JPH0367728B2 - - Google Patents

Info

Publication number
JPH0367728B2
JPH0367728B2 JP57010848A JP1084882A JPH0367728B2 JP H0367728 B2 JPH0367728 B2 JP H0367728B2 JP 57010848 A JP57010848 A JP 57010848A JP 1084882 A JP1084882 A JP 1084882A JP H0367728 B2 JPH0367728 B2 JP H0367728B2
Authority
JP
Japan
Prior art keywords
exhaust gas
denitrification
catalyst
gas
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57010848A
Other languages
Japanese (ja)
Other versions
JPS58128126A (en
Inventor
Kunihiko Konishi
Yasuyoshi Kato
Masao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57010848A priority Critical patent/JPS58128126A/en
Publication of JPS58128126A publication Critical patent/JPS58128126A/en
Publication of JPH0367728B2 publication Critical patent/JPH0367728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は脱硝方法に係り、特に排ガス中の窒素
酸化物(以下、NOXという)を除去する乾式脱
硝装置へ還元剤として例えばアンモニア(NH3
などを注入して、NOXを還元する乾式脱硝方法
に関するものである。 [従来技術] 近年、我が国においては重油供給量のひつ迫か
ら、石油依存の是正を計るために、従来の重油専
焼から石炭専焼へと燃料を変換しつつあり、特に
事業所ボイラにおいては石炭専焼の大容量火力発
電所が建設されている。 ところが、石炭燃料は石油燃料に比べて燃焼性
が悪いので、排ガス中に含まれているNOX及び
未燃分が発生しやすい。このNOXの低減対策の
ために火炎の分割、排ガスの再循環、二段燃焼及
び炉内脱硝などを採用して、緩慢な燃焼を行わせ
てNOXを低減することが行われている。 そしてこの石炭専焼火力においては、ボイラ負
荷が常に全負荷(100%負荷)で運転される場合
は少なく、負荷を80%負荷、50%負荷、25%負荷
へと上げ、下げして運転したり、運転を停止する
などの中間負荷を担う火力発電プラントへ移行し
つつある。 一方、この中間負荷火力用には起動特性のよい
ガスタービンと排熱回収ボイラを組合わせた、い
わゆるコンバインドサイクルプラントのように、
電力需要の多い昼間のみ運転して、夜間は運転を
停止するものが建設されようとしている。 ところが、この石炭専焼の中間負荷用ボイラ、
ガスタービンにおいてもNOX排出濃度の規制強
化にともない、従来の燃焼改善に加えて、NH3
を還元剤として触媒の存在下で脱硝を行う乾式接
触還元脱硝装置を設置するプラントが増加してい
る。 それは石炭専焼ボイラにおいては、石炭の燃焼
性が悪いのでNOX量が増加し、ガスタービンプ
ラトにおいては酸素量が多く高温燃焼を行うため
に、石炭専焼ボイラと同様に排ガス中には多量の
NOXを含有しているので、第1図に示すような
脱硝装置8がプラント中に設置されている。 第1図は、この脱硝装置8が設置されたボイラ
の代表的な煙風道系統を示す図である。 同図に示すように、空気ダクト1内に導入され
た燃焼用空気は押込通風機2にて昇圧され、空気
予熱器3で排ガスダクト4内を流通する高温の排
ガスによつて加熱された後、ウインドボツクス5
よりボイラ6へ供給される。 一方、ボイラ6内で燃焼した排ガスは、排ガス
ダクト4でNH3注入管7からNH3が混入され、
それの下流に配置された脱硝装置8内の触媒9に
よつて脱硝が行われ、排ガス中のNOXは除去さ
れて、その後空気予熱器3、集塵機10、誘引通
風機11で昇圧されて大気へ放出される。 ところが、係る脱硝装置8は触媒9の種類によ
