KR101470784B1 - Denitrator and denitration method - Google Patents

Denitrator and denitration method Download PDF

Info

Publication number
KR101470784B1
KR101470784B1 KR1020137027020A KR20137027020A KR101470784B1 KR 101470784 B1 KR101470784 B1 KR 101470784B1 KR 1020137027020 A KR1020137027020 A KR 1020137027020A KR 20137027020 A KR20137027020 A KR 20137027020A KR 101470784 B1 KR101470784 B1 KR 101470784B1
Authority
KR
South Korea
Prior art keywords
denitration
catalyst
correlation
reducing agent
exhaust gas
Prior art date
Application number
KR1020137027020A
Other languages
Korean (ko)
Other versions
KR20130133291A (en
Inventor
나오키 마츠야마
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Publication of KR20130133291A publication Critical patent/KR20130133291A/en
Application granted granted Critical
Publication of KR101470784B1 publication Critical patent/KR101470784B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/20Non-catalytic reduction devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

연소로에서 발생하는 NOx를 함유한 배가스에, 환원제를 주입하여 무촉매 탈초를 행하는 무촉매 탈초수단과, 무촉매 탈초를 행한 배가스에 환원제를 주입하고, 탈초촉매를 이용하여 유촉매 탈초를 행하는 유촉매 탈초수단을 구비하는 탈초장치로서, 연소로의 부하와 무촉매 탈초수단에 주입하는 환원제의 주입량의 상관관계인 제1 상관관계를 미리 기억하고, 제1 상관관계에 근거하여 무촉매 탈초수단에 주입하는 환원제의 주입량을 제어하며, 또한, 연소로의 부하와 탈초촉매의 입구측에 있어서의 NOx의 농도인 입구 NOx농도의 상관관계인 제2 상관관계를 미리 기억하고, 제2 상관관계에 근거하여 입구 NOx농도를 예측하며, 당해 입구 NOx농도에 근거하여 유촉매 탈초수단에 주입하는 환원제의 주입량을 제어하는 제어수단과, 탈초촉매의 열화를 검지하는 촉매열화 검지수단을 구비하고, 제어수단은, 촉매열화 검지수단에 의하여 탈초촉매가 열화되었다고 검지한 경우에, 탈초촉매의 열화에 따라 제1 상관관계 및 제2 상관관계를 개서할 수 있다.Catalystless denitration means for injecting a reducing agent into an exhaust gas containing NOx generated in a combustion furnace to perform non-catalytic denitration, and a non-catalytic denitration means for injecting a reducing agent into the exhaust gas subjected to the non- catalytic denitration, A denitration apparatus having a catalyst denitration unit, wherein a first correlation, which is a correlation between a load on a combustion furnace and an amount of reducing agent injected into the non-catalyst denitration unit, is stored in advance, and based on the first correlation, Which is a correlation between the load of the combustion furnace and the inlet NOx concentration, which is the concentration of NOx at the inlet side of the denitration catalyst, is previously stored, and based on the second correlation, Control means for predicting the NOx concentration and controlling an injection amount of a reducing agent to be injected into the catalyst deterioration means based on the inlet NOx concentration, And deterioration detecting means. When the control means detects that the denitration catalyst is deteriorated by the catalyst deterioration detecting means, it is possible to rewrite the first correlation and the second correlation in accordance with deterioration of the denitration catalyst.

Figure R1020137027020
Figure R1020137027020

Description

탈초장치 및 탈초방법{Denitrator and denitration method}Denitration apparatus and denitration method [0002]

본 발명은, 탈초장치 및 탈초방법에 관한 것이다.The present invention relates to a denitration device and a denitration method.

