JPH11235516A - Denitrification device for exhaust gas - Google Patents

Denitrification device for exhaust gas

Info

Publication number
JPH11235516A
JPH11235516A JP10041882A JP4188298A JPH11235516A JP H11235516 A JPH11235516 A JP H11235516A JP 10041882 A JP10041882 A JP 10041882A JP 4188298 A JP4188298 A JP 4188298A JP H11235516 A JPH11235516 A JP H11235516A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
concentration
catalyst
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10041882A
Other languages
Japanese (ja)
Other versions
JP3831804B2 (en
Inventor
Junji Fujii
準次 藤井
Hiroaki Sera
裕明 世良
Tetsuya Iwase
徹哉 岩瀬
Naoyuki Kondo
直之 近藤
Yoshimichi Mori
喜通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP04188298A priority Critical patent/JP3831804B2/en
Publication of JPH11235516A publication Critical patent/JPH11235516A/en
Application granted granted Critical
Publication of JP3831804B2 publication Critical patent/JP3831804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep te concentration of nitrogen oxides to not more than an environmental regulation value and also minimize the amount of ammonia used for denitrification and the amount of ammonia leakage discharged to the outside. SOLUTION: This nitrification device is provided with a first ammonia injection control means 31 wherein the concentration of NOx is measured on the upstream side from an ammonia injection position I1 of an outlet flue of a pressurized fluidized bed boiler 1 and based on a control signal c0 by the measured NOx concentration, the injected amount of ammonia to the outlet flue of the pressurized fluidized boiler 1 is controlled and a second ammonia injection means 32 wherein NOx concentration and ammonia concentration are measured on the upstream side from an ammonia injection position I2 of an inlet flue of a catalytic denitrification device 11 and from the measured measurement signals i2 , i3 , the injected amount of ammonia to the inlet flue of the catalytic denitrification device 11 is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料を燃焼させて
発生した排ガスにアンモニア(以下「NH3」とも云
う)を注入して窒素酸化物(以下「NOx」とも云う)
を除去する排ガスの脱硝装置に係り、特に加圧流動層ボ
イラ(PFBCボイラ)から発生する排ガスの窒素酸化
物を除去する排ガスの脱硝装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitrogen oxides (hereinafter also referred to as "NOx") by injecting ammonia (hereinafter referred to as "NH 3 ") into exhaust gas generated by burning fuel.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas denitration apparatus for removing gas, and more particularly to an exhaust gas denitration apparatus for removing nitrogen oxides of exhaust gas generated from a pressurized fluidized bed boiler (PFBC boiler).

【0002】[0002]

【従来の技術】近年、地球環境問題として、環境汚染物
質の排出規制が厳しくなってきている。化石燃料を燃焼
し発電する火力発電は、環境性能向上、発電効率向上に
向け、研究開発がなされている。この中で現在注目され
ているのがボイラを圧力容器の中に入れ加圧化で石炭を
燃焼させ発電する加圧流動層ボイラを利用した発電装置
である。
2. Description of the Related Art In recent years, emission control of environmental pollutants has become stricter as a global environmental problem. Research and development has been conducted on thermal power generation, which generates electricity by burning fossil fuels, to improve environmental performance and power generation efficiency. Among them, a power generation apparatus using a pressurized fluidized-bed boiler, in which a boiler is placed in a pressure vessel and burns coal by pressurization to generate power, is currently attracting attention.

【0003】加圧流動層ボイラを利用した発電装置は、
ガスタービン(以下「GT」との云う)とスチームター
ビンを組み合わせた複合発電によって発電効率の向上を
図り、流動層を形成する石灰石によって炉内脱硫を行な
うことにより脱硫装置を省き、更に比較的低温で燃焼さ
せること及び流動層中のカーボン等の還元物質による還
元反応で流動層出口のNOx濃度を低減すること等のメ
リットを有するものである。
[0003] A power generating apparatus using a pressurized fluidized bed boiler is
Combined power generation using a gas turbine (hereinafter referred to as “GT”) and a steam turbine improves power generation efficiency, and desulfurization is performed by performing in-furnace desulfurization using limestone that forms a fluidized bed. This has the advantage of reducing the NOx concentration at the outlet of the fluidized bed by a reduction reaction with a reducing substance such as carbon in the fluidized bed.

【0004】しかし、従来の排ガスの脱硝技術では触媒
のみによる脱硝によりガスタービン排気ガス中のNOx
濃度を低減しており、脱硝装置の性能上、脱硝効率には
上限があり、それ以上の脱硝性能の向上は出来なかっ
た。
However, in conventional exhaust gas denitration technology, NOx in gas turbine exhaust gas is reduced by denitration using only a catalyst.
Since the concentration was reduced, there was an upper limit to the denitration efficiency in terms of the performance of the denitration device, and no further improvement in the denitration performance was possible.

【0005】図10は、加圧流動層ボイラを利用した発
電装置に使用された従来の排ガスの脱硝装置の一例を示
す系統図である。コンプレッサ6に導入された燃焼空気
5は、火炉入口配管4を通って圧力容器3内の加圧流動
層ボイラ1に導入される。燃料(CWP(Coal Water P
aste)と云う)供給ノズル23を介して流動層を形成す
る流動媒体(BM)2に供給される燃料が燃焼すること
によって発生する排ガスは、火炉出口配管7を通りガス
タービン8に導入され発電を行なうと同時にコンプレッ
サ6を駆動する。ガスタービン8を出た排ガスは、ガス
タービン出口ダクト9を通って節炭器10に導入される
が、排ガス温度が約400℃と高温であるため、節炭器
10で熱回収され、煙突出口ダクト12を通り煙突29
より放出される。
FIG. 10 is a system diagram showing an example of a conventional exhaust gas denitration apparatus used in a power generation apparatus utilizing a pressurized fluidized bed boiler. The combustion air 5 introduced into the compressor 6 is introduced into the pressurized fluidized-bed boiler 1 in the pressure vessel 3 through the furnace inlet pipe 4. Fuel (CWP (Coal Water P
Exhaust gas generated by burning fuel supplied to the fluidized medium (BM) 2 forming a fluidized bed via the supply nozzle 23 is introduced into the gas turbine 8 through the furnace outlet pipe 7 to generate power. At the same time, the compressor 6 is driven. Exhaust gas leaving the gas turbine 8 is introduced into the economizer 10 through the gas turbine outlet duct 9, but since the exhaust gas temperature is as high as about 400 ° C., heat is recovered by the economizer 10 and the smoke outlet Chimney 29 passing through duct 12
More released.

【0006】上記加圧流動層ボイラを利用した発電装置
の中でNOxを低減、除去する装置は、節炭器10内に
設けられた脱硝触媒を有する触媒脱硝装置11のみであ
る。触媒脱硝装置11入口に設けられた有触媒入口NO
x濃度計測装置22aにより有触媒必要アンモニア量が
計算され、アンモニア気化器15から送られたアンモニ
アは、有触媒アンモニア流量調整弁19で流量調整さ
れ、アンモニア希釈空気14が加えられ有触媒アンモニ
ア注入ノズル13より注入される。有触媒脱硝装置11
入口NOx濃度が計画値以上の場合、アンモニアを過剰
に注入する必要があり、有触媒脱硝装置11出口の漏洩
アンモニア(以下「リークアンモニア」とも云う)も多
くなり煙突29より排出されることになるが、一方では
これにより煙突29から排出されるNOx濃度を低減し
ている。
[0006] Among the power generators using the pressurized fluidized-bed boiler, the only device for reducing and removing NOx is a catalytic denitration device 11 having a denitration catalyst provided in a economizer 10. NOx with catalyst provided at the inlet of catalytic NOx removal device 11
The amount of ammonia required for a catalyst is calculated by the x-concentration measuring device 22a, and the flow rate of ammonia sent from the ammonia vaporizer 15 is adjusted by a catalyst-equipped ammonia flow control valve 19, and ammonia-diluted air 14 is added to the catalyst-ammonia injection nozzle. 13 is injected. Catalytic denitration equipment 11
When the inlet NOx concentration is higher than the planned value, it is necessary to inject ammonia excessively, the amount of leaked ammonia at the outlet of the catalytic denitration device 11 (hereinafter also referred to as “leakage ammonia”) increases, and the ammonia is discharged from the chimney 29. However, on the other hand, the NOx concentration discharged from the chimney 29 is thereby reduced.

【0007】図11は、ボイラ燃焼装置に使用された従
来の別の排ガスの脱硝装置の例を示す系統図である。こ
のボイラ燃焼装置は、燃焼室40の出口側に設けられた
無触媒脱硝手段41と、同無触媒脱硝手段41の下流部
で煙道42に設けられた触媒脱硝手段43とを有すると
共に、熱交換器44にて排ガスと空気とが熱交換される
ものである(実開昭53−163347号)。
FIG. 11 is a system diagram showing an example of another conventional exhaust gas denitration device used in a boiler combustion device. This boiler combustion device has a non-catalytic denitration means 41 provided on the outlet side of the combustion chamber 40, and a catalytic denitration means 43 provided in a flue 42 downstream of the non-catalyst denitration means 41. The heat is exchanged between the exhaust gas and the air in the exchanger 44 (Japanese Utility Model Application Laid-Open No. 53-163347).

【0008】図12は、加圧流動層ボイラを利用した発
電装置に使用された従来の更に別の排ガスの脱硝装置の
例を示す系統図である。この排ガスの脱硝装置は、GT
55下流の触媒脱硝装置58入口のNOx濃度56に応
じて、触媒脱硝装置58入口でのアンモニア注入57
と、加圧容器50内の火炉51で発生した排ガスに対し
て無触媒脱硝用のアンモニア注入52、54とを調整し
て行なうものである。尚、符号53は脱塵装置、符号5
9は低圧給水ヒータ、符号60は高圧給水ヒータ、符号
61は煙突である。(特表平5−504290号)
FIG. 12 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a power generation apparatus utilizing a pressurized fluidized-bed boiler. This exhaust gas denitration system uses GT
55 Ammonia injection 57 at the inlet of the catalytic denitration device 58 according to the NOx concentration 56 at the inlet of the catalytic denitration device 58 downstream
And ammonia injection 52, 54 for non-catalytic denitration with respect to exhaust gas generated in a furnace 51 in a pressurized container 50. Reference numeral 53 indicates a dust removing device, and reference numeral 5
Reference numeral 9 denotes a low-pressure water heater, reference numeral 60 denotes a high-pressure water heater, and reference numeral 61 denotes a chimney. (Tokuhei Hei 5-504290)

【0009】[0009]

【発明が解決しようとする課題】図10に示した排ガス
の脱硝装置は、触媒脱硝装置11により排ガス中のNO
x濃度を低減し、環境規制値以下として煙突より排出す
るものであるが、脱硝効率の上限値以上を出すことが出
来ず、リークアンモニアも過剰となり、それ以上の脱硝
効率の向上を行なうことは困難であった。
The exhaust gas denitration apparatus shown in FIG. 10 uses a catalytic denitration apparatus 11 to remove NO from exhaust gas.
The x concentration is reduced and discharged from the chimney as lower than the environmental regulation value.However, it is not possible to obtain the upper limit value of the denitration efficiency, the leaked ammonia becomes excessive, and further improvement of the denitration efficiency is not possible. It was difficult.