つても多少反応温度は異なるが、最も効率の高い
温度範囲は300〜400℃の比較的高温で、温度範囲
はいたつて狭い。そのため、中間負荷火力用のボ
イラやガスタービンのように常に部分負荷で運転
されるものにおいては、負荷変動によつて排ガス
温度が変動して、触媒9の使用可能領域を外れて
しまうという問題がある。 この場合、排ガス温度が高過ぎると、触媒9の
変質が生じて触媒としての機能が損なわれる。ま
た、排ガス温度が低過ぎると、排ガス中に存在す
る無水硫酸(SO3)と反応して、やはり触媒機能
が劣化する。 従つて、これら部分負荷時における排ガスは、
ガスバイパス方式、アフターバーニングなどによ
つて温度制御が行われたり、あるいは触媒性能の
改良により、部分負荷時の脱硝は解決されつつあ
る。 [発明が解決しようとする課題] ところが、中間負荷火力用のボイラやガスター
ビンにおける脱硝装置の欠点は、これらのボイラ
やガスタービンが頻繁に起動、停止を繰り返すこ
とによつて、起動直後には多量のNOXが発生し、
しかもガス温度が低いことから、NH3を注入し
てから脱硝反応の進行状態が定常になるまでには
数時間を要する。そのため、起動直後に排出され
るNOXの低減が新な問題となる。 従来、安定した脱硝を行うため、特開昭55−
1858号公報に記載されているような発明が提案さ
れている。 この発明は、予め使用する触媒のNH3最大吸
着量を求めておき、排ガス通気時に脱硝装置から
出る排ガスのNOX量をガス分析計によつて監視
しておき、NOX量が所定の値になると電磁弁を
開いてNH3注入管から前記NH3最大吸着量以内
の過剰のNH3を所定時間注入する。そしてNH3
の注入が完了すると電磁弁を閉じることにより、
NH3の注入を停止する。この電磁弁を閉じた後
の脱硝反応は、触媒に吸着されている余剰の
NH3が触媒から離脱して脱硝反応に関与する仕
組みになつている。すなわち、前記触媒に吸着さ
れた余剰のNH3が、排ガスの流量の変動、NOX
濃度の変動、NOとNO2の比率の変動ならびに前
記分析計の応答遅れなどを補償するバツフアーと
なつている。 前述のようにこの方法では、排ガスの通気時に
過剰のNH3を注入して、その一部を直接排ガス
の脱硝反応に関与させ、残りのNH3を触媒に吸
着させようとするものである。 しかし、処理すべき多量の排ガスを流している
ときに、過剰のNH3を注入して、その一部を脱
硝反応に関与させながら、余剰のNH3ガスを触
媒に吸着させることは、実質的にはほとんど不可
能である。すなわち、多量の排ガスをNH3ガス
と同伴して流していることからガス流速が速くな
つている。そのため、注入したときには反応に関
与しない余剰のNH3ガスは触媒に吸着される前
に排ガスによつて流されてしまい、ほとんど触媒
には吸着されない。そうなると、脱硝装置出口に
NH3ガスが漏洩して二次公害を引き起こすばか
りでなく、前記電磁弁を閉じてNH3ガスの供給
を停止した後にはほとんど脱硝反応が行われず、
NOXがそのまま大気中に排出されることになる。 なお、排ガスと一緒にNH3ガスを流しても、
NH3が触媒に吸着されるようにするためは、脱
硝装置内のガス流速を遅くして吸着時間を長くす
ればよい。しかし、そうするためには脱硝装置内
の空間を大きくとる必要があり、その結果必然的
に装置が大型化し、設計的ならびに経済的に好ま
しいことではない。 本発明はこのような従来技術の欠点を解決する
もので、その目的とするところは、起動、停止を
頻繁に繰り返すプラントであつても、起動直後か
ら効率良く脱硝することができる脱硝方法を提供
することにある。 [課題を解決するための手段] 前記目的を達成するため、本発明は、触媒を内
蔵した脱硝装置を排ガスダクト内に設け、この脱
硝装置の上流に還元剤を注入する注入手段を設け
て、排ガスダクト内に還元剤を注入して処理すべ
き排ガス中の窒素酸化物を還元する乾式脱硝方法
において、 前記脱硝装置への排ガス通気停止前から遅くと
も次の脱硝装置の起動前に、前記注入手段により
過剰の還元剤を排ガスダクト内に注入して、この
過剰の還元剤を予め触媒に吸着させ、しかる後に
排ガスダクト内に処理すべき排ガスを通気して排
ガス中の窒素酸化物を還元することを特徴とする
ものある。 [作用] 前述のように、本発明は、脱硝装置の起動前に
過剰の還元剤を注入して、この過剰の還元剤を排