종래, 연소로(爐)로부터의 배(排)가스에 포함되는 질소산화물(NOx)을 제거(탈초)(脫硝; denitration)하는 탈초장치로서, 이하의 특허문헌 1에 기재된 탈초장치가 알려져 있다. 이 탈초장치에서는, 연소로인 가압(加壓)유동층 보일러로부터의 연소배가스에 암모니아(환원제)를 주입하고 무(無)촉매 탈초를 행하여 저감(低減)처리배가스를 얻고, 이 저감처리배가스에 더욱 암모니아를 주입하고, 탈초촉매를 가지는 탈초촉매장치에서 유(有)촉매 탈초를 행하여 촉매통과배가스를 얻어, 이 촉매통과배가스를 굴뚝으로부터 외부로 방출하고 있다. 그리고, 가압유동층 보일러의 운전부하와, 이 운전부하 시의 가압유동층 보일러로부터의 배가스에 포함되는 NOx를 제거하기 위하여 필요한 암모니아 주입량을 상관시킨 제어함수를 암모니아주입 제어수단에 미리 설정하고, 이 암모니아주입 제어수단이 가압유동층 보일러로부터의 부하신호를 받아, 상술한 제어함수에 근거하여 상기 암모니아 주입량을 제어하게 되어 있다.2. Description of the Related Art Conventionally, a denitration device described in Patent Document 1 below is known as a denitration device for denitrating (removing) nitrogen oxides (NOx) contained in exhaust gas from a combustion furnace . In this denitration device, ammonia (reducing agent) is injected into a combustion gas from a pressurized fluidized bed boiler as a combustion furnace to perform a catalystless denitration to obtain a reduced exhaust gas, Ammonia is injected into the exhaust gas, and a catalyst catalyst denitration is carried out in a denitration catalyst device having a denitration catalyst to obtain a catalyst-passing exhaust gas, and this catalyst-passing exhaust gas is discharged from the chimney to the outside. A control function correlating the operating load of the pressurized fluidized bed boiler with the ammonia injection amount necessary for removing NOx contained in the exhaust gas from the pressurized fluidized bed boiler during the operation load is previously set in the ammonia injection control means, The control means receives the load signal from the pressurized fluidized bed boiler and controls the amount of ammonia injection based on the control function described above.

일본 특허공개공보 평11-235516호Japanese Patent Application Laid-Open No. 11-235516

그런데, 상술한 바와 같은 탈초장치를, 연료를 공기와 혼합시켜 화로 내를 순환시키면서 연소되는 순환(循環)유동층 보일러에 적용하는 경우, 순환유동층 보일러에서는 다른 형식의 보일러에 비하여 배가스 중에 포함되는 매진(煤塵)의 양이 많기 때문에, 이 매진이 유촉매 탈초에 이용하는 촉매에 걸려, 촉매가 열화될 우려가 있다. 또한, 순환유동층 보일러에서는, 석탄 등의 화석연료 이외에, 바이오매스, 폐플라스틱, 폐타이어, 오니(汚泥), RPF(Refuse Paper & Plastic Fuel), 및 RDF(Refuse Derived Fuel) 등의 연료를 연소하는 것이 가능하지만, 이들 연료에는, 납이나 아연 등의 중금속류, 나트륨, 칼륨, 및 인 등이 포함되어 있어, 이들 물질이 촉매를 열화시킬 우려가 있다.However, when the denitration device as described above is applied to a circulating fluidized bed boiler that is combusted while fuel is mixed with air and circulated in the furnace, the circulating fluidized bed boiler has a problem that, in comparison with other types of boilers, Soot dust) is large, the solder is caught by the catalyst used for the oil-catalyzed denitration, and the catalyst may be deteriorated. In a circulating fluidized bed boiler, in addition to fossil fuels such as coal, fuels such as biomass, waste plastics, waste tires, sludge, Refuse Paper & Plastic Fuel (RPF), and RDF (Refuse Derived Fuel) However, these fuels include heavy metals such as lead and zinc, sodium, potassium, phosphorus, and the like, and these materials may deteriorate the catalyst.

이와 같이, 촉매가 열화되면, 유촉매 탈초에 있어서의 NOx의 제거효율이 저하되기 때문에, 상술한 탈초장치와 같이 보일러의 부하와 암모니아 주입량을 상관시킨 제어함수를 이용하여 암모니아 주입량을 제어하여도, 원하는 대로 NOx를 충분히 제거할 수 없다.As described above, even when the ammonia injection amount is controlled using the control function that correlates the load of the boiler with the ammonia injection amount as in the above-described denitration device, when the catalyst deteriorates, NOx can not be sufficiently removed as desired.

본 발명은, 이러한 과제를 해결하기 위하여 이루어진 것으로서, 유촉매 탈초에 이용하는 촉매가 열화되어도, 충분히 NOx를 제거할 수 있는 탈초장치 및 탈초방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a denitration device and a denitration method capable of sufficiently removing NOx even when the catalyst used for the denitration catalyst is deteriorated.