【0010】図11に示した排ガスの脱硝装置は、高温
度の熱還元雰囲気下で熱還元による無触媒脱硝を行ない
低温度域で触媒脱硝を行なうものであるが、消費するア
ンモニア量を最小とする目的で各箇所に注入するアンモ
ニア量を最適に制御する手段がない。この従来技術を加
圧流動層ボイラに適用する場合、高温度の熱還元雰囲気
領域は、図10に示したガスタービン8の上流側に該当
するが、加圧流動層ボイラではガスタービン入口までは
高温条件に加えて高圧条件であるため、排ガス中の酸素
分圧は図11に示したボイラ燃焼装置の約10倍程度で
あり、その結果この領域に注入するアンモニアが酸素に
より窒素と水蒸気に分解する反応が顕著となり、注入ア
ンモニアが充分有効に脱硝反応に使用されないことにな
る。更に加圧流動層ボイラは部分負荷においては排ガス
圧力が10気圧から5気圧程度まで減少するため、注入
アンモニアの分解反応も運転圧力に大きく影響を受け
る。
The exhaust gas denitration apparatus shown in FIG. 11 performs non-catalytic denitration by thermal reduction in a high-temperature thermal reduction atmosphere and performs catalytic denitration in a low temperature range. For this purpose, there is no means for optimally controlling the amount of ammonia injected into each part. When this prior art is applied to a pressurized fluidized bed boiler, the high-temperature thermal reduction atmosphere region corresponds to the upstream side of the gas turbine 8 shown in FIG. Due to the high pressure conditions in addition to the high temperature conditions, the oxygen partial pressure in the exhaust gas is about 10 times that of the boiler combustion device shown in FIG. 11, so that the ammonia injected into this region is decomposed into nitrogen and water vapor by oxygen. The resulting ammonia becomes remarkable, and the injected ammonia is not sufficiently effectively used for the denitration reaction. Further, in the pressurized fluidized-bed boiler, since the exhaust gas pressure decreases from 10 atm to about 5 atm at partial load, the decomposition reaction of the injected ammonia is also greatly affected by the operating pressure.

【0011】更に、このボイラ燃焼装置に使用された排
ガスの脱硝装置は、注入するアンモニアの有効利用効率
が運転負荷によって大きく左右される加圧流動層ボイラ
において、注入するアンモニア量を最小とする経済的な
制御を実施することは出来ない。
Further, the exhaust gas denitration apparatus used in the boiler combustion apparatus has an economical effect of minimizing the amount of injected ammonia in a pressurized fluidized-bed boiler in which the effective use efficiency of injected ammonia is greatly affected by the operating load. Control cannot be implemented.

【0012】図12に示した排ガスの脱硝装置は、無触
媒脱硝と触媒脱硝の組み合わせにより煙突入口までの脱
硝効率向上が可能であるが、ガスタービン55上流の無
触媒脱硝でのアンモニア注入量は、触媒脱硝装置58入
口NOx濃度56を設定値になるように決定され、触媒
脱硝装置58入口でのアンモニア注入量は触媒脱硝装置
入口NOx濃度56に応じて決定されるため、排ガス中
の残存アンモニア濃度、即ちリークアンモニアを最小に
するアンモニア注入配分については、特に配慮されてい
なかった。
The exhaust gas denitration apparatus shown in FIG. 12 can improve the denitration efficiency up to the chimney inlet by a combination of non-catalytic denitration and catalytic denitration. The NOx concentration 56 at the inlet of the catalyst denitration device 58 is determined to be a set value, and the amount of ammonia injected at the inlet of the catalyst denitration device 58 is determined according to the NOx concentration 56 at the catalyst denitration device. No particular consideration was given to the concentration, i.e., the distribution of ammonia injection that minimizes the leaked ammonia.

【0013】本発明の課題は、上記問題点を解決し、外
部に排出される窒素酸化物濃度を環境規制値以下に維持
すると共に、排ガスの脱硝に使用するアンモニア量と外
部に排出される漏洩アンモニア量を最小にすることであ
る。
An object of the present invention is to solve the above problems, maintain the concentration of nitrogen oxides discharged to the outside below environmental regulation values, and determine the amount of ammonia used for denitration of exhaust gas and leakage to the outside. The goal is to minimize the amount of ammonia.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
本発明は、燃料を燃焼させて発生した燃焼排ガスにアン
モニアを注入して前記燃焼排ガス中の窒素酸化物を低減
した低減処理排ガスとし、更に該低減処理排ガスにアン
モニアを注入し触媒の存在の基に該低減処理排ガスの窒
素酸化物を除去する排ガスの脱硝装置において、前記燃
焼排ガスにアンモニアを注入する注入位置より上流側で
該燃焼排ガスの窒素酸化物濃度を計測し、該計測した窒
素酸化物濃度による制御信号に基づいて前記燃焼排ガス
に注入するアンモニア注入量を制御する第1のアンモニ
ア注入制御手段を備えたことである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a reduced treatment exhaust gas in which ammonia is injected into combustion exhaust gas generated by burning fuel to reduce nitrogen oxides in the combustion exhaust gas. Further, in an exhaust gas denitration apparatus for injecting ammonia into the reduced treatment exhaust gas and removing nitrogen oxides in the reduced treatment exhaust gas based on the presence of a catalyst, the flue gas exhaust gas is disposed upstream of an injection position for injecting ammonia into the combustion exhaust gas. A first ammonia injection control means for measuring the nitrogen oxide concentration and controlling the amount of ammonia injected into the combustion exhaust gas based on a control signal based on the measured nitrogen oxide concentration.

【0015】第1のアンモニア注入制御手段を備えたこ
とにより、燃料、例えばCWPを燃焼させる加圧流動層
ボイラで発生した燃焼排ガス中のNOxは、第1のアン
モニア注入制御手段により注入されるアンモニアで気相
還元反応を起こして窒素と水に分解され低減される。こ
の際、低減されるべき燃焼排ガス中の窒素酸化物濃度を
計測し、この計測信号から演算された制御信号に基づい
てアンモニア注入量が決められるので必要以上の過剰な
アンモニアが注入されることがない。
By providing the first ammonia injection control means, NOx in the combustion exhaust gas generated by the pressurized fluidized bed boiler for burning fuel, for example, CWP, is supplied to the ammonia injected by the first ammonia injection control means. Causes a gas phase reduction reaction to be decomposed into nitrogen and water and reduced. At this time, the nitrogen oxide concentration in the combustion exhaust gas to be reduced is measured, and the amount of ammonia to be injected is determined based on the control signal calculated from the measurement signal. Absent.

【0016】更に、上記排ガスの脱硝装置において、前
記低減処理排ガスにアンモニアを注入する注入位置より
上流側で前記低減処理排ガスの窒素酸化物濃度及びアン
モニア濃度を計測し、該計測した窒素酸化物濃度及びア
ンモニア濃度の計測信号から演算された制御信号に基づ
いて前記低減処理排ガスに注入するアンモニア注入量を
制御する第2のアンモニア注入制御手段を備えたことで
ある。
Further, in the above-mentioned exhaust gas denitration apparatus, the nitrogen oxide concentration and the ammonia concentration of the reduced treatment exhaust gas are measured at a position upstream of the injection position for injecting the ammonia into the reduced treatment exhaust gas. And a second ammonia injection control means for controlling an ammonia injection amount to be injected into the reduced exhaust gas based on a control signal calculated from a measurement signal of the ammonia concentration.

【0017】第2のアンモニア注入制御手段を備えた排
ガスの脱硝装置は、上記排ガスの脱硝装置の作用に加
え、第1のアンモニア注入制御手段により低減されたN
Oxが、第2のアンモニア注入制御手段により更に除去
され流動層ボイラ全体としての脱硝性能を向上させる。
ここで、第1のアンモニア注入制御手段は、無触媒脱硝
反応又は気相還元反応で利用され、第2のアンモニア注
入制御手段は、有触媒脱硝反応で利用される。
The exhaust gas denitration apparatus provided with the second ammonia injection control means has the function of the above-mentioned exhaust gas denitration apparatus, and has a reduced N gas concentration by the first ammonia injection control means.
Ox is further removed by the second ammonia injection control means to improve the denitration performance of the fluidized bed boiler as a whole.
Here, the first ammonia injection control means is used in a non-catalytic denitration reaction or a gas phase reduction reaction, and the second ammonia injection control means is used in a catalytic denitration reaction.

【0018】更に、上記第2のアンモニア注入制御手段
を備えた排ガスの脱硝装置において、前記第2のアンモ
ニア注入制御手段は、前記触媒を通過した触媒通過排ガ
スの窒素酸化物濃度を計測し、該計測した窒素酸化物濃
度の計測信号で、前記計測した低減処理排ガスの窒素酸
化物濃度及びアンモニア濃度の計測信号から演算された
制御信号を補正して前記低減処理排ガスに注入するアン
モニア注入量を制御することである。
Further, in the exhaust gas denitration apparatus provided with the second ammonia injection control means, the second ammonia injection control means measures the nitrogen oxide concentration of the exhaust gas passing through the catalyst and passes through the catalyst. The measured nitrogen oxide concentration measurement signal is used to correct the control signal calculated from the measured nitrogen oxide concentration and ammonia concentration measurement signals of the reduced treatment exhaust gas to control the amount of ammonia injected into the reduced treatment exhaust gas. It is to be.

【0019】第2のアンモニア注入制御手段が窒素酸化
物濃度及びアンモニア濃度の計測信号から演算された制
御信号を補正して低減処理排ガスに注入するアンモニア
注入量を制御する排ガスの脱硝装置は、上記第2のアン
モニア注入制御手段を備えた排ガスの脱硝装置の作用に
加え、触媒脱硝装置出口煙道又は煙突入口にNOx濃度
計測装置を設置して、触媒脱硝装置出口NOx濃度値が
規制値に対して一定偏差以上の差異を生じた場合には、
偏差幅に応じて、有触媒脱硝装置入口又は流動層ボイラ
出口でのアンモニア注入量を補助的に制御することで、
応答性を向上することが可能である。
The exhaust gas denitration apparatus in which the second ammonia injection control means corrects the control signal calculated from the nitrogen oxide concentration and ammonia concentration measurement signals and controls the amount of ammonia injected into the reduced treatment exhaust gas, In addition to the function of the exhaust gas denitration device provided with the second ammonia injection control means, a NOx concentration measuring device is installed at the exhaust gas stack or the chimney inlet of the catalyst denitration device, and the NOx concentration value at the catalyst denitration device outlet is higher than the regulation value. If a difference exceeding a certain deviation occurs
In accordance with the deviation width, by supplementarily controlling the ammonia injection amount at the catalytic denitration device inlet or the fluidized bed boiler outlet,
It is possible to improve responsiveness.