ガス通気前に予め触媒に吸着させるものである。 このように起動前に還元剤を注入するのである
から、還元剤の吸着に十分な時間がとれる。しか
も、処理すべき多量の排ガスとともに還元剤を流
していた従来提案のものに比較して格段に流速が
遅い。このようなことから、還元剤を触媒に十分
吸着させることができ、排ガスの通気前から還元
剤をラジカルな状態にしておくことができる。 このことは特に起動時において重要なことであ
る。すなわち、例えばボイラなどの起動時におい
ては、特に排ガス中のNOX含有量が多く、しか
も排ガス温度が比較的低いという、脱硝にとつて
は最も悪い状態にある。このような条件下のと
き、本発明のように排ガスの通気前から還元剤を
ラジカルな状態にしておくことができれば、脱硝
反応を効率的に進行させることができる。 [実施例] 次に本発明の実施例について説明するが、その
前に本発明者らが行つた実験例から説明する。 本発明者らはNH3接触還元脱硝法において、
NH3注入後のNH3吸着量の変化ならびに脱硝率
の変化について測定し、その結果を第2図ならび
に第3図に示す。これらの図から明らかなよう
に、NH3注入開始後、脱硝率が定常値になるま
でに数時間を要することがわかる。 このことについて、その原因を反応機構の面か
ら種々検討した結果、次のような結論に至つた。 なお、これらの実験条件は、ガス温度200℃、
面積速度6m/h、ガスは灯油燃焼ガス、NO値
200ppm、NH3注入量200ppmである。 これらの図から明らかなように、第3図に示す
NH3注入開始後からの脱硝率と、第2図に示す
触媒上に吸着されているNH3吸着量の経時変化
はよく一致している。これをもとに、脱硝率Xと
NH3吸着量Qとの関係を調べると、次式のよう
な関係が成立する。 ln1/1X−=const.・Q ただし式中 X:脱硝率 Q:NH3吸着量 const.:定数 この式によれば、脱硝率XがNH3を注入し始
めて直ちに高くならないのは、NH3の供給量が
すくないので、触媒上のNH3吸着量が定常値に
なるまでに時間がかかるためであることが判明し
た。 一方、脱硝率Xを大きくするためには、触媒上
のNH3吸着量を増大させればよいことになる。 この吸着NH3の性質について調べた結果、吸
着したNH3はきわめて安定であり、一旦触媒上
に吸着されたNH3は脱硝装置の停止期間中も変
化はなく、触媒上に吸着されたままであることも
判明した。 本発明は、この吸着NH3の驚くべき安定性を
脱硝装置に応用したものである。 すなわち、NH3の注入開始時点を脱硝装置の
起動前にして、多量のNH3すなわち、脱硝反応
に必要なNH3量に比べて過剰なNH3量を触媒上
に吸着されば、起動前からNH3をラジカルな状
態に維持しておくことができ、ガスタービンや中
間負荷ボイラのように起動、停止を頻繁に繰り返
すものにおいても、起動直後から効率よく脱硝す
ることができる。 [実施例] 次に、本発明を実施例により詳細に説明する。 実施例 1 10〜20メツシユに成形・整粒したTi系触媒を、
脱硝装置の反応管に充填する。次の第1表に示す
ガスを350℃に加熱し、これを前記反応管に空間
速度50000h-1で通気させて30分間通気状態を維持
した。その後、NH3濃度を300ppmに増大させて
30分間、同一条件に保持した後にガスの通気を停
止し、直ちに大気中に取り出してそのまま12時間
放置した。 このNH3を吸着した触媒を再び反応管に充填
し、第1表の組成のガスを通しながら、第4図に
示すように常温から350℃まで昇温し、そのとき
の脱硝率の変化を測定した。この結果を第5図の
二点鎖線の曲線Aで示す。この曲線に示されてい
るように起動時から脱硝率が高くなり、脱硝装置
への排ガス通気前に過剰のNH3量を注入するこ
とが、再起動時の脱硝率を高くすることに最も有
効であることがわかる。
[Industrial Application Field] The present invention relates to a denitrification method, and in particular, to a dry denitrification device for removing nitrogen oxides (hereinafter referred to as NOx ) from exhaust gas, for example, ammonia (NH 3 ) is used as a reducing agent.