본 발명의 일측면의 탈초장치는, 연소로에서 발생하는 NOx를 함유한 배가스에, 환원제를 주입하여 무(無)촉매 탈초를 행하는 무촉매 탈초수단과, 무촉매 탈초를 행한 배가스에 환원제를 주입하고, 탈초촉매를 이용하여 유(有)촉매 탈초를 행하는 유촉매 탈초수단을 구비하는 탈초장치로서, 연소로(爐)의 부하와 무촉매 탈초수단에서 주입하는 환원제의 주입량의 상관관계인 제1 상관관계를 미리 기억하고, 제1 상관관계에 근거하여 무촉매 탈초수단에서 주입하는 환원제의 주입량을 제어하며, 또한, 연소로의 부하와 탈초촉매의 입구측에 있어서의 NOx의 농도인 입구 NOx농도의 상관관계인 제2 상관관계를 미리 기억하고, 제2 상관관계에 근거하여 입구 NOx농도를 예측하고, 당해 입구 NOx농도에 근거하여 유촉매 탈초수단에서 주입하는 환원제의 주입량을 제어하는 제어수단과, 탈초촉매의 열화를 검지하는 촉매열화 검지수단을 구비하고, 제어수단은, 촉매열화 검지수단에 의하여 탈초촉매가 열화되었다고 검지한 경우에, 탈초촉매의 열화에 따라 제1 상관관계 및 제2 상관관계를 개서(改書; 고쳐쓰기)할 수 있는 것을 특징으로 한다.The denitration device of one aspect of the present invention is a denitration device of the present invention, which comprises: non-catalyst denitration means for injecting a reducing agent into an exhaust gas containing NOx generated in a combustion furnace to carry out denitration of a catalyst; Which is a correlation between a load of a combustion furnace and an amount of a reducing agent injected from a non-catalyst denitration means, And the amount of reducing agent injected from the non-catalytic denitration means is controlled based on the first correlation, and the relationship between the load of the combustion furnace and the NOx concentration at the inlet side of the denitration catalyst And the amount of the reducing agent injected from the catalyst denitration means based on the inlet NOx concentration is estimated based on the second correlation, And a catalyst deterioration detecting means for detecting the deterioration of the denitration catalyst. When the catalyst deterioration detecting means detects that the denitration catalyst has deteriorated, the control means determines the first correlation And the second correlation can be rewritten (rewritten).

또한, 본 발명의 일측면의 탈초방법은, 연소로에서 발생하는 NOx를 함유한 배가스에, 환원제를 주입하여 무촉매 탈초를 행하고, 무촉매 탈초를 행한 배가스에 환원제를 주입하고, 탈초촉매를 이용하여 유촉매 탈초를 행하는 탈초방법으로서, 연소로의 부하와 무촉매 탈초에서 주입하는 환원제의 주입량의 상관관계인 제1 상관관계를 미리 기억하고, 제1 상관관계에 근거하여 무촉매 탈초에서 주입하는 환원제의 주입량을 제어하며, 또한, 연소로의 부하와 탈초촉매의 입구측에 있어서의 NOx의 농도인 입구 NOx농도의 상관관계인 제2 상관관계를 미리 기억하고, 제2 상관관계에 근거하여 입구 NOx농도를 예측하며, 당해 입구 NOx농도에 근거하여 유촉매 탈초에서 주입하는 환원제의 주입량을 제어하고, 탈초촉매가 열화되었다고 검지한 경우에, 탈초촉매의 열화에 따라 제1 상관관계 및 제2 상관관계를 개서하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a denitration method comprising the steps of injecting a reducing agent into an exhaust gas containing NOx generated in a combustion furnace to perform non-catalytic denitration, injecting a reducing agent into the exhaust gas subjected to non- catalytic denitration, Which is a correlation between a load on a combustion furnace and an injection amount of a reducing agent to be injected in a non-catalytic denitration step, is stored in advance, and based on the first correlation, Which is a correlation between the load on the combustion furnace and the inlet NOx concentration, which is the concentration of NOx on the inlet side of the denitration catalyst, is previously stored, and based on the second correlation, the inlet NOx concentration Based on the inlet NOx concentration, the amount of the reducing agent injected at the denitrification catalyst is controlled, and when it is detected that the denitration catalyst has deteriorated, the heat of the denitration catalyst In accordance with it is characterized in that rewriting the first correlation and the second correlation.

본 발명에서는, 연소로의 부하와 무촉매 탈초에서 주입하는 환원제의 양이 제1 상관관계로서 미리 기억되고, 연소로의 부하에 따라 무촉매 탈초수단에서 주입하는 환원제의 양이 제어된다. 또한, 연소로의 부하와 입구 NOx농도가 제2 상관관계로서 미리 기억되고, 연소로의 부하로부터 입구 NOx농도가 예측되며, 이 입구 NOx농도에 따라 유촉매 탈초에서 주입하는 환원제의 양이 제어된다. 그리고, 탈초촉매가 열화되었다고 검지한 경우에는, 탈초촉매의 열화에 따라 제1 상관관계 및 제2 상관관계가 개서되어 환원제의 주입량을 최적으로 조정할 수 있고, 따라서, 유촉매 탈초에 이용하는 촉매가 열화되더라도, 충분히 NOx를 제거할 수 있다.In the present invention, the amount of the reducing agent to be injected by the non-catalyst denitration means is controlled according to the load of the combustion furnace, and the load of the combustion furnace and the amount of the reducing agent injected at the non-catalyst denitration are stored as the first correlation. In addition, the load on the combustion furnace and the inlet NOx concentration are stored in advance as a second correlation, the inlet NOx concentration is predicted from the load on the combustion furnace, and the amount of the reducing agent injected in the turbo-catalyst denitration is controlled according to the inlet NOx concentration . When it is detected that the denitration catalyst is deteriorated, the first correlation and the second correlation are rewritten according to the deterioration of the denitration catalyst, whereby the amount of the reducing agent to be injected can be optimally adjusted. Therefore, , It is possible to sufficiently remove NOx.