【0020】更に、上記第2のアンモニア注入制御手段
を備えたいずれかの排ガスの脱硝装置において、前記第
2のアンモニア注入制御手段は、前記触媒を通過した触
媒通過排ガスのアンモニア濃度を計測し、該計測したア
ンモニア濃度の計測信号で、前記計測した低減処理排ガ
スの窒素酸化物濃度及びアンモニア濃度の計測信号から
演算された制御信号を補正して前記低減処理排ガスに注
入するアンモニア注入量を制御することである。
Further, in any one of the exhaust gas denitration apparatuses provided with the second ammonia injection control means, the second ammonia injection control means measures the ammonia concentration of the catalyst passing exhaust gas passing through the catalyst, The measured ammonia concentration measurement signal is used to correct a control signal calculated from the measured nitrogen oxide concentration and ammonia concentration measurement signal of the reduced treatment exhaust gas to control the amount of ammonia injected into the reduced treatment exhaust gas. That is.

【0021】第2のアンモニア注入制御手段が窒素酸化
物濃度及びアンモニア濃度の計測信号から演算された制
御信号を補正して前記低減処理排ガスに注入するアンモ
ニア注入量を制御する排ガスの脱硝装置は、上記第2の
アンモニア注入制御手段を備えたいずれかの排ガスの脱
硝装置の作用に加え、触媒脱硝装置出口煙道又は煙突入
口にアンモニア濃度計測装置を設置して、触媒脱硝装置
出口残存アンモニア濃度が一定値以下になるように、計
測値との偏差に応じて有触媒脱硝装置入口又は流動層ボ
イラ出口でのアンモニア注入量を補助的に制御すること
で、リークアンモニア量を補助的に制御することが出来
る。
An exhaust gas denitration apparatus in which second ammonia injection control means corrects a control signal calculated from the measurement signals of the nitrogen oxide concentration and the ammonia concentration to control the amount of ammonia injected into the reduced exhaust gas, In addition to the operation of any one of the exhaust gas denitration devices provided with the second ammonia injection control means, an ammonia concentration measurement device is installed at a catalyst denitration device outlet flue or chimney inlet to reduce the residual ammonia concentration at the catalyst denitration device outlet. Auxiliary control of the amount of leaked ammonia by auxiliary control of the amount of ammonia injected at the catalytic denitration device inlet or fluidized bed boiler outlet according to the deviation from the measured value so as to be below a certain value Can be done.

【0022】更に、先の第1のアンモニア注入制御手段
を備えた排ガスの脱硝装置において、前記触媒を通過し
た触媒通過排ガスの窒素酸化物濃度を計測し、該計測し
た窒素酸化物濃度の計測信号から演算された制御信号に
基づいて、前記低減処理排ガスにアンモニアを注入し、
前記触媒通過排ガスの窒素酸化物濃度が予め設定された
濃度範囲に収まるように制御する第3のアンモニア注入
制御手段を備えたことである。
Further, in the exhaust gas denitration apparatus provided with the first ammonia injection control means, the nitrogen oxide concentration of the exhaust gas having passed through the catalyst is measured, and a measurement signal of the measured nitrogen oxide concentration is obtained. Based on the control signal calculated from the injection of ammonia into the reduced treatment exhaust gas,
A third ammonia injection control means for controlling the nitrogen oxide concentration of the exhaust gas passing through the catalyst to fall within a preset concentration range is provided.

【0023】第3のアンモニア注入制御手段を備えた排
ガスの脱硝装置は、先の第1のアンモニア注入制御手段
を備えた排ガスの脱硝装置の作用に加え、触媒脱硝装置
出口NOx濃度が規制値以下になるということは、アン
モニアが過剰の状態であることを示し、アンモニア流出
量が増加している可能性を示す。逆に触媒脱硝装置出口
のNOx濃度が規制値以上になるということはアンモニ
アは脱硝反応に消費されて排出量が減少している一方で
系外への流出NOxが増加していることを示す。従っ
て、触媒脱硝装置出口又は下流ダクトで計測するNOx
濃度が規制値上限と下限の範囲内に維持出来るよう触媒
脱硝装置入口又は上流ダクトに注入するアンモニア量を
制御することにより触媒脱硝装置出口のNOx排出量及
びアンモニア排出量を低減することが出来る。
The exhaust gas denitration apparatus provided with the third ammonia injection control means has the function of the exhaust gas denitration apparatus provided with the first ammonia injection control means, and the NOx concentration at the outlet of the catalyst denitration apparatus is not more than the regulation value. Indicates that the amount of ammonia is in excess, and indicates that the amount of outflow of ammonia has increased. Conversely, the fact that the NOx concentration at the outlet of the catalytic denitrification device becomes equal to or higher than the regulation value indicates that ammonia is consumed in the denitration reaction and the emission amount is decreasing, while the NOx flowing out of the system is increasing. Therefore, NOx measured at the outlet of the catalytic NOx removal device or at the downstream duct
By controlling the amount of ammonia injected into the catalyst denitration device inlet or the upstream duct so that the concentration can be maintained within the range between the upper limit and the lower limit of the regulation value, the NOx emission amount and the ammonia emission amount at the catalyst denitration device outlet can be reduced.

【0024】そして、先の第1のアンモニア注入制御手
段を備えた排ガスの脱硝装置において、前記触媒を通過
した触媒通過排ガスのアンモニア濃度を計測し、該計測
したアンモニア濃度の計測信号から演算された制御信号
に基づいて、前記低減処理排ガスにアンモニアを注入
し、前記触媒通過排ガスのアンモニア濃度が予め設定さ
れた濃度範囲に収まるように制御する第4のアンモニア
注入制御手段を備えたことである。
In the exhaust gas denitration apparatus provided with the first ammonia injection control means, the ammonia concentration of the exhaust gas passing through the catalyst which has passed through the catalyst is measured, and the ammonia concentration is calculated from the measurement signal of the measured ammonia concentration. There is provided a fourth ammonia injection control means for injecting ammonia into the reduced treatment exhaust gas based on the control signal and controlling the ammonia concentration of the exhaust gas passing through the catalyst to fall within a preset concentration range.

【0025】第4のアンモニア注入制御手段を備えた排
ガスの脱硝装置は、先の第1のアンモニア注入制御手段
を備えた排ガスの脱硝装置の作用に加え、触媒脱硝装置
出口NOx濃度が規制値以下になるということは、アン
モニアが不足の状態であることを示し、NOx流出量が
増加している可能性を示す。逆に触媒脱硝装置出口のN
3濃度が規制値以上になるというとこは、アンモニア
が過剰に存在している状態でNOxの排出は抑制されて
いるが系外への流出アンモニアが増加していることを示
す。従って、触媒脱硝装置出口又は下流ダクトで計測す
るNH3濃度が規制値上限と下限の範囲内に維持出来る
よう触媒脱硝装置入口又は上流ダクトに注入するアンモ
ニア量を制御することにより触媒脱硝装置出口のNOx
排出量及びアンモニア排出量を低減することが出来る。
The exhaust gas denitration apparatus provided with the fourth ammonia injection control means has the same effect as the exhaust gas denitration apparatus provided with the first ammonia injection control means, and the NOx concentration at the outlet of the catalyst denitration apparatus is equal to or less than a regulation value. Indicates that the amount of ammonia is insufficient, and indicates that the NOx outflow amount has increased. Conversely, N at the outlet of the catalytic NOx removal device
The fact that the H 3 concentration becomes equal to or higher than the regulated value indicates that the emission of NOx is suppressed but the amount of ammonia flowing out of the system is increasing in a state where ammonia is excessively present. Therefore, by controlling the amount of ammonia injected into the catalyst denitration device inlet or the upstream duct so that the NH 3 concentration measured at the catalyst denitration device outlet or the downstream duct can be maintained within the upper limit and the lower limit of the regulation value, the catalyst denitration device outlet can be controlled. NOx
Emissions and ammonia emissions can be reduced.

【0026】ところで、アンモニアは物性上熱分解を起
こしやすい特性を有しているため、注入されたアンモニ
アが熱分解を起こす前にNOxを還元することが出来る
能力には上限がある。即ち、第1のアンモニア注入手段
において一定量以上の過剰のアンモニアを注入しても、
ある割合からはNOx濃度は平衡傾向となる。そこで、
アンモニア注入位置の上流側でNOx濃度を計測し、こ
の計測信号から演算される必要NOx/NH3のモル比
率に相当する適正アンモニア(NOx低減に寄与する必
要最小限の過剰アンモニア)を注入することで、不必要
に過剰なアンモニア注入を避けることが出来る。
By the way, since ammonia has a property of easily causing thermal decomposition due to its physical properties, there is an upper limit to the ability to reduce NOx before the injected ammonia causes thermal decomposition. That is, even if a certain amount or more of excess ammonia is injected in the first ammonia injection means,
From a certain ratio, the NOx concentration tends to equilibrium. Therefore,
The NOx concentration is measured on the upstream side of the ammonia injection position, and appropriate ammonia (minimum necessary excess ammonia contributing to NOx reduction) corresponding to the required NOx / NH 3 molar ratio calculated from the measurement signal is injected. Thus, unnecessary excessive injection of ammonia can be avoided.

【0027】熱分解やNOxとの気相還元反応を起こさ
ずに残留したアンモニアは、第2のアンモニア注入手段
によって注入されるアンモニアと合わせて再利用され
る。脱硝触媒を設けた触媒脱硝装置入口のアンモニア注
入位置より上流側に設置するNOx濃度計測装置から触
媒脱硝装置出口のNOx濃度を規制値に維持するのに必
要なアンモニア量が計算出来、アンモニア濃度計測装置
から低減処理排ガス中に残存するアンモニア量が計算出
来るため、必要アンモニア量から残存アンモニア量を差
し引いた量のアンモニアを触媒脱硝装置入口に注入すれ
ば、必要最小限の過剰アンモニア量以上に注入すること
がなくなるのでリークアンモニア量を最小化出来る。
Ammonia remaining without causing thermal decomposition or gas phase reduction reaction with NOx is reused together with ammonia injected by the second ammonia injection means. From the NOx concentration measurement device installed upstream of the ammonia injection position at the entrance of the catalyst denitration device equipped with a denitration catalyst, the amount of ammonia necessary to maintain the NOx concentration at the exit of the catalyst denitration device at the regulated value can be calculated, and the ammonia concentration measurement Since the amount of ammonia remaining in the reduced exhaust gas can be calculated from the device, if the amount of ammonia obtained by subtracting the amount of residual ammonia from the required amount of ammonia is injected into the inlet of the catalytic denitration device, the amount of excess ammonia is injected over the required minimum amount of excess ammonia. The amount of leaked ammonia can be minimized.

【0028】無触媒脱硝は、NH3によるNOxの気相
直接熱還元反応を利用したものであるが、同時にNH3
自体も熱分解してN2とH2Oになる。
The non-catalytic denitration is is obtained by using vapor-phase direct thermal reduction of NOx by NH 3, at the same time NH 3
The substance itself is thermally decomposed into N 2 and H 2 O.