This relates to a dry denitrification method that reduces NO [Prior art] In recent years, in Japan, due to the tight supply of heavy oil, in order to correct the dependence on oil, the fuel is being changed from the conventional heavy oil-burning to coal-burning. Large-capacity thermal power plants are being constructed. However, since coal fuel has poor combustibility compared to petroleum fuel, NOx and unburned substances contained in exhaust gas are likely to be generated. Measures to reduce NO x include flame splitting, exhaust gas recirculation, two-stage combustion, and in-furnace denitration to achieve slow combustion and reduce NO x . In this coal-fired thermal power plant, the boiler load is rarely operated at full load (100% load), but the load may be increased or decreased to 80% load, 50% load, 25% load. , thermal power plants are shifting to thermal power plants that take on intermediate loads such as shutting down operations. On the other hand, for intermediate-load thermal power generation, there are so-called combined cycle plants that combine a gas turbine with good startup characteristics and an exhaust heat recovery boiler.
A system that operates only during the day when electricity demand is high and shuts down at night is about to be built. However, this coal-fired intermediate load boiler,
In addition to conventional combustion improvements, NH 3
An increasing number of plants are installing dry catalytic reduction and denitrification equipment that performs denitrification in the presence of a catalyst using a reducing agent. In coal-fired boilers, the coal has poor combustibility, so the amount of NO
Since it contains NOx , a denitrification device 8 as shown in FIG. 1 is installed in the plant. FIG. 1 is a diagram showing a typical flue system of a boiler in which this denitrification device 8 is installed. As shown in the figure, the combustion air introduced into the air duct 1 is pressurized by the forced draft fan 2, heated by the high-temperature exhaust gas flowing through the exhaust gas duct 4 by the air preheater 3, and then heated by the high temperature exhaust gas flowing through the exhaust gas duct 4. , Windbox 5
The water is then supplied to the boiler 6. On the other hand, the exhaust gas burned in the boiler 6 is mixed with NH 3 from the NH 3 injection pipe 7 in the exhaust gas duct 4.
Denitration is performed by the catalyst 9 in the denitrification device 8 located downstream of the exhaust gas, and NOx in the exhaust gas is removed.Then, the pressure is increased by the air preheater 3, dust collector 10, and induced draft fan 11 to create an air atmosphere. released to. However, although the reaction temperature of the denitrification device 8 varies somewhat depending on the type of catalyst 9, the temperature range with the highest efficiency is a relatively high temperature of 300 to 400°C, and the temperature range is quite narrow. Therefore, in boilers for intermediate load thermal power plants and gas turbines that are always operated at partial load, there is a problem that the exhaust gas temperature fluctuates due to load fluctuations and goes outside the usable range of the catalyst 9. be. In this case, if the exhaust gas temperature is too high, the quality of the catalyst 9 will change and its function as a catalyst will be impaired. Furthermore, if the exhaust gas temperature is too low, it will react with sulfuric anhydride (SO 3 ) present in the exhaust gas, resulting in deterioration of the catalyst function. Therefore, the exhaust gas at these partial loads is:
The problem of denitrification during partial load is being solved by temperature control using gas bypass systems, afterburning, etc., or by improving catalyst performance. [Problems to be Solved by the Invention] However, the drawback of the denitrification equipment for intermediate-load thermal power boilers and gas turbines is that these boilers and gas turbines repeatedly start and stop, and immediately after startup, A large amount of NO X is generated,
Moreover, since the gas temperature is low, it takes several hours after NH 3 is injected until the progress of the denitrification reaction reaches a steady state. Therefore, reducing NOx , which is emitted immediately after startup, becomes a new issue. Conventionally, in order to perform stable denitrification,
An invention as described in Publication No. 1858 has been proposed. In this invention, the maximum adsorption amount of NH 3 of the catalyst to be used is determined in advance, and the amount of NO X in the exhaust gas emitted from the denitrification device during exhaust gas ventilation is monitored using a gas analyzer, so that the amount of NO When this happens, the solenoid valve is opened and excess NH 3 within the maximum adsorption amount of NH 3 is injected from the NH 3 injection pipe for a predetermined period of time. and NH3
By closing the solenoid valve when the injection of
Stop the NH3 injection. After this solenoid valve is closed, the denitrification reaction starts with the excess adsorbed on the catalyst.