여기에서, 제어수단은, 연소로에서 연소되는 연료의 종류에 따라, 제1 상관관계 및 제2 상관관계를 복수 기억하는 것이 가능해도 된다. 이렇게 하면, 연소로에서 연소되는 연료의 종류에 따라, 환원제의 주입량을 더욱 최적으로 조정할 수 있다.Here, the control means may be capable of storing a plurality of first correlations and second correlations depending on the type of fuel burned in the combustion furnace. In this way, the amount of the reducing agent injected can be more optimally adjusted depending on the type of fuel burned in the combustion furnace.

본 발명에 의하면, 유촉매 탈초에 이용하는 촉매가 열화되더라도, 충분히 NOx를 제거할 수 있는 탈초장치 및 탈초방법을 제공할 수 있다.According to the present invention, it is possible to provide a denitration device and denitration method capable of sufficiently removing NOx even when the catalyst used for the denitration catalyst is deteriorated.

도 1은, 본 발명의 실시형태에 관한 탈초방법을 적용한 탈초장치를 나타내는 구성도이다.
도 2는, 제1 상관관계를 나타내는 그래프이다.
도 3은, 제2 상관관계를 나타내는 그래프이다.
도 4는, 도 1에 나타내는 탈초장치의 동작을 나타내는 플로우차트이다.
1 is a configuration diagram showing a denitration apparatus to which a denitration method according to an embodiment of the present invention is applied.
2 is a graph showing a first correlation.
3 is a graph showing a second correlation.
4 is a flow chart showing the operation of the denitration device shown in Fig.

이하, 도면을 참조하면서 본 발명의 탈초장치 및 탈초방법의 바람직한 실시형태에 대하여 상세하게 설명한다.Hereinafter, preferred embodiments of the denitration apparatus and denitration method of the present invention will be described in detail with reference to the drawings.

도 1은, 본 발명의 실시형태에 관한 탈초방법을 적용한 탈초장치를 나타내는 구성도이다. 도 1에 나타내는 바와 같이, 탈초장치(100)는, 여기에서는 순환유동층 보일러인 보일러(연소로)(1)를 구비하는 플랜트(P)에 설치되는 것으로서, 보일러(1)로부터의 배가스에 포함되는 질소산화물(NOx)을 제거하기 위한 장치이다.1 is a configuration diagram showing a denitration apparatus to which a denitration method according to an embodiment of the present invention is applied. 1, the denitration device 100 is installed in a plant P having a boiler (combustion furnace) 1, which is a circulating fluidized bed boiler, and is provided in the exhaust gas from the boiler 1 And is a device for removing nitrogen oxides (NOx).