【0029】4NH3+6NO → 5N2 +6H2O 4NH3+3O2 → 2N2 +6H2O 従って、注入したNH3は一部がNOxの還元に寄与
し、残りの一部は酸素によって分解されN2とH2Oとな
り、残りの他の一部はリークアンモニアとなる。本発明
者等の試験実績によれば、NH3/NOモル比で2〜3
以上はNH3を過剰に投入してもNOxは殆ど平衡値に
達し、投入NH3の脱硝としての有効利用率は低下す
る。
4NH 3 + 6NO → 5N 2 + 6H 2 O 4NH 3 + 3O 2 → 2N 2 + 6H 2 O Therefore, part of the injected NH 3 contributes to the reduction of NOx, and the remaining part is decomposed by oxygen to form N 2 And H 2 O, and the remaining part is leak ammonia. According to the test results of the present inventors, the NH 3 / NO molar ratio is 2 to 3
As described above, even if NH 3 is excessively supplied, NOx almost reaches an equilibrium value, and the effective utilization rate of the supplied NH 3 as denitration decreases.

【0030】図8は、加圧流動層ボイラ排ガスの無触媒
脱硝におけるNH3/NOxモル比とNOx濃度、注入
NH3の関係曲線図である。この図に示すように、出口
NOx濃度に応じてNH3を注入する場合は、NH3/N
Oxモル比が過剰であっても一定割合以上はNH3の有
効利用率が低く経済的でない。
FIG. 8 is a graph showing the relationship between the NH 3 / NOx molar ratio, NOx concentration, and injected NH 3 in the non-catalytic denitration of exhaust gas from a pressurized fluidized-bed boiler. As shown in this figure, when injecting NH 3 according to the outlet NOx concentration, NH 3 / N
Even if the Ox molar ratio is excessive, the effective utilization rate of NH 3 is not economical at a certain ratio or more because it is not economical.

【0031】本発明においては、入口NOx濃度に応じ
て一定モル比のNH3を注入することでNH3を有効に利
用出来る範囲までNOx濃度を低減するものである。加
圧流動層ボイラにおいては最適モル比は約2〜3であ
り、この場合無触媒脱硝だけだと出口NOx濃度が規制
値を守れない恐れがあるが、加圧流動層ボイラにおいて
はガスタービン(GT)出口に有触媒脱硝装置があるの
で、規制値までの低減は有触媒脱硝で行なう。
[0031] In the present invention, it is intended to reduce the NOx concentration to effectively use can range NH 3 by injecting NH 3 fixed molar ratio in accordance with the entrance NOx concentration. In a pressurized fluidized-bed boiler, the optimum molar ratio is about 2 to 3. In this case, there is a possibility that the outlet NOx concentration may not comply with the regulation value if only non-catalytic denitration is used. GT) Since there is a catalytic denitration device at the outlet, reduction to the regulation value is performed by catalytic denitration.

【0032】有触媒脱硝では、触媒脱硝装置入口のNO
x濃度を触媒脱硝装置出口で規制値まで除去するのに必
要なNH3を入口NOx濃度計測値から計算で予測す
る。但し、触媒脱硝装置入口の低減処理排ガス中に上流
の無触媒脱硝での残留NH3が含まれるため、触媒脱硝
装置入口で注入するNH3量は、計算予想値(必要値)
から残留NH3分を除いた差分に相当するNH3を注入す
れば良い。
In the catalytic NOx removal, the NO at the inlet of the catalytic NOx removal device is
NH 3 required to remove the x concentration to the regulation value at the outlet of the catalytic denitration device is predicted by calculation from the measured value of the inlet NOx concentration. However, the amount of NH 3 injected at the inlet of the catalytic denitration apparatus is a calculated expected value (necessary value) because the reduced treatment exhaust gas at the entrance of the catalytic denitration apparatus contains the residual NH 3 from the upstream non-catalytic denitration apparatus.
It is sufficient to inject NH 3 equivalent to the difference obtained by removing the remaining NH 3 from the above.

【0033】図9は、加圧流動層ボイラ排ガスの触媒脱
硝における運転負荷とNOx濃度、残留NH3濃度、有
触媒入口NH3濃度の関係曲線図である。加圧流動層ボ
イラにおいては、ボイラ出口〜GTまでのガス温度、ガ
ス圧力が負荷によって変動するため上記の関係を横軸を
運転負荷で整理すると、無触媒脱硝は熱還元反応のため
注入NH3モル比が一定でも排ガス温度が低下する部分
負荷時には脱硝効率が低下するため触媒脱硝装置入口で
のNOx濃度は上昇傾向となる(図9の)。
[0033] Figure 9, the operation load and the NOx concentration at the catalyst denitration of pressurized fluid Doso boiler exhaust gas, the residual NH 3 concentration, a relationship curve diagram of the chromatic catalyst inlet NH 3 concentration. In a pressurized fluidized-bed boiler, the gas temperature and gas pressure from the boiler outlet to the GT fluctuate depending on the load. If the above relationship is arranged on the horizontal axis, the non-catalytic denitration is performed by the injection of NH 3 due to the thermal reduction reaction. Even when the molar ratio is constant, the NOx concentration at the inlet of the catalytic denitration device tends to increase at a partial load where the exhaust gas temperature decreases, since the NOx concentration decreases (FIG. 9).

【0034】一方、無触媒脱硝の余剰NH3の熱分解反
応は部分負荷で温度が低下することと、排ガス圧力低下
に伴うO2分圧低下に伴い分解が抑制される傾向である
ため、残留NH3としての存在割合が上昇する(図9の
)。従って、有触媒入口においては、部分負荷でNO
x濃度が上昇するため排ガス量に対して必要NH3割合
も増加する(図9の)が、無触媒脱硝での残留NH3
濃度も増加するので、必要量から残留NH3量を引いた
有触媒入口でのNH3注入量は著しく増加することはな
い(図9の)。
On the other hand, in the thermal decomposition reaction of surplus NH 3 in non-catalytic denitration, the temperature tends to decrease with a partial load, and the decomposition tends to be suppressed as the O 2 partial pressure decreases due to the decrease in exhaust gas pressure. The proportion of NH 3 present increases (FIG. 9). Therefore, at the catalyst entrance, NO
x concentration also increased need NH 3 ratio with respect to the exhaust gas amount to increase (in FIG. 9), the residual NH 3 in a non-catalytic denitration
Since the concentration also increases, the amount of NH 3 injected at the catalyst entrance, which is obtained by subtracting the amount of residual NH 3 from the required amount, does not increase significantly (FIG. 9).

【0035】有触媒入口でのNOx濃度に対して一定割
合のNH3を注入する場合は、既に排ガス中に存在する
残留NH3量がNH3に加算されるので、必要以上に過剰
なNH3がリークNH3として煙突へ排出されることにな
るので経済的ではない。尚、無触媒脱硝での残留NH3
量は、上記のように加圧流動層特有の排ガス温度と排ガ
ス圧力によって変動するので計算等で精度よく予想する
ことは困難であり、実際の測定値を制御信号として使用
することが応答性の面でも効果的である。以上より、煙
突入口ダクトでのNOx及びリークアンモニアを最小レ
ベルに抑えることが出来る。
In the case of injecting NH 3 at a fixed ratio with respect to the NOx concentration at the catalyst inlet, the amount of residual NH 3 already present in the exhaust gas is added to NH 3 , so that an excessive amount of NH 3 Is discharged to the chimney as leak NH 3 , which is not economical. In addition, residual NH 3 in non-catalytic denitration
Since the amount fluctuates depending on the exhaust gas temperature and exhaust gas pressure peculiar to the pressurized fluidized bed as described above, it is difficult to accurately predict the amount by calculation or the like. It is also effective in terms of aspects. As described above, NOx and leak ammonia in the chimney inlet duct can be suppressed to the minimum level.

【0036】次に、燃料を燃焼させて発生した燃焼排ガ
スにアンモニアを注入して前記燃焼排ガス中の窒素酸化
物を低減した低減処理排ガスとし、更に該低減処理排ガ
スにアンモニアを注入し触媒の存在の基に該低減処理排
ガスの窒素酸化物を除去する排ガスの脱硝装置におい
て、前記燃料を燃焼させる燃焼装置にかかる負荷の負荷
信号に応じて前記燃焼排ガスに注入するアンモニア注入
量を制御する第5のアンモニア注入制御手段を備え、先
の第3のアンモニア注入制御手段又は第4のアンモニア
注入制御手段を備えたことである。
Next, ammonia is injected into the flue gas generated by burning the fuel to reduce the nitrogen oxides in the flue gas to obtain a reduced treated exhaust gas. In the exhaust gas denitration apparatus for removing nitrogen oxides of the reduced treatment exhaust gas based on the above, controlling the amount of ammonia injected into the combustion exhaust gas in accordance with a load signal of a load applied to a combustion apparatus for burning the fuel, And the above-mentioned third ammonia injection control means or fourth ammonia injection control means.

【0037】第5のアンモニア注入制御手段を備えた排
ガスの脱硝装置は、先の第3のアンモニア注入制御手段
又は第4のアンモニア注入制御手段を備えた排ガスの脱
硝装置の作用に加え、例えば流動層ボイラの運転条件を
負荷によって一定のパターンに固定して運転する場合
は、NOx濃度を計測しなくても、注入するアンモニア
量を負荷と相関させた制御関数として予め設定し、負荷
信号により、気相還元脱硝部に注入するアンモニア量を
制御することも可能である。
The exhaust gas denitration device provided with the fifth ammonia injection control means has, for example, a fluid exhaust gas denitration device provided with the third ammonia injection control means or the fourth ammonia injection control means. In the case where the operation condition of the bed boiler is fixed and operated in a fixed pattern depending on the load, the amount of ammonia to be injected is set in advance as a control function correlated with the load without measuring the NOx concentration. It is also possible to control the amount of ammonia injected into the gas phase denitration unit.

【0038】本発明の排ガスの脱硝装置は、第1のアン
モニア注入制御手段31又は第5のアンモニア注入制御
手段35である無触媒脱硝装置により低減されたNOx
は、触媒脱硝装置11で第2〜第4のアンモニア注入制
御手段32、33、34により注入されたアンモニアに
よって更に除去され脱硝効率を触媒脱硝装置11のみに
よる場合の上限値以上に向上させることが可能となり、
厳しい環境規制値に対応することが出来る。
In the exhaust gas denitration apparatus of the present invention, the NOx reduced by the non-catalytic denitration apparatus which is the first ammonia injection control means 31 or the fifth ammonia injection control means 35.
Can be further removed by the ammonia injected by the second to fourth ammonia injection control means 32, 33, 34 in the catalytic denitration device 11 and the denitration efficiency can be improved to the upper limit or more when only the catalytic denitration device 11 is used. Becomes possible,
Comply with strict environmental regulations.

