonia injection used as a preceding value of NOx control at the denitration device outlet.
【請求項2】請求項1において、脱硝装置入口NOx値
の変動要因となるガスタービンのNOx制御信号は、負
荷変動、NOx濃度、O2濃度、排ガス量、排ガス温度ま
たはガスタービン燃焼器の切替え信号であり、ガスター
ビン出口NOx値の変動要因となる制御信号は、大気温
度または湿度の信号、空燃比制御信号、燃料流量または
燃料の併入信号、燃料流量調節弁開度信号または開度制
御信号、燃焼器失火信号、ガスタービン入口案内翼開度
信号、空気流量信号または流量制御信号、起動燃焼器と
負荷燃焼器の切替え制御信号または燃料発熱量信号であ
ることを特徴とするガスタービンと廃熱回収ボイラとの
組合せ循環系における脱硝装置のアンモニア注入制御方
法。
2. The NOx control signal of the gas turbine, which causes a change in the NOx value at the inlet of the denitration device, according to claim 1, is load change, NOx concentration, O 2 concentration, exhaust gas amount, exhaust gas temperature, or gas turbine combustor switching. Signals and control signals that cause the NOx value of the gas turbine outlet to fluctuate are atmospheric temperature or humidity signals, air-fuel ratio control signals, fuel flow rate or fuel injection signals, fuel flow rate control valve opening signal or opening control A signal, a combustor misfire signal, a gas turbine inlet guide vane opening signal, an air flow signal or a flow control signal, a switching control signal between a starting combustor and a load combustor, or a fuel calorific value signal, and A method for controlling ammonia injection in a denitration device in a combined circulation system with a waste heat recovery boiler.
JP4195072A 1992-07-22 1992-07-22 Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler Pending JPH0631136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195072A JPH0631136A (en) 1992-07-22 1992-07-22 Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195072A JPH0631136A (en) 1992-07-22 1992-07-22 Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH0631136A true JPH0631136A (en) 1994-02-08

Family

ID=16335091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195072A Pending JPH0631136A (en) 1992-07-22 1992-07-22 Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0631136A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290630A (en) * 2002-04-03 2003-10-14 Mitsubishi Heavy Ind Ltd Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
CN109107387A (en) * 2018-09-26 2019-01-01 汇信盈(北京)智能技术有限公司 A kind of denitrating system sprays ammonia control method and control system automatically
WO2024101074A1 (en) * 2022-11-07 2024-05-16 三菱重工業株式会社 Denitration controller and denitration device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290630A (en) * 2002-04-03 2003-10-14 Mitsubishi Heavy Ind Ltd Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
JP4489536B2 (en) * 2004-08-30 2010-06-23 関西電力株式会社 Carbon dioxide gas application method for greenhouse cultivation
CN109107387A (en) * 2018-09-26 2019-01-01 汇信盈(北京)智能技术有限公司 A kind of denitrating system sprays ammonia control method and control system automatically
WO2024101074A1 (en) * 2022-11-07 2024-05-16 三菱重工業株式会社 Denitration controller and denitration device

Similar Documents

Publication Publication Date Title
EP0604236B1 (en) Nitrogen oxide removal control apparatus
US4473537A (en) Ammonia control system for NOx emission control for gas turbine exhaust
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US5047220A (en) Catalytic denitrification control process and system for combustion flue gases
NL8304427A (en) CATALYTIC SYSTEM FOR CONTROLLING POLLUTION IN THE EXTRACTION OF GAS TURBINES.
JPH10116105A (en) Generalized predictive control system and denitration controller
JPH0631136A (en) Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
JPH04346819A (en) Denitration control device and method
JPH0633743A (en) Denitration control device
JP4607720B2 (en) Gas turbine fuel control system
JP3263184B2 (en) DeNOx control device
JPS63106304A (en) Denitration control device for combined power plant
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus
JPH0880423A (en) Denitrification controller
JPH0367728B2 (en)
JPH08326508A (en) Denitration control device
JP2772233B2 (en) DeNOx control device
JPH0611379B2 (en) Exhaust heat recovery heat exchanger
JPH11221446A (en) Method and apparatus for denitrating exhaust gas
JPS6340245B2 (en)
JPH0436002A (en) Nitrogen oxide concentration control device
JPS6128704A (en) Operating method of combined plant
JPS61174929A (en) Waste gas denitration apparatus
JPS5886305A (en) Control system for lowering of nox
JPH01189335A (en) Denitration device for exhaust gas of gas turbine