플랜트(P)에서는, 먼저, 보일러(1)에서, 석탄 등의 화석연료 외에, 바이오매스, 폐플라스틱, 폐타이어, 오니, RPF, 및 RDF 등의 연료가, 보일러(1) 내에 급기된 공기와 혼합되어, 보일러(1) 내를 순환하면서 연소되고, 이 연소에 의하여 매진(煤塵) 등의 고체입자나 NOx를 함유하는 배가스가 발생하며, 이 배가스가 보일러(1)의 상부에 접속된 제1 덕트(D1)로부터 사이클론(2)으로 보내진다. 사이클론(2)에서는, 원심분리에 의한 고체·기체(固氣)분리에 의하여, 배가스로부터 고체입자가 분리되고, 고체·기체분리된 고체입자는, 사이클론(2)의 하부로부터 배관을 통하여 보일러(1)로 되돌려지며, 한편, 고체입자가 분리된 배가스는, 사이클론(2)의 상부로부터 배관을 통하여 열(熱)회수부(3, 4)로 보내진다. 열회수부(3, 4)에서는, 배가스로부터 열이 회수되고, 열회수 후의 배가스는 제2 덕트(D2)를 통하여 배가스 정화장치(5)로 보내진다. 배가스 정화장치(5)에서는, 배가스에 아직 동반되어 있는 비산재(飛灰) 등의 미세한 고체입자가 제거됨과 함께 배가스의 탈황이 행해져 배가스가 정화되고, 이 정화가 완료된 배가스가 굴뚝(6)을 통하여 외부로 방출된다.In the plant P, fuel such as biomass, waste plastics, waste tires, sludge, RPF, and RDF is supplied to the boiler 1 from the air supplied into the boiler 1 The exhaust gas is mixed while being circulated in the boiler 1 and an exhaust gas containing solid particles such as dust or NOx is generated by the combustion and the exhaust gas is discharged from the first And is sent to the cyclone 2 from the duct D1. In the cyclone 2, solid particles are separated from the exhaust gas by solid-gas separation by centrifugal separation, and the solid particles separated from the exhaust gas are separated from the bottom of the cyclone 2 through a pipe 1). On the other hand, the exhaust gas from which the solid particles are separated is sent from the upper part of the cyclone 2 to the heat recovery section 3, 4 through the piping. In the heat recovery units 3 and 4, heat is recovered from the exhaust gas, and the exhaust gas after the heat recovery is sent to the exhaust gas purifier 5 through the second duct D2. In the flue gas purifying apparatus 5, fine solid particles such as fly ash still accompanied with the flue gas are removed, desulfurization of the flue gas is performed to purify the flue gas, and the flue gas having been subjected to the purification is passed through the flue 6 And is discharged to the outside.

이러한 플랜트(P)에 설치되는 탈초장치(100)는, 제1 NH3(암모니아)주입부(7), 제2 NH3주입부(8), 탈초촉매 설치부(9), 촉매입구 O2농도계(10), 촉매입구 NOx농도계(11), 촉매출구 O2농도계(12), 촉매출구 NOx농도계(13), 촉매출구 NH3농도계(14), 배가스유량 산출부(15), 촉매열화 검지부(16), 보일러 운전부(17), 및 탈초 분배부(18)를 구비하고 있다.The denitration device 100 installed in the plant P includes a first NH 3 (ammonia) injecting portion 7, a second NH 3 injecting portion 8, a denitration catalyst installing portion 9, a catalyst inlet O 2 density meter 10, the catalyst inlet NOx concentration meter 11, the catalyst outlet O 2 concentration meter 12, the catalyst outlet NOx concentration meter 13, a catalyst exit NH 3 concentration meter 14, the exhaust gas flow rate calculating section 15, the catalyst deterioration detecting unit (16), a boiler operation unit (17), and a denitration / distribution unit (18).

제1 NH3주입부(7)는, 보일러(1)에서 발생하는 NOx를 함유한 배가스에 환원제(여기에서는, NH3)를 주입하여 무촉매 탈초를 행하는 무촉매 탈초수단으로서 기능하는 것으로서, 보일러(1)와 사이클론(2) 사이의 제1 덕트(D1)에 NH3를 주입하도록 설치되어 있다. 다만, 무촉매 탈초는, 예컨대, 배가스의 온도가 700~1100℃ 정도인 영역에서 행해진다.The first NH 3 injecting section 7 functions as a non-catalytic denitration means for injecting a reducing agent (here, NH 3 ) into the exhaust gas containing NOx generated in the boiler 1 to perform non-catalytic denitration, a first duct (D1) between (1) and the cyclone (2) is provided to inject NH 3. However, the non-catalytic denitration is performed, for example, in a region where the temperature of the exhaust gas is about 700 to 1100 ° C.