【0039】又、無触媒脱硝と有触媒脱硝で使用するア
ンモニア量を、煙突入口NOx濃度を規制値以下に維持
しつつ、分解消失するアンモニア量と未反応で系外に排
出されるアンモニア量を最小にするように制御する。
The amount of ammonia used in non-catalytic and decatalyzed denitration is controlled by controlling the amount of ammonia that decomposes and disappears and the amount of ammonia that is unreacted and discharged outside the system while maintaining the NOx concentration at the chimney inlet below a regulated value. Control to minimize.

【0040】[0040]

【発明の実施の形態】以下、本発明に係る排ガスの脱硝
装置の実施の形態を図面に基づいて詳細に説明する。
尚、図1〜7において、同一又は同等部分には同一符号
を付けて示し、図2〜7における図1と同じ符号部分の
説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an exhaust gas denitration apparatus according to the present invention will be described in detail with reference to the drawings.
1 to 7, the same or equivalent parts are denoted by the same reference numerals, and the description of the same reference numerals in FIGS.

【0041】図1は、加圧流動層ボイラを利用した発電
装置に使用された本発明に係る排ガスの脱硝装置の第1
実施形態を示す系統図である。ガスタービン8によって
駆動されるコンプレッサ6に導入された燃焼空気5は、
火炉入口配管4を通って圧力容器3内の加圧流動層ボイ
ラ1に導入される。流動層を形成する流動媒体(BM)
2にCWP供給ノズル23によって供給された燃料とし
てのCWPは、燃焼することによって燃焼排ガスG1
発生する。加圧流動層ボイラ1で発生した燃焼排ガスG
1は、火炉出口配管7内で気相還元反応による無触媒脱
硝が行なわれる。窒素酸化物が低減された低減処理排ガ
スG2は、更に火炉出口配管7を通りガスタービン8に
導入され発電を行なうと同時にコンプレッサ6を駆動す
る。ガスタービン8を出た低減処理排ガスG2は、ガス
タービン出口ダクト9より上流側の節炭器10に導入さ
れるが、排ガス温度が約400℃と高温であるため、上
流側の節炭器10及び下流側の節炭器10を通って熱回
収され煙突入口ダクト12を通過し煙突29より放出さ
れる。
FIG. 1 shows a first example of an exhaust gas denitration apparatus according to the present invention used in a power generation apparatus using a pressurized fluidized bed boiler.
It is a system diagram showing an embodiment. The combustion air 5 introduced into the compressor 6 driven by the gas turbine 8 is
It is introduced into the pressurized fluidized bed boiler 1 in the pressure vessel 3 through the furnace inlet pipe 4. Fluid medium (BM) forming fluidized bed
CWP as fuel supplied by 2 to CWP supply nozzle 23, generating combustion gas G 1 by burning. Combustion exhaust gas G generated in pressurized fluidized bed boiler 1
In 1 , non-catalytic denitration by a gas phase reduction reaction is performed in a furnace outlet pipe 7. The reduced treatment exhaust gas G 2 in which the nitrogen oxides have been reduced is further introduced into the gas turbine 8 through the furnace outlet pipe 7 to generate power and drive the compressor 6 at the same time. The reduced-treatment exhaust gas G 2 that has exited the gas turbine 8 is introduced into the economizer 10 upstream of the gas turbine outlet duct 9. However, since the exhaust gas temperature is as high as about 400 ° C., the economizer upstream is reduced. Heat is recovered through the fuel cell 10 and the downstream economizer 10, passes through the chimney inlet duct 12, and is discharged from the chimney 29.

【0042】ここで、第1実施形態の排ガスの脱硝装置
は、燃料としてCWPを燃焼させる加圧流動層ボイラ1
で発生した燃焼排ガスG1にアンモニアを注入して燃焼
排ガスG1中の窒素酸化物を低減して低減処理排ガスG2
とし、更にこの低減処理排ガスG2にアンモニアを注入
し脱硝触媒(触媒)を有する脱硝触媒装置11で低減処
理排ガスG2の窒素酸化物を除去し、触媒通過排ガスG3
として系外に排出するものである。そして、燃焼排ガス
1にアンモニアを注入する注入位置I1より上流側で燃
焼排ガスG1の窒素酸化物濃度を計測する火炉出口NO
x濃度計測装置21を有し、このNOx濃度計測装置2
1で計測した窒素酸化物濃度による制御信号c0に基づ
いて燃焼排ガスG1に注入するアンモニア注入量を制御
する第1のアンモニア注入制御手段31を備えている。
Here, the exhaust gas denitration apparatus of the first embodiment is a pressurized fluidized bed boiler 1 that burns CWP as fuel.
In reduction processing to reduce the nitrogen oxides in the combustion exhaust gas G 1 by injecting ammonia into generated flue gas G 1 gas G 2
And then, to remove additional denitration catalyst device 11 reduction process of nitrogen oxides of the exhaust gas G 2 in having ammonia injected denitration catalyst (catalyst) in the reducing process gas G 2, the catalyst passes through the exhaust gas G 3
Is discharged out of the system. The furnace outlet NO for measuring the NOx concentration in the combustion exhaust gas G 1 from the injection position I 1 for injecting ammonia into the combustion exhaust gas G 1 on the upstream side
x NOx concentration measuring device 21
And a first ammonia injection control means 31 for controlling the ammonia injection amount to be injected into the combustion exhaust gas G 1 based on the control signal c 0 by a nitrogen oxide concentration measured by 1.

【0043】更に、低減処理排ガスG2にアンモニアを
注入する注入位置I2より上流側に低減処理排ガスG2
窒素酸化物濃度を計測する有触媒入口NOx濃度計測装
置22a及びアンモニア濃度を計測する有触媒入口NH
3濃度計測装置22bが設置され、これらの計測装置で
計測した窒素酸化物濃度及びアンモニア濃度の計測信号
2、i3から演算された制御信号c1に基づいて低減処
理排ガスG2に注入するアンモニア注入量を制御する第
2のアンモニア注入制御手段32を備えている。
[0043] Further, to measure the chromatic catalyst inlet NOx concentration measuring apparatus 22a and the ammonia concentration to measure the concentration of nitrogen oxides reduction process flue gas G 2 from the injection position I 2 for injecting ammonia to the reduction process flue gas G 2 on the upstream side NH with catalyst
3 concentration measuring device 22b is installed to inject the reducing process gas G 2 based on the control signal c 1 which is calculated from the measurement signal i 2, i 3 of the nitrogen oxide concentration and the ammonia concentration measured by these measuring devices A second ammonia injection control means 32 for controlling the ammonia injection amount is provided.

【0044】そして、第1実施形態の排ガスの脱硝装置
において、第1のアンモニア注入制御手段31は、火炉
出口NOx濃度計測装置21によって火炉出口NOx濃
度を計測し、この計測信号によってアンモニア必要量が
計算された後、制御信号c0を無触媒アンモニア流量調
整弁20に送って制御する。制御信号c0を受けた無触
媒アンモニア流量調整弁20は、触媒脱硝と共用される
アンモニア気化器15から必要量のアンモニアを火炉出
口配管7内の圧力以上に昇圧する無触媒アンモニア昇圧
ファン(コンプレッサ)16に送る。無触媒アンモニア
昇圧ファン16から送られたアンモニアは、混合器30
においてアンモニア希釈空気17を混合され無触媒アン
モニアノズル18より火炉出口配管7内に注入される。
In the exhaust gas denitration apparatus of the first embodiment, the first ammonia injection control means 31 measures the NOx concentration at the furnace outlet by the NOx concentration measuring device 21 at the furnace outlet. After the calculation, the control signal c 0 is sent to the non-catalytic ammonia flow control valve 20 for control. Upon receiving the control signal c 0 , the non-catalytic ammonia flow control valve 20 increases the required amount of ammonia from the ammonia vaporizer 15, which is also used for catalytic denitration, to a pressure equal to or higher than the pressure in the furnace outlet pipe 7. ) Send to 16. The ammonia sent from the non-catalyst ammonia booster fan 16 is supplied to the mixer 30
The ammonia diluted air 17 is mixed and injected into the furnace outlet pipe 7 from the non-catalytic ammonia nozzle 18.

【0045】注入されたアンモニアは、火炉出口配管7
内の排ガス中に拡散し気相還元反応によりNOxを低減
すると同時に熱分解を起こしながらガスタービン8を経
て触媒脱硝装置11入口まで到達する。このときのNO
x濃度及びアンモニア濃度をNOx濃度計測装置22a
及びNH3濃度計測装置22bにて計測し、その計測信
号i2、i3を触媒層入口NH3注入量演算装置25に取
り込み、触媒脱硝で必要とする注入アンモニア量を演算
し、演算された制御信号c1を有触媒アンモニア流量調
整弁19に送って制御し、この有触媒アンモニア流量調
整弁19から送られたアンモニアをアンモニア希釈空気
14で希釈し、有触媒アンモニア注入ノズル13より注
入する。
The injected ammonia is supplied to the furnace outlet pipe 7.
It diffuses into the exhaust gas inside and reduces NOx by a gas phase reduction reaction, and at the same time, reaches the inlet of the catalytic denitration device 11 via the gas turbine 8 while causing thermal decomposition. NO at this time
NOx concentration measuring device 22a for x concentration and ammonia concentration
And NH 3 concentration measurement device 22b, and the measurement signals i 2 and i 3 are taken into the catalyst layer inlet NH 3 injection amount calculation device 25, and the amount of injected ammonia required for catalyst denitration is calculated and calculated. The control signal c 1 is sent to and controlled by the catalyzed ammonia flow control valve 19, and the ammonia sent from the catalyzed ammonia flow control valve 19 is diluted with the ammonia dilution air 14 and injected through the catalyzed ammonia injection nozzle 13.

【0046】触媒脱硝装置11入口でのNOxは、触媒
により更に除去され、無触媒脱硝の第1のアンモニア注
入手段31と組み合わせることで脱硝触媒のみで行なう
脱硝効率の限界値を結果的にさらに向上させることにな
る。又、無触媒脱硝でのリークアンモニアを有触媒脱硝
で有効利用することから煙突から排出されるアンモニア
濃度も最小とすることが出来る。消費するアンモニアは
常に注入位置の上流側のNOx濃度に必要な最小限に過
剰な量とすることが出来るので、アンモニア消費量を最
小とすることが出来る。
NOx at the inlet of the catalytic denitration device 11 is further removed by the catalyst, and the limit value of the denitration efficiency performed only with the denitration catalyst is further improved by combining with the first ammonia injection means 31 for non-catalytic denitration. Will be. Further, since the leak ammonia in the non-catalytic denitration is effectively used in the catalytic denitration, the concentration of the ammonia discharged from the chimney can be minimized. Since the amount of ammonia to be consumed can always be the minimum amount necessary for the NOx concentration upstream of the injection position, the amount of ammonia consumed can be minimized.