The mechanism is such that NH 3 leaves the catalyst and participates in the denitrification reaction. In other words, the excess NH 3 adsorbed on the catalyst causes fluctuations in the flow rate of exhaust gas, NO
It serves as a buffer that compensates for fluctuations in concentration, fluctuations in the ratio of NO and NO 2 , and response delays of the analyzer. As mentioned above, in this method, excess NH 3 is injected during exhaust gas ventilation, a portion of which is directly involved in the denitrification reaction of the exhaust gas, and the remaining NH 3 is adsorbed by the catalyst. However, when flowing a large amount of exhaust gas to be treated, injecting excess NH 3 and allowing some of it to participate in the denitrification reaction while allowing the excess NH 3 gas to be adsorbed by the catalyst is practically impossible. is almost impossible. That is, since a large amount of exhaust gas is flowing together with NH 3 gas, the gas flow rate is increasing. Therefore, when injected, excess NH 3 gas that does not participate in the reaction is washed away by the exhaust gas before being adsorbed by the catalyst, and is hardly adsorbed by the catalyst. In that case, at the denitrification equipment outlet
Not only does NH 3 gas leak and cause secondary pollution, but after the solenoid valve is closed and the supply of NH 3 gas is stopped, almost no denitrification reaction takes place.
NOx will be emitted directly into the atmosphere. Furthermore, even if NH 3 gas is flowed together with the exhaust gas,
In order to cause NH 3 to be adsorbed by the catalyst, the gas flow rate within the denitrification device may be slowed down to lengthen the adsorption time. However, in order to do so, it is necessary to take up a large space within the denitrification apparatus, which inevitably increases the size of the apparatus, which is not desirable from a design and economical point of view. The present invention solves these drawbacks of the conventional technology, and its purpose is to provide a denitrification method that can efficiently denitrify immediately after startup, even in plants that frequently start and stop. It's about doing. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a denitration device containing a catalyst in an exhaust gas duct, and an injection means for injecting a reducing agent upstream of the denitration device, In a dry denitrification method in which a reducing agent is injected into an exhaust gas duct to reduce nitrogen oxides in the exhaust gas to be treated, the injection means By injecting an excess reducing agent into the exhaust gas duct, this excess reducing agent is adsorbed on the catalyst in advance, and then the exhaust gas to be treated is vented into the exhaust gas duct to reduce nitrogen oxides in the exhaust gas. There are some features. [Operation] As described above, in the present invention, an excess reducing agent is injected before the denitrification device is started up, and this excess reducing agent is adsorbed on the catalyst in advance before the exhaust gas is vented. Since the reducing agent is injected before startup in this way, sufficient time can be taken for the reducing agent to be adsorbed. Furthermore, the flow rate is much slower than in conventional proposals, in which the reducing agent was flowed together with a large amount of exhaust gas to be treated. For this reason, the reducing agent can be sufficiently adsorbed on the catalyst, and the reducing agent can be kept in a radical state even before venting the exhaust gas. This is especially important at startup. That is, for example, when a boiler or the like is started up, the NOx content in the exhaust gas is especially high and the exhaust gas temperature is relatively low, which is the worst condition for denitration. Under such conditions, if the reducing agent can be kept in a radical state before venting the exhaust gas as in the present invention, the denitrification reaction can proceed efficiently. [Example] Next, an example of the present invention will be described, but first, an experimental example conducted by the present inventors will be described. In the NH 3 catalytic reduction denitrification method, the present inventors
Changes in NH 3 adsorption amount and denitrification rate after NH 3 injection were measured, and the results are shown in FIGS. 2 and 3. As is clear from these figures, it takes several hours for the denitrification rate to reach a steady value after the start of NH 3 injection. As a result of various studies on the cause of this from the viewpoint of the reaction mechanism, we came to the following conclusion. Note that these experimental conditions were a gas temperature of 200℃,
Area velocity 6m/h, gas is kerosene combustion gas, NO value