제2 NH3주입부(8)는, 제1 덕트(D1)에서 무촉매 탈초를 행한 배가스에 NH3를 주입하는 것으로서, 열회수부(3, 4) 사이에 NH3를 주입하도록 설치되어 있다. 또한, 탈초촉매 설치부(9)는, 제2 NH3주입부(8)로부터 암모니아가 주입된 배가스를, 설치한 탈초촉매에 통과시켜 NOx를 제거하기 위한 것으로서, 제2 NH3주입부(8)와 열회수부(4) 사이에 배치되어 있다. 이와 같이, 제2 NH3주입부(8)와 탈초촉매 설치부(9)가, 제1 NH3주입부(7)에서 무촉매 탈초를 행한 배가스에 NH3를 주입하고, 그 후, 탈초촉매를 이용하여 유촉매 탈초를 행하는 유촉매 탈초수단으로서 기능한다. 여기에서, 탈초촉매로서는, 예컨대, 세라믹에 바나듐을 담지(擔持)시킨 것이 이용된다. 또한, 탈초촉매의 표면적인 촉매 표면적(S)(㎡)은, 플랜트(P)의 운전조건에 따라 결정되는 고정치로서, 촉매열화 검지부(16)에 미리 기억되어 있다. 다만, 유촉매 탈초는, 예컨대, 배가스의 온도가 200~400℃ 정도인 영역에서 행해진다.Claim 2 NH 3 injection unit 8, the as injecting NH 3 in the exhaust gas subjected to the non-catalyst denitration in the first duct (D1), is provided to inject NH 3 between the heat recovery unit (3,4). The denitration catalyst installation portion 9 is for removing NOx by passing the exhaust gas into which the ammonia has been injected from the second NH 3 injection portion 8 to the installed denitration catalyst and the second NH 3 injection portion 8 And the heat recovery unit 4. [0043] Thus, the 2 NH 3 injection unit 8 and the denitration catalyst installation portion 9 is, claim 1 NH 3 injection of NH 3 in the exhaust gas subjected to the non-catalyst denitration in the injection unit 7, and thereafter, the denitration catalyst As a catalyst denitration means for carrying out the catalyst denitration by using the catalyst. Here, as the denitration catalyst, for example, a ceramic in which vanadium is supported is used. The catalyst surface area S (m 2), which is the surface area of the denitration catalyst, is a fixed value determined according to the operating condition of the plant P and is stored in advance in the catalyst deterioration detecting unit 16. However, the catalytic denitration is performed, for example, in a region where the temperature of the exhaust gas is about 200 to 400 캜.

제1 NH3주입부(7) 및 제2 NH3주입부(8)에는, 이들에 NH3를 공급하기 위한 NH3공급부(19)가 접속되어 있다. 제1 NH3주입부(7)와 NH3공급부(19)를 접속하는 배관에는, 제1 NH3주입부(7)에 공급되는 NH3의 양인 제1 NH3주입량(Ain1)(N㎥/h)을 측정하는 제1 NH3유량계(20)와, 제1 NH3주입부(7)에 공급되는 NH3의 양을 조절하는 제1 조절밸브(21)가 설치되어 있다.First, the NH 3 injection unit 7 and the injection unit 2 NH 3 (8), the NH 3 supply unit 19 for supplying the NH 3 is connected to these. The amount of NH 3 supplied to the first NH 3 injecting section 7 as the first NH 3 injection amount A in1 (N m 3 ) is set in the pipe connecting the first NH 3 injecting section 7 and the NH 3 supplying section 19, NH 3 and the first flow meter 20 for measuring a / h), is the first adjustment to control the amount of NH 3 to be supplied to the first NH 3 injection unit 7 valve 21 is installed.

제2 NH3주입부(8)와 NH3공급부(19)를 접속하는 배관에는, 제2 NH3주입부(8)에 공급되는 NH3의 양인 제2 NH3주입량(Ain2)(N㎥/h)을 측정하는 제2 NH3유량계(22)와, 제2 NH3주입부(8)에 공급되는 NH3의 양을 조절하는 제2 조절밸브(23)가 설치되어 있다.Claim 2 NH 3 injection unit 8 and the NH 3, the piping for connecting the supply part 19, the 2 NH 3 injection amount claim 2 NH 3 injection amount of NH 3 to be supplied to the unit (8) (A in2) (N㎥ NH 3 and the second flow meter 22 for measuring a / h), the second has a second control valve (23 to control the amount of NH 3 to be supplied to the NH 3 injection unit 8) is installed.

촉매입구 O2농도계(10)는, 제2 NH3주입부(8)와 탈초촉매 설치부(9) 사이에 배치되어, 탈초촉매 설치부(9)의 입구측에 있어서의 배가스 중의 O2의 농도인 입구 O2농도(Bin)(%)를 측정하는 것이다. 이 촉매입구 O2농도계(10)는, 촉매열화 검지부(16)와 접속되어 있으며, 측정된 입구 O2농도(Bin)를 촉매열화 검지부(16)에 출력한다.The catalyst inlet O 2 concentration meter 10 is disposed between the second NH 3 injecting section 8 and the denitration catalyst setting section 9 so that the concentration of O 2 in the exhaust gas at the inlet side of the denitration catalyst installing section 9 And the inlet O 2 concentration (B in ) (%). The catalyst inlet O 2 concentration meter 10 is connected to the catalyst deterioration detecting section 16 and outputs the measured inlet O 2 concentration B in to the catalyst deterioration detecting section 16.