【0047】図2は、第2実施形態を示す系統図であ
る。第2実施形態の排ガスの脱硝装置は、上記第2のア
ンモニア注入制御手段32に、触媒脱硝装置11を通過
した触媒通過排ガスG3の窒素酸化物濃度を計測する有
触媒出口NOx濃度計測装置24aを有し、この有触媒
出口NOx濃度計測装置24aで計測した窒素酸化物濃
度の計測信号i4で、先に計測した低減処理排ガスG2
窒素酸化物濃度及びアンモニア濃度の計測信号i2、i3
から演算された制御信号c1を触媒層入口NH3注入量補
正演算装置26で補正して制御信号c2を有触媒アンモ
ニア流量調整弁19に送って制御し、有触媒アンモニア
注入ノズル13よりアンモニアを低減処理排ガスG2
注入、制御する。出口NOx濃度が設定又は規制NOx
濃度値より小さくなるように補正する。
FIG. 2 is a system diagram showing the second embodiment. Denitration apparatus of exhaust gas of the second embodiment, the first two of the ammonia injection control means 32, perforated catalyst outlet NOx concentration measuring device 24a that measures the NOx concentration of the catalyst passing the exhaust gas G 3 having passed through the catalytic denitration device 11 the a, the nitrogen oxide concentration measurement signal i 4 measured by the chromatic catalyst outlet NOx concentration measuring device 24a, the measurement signal of the nitrogen oxides reduction process flue gas G 2 measured above concentration and ammonia concentration i 2, i 3
The control signal c 1 calculated from the above is corrected by the catalyst layer inlet NH 3 injection amount correction calculating device 26 and the control signal c 2 is sent to the catalyzed ammonia flow control valve 19 for control. injected into reducing process gas G 2, and controls. Outlet NOx concentration is set or regulated NOx
Correct so as to be smaller than the density value.

【0048】図3は、第3実施形態を示す系統図であ
る。第3実施形態の排ガスの脱硝装置は、上記第2のア
ンモニア注入制御手段32に、触媒脱硝装置11を通過
した触媒通過排ガスG3のアンモニア濃度を計測する有
触媒出口NH3濃度計測装置24bを有し、この有触媒
出口NOx濃度計測装置24bで計測したNH3濃度の
計測信号i5で、先に計測した低減処理排ガスG2の窒素
酸化物濃度及びアンモニア濃度の計測信号i2、i3から
演算された制御信号c1を触媒層入口NH3注入量補正演
算装置26で補正して制御信号c3とし、制御信号c3
有触媒アンモニア流量調整弁19に送って制御し、低減
処理排ガスG2に注入するアンモニア注入量を制御す
る。出口NH3濃度が設定濃度値より小さくなるように
補正を加え有触媒アンモニア流量調整弁19を制御し有
触媒アンモニア注入ノズル13よりアンモニアを注入す
る。
FIG. 3 is a system diagram showing the third embodiment. Denitration apparatus of exhaust gas of the third embodiment, in the second ammonia injection control means 32, a chromatic catalyst outlet NH 3 concentration measuring device 24b for measuring the ammonia concentration of the catalyst passing through the exhaust gas G 3 having passed through the catalytic denitration device 11 has, in the measurement signal i 5 of the NH 3 concentration measured by the chromatic catalyst outlet NOx concentration measuring device 24b, the measurement of the concentration of nitrogen oxides reduction process flue gas G 2 measured previously and ammonia concentration signal i 2, i 3 The control signal c 1 calculated from the above is corrected by the catalyst layer inlet NH 3 injection amount correction calculating device 26 to become the control signal c 3 , and the control signal c 3 is sent to the catalyzed ammonia flow rate adjusting valve 19 for control to reduce controlling the ammonia injection amount to be injected into the exhaust gas G 2. A correction is made so that the outlet NH 3 concentration becomes smaller than the set concentration value, the catalytic ammonia flow control valve 19 is controlled, and ammonia is injected from the catalytic ammonia injection nozzle 13.

【0049】図4は、第4実施形態を示す系統図であ
る。第4実施形態の排ガスの脱硝装置は、触媒通過排ガ
スG3の窒素酸化物濃度が予め設定された濃度範囲に収
まるように制御する第3のアンモニア注入制御手段33
を備えている。第3のアンモニア注入制御手段33は、
触媒脱硝装置11を通過した触媒通過排ガスG3の窒素
酸化物濃度を計測する有触媒出口NOx濃度計測装置2
4aを有し、この有触媒出口NOx濃度計測装置24a
で計測した窒素酸化物濃度の計測信号i4を触媒層入口
NH3注入演算装置27に入力し、この触媒層入口NH3
注入演算装置27から演算された制御信号c4に基づい
て、有触媒アンモニア流量調整弁19を制御して低減処
理排ガスG2にアンモニアを注入する。
FIG. 4 is a system diagram showing a fourth embodiment. Denitration apparatus of the exhaust gas of the fourth embodiment, the third ammonia injection control means 33 for controlling to fit in the range of concentrations of nitrogen oxides concentration of the catalyst passing through the exhaust gas G 3 is set in advance
It has. The third ammonia injection control means 33 includes:
NOx concentration measurement device 2 with a catalyst outlet for measuring the concentration of nitrogen oxides in the exhaust gas G 3 passing through the catalyst that has passed through the catalyst denitration device 11
NOx concentration measuring device 24a
The measurement signal i 4 of the nitrogen oxide concentration measured in the above is input to the catalyst layer inlet NH 3 injection arithmetic unit 27, and the catalyst layer inlet NH 3
Based on the control signal c 4 calculated from the injection calculating device 27, the control unit controls the catalyzed ammonia flow control valve 19 to inject ammonia into the reduced exhaust gas G 2 .

【0050】更に、第4実施形態の排ガスの脱硝装置に
おいて、火炉出口配管7の気相還元脱硝部に注入するア
ンモニアは、第1のアンモニア注入手段31で注入す
る。一方、触媒脱硝装置11入口部に注入するアンモニ
アは、触媒脱硝装置11出口NOx濃度を計測して、そ
の値が設定した濃度範囲以内になるように第3のアンモ
ニア注入制御手段33で注入する。触媒脱硝装置11出
口NOx濃度が設定値以下になるということは、アンモ
ニアが過剰の状態であることを示し、アンモニアが流出
している可能性があることを示す。逆に、触媒脱硝装置
11出口NOx濃度が設定値以上になるということは、
アンモニアは反応に使用され流出の心配がなくなるが、
NOxは系外に流出することになる。従って、有触媒出
口NOx濃度計測装置24aにより計測したNOx濃度
が、設定上限及び下限の範囲内の値になるように有触媒
アンモニア注入ノズル13からのアンモニア注入量を制
御することにより、NOx及びNH3の排出を低減させ
ることが出来る。この場合、有触媒出口NOx濃度計測
装置24aだけで、上記の効果を発揮させ得るので、N
Ox計測装置及びNH3計測装置を多くいらない。
Further, in the exhaust gas denitration apparatus of the fourth embodiment, the ammonia injected into the gas phase reduction denitration section of the furnace outlet pipe 7 is injected by the first ammonia injection means 31. On the other hand, the ammonia to be injected into the inlet of the catalyst denitration device 11 is measured by measuring the NOx concentration at the outlet of the catalyst denitration device 11 and injected by the third ammonia injection control means 33 so that the value falls within the set concentration range. The fact that the NOx concentration at the outlet of the catalytic denitration device 11 becomes equal to or less than the set value indicates that the ammonia is in an excessive state, and indicates that the ammonia may be flowing out. Conversely, the fact that the NOx concentration at the outlet of the catalytic denitration device 11 becomes equal to or higher than the set value means that
Ammonia is used for the reaction and there is no fear of spillage,
NOx will flow out of the system. Accordingly, by controlling the amount of ammonia injected from the catalyzed ammonia injection nozzle 13 so that the NOx concentration measured by the catalyzed outlet NOx concentration measuring device 24a falls within the range of the set upper and lower limits, NOx and NH 3 emissions can be reduced. In this case, the above effect can be exerted only by the catalyst-exited NOx concentration measuring device 24a.
It does not require many Ox measuring devices and NH 3 measuring devices.

【0051】図5は、第5実施形態を示す系統図であ
る。第5実施形態の排ガスの脱硝装置は、触媒通過排ガ
スG3のアンモニア濃度が予め設定された濃度範囲に収
まるように制御する第4のアンモニア注入制御手段34
を備えている。第4のアンモニア注入制御手段34は、
触媒脱硝装置11を通過した触媒通過排ガスG3のアン
モニア濃度を計測する有触媒出口NH3濃度計測装置2
4bを有し、この有触媒出口NH3濃度計測装置24b
で計測したアンモニア濃度の計測信号i5を触媒層入口
NH3注入演算装置27に入力し、この触媒層入口NH3
注入演算装置27から演算された制御信号c5に基づい
て、有触媒アンモニア流量調整弁19を制御して低減処
理排ガスG2にアンモニアを注入する。
FIG. 5 is a system diagram showing a fifth embodiment. Fifth embodiment of an exhaust gas denitration apparatus, the fourth ammonia injection control means 34 for controlling so that the ammonia concentration of the catalyst passing through the exhaust gas G 3 falls to a preset concentration range
It has. The fourth ammonia injection control means 34
NH 3 concentration measuring device 2 with a catalyst outlet for measuring the ammonia concentration of the exhaust gas G 3 passing through the catalyst that has passed through the catalytic denitration device 11
4b, and this catalyst outlet NH 3 concentration measuring device 24b
The measurement signal i 5 of the ammonia concentration measured in step 3 is input to the catalyst layer inlet NH 3 injection arithmetic unit 27, and the catalyst layer inlet NH 3
Based on the control signal c 5 which is calculated from the injection operation unit 27, for injecting ammonia into reducing process gas G 2 by controlling the chromatic catalytic ammonia flow control valve 19.

【0052】更に、第5実施形態の排ガスの脱硝装置に
おいて、火炉出口配管7の気相還元脱硝部に注入するア
ンモニアは、第1のアンモニア注入手段31で注入す
る。一方、触媒脱硝装置11入口部に注入するアンモニ
アは、触媒脱硝装置11出口NH3濃度を計測して、そ
の値が設定した濃度範囲以内になるように第4のアンモ
ニア注入制御手段34で注入する。触媒脱硝装置11出
口NH3濃度が設定値以下になるということは、NOx
が過剰の状態であることを示し、NOxが流出している
可能性があることを示す。逆に、触媒脱硝装置11出口
NH3濃度が設定値以上になるということは、NOxは
反応に使用され流出の心配が無くなるが、NH3は系外
に流出することになる。従って、有触媒出口NH3濃度
計測装置24bにより計測したNH3濃度が、設定上限
及び下限の範囲内の値になるように有触媒アンモニア注
入ノズル13からのアンモニア注入量を制御することに
より、NOx及びNH3の流出を低減させることが出来
る。この場合、有触媒出口NH3濃度計測装置24bだ
けで、上記効果を発揮させ得るので、NOx計測装置及
びNH3計測装置を多くいらない。
Further, in the exhaust gas denitration apparatus of the fifth embodiment, the ammonia injected into the gas phase reduction denitration section of the furnace outlet pipe 7 is injected by the first ammonia injection means 31. On the other hand, the ammonia to be injected into the inlet of the catalyst denitration device 11 is measured by measuring the NH 3 concentration at the outlet of the catalyst denitration device 11 and injected by the fourth ammonia injection control means 34 so that the value falls within the set concentration range. . The fact that the NH 3 concentration at the outlet of the catalytic denitration device 11 becomes equal to or lower than the set value means that NOx
Indicates an excessive state, and indicates that NOx may be flowing out. Conversely, the fact that the concentration of NH 3 at the outlet of the catalytic denitration device 11 exceeds the set value means that NOx is used in the reaction and there is no fear of outflow, but NH 3 flows out of the system. Therefore, NOx is controlled by controlling the amount of ammonia injected from the catalyzed ammonia injection nozzle 13 so that the NH 3 concentration measured by the catalyzed outlet NH 3 concentration measuring device 24b falls within the range of the set upper limit and lower limit. And NH 3 outflow can be reduced. In this case, the above effect can be exerted only by the catalyst-exited NH 3 concentration measuring device 24b, so that the number of NOx measuring devices and NH 3 measuring devices is not required.