200ppm, NH 3 injection amount is 200ppm. As is clear from these figures, as shown in Fig. 3
The denitrification rate after the start of NH 3 injection and the change over time in the amount of NH 3 adsorbed on the catalyst shown in Figure 2 are in good agreement. Based on this, the denitrification rate
When examining the relationship with the NH 3 adsorption amount Q, the following relationship is established. ln 1/1 _ It turns out that this is because it takes time for the amount of NH 3 adsorbed on the catalyst to reach a steady value because the amount of NH 3 supplied is small. On the other hand, in order to increase the denitrification rate X, it is sufficient to increase the amount of NH 3 adsorbed on the catalyst. As a result of investigating the properties of this adsorbed NH 3 , it was found that the adsorbed NH 3 is extremely stable, and once the NH 3 is adsorbed on the catalyst, there is no change even during the period when the denitrification equipment is stopped, and it remains adsorbed on the catalyst. It also became clear that The present invention applies this surprising stability of adsorbed NH 3 to a denitrification device. In other words, if the injection of NH 3 is started before the denitrification equipment is started, and a large amount of NH 3 is adsorbed on the catalyst, that is, an amount of NH 3 that is excessive compared to the amount of NH 3 required for the denitrification reaction, it will be NH 3 can be maintained in a radical state, and even in equipment that frequently starts and stops, such as gas turbines and intermediate-load boilers, it can efficiently denitrify immediately after startup. [Example] Next, the present invention will be explained in detail with reference to Examples. Example 1 A Ti-based catalyst formed and sized into 10 to 20 meshes was
Fill the reaction tube of the denitrification equipment. The gas shown in Table 1 below was heated to 350°C, and the gas was passed through the reaction tube at a space velocity of 50,000 h -1 , and the aeration state was maintained for 30 minutes. Then, increasing the NH3 concentration to 300ppm
After maintaining the same conditions for 30 minutes, gas ventilation was stopped, and the sample was immediately taken out into the atmosphere and left as it was for 12 hours. The catalyst that has adsorbed NH 3 was packed into the reaction tube again, and the temperature was raised from room temperature to 350°C as shown in Figure 4 while passing gas with the composition shown in Table 1. Changes in the denitrification rate at that time were measured. It was measured. This result is shown by the two-dot chain curve A in FIG. As shown in this curve, the denitrification rate increases from the time of startup, and injecting an excess amount of NH 3 before venting the exhaust gas to the denitrification equipment is the most effective way to increase the denitrification rate at restart. It can be seen that it is.

【表】 実施例 2 実施例1におけるNH3濃度300ppmに替えて
400ppmとし、ほかの条件は前記実施例1と同一
にして同様の試験を行つた。 このときの脱硝率の変化を測定し、その結果を
第5図の一点鎖線の曲線Bで示す。 実施例 3 実施例1におけるNH3濃度300ppmに替えて
600ppmとし、ほかの条件は前記実施例1と同一
にして同様の試験を行つた。 このときの脱硝率の変化を測定し、その結果を
第5図の実線の曲線Cで示す。 この実施例2、3から明らかなように、脱硝装
置の起動時から高い脱硝率が得られている。 比較例 1 前記実施例で示した高NH3濃度(300ppm)の
吸着処理を行わないで、同様の試験を行つた。 このときの脱硝率の変化を測定し、その結果を
第5図の点線の曲線Dで示す。 この第5図から明らかなように、比較例の場合
起動時の脱硝率が曲線A,B,Cに比べて悪く、
起動時の排ガス通気直後直ちに高い脱硝率を得る
ことができない。 実施例 4 厚さ1mm、幅40mm、長さ100mmのTi系板状触媒
を40mm角のガラス製反応管の中に間隔5mmで8枚
充填して触媒層を形成した。そして第8図に示す
ように、希釈した1000ppmのNH3を6N/分の
割合で触媒層に20分間通し、NH3を触媒に吸着
した。その後、次の表2に示す模擬ガスを
NH3300ppmとともに6N/分の割合で通気し
た。この模擬ガスは第6図に示すように、タービ
ンの起動を模擬するため、予熱器で1時間後に
500℃になるように昇温し、入口NOXは第7図に
示すように300ppmとした。
[Table] Example 2 Instead of 300 ppm NH 3 concentration in Example 1
A similar test was conducted with the concentration being 400 ppm and the other conditions being the same as in Example 1 above. The change in the denitrification rate at this time was measured, and the results are shown by the dashed line curve B in FIG. Example 3 Instead of 300 ppm NH 3 concentration in Example 1
A similar test was conducted with the concentration being 600 ppm and the other conditions being the same as in Example 1 above. The change in the denitrification rate at this time was measured, and the results are shown by the solid curve C in FIG. As is clear from Examples 2 and 3, a high denitrification rate was obtained from the time the denitrification device was started. Comparative Example 1 A similar test was conducted without performing the high NH 3 concentration (300 ppm) adsorption treatment shown in the previous example. Changes in the denitrification rate at this time were measured, and the results are shown by the dotted curve D in FIG. As is clear from FIG. 5, in the case of the comparative example, the denitrification rate at startup is worse than curves A, B, and C.