촉매입구 NOx농도계(11)는, 제2 NH3주입부(8)와 탈초촉매 설치부(9) 사이에 배치되어, 탈초촉매 설치부(9)의 입구측에 있어서의 배가스 중의 NOx의 농도인 입구 NOx농도(Cin(ppm))를 측정하는 것이다. 이 촉매입구 NOx농도계(11)는, 촉매열화 검지부(16)와 접속되어 있으며, 측정된 입구 NOx농도(Cin)를 촉매열화 검지부(16)에 출력한다.The catalyst inlet NO x concentration meter 11 is disposed between the second NH 3 injecting section 8 and the denitration catalyst setting section 9 to adjust the concentration of NO x in the exhaust gas at the inlet side of the denitration catalyst installing section 9 The inlet NOx concentration (C in (ppm)) is measured. The catalyst inlet NO x concentration meter 11 is connected to the catalyst deterioration detecting section 16 and outputs the measured inlet NO x concentration C in to the catalyst deterioration detecting section 16.

여기에서, 탈초촉매 설치부(9)의 입구측에 배치되는 상술의 촉매입구 O2농도계(10) 및 촉매입구 NOx농도계(11)는, 배가스에 아직 동반되고 있는 비산재 등의 미세한 고체입자에 의하여 열화나 불량을 발생시킬 우려가 있기 때문에, 간헐적으로 동작시키는 것이 바람직하다. 그로 인하여, 본 실시형태에 있어서는, 촉매입구 O2농도계(10) 및 촉매입구 NOx농도계(11)는, 상세히는 후술하는 촉매열화 검지부(16)에 의한 탈초촉매의 열화의 판정 시에만 동작하고, 그 이외의 운전 시에는 동작하지 않도록 하고 있다.The catalyst inlet O 2 concentration meter 10 and the catalyst inlet NO x concentration meter 11 which are disposed on the inlet side of the denitration catalyst installation portion 9 are provided with the fine particulate solid such as fly ash It is preferable to operate intermittently because deterioration or failure may occur. Therefore, in the present embodiment, the catalyst inlet O 2 concentration meter 10 and the catalyst inlet NO x concentration meter 11 operate only at the time of determining deterioration of the denitration catalyst by the catalyst deterioration detecting portion 16 described later in detail, And does not operate during other operations.

촉매출구 O2농도계(12)는, 제2 덕트(D2)에 배치되어, 탈초촉매 설치부(9)의 출구측에 있어서의 배가스 중의 O2의 농도인 출구 O2농도(Bout)(%)를 측정하는 것이다. 이 촉매출구 O2농도계(12)는, 촉매열화 검지부(16)와 접속되어 있으며, 측정된 출구 O2농도(Bout)를 촉매열화 검지부(16)에 출력한다.The catalyst outlet O 2 concentration meter 12 is disposed in the second duct D 2 and has an outlet O 2 concentration B out (%) which is the concentration of O 2 in the exhaust gas at the outlet side of the denitration catalyst installing portion 9, ). The catalyst outlet O 2 concentration meter 12 is connected to the catalyst deterioration detecting section 16 and outputs the measured outlet O 2 concentration B out to the catalyst deterioration detecting section 16.

촉매출구 NOx농도계(13)는, 제2 덕트(D2)에 배치되어, 탈초촉매 설치부(9)의 출구측에 있어서의 배가스 중의 NOx의 농도인 출구 NOx농도(Cout)(ppm)를 측정하는 것이다. 이 촉매출구 NOx농도계(13)는, 촉매열화 검지부(16)와 접속되어 있으며, 측정된 출구 NOx농도(Cout)를 촉매열화 검지부(16)에 출력한다. 또한, 촉매출구 NOx농도계(13)는, 탈초 분배부(18)와 접속되어 있으며, 측정된 출구 NOx농도(Cout)를 탈초 분배부(18)에 출력한다.The catalyst outlet NOx concentration meter 13 is disposed in the second duct D2 and measures the outlet NOx concentration C out (ppm), which is the concentration of NOx in the exhaust gas at the outlet side of the denitration catalyst installing section 9 . The catalyst outlet NOx concentration meter 13 is connected to the catalyst deterioration detecting section 16 and outputs the measured outlet NOx concentration C out to the catalyst deterioration detecting section 16. [ The catalyst outlet NO x concentration meter 13 is connected to the denitration distributor 18 and outputs the measured outlet NO x concentration C out to the denitration distributor 18.