【0053】図6は、第6実施形態を示す系統図であ
る。第6実施形態の排ガスの脱硝装置は、CWPの燃料
を燃焼させる加圧流動層ボイラ1にかかる負荷の負荷信
号fに応じて燃焼排ガスG1に注入するアンモニア注入
量を制御する第5のアンモニア注入制御手段35を備え
ている。更に、触媒脱硝装置11の出口のNOx濃度を
計測し、触媒脱硝装置11の入口のアンモニア注入位置
2でのアンモニア注入量を制御する第3のアンモニア
注入制御手段33を備えている。
FIG. 6 is a system diagram showing a sixth embodiment. Denitration apparatus of exhaust gas according to the sixth embodiment, the fifth ammonia to control the ammonia injection amount to be injected into the combustion exhaust gas G 1 according to the load signal f of the load applied to the pressurized fluid Doso boiler 1 for burning fuel in the CWP An injection control means 35 is provided. Further, the NOx concentration at the outlet of the catalytic denitration apparatus 11 is measured, and a third ammonia injection control means 33 for controlling the ammonia injection amount of ammonia injection position I 2 of the inlet of the catalytic denitration device 11.

【0054】第1〜5実施形態の排ガスの脱硝装置は、
火炉出口に注入するアンモニア量を加圧流動層ボイラ火
炉出口配管7のアンモニア注入位置より上流側に火炉出
口NOx濃度計測装置を設置して、このNOx計測装置
の計測信号c0に応じて加圧流動層ボイラ出口煙道への
アンモニア注入量を制御するが、第6実施形態の排ガス
の脱硝装置は、加圧流動層ボイラの運転条件を負荷によ
って一定のパターンに固定して運転する場合は、NOx
濃度を計測しなくても、注入するアンモニア量を負荷と
相関させた制御関数として予め設定し、負荷信号fによ
り、気相還元脱硝部に注入するアンモニア量を制御す
る。
The exhaust gas denitration devices of the first to fifth embodiments are as follows:
The amount of ammonia to be injected into the furnace outlet is pressurized according to the measurement signal c 0 of the NOx measuring device by installing a furnace outlet NOx concentration measuring device upstream of the ammonia injection position of the pressurized fluidized bed boiler furnace outlet pipe 7. Although the amount of ammonia injected into the fluidized bed boiler outlet flue is controlled, the exhaust gas denitration apparatus according to the sixth embodiment operates when the operating condition of the pressurized fluidized bed boiler is fixed in a fixed pattern depending on the load. NOx
Even if the concentration is not measured, the amount of ammonia to be injected is preset as a control function correlated with the load, and the amount of ammonia to be injected into the gas phase reduction denitration unit is controlled by the load signal f.

【0055】図7は、第7実施形態を示す系統図であ
る。第7実施形態の排ガスの脱硝装置は、第6実施形態
の排ガスの脱硝装置と同様にCWPの燃料を燃焼させる
加圧流動層ボイラ1にかかる負荷の負荷信号fに応じて
燃焼排ガスG1に注入するアンモニア注入量を制御する
第5のアンモニア注入制御手段35を備えているが、第
6実施形態の排ガスの脱硝装置における触媒脱硝装置1
1の出口のNOx濃度を計測する有触媒出口NOx計測
装置24aの代わりに有触媒出口NH3計測装置24b
を有する第4のアンモニア注入制御手段34を備えてい
る。
FIG. 7 is a system diagram showing a seventh embodiment. The exhaust gas denitration apparatus according to the seventh embodiment generates the combustion exhaust gas G 1 according to the load signal f of the load applied to the pressurized fluidized bed boiler 1 that burns the CWP fuel, similarly to the exhaust gas denitration apparatus according to the sixth embodiment. The fifth embodiment is provided with fifth ammonia injection control means 35 for controlling the amount of injected ammonia, but the catalyst denitration device 1 in the exhaust gas denitration device of the sixth embodiment.
Yes catalyst outlet NH 3 measurement device 24b instead of the chromatic catalyst outlet NOx measuring device 24a that measures the NOx concentration in the first outlet
And a fourth ammonia injection control means 34 having the following.

【0056】第6実施形態の排ガスの脱硝装置と同様
に、第7実施形態の排ガスの脱硝装置は、加圧流動層ボ
イラの運転条件を負荷によって一定のパターンに固定し
て運転する場合は、NOx濃度を計測しなくても、注入
するアンモニア量を負荷と相関させた制御関数として予
め設定し、負荷信号fにより、気相還元脱硝部に注入す
るアンモニア量を制御する。
Similar to the exhaust gas denitration apparatus of the sixth embodiment, the exhaust gas denitration apparatus of the seventh embodiment is operated when the operating conditions of the pressurized fluidized bed boiler are operated in a fixed pattern depending on the load. Even if the NOx concentration is not measured, the amount of ammonia to be injected is preset as a control function correlated with the load, and the amount of ammonia to be injected into the gas phase reduction denitration unit is controlled by the load signal f.

【0057】[0057]

【発明の効果】本発明の排ガスの脱硝装置によれば、外
部に排出される窒素酸化物濃度を環境規制値以下に維持
すると共に、排ガスの脱硝に使用するアンモニア量と外
部に排出される漏洩アンモニア量を最小にする。
According to the exhaust gas denitration apparatus of the present invention, the concentration of nitrogen oxides discharged to the outside is kept below the environmental regulation value, the amount of ammonia used for denitration of exhaust gases and the amount of leakage discharged to the outside are reduced. Minimize the amount of ammonia.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加圧流動層ボイラを利用した発電装置に使用さ
れた本発明に係る排ガスの脱硝装置の第1実施形態を示
す系統図である。
FIG. 1 is a system diagram showing a first embodiment of an exhaust gas denitration apparatus according to the present invention used in a power generation apparatus using a pressurized fluidized bed boiler.

【図2】第2実施形態を示す系統図である。FIG. 2 is a system diagram showing a second embodiment.

【図3】第3実施形態を示す系統図である。FIG. 3 is a system diagram showing a third embodiment.

【図4】第4実施形態を示す系統図である。FIG. 4 is a system diagram showing a fourth embodiment.

【図5】第5実施形態を示す系統図である。FIG. 5 is a system diagram showing a fifth embodiment.

【図6】第6実施形態を示す系統図である。FIG. 6 is a system diagram showing a sixth embodiment.

【図7】第7実施形態を示す系統図である。FIG. 7 is a system diagram showing a seventh embodiment.

【図8】加圧流動層ボイラ排ガスの無触媒脱硝における
NH3/NOxモル比とNOx濃度、注入NH3の関係曲
線図である。
FIG. 8 is a graph showing the relationship between NH 3 / NOx molar ratio, NOx concentration, and injected NH 3 in decatalyzed denitration of exhaust gas from a pressurized fluidized-bed boiler.

【図9】加圧流動層ボイラ排ガスの触媒脱硝における運
転負荷とNOx濃度、残留NH3濃度、有触媒入口NH3
濃度の関係曲線図である。
FIG. 9 shows the operation load, NOx concentration, residual NH 3 concentration, and NH 3 inlet with catalyst in catalytic denitration of exhaust gas from a pressurized fluidized-bed boiler.
FIG. 4 is a graph showing a relation curve of density.

【図10】加圧流動層ボイラを利用した発電装置に使用
された従来の排ガスの脱硝装置の一例を示す系統図であ
る。
FIG. 10 is a system diagram showing an example of a conventional exhaust gas denitration apparatus used for a power generation apparatus using a pressurized fluidized bed boiler.

【図11】ボイラ燃焼装置に使用された従来の別の排ガ
スの脱硝装置の例を示す系統図である。
FIG. 11 is a system diagram showing an example of another conventional exhaust gas denitration device used in a boiler combustion device.

【図12】加圧流動層ボイラを利用した発電装置に使用
された従来の更に別の排ガスの脱硝装置の例を示す系統
図である。
FIG. 12 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a power generation apparatus using a pressurized fluidized-bed boiler.

【符号の説明】[Explanation of symbols]

31 第1のアンモニア注入手段 32 第2のアンモニア注入手段 33 第3のアンモニア注入手段 34 第4のアンモニア注入手段 35 第5のアンモニア注入手段 I1、I2 注入位置 i2〜i5 計測信号 c0〜c5 制御信号 f 負荷信号 G1 燃焼排ガス G2 低減処理排ガス G3 触媒通過排ガス31 first ammonia injecting means 32 second ammonia injecting means 33 third ammonia injecting means 34 fourth ammonia injecting means 35 fifth ammonia injecting means I 1 , I 2 injecting position i 2 to i 5 measurement signal c 0 to c 5 Control signal f Load signal G 1 Combustion exhaust gas G 2 Reduction treated exhaust gas G 3 Exhaust gas passing through the catalyst