It is not possible to obtain a high denitrification rate immediately after venting the exhaust gas at startup. Example 4 Eight Ti-based plate-shaped catalysts having a thickness of 1 mm, a width of 40 mm, and a length of 100 mm were packed into a 40 mm square glass reaction tube at a spacing of 5 mm to form a catalyst layer. Then, as shown in FIG. 8, diluted 1000 ppm NH 3 was passed through the catalyst layer at a rate of 6 N/min for 20 minutes to adsorb NH 3 on the catalyst. Then, use the simulated gas shown in Table 2 below.
Aerated at a rate of 6 N/min with 300 ppm of NH 3 . As shown in Figure 6, this simulated gas is heated in a preheater for one hour to simulate the startup of the turbine.
The temperature was raised to 500°C, and the inlet NOx was set to 300 ppm as shown in Figure 7.

【表】 このときの脱硝率の変化を測定し、その結果を
第9図の実線の曲線Eで示す。 比較例 2 触媒層に前述の模擬ガスを通す同時に、NH3
を300ppm(NOと等モル)注入した。このときの
脱硝率の変化を測定し、その結果を第9図の破線
の曲線Fで示す。 この図から明らかなように、実施例4における
起動時の脱硝率が前記比較例2のものに比較して
非常に高いことがわかる。 前記実施例ではガスタービンの脱硝について説
明したが、本発明はガスタービンの脱硝に限定さ
れるものではなく、広く他の脱硝にも有効ある。 [発明の効果] 本発明によれば、脱硝装置の起動直後から高い
脱硝率を得ることができ、特に中間負荷ボイラや
ガスタービンの排熱回収ボイラなどのように起
動、停止を頻繁に繰り返すものにおいては、起動
時に多量のNOXを発生するので特に有効である。
[Table] Changes in the denitrification rate at this time were measured, and the results are shown by the solid curve E in FIG. Comparative Example 2 At the same time as passing the above-mentioned simulated gas through the catalyst layer, NH 3
was injected at 300 ppm (equimolar to NO). The change in the denitrification rate at this time was measured, and the results are shown by the broken line curve F in FIG. As is clear from this figure, the denitrification rate at startup in Example 4 is much higher than that in Comparative Example 2. Although the above embodiment describes the denitrification of gas turbines, the present invention is not limited to denitrification of gas turbines, but is also effective for a wide range of other denitrations. [Effects of the Invention] According to the present invention, a high denitrification rate can be obtained immediately after starting the denitrification equipment, especially in equipment that frequently starts and stops, such as intermediate load boilers and gas turbine exhaust heat recovery boilers. This is particularly effective in systems that generate a large amount of NOx when starting up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ボイラの代表的な煙風道系統図、第
2図ならびに第3図は、NH3吸着量と脱硝率と
の相関関係を示す特性曲線図、第4図、第6図な
らびに第7図は、実施例に用いた排ガス温度なら
びに入口NOXの変化を示した特性曲線図、第8
図は、還元剤の注入開始時期と注入量を示した
図、第5図ならびに第9図は、脱硝率と時間との
関係を示した特性曲線図、第10図は、還元剤の
注入開始時点を示した説明図である。 4……排ガスダクト、7……NH3注入管、8
……脱硝装置、9……触媒。
Figure 1 is a typical flue system diagram of a boiler, Figures 2 and 3 are characteristic curve diagrams showing the correlation between the amount of NH 3 adsorption and the denitrification rate, Figures 4, 6, and FIG. 7 is a characteristic curve diagram showing changes in exhaust gas temperature and inlet NO
The figure shows the time to start injection of reducing agent and the amount of injection. Figures 5 and 9 are characteristic curve diagrams showing the relationship between denitrification rate and time. Figure 10 shows the start of injection of reducing agent. FIG. 2 is an explanatory diagram showing time points. 4...Exhaust gas duct, 7... NH3 injection pipe, 8
...Denitrification equipment, 9...Catalyst.

Claims (1)

【特許請求の範囲】 1 触媒を内蔵した脱硝装置を排ガスダクト内に
設け、この脱硝装置の上流に還元剤を注入する注
入手段を設けて、排ガスダクト内に還元剤を注入
して処理すべき排ガス中の窒素酸化物を還元する
乾式脱硝方法において、 前記脱硝装置への排ガス通気停止前から遅くと
も次の脱硝装置の起動前に、前記注入手段により
過剰の還元剤を排ガスダクト内に注入して、この
過剰の還元剤を予め触媒に吸着させ、しかる後に
排ガスダクト内に処理すべき排ガスを通気して排
ガス中の窒素酸化物を還元することを特徴とする
乾式脱硝方法。
[Claims] 1. A denitration device containing a catalyst is provided in an exhaust gas duct, and an injection means for injecting a reducing agent is provided upstream of the denitration device, and the reducing agent is injected into the exhaust gas duct for treatment. In a dry denitrification method for reducing nitrogen oxides in exhaust gas, an excess reducing agent is injected into the exhaust gas duct by the injection means before the exhaust gas ventilation to the denitrification device is stopped and before the start of the next denitrification device at the latest. A dry denitrification method characterized in that this excess reducing agent is adsorbed in advance on a catalyst, and then the exhaust gas to be treated is vented into an exhaust gas duct to reduce nitrogen oxides in the exhaust gas.
JP57010848A 1982-01-28 1982-01-28 Method for introducing reducing agent Granted JPS58128126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010848A JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010848A JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Publications (2)

Publication Number Publication Date
JPS58128126A JPS58128126A (en) 1983-07-30
JPH0367728B2 true JPH0367728B2 (en) 1991-10-24

Family

ID=11761767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010848A Granted JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Country Status (1)

Country Link
JP (1) JPS58128126A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211224A (en) * 1989-02-10 1990-08-22 Hitachi Zosen Corp Removal of nitrogen oxide in waste gas
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler
JP2006257936A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Exhaust gas-dust collecting denitration method of diesel engine
JP6204137B2 (en) * 2013-09-30 2017-09-27 三浦工業株式会社 Exhaust gas boiler with denitration equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Also Published As

Publication number Publication date
JPS58128126A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US8808652B2 (en) Biomass boiler SCR NOx and CO reduction system
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
US20090284013A1 (en) Dry 3-way catalytic reduction of gas turbine NOx
US9062569B2 (en) Systems, methods, and apparatus for regenerating a catalytic material
JP7221262B2 (en) Exhaust system for power plant
US5120516A (en) Process for removing nox emissions from combustion effluents
JP2011522987A (en) Emission reduction device used with heat recovery steam generator
US11441774B2 (en) Method for operating flue gas purification system
US5022226A (en) Low NOx cogeneration process and system
US9359918B2 (en) Apparatus for reducing emissions and method of assembly
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
JPH0926105A (en) Boiler
JPH0367728B2 (en)
JPH1114034A (en) Exhaust gas treating apparatus and operation method thereof
Straitz III et al. Combat NOx with better burner design
JPH11235516A (en) Denitrification device for exhaust gas
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPS5858132B2 (en) Method for reducing nitrogen oxides in exhaust gas
JPH0352626A (en) Waste combustion gas treating device and regerating method thereof
JPS58124107A (en) Operation of denitrating device for combined plant
JPS60257823A (en) Apparatus for controlling injection amount of ammonia
JPS61254229A (en) Apparatus for controlling injection amount of ammonia
JPH0440057B2 (en)