フロントページの続き (72)発明者 岩瀬 徹哉 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 近藤 直之 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 森 喜通 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内Continued on the front page (72) Inventor Tetsuya Iwase 6-9 Takaracho, Kure-shi, Hiroshima Prefecture Inside the Babcock Hitachi Kure Factory (72) Inventor Naoyuki Kondo 6-9 Takaracho, Kure-shi Hiroshima Prefecture Inside the Babcock Hitachi Kure Factory (72) Inventor Yoshimichi Mori 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼させて発生した燃焼排ガスに
アンモニアを注入して前記燃焼排ガス中の窒素酸化物を
低減した低減処理排ガスとし、更に該低減処理排ガスに
アンモニアを注入し触媒の存在の基に該低減処理排ガス
の窒素酸化物を除去する排ガスの脱硝装置において、前
記燃焼排ガスにアンモニアを注入する注入位置より上流
側で該燃焼排ガスの窒素酸化物濃度を計測し、該計測し
た窒素酸化物濃度による制御信号に基づいて前記燃焼排
ガスに注入するアンモニア注入量を制御する第1のアン
モニア注入制御手段を備えたことを特徴とする排ガスの
脱硝装置。
1. A reduced exhaust gas, wherein nitrogen oxides in the exhaust gas are reduced by injecting ammonia into a flue gas generated by burning fuel, and the ammonia is injected into the reduced exhaust gas to determine whether a catalyst exists. In the exhaust gas denitration apparatus for removing nitrogen oxides of the reduced exhaust gas based on the measurement, the nitrogen oxide concentration of the combustion exhaust gas is measured at an upstream side from an injection position where ammonia is injected into the combustion exhaust gas, and the measured nitrogen oxide concentration is measured. An exhaust gas denitration apparatus comprising: first ammonia injection control means for controlling an amount of ammonia injected into the combustion exhaust gas based on a control signal based on a substance concentration.
【請求項2】 請求項1において、前記低減処理排ガス
にアンモニアを注入する注入位置より上流側で前記低減
処理排ガスの窒素酸化物濃度及びアンモニア濃度を計測
し、該計測した窒素酸化物濃度及びアンモニア濃度の計
測信号から演算された制御信号に基づいて前記低減処理
排ガスに注入するアンモニア注入量を制御する第2のア
ンモニア注入制御手段を備えたことを特徴とする排ガス
の脱硝装置。
2. The nitrogen oxide concentration and the ammonia concentration of the reduced treatment exhaust gas according to claim 1, wherein the nitrogen oxide concentration and the ammonia concentration of the reduced treatment exhaust gas are measured upstream of an injection position for injecting ammonia into the reduced treatment exhaust gas. An exhaust gas denitration apparatus comprising: a second ammonia injection control means for controlling an ammonia injection amount to be injected into the reduced treatment exhaust gas based on a control signal calculated from a concentration measurement signal.
【請求項3】 請求項2において、前記第2のアンモニ
ア注入制御手段は、前記触媒を通過した触媒通過排ガス
の窒素酸化物濃度を計測し、該計測した窒素酸化物濃度
の計測信号で、前記計測した低減処理排ガスの窒素酸化
物濃度及びアンモニア濃度の計測信号から演算された制
御信号を補正して前記低減処理排ガスに注入するアンモ
ニア注入量を制御することを特徴とする排ガスの脱硝装
置。
3. The method according to claim 2, wherein the second ammonia injection control means measures a nitrogen oxide concentration of a catalyst passing exhaust gas passing through the catalyst, and uses the measured nitrogen oxide concentration measurement signal as a signal. An exhaust gas denitration apparatus characterized in that a control signal calculated from a measurement signal of a nitrogen oxide concentration and an ammonia concentration of a measured reduced treatment exhaust gas is corrected to control an amount of ammonia injected into the reduced treatment exhaust gas.
【請求項4】 請求項2又は3において、前記第2のア
ンモニア注入制御手段は、前記触媒を通過した触媒通過
排ガスのアンモニア濃度を計測し、該計測したアンモニ
ア濃度の計測信号で、前記計測した低減処理排ガスの窒
素酸化物濃度及びアンモニア濃度の計測信号から演算さ
れた制御信号を補正して前記低減処理排ガスに注入する
アンモニア注入量を制御することを特徴とする排ガスの
脱硝装置。
4. The ammonia injection control means according to claim 2, wherein the second ammonia injection control means measures the ammonia concentration of the exhaust gas passing through the catalyst through the catalyst, and performs the measurement using the measurement signal of the measured ammonia concentration. An exhaust gas denitration apparatus, wherein a control signal calculated from a measurement signal of a nitrogen oxide concentration and an ammonia concentration of a reduced treatment exhaust gas is corrected to control an amount of ammonia injected into the reduced treatment exhaust gas.
【請求項5】 請求項1において、前記触媒を通過した
触媒通過排ガスの窒素酸化物濃度を計測し、該計測した
窒素酸化物濃度の計測信号から演算された制御信号に基
づいて、前記低減処理排ガスにアンモニアを注入し、前
記触媒通過排ガスの窒素酸化物濃度が予め設定された濃
度範囲に収まるように制御する第3のアンモニア注入制
御手段を備えたことを特徴とする排ガスの脱硝装置。
5. The reduction process according to claim 1, wherein a nitrogen oxide concentration of the exhaust gas passing through the catalyst that has passed through the catalyst is measured, and a control signal calculated from a measurement signal of the measured nitrogen oxide concentration is used. An exhaust gas denitration apparatus comprising: third ammonia injection control means for injecting ammonia into exhaust gas and controlling the concentration of nitrogen oxides in the exhaust gas passing through the catalyst to fall within a preset concentration range.
【請求項6】 請求項1において、前記触媒を通過した
触媒通過排ガスのアンモニア濃度を計測し、該計測した
アンモニア濃度の計測信号から演算された制御信号に基
づいて、前記低減処理排ガスにアンモニアを注入し、前
記触媒通過排ガスのアンモニア濃度が予め設定された濃
度範囲に収まるように制御する第4のアンモニア注入制
御手段を備えたことを特徴とする排ガスの脱硝装置。
6. The method according to claim 1, wherein an ammonia concentration of the exhaust gas having passed through the catalyst is measured, and ammonia is added to the reduced exhaust gas based on a control signal calculated from a measurement signal of the measured ammonia concentration. An exhaust gas denitration apparatus comprising: a fourth ammonia injection control means for injecting and controlling the ammonia concentration of the exhaust gas passing through the catalyst to fall within a preset concentration range.
【請求項7】 燃料を燃焼させて発生した燃焼排ガスに
アンモニアを注入して前記燃焼排ガス中の窒素酸化物を
低減した低減処理排ガスとし、更に該低減処理排ガスに
アンモニアを注入し触媒の存在の基に該低減処理排ガス
の窒素酸化物を除去する排ガスの脱硝装置において、前
記燃料を燃焼させる燃焼装置にかかる負荷の負荷信号に
応じて前記燃焼排ガスに注入するアンモニア注入量を制
御する第5のアンモニア注入制御手段を備えたことを特
徴とする請求項5又は6に記載の排ガスの脱硝装置。
7. A reduced exhaust gas in which nitrogen oxides in the exhaust gas are reduced by injecting ammonia into a flue gas generated by burning fuel, and ammonia is injected into the reduced exhaust gas to determine the presence of a catalyst. In the exhaust gas denitration apparatus for removing nitrogen oxides from the reduced treatment exhaust gas based on a fifth control method, the amount of ammonia injected into the combustion exhaust gas is controlled according to a load signal of a load applied to a combustion device that burns the fuel. The exhaust gas denitration apparatus according to claim 5 or 6, further comprising an ammonia injection control means.
JP04188298A 1998-02-24 1998-02-24 Exhaust gas denitration equipment Expired - Lifetime JP3831804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04188298A JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04188298A JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Publications (2)

Publication Number Publication Date
JPH11235516A true JPH11235516A (en) 1999-08-31
JP3831804B2 JP3831804B2 (en) 2006-10-11

Family

ID=12620656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04188298A Expired - Lifetime JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Country Status (1)

Country Link
JP (1) JP3831804B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115684A (en) * 2009-12-01 2011-06-16 Sumitomo Heavy Ind Ltd Exhaust gas treatment device, combustion furnace and exhaust gas treatment method
WO2012157413A1 (en) * 2011-05-18 2012-11-22 住友重機械工業株式会社 Denitrator and denitration method
WO2013114614A1 (en) 2012-02-03 2013-08-08 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
JP2015507163A (en) * 2011-12-15 2015-03-05 ゼネラル・エレクトリック・カンパニイ Method and apparatus for injecting reagents into an SNCR / SCR exhaust system for a boiler
CN106090969A (en) * 2016-06-16 2016-11-09 国网天津市电力公司 A kind of coal-burning boiler SNCR+SCR denitrification apparatus cooperation optimizes and revises method
CN107238093A (en) * 2017-07-18 2017-10-10 太原锅炉集团有限公司 Adsorb denitration CFBB and its operation method
CN114210203A (en) * 2021-11-01 2022-03-22 华能曲阜热电有限公司 Control system capable of effectively controlling ammonia gas usage amount

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115684A (en) * 2009-12-01 2011-06-16 Sumitomo Heavy Ind Ltd Exhaust gas treatment device, combustion furnace and exhaust gas treatment method
WO2012157413A1 (en) * 2011-05-18 2012-11-22 住友重機械工業株式会社 Denitrator and denitration method
JP2012239970A (en) * 2011-05-18 2012-12-10 Sumitomo Heavy Ind Ltd Denitrator and denitration method
KR101470784B1 (en) * 2011-05-18 2014-12-08 스미도모쥬기가이고교 가부시키가이샤 Denitrator and denitration method
JP2015507163A (en) * 2011-12-15 2015-03-05 ゼネラル・エレクトリック・カンパニイ Method and apparatus for injecting reagents into an SNCR / SCR exhaust system for a boiler
WO2013114614A1 (en) 2012-02-03 2013-08-08 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
CN106090969A (en) * 2016-06-16 2016-11-09 国网天津市电力公司 A kind of coal-burning boiler SNCR+SCR denitrification apparatus cooperation optimizes and revises method
CN107238093A (en) * 2017-07-18 2017-10-10 太原锅炉集团有限公司 Adsorb denitration CFBB and its operation method
CN107238093B (en) * 2017-07-18 2023-12-01 太原锅炉集团有限公司 Adsorption denitration circulating fluidized bed boiler and operation method thereof
CN114210203A (en) * 2021-11-01 2022-03-22 华能曲阜热电有限公司 Control system capable of effectively controlling ammonia gas usage amount
CN114210203B (en) * 2021-11-01 2023-11-07 华能曲阜热电有限公司 Control system capable of effectively controlling ammonia gas usage amount

Also Published As

Publication number Publication date
JP3831804B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US7824636B1 (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
JP5674281B2 (en) Dry three-way catalytic reduction method for gas turbine NOx
KR20160109999A (en) Low Pressure Selective Catalytic Reduction System and Operation Control Method Thereof
US7736608B2 (en) Methods and systems for reducing the emissions from combustion gases
JP6461503B2 (en) Gas turbine exhaust control system and method
JP6461502B2 (en) Gas turbine emission control system and method
US9359918B2 (en) Apparatus for reducing emissions and method of assembly
US20120102951A1 (en) Apparatus for reducing emissions and method of assembly
JPH11235516A (en) Denitrification device for exhaust gas
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JP4607720B2 (en) Gas turbine fuel control system
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
KR20160149746A (en) Selective catalytic reduction system
JP2004184044A (en) Exhaust heat recovery device
KR20190136316A (en) A system for reducing nitrogen oxide
JP6357701B1 (en) Combustion state judgment system
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JPH06272809A (en) Combustion device and combustion method
JP2022182313A (en) Combustion treatment facility, and method of operating combustion treatment facility
JPH0455603A (en) Waste heat recoverying boiler device
JP2860876B2 (en) Hazardous trace component prediction control method and apparatus
KR20200058852A (en) Gas heating system
JPS596927A (en) Catalytic denitration apparatus
JPS5943213B2 (en) Exhaust gas denitrification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term