촉매출구 NH3농도계(14)는, 제2 덕트(D2)에 배치되어, 탈초촉매 설치부(9)의 출구측에 있어서의 배가스 중의 NH3의 농도인 출구 NH3농도(Aout)(ppm)를 측정하는 것이다. 이 촉매출구 NH3농도계(14)는, 촉매열화 검지부(16)와 접속되어 있으며, 측정된 출구 NH3농도(Aout)를 촉매열화 검지부(16)에 출력한다.Catalyst exit NH 3 concentration meter 14, a second duct (D2) is disposed, the concentration of NH 3 in the exhaust gas at the outlet of the denitration catalyst installation section (9) outlet NH 3 concentrations (A out) (ppm ). The catalyst outlet NH 3 concentration meter 14 is connected to the catalyst deterioration detecting section 16 and outputs the measured outlet NH 3 concentration A out to the catalyst deterioration detecting section 16.

배가스유량 산출부(15)는, 제1 덕트(D1)를 통과하는 배가스의 유량인 배가스량(G)(N㎥/h)을 산출하는 것으로서, 촉매열화 검지부(16)에 접속되어, 산출한 배가스량(G)을 촉매열화 검지부(16)에 출력한다. 다만, 배가스유량 산출부(15)가 배가스량(G)을 산출하는 방법으로서는, 제1 덕트(D1)에 유량계를 설치하고 이 유량계에 의하여 측정되는 값을 이용하여 산출하는 방법, 보일러(1)의 부하로부터 산출하는 방법, 및, 보일러(1)에서 연소되는 연료의 양으로부터 산출하는 방법 등이 이용된다.The exhaust gas flow rate calculating section 15 calculates the exhaust gas amount G (Nm 3 / h), which is the flow rate of the exhaust gas passing through the first duct D 1. The exhaust gas flow rate calculating section 15 is connected to the catalyst deterioration detecting section 16, And outputs the exhaust gas amount G to the catalyst deterioration detecting unit 16. [ The method for calculating the exhaust gas amount G may be a method of calculating the exhaust gas amount G by installing a flow meter in the first duct D1 and using a value measured by the flow meter, A method of calculating from the amount of fuel burned in the boiler 1, and the like are used.

촉매열화 검지부(16)는, 탈초촉매가 소정 이상으로 열화되었는지 아닌지를 검지하는 촉매열화 검지수단으로서 기능하는 것으로서, CPU(Central Processing Unit), ROM(Read Only Memory), 및 RAM(Random Access Memory) 등으로 이루어지는 전자제어유닛으로 구성되어 있다. 이 촉매열화 검지부(16)는, 입력된 각종의 값을 이용하여, 하기 수학식 1에서 나타나는 반응속도상수(K)를 산출한다. 그리고, 촉매열화 검지부(16)는, 반응속도상수(K)가 미리 기억되어 있는 소정의 임계값을 하회하고 있는지 아닌지를 판정함으로써, 탈초촉매가 소정 이상으로 열화되었는지 아닌지를 판정하여 탈초촉매의 열화를 검지한다.The catalyst deterioration detecting portion 16 functions as a catalyst deterioration detecting means for detecting whether or not the denitration catalyst has deteriorated to a predetermined level or higher. The catalyst deterioration detecting portion 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) And the like. The catalyst deterioration detecting unit 16 calculates the reaction rate constant K expressed by the following equation (1) using various input values. The catalyst deterioration detecting unit 16 determines whether or not the denitration catalyst has deteriorated by more than a predetermined value by determining whether or not the reaction rate constant K is below a predetermined threshold value stored in advance, .

Figure 112013092418259-pct00001
Figure 112013092418259-pct00001

여기에서, AV(Nm/h)는 면적속도, Eff는 탈초효율, α는 몰비를 나타내고 있다. 또한, Cin6 %, Cout6 %, Aout6 %는, 탈초촉매 설치부(9)의 입구측 및 출구측의 산소농도인 Bin 및 Bout를 이용하여, 동일한 산소농도 하(여기에서는 6%)에 있어서의 농도로 환산한 값이다.Here, AV (Nm / h) represents the area rate, Eff represents the denitration efficiency, and? Represents the molar ratio. In addition, C in6%, C out6%, A out6%, using a B in and B out of the oxygen concentration on the inlet side and the outlet side of the denitration catalyst installation section (9), a concentration equal oxygen and (in this case 6% ) ≪ / RTI >

이 촉매열화 검지부(16)는, 탈초 분배부(18)와 접속되어 있으며. 탈초촉매가 소정 이상으로 열화되었다고 검지한 경우에, 그 정보의 신호를 탈초 분배부(18)에 출력한다.The catalyst deterioration detecting unit 16 is connected to the denitration / distribution unit 18. When it is detected that the denitration catalyst has deteriorated more than a predetermined amount, a signal of the information is output to the denitration / distribution unit 18. [

보일러 운전부(17)는, 보일러(1)의 운전을 제어하기 위한 것으로서, 촉매열화 검지부(16)와 마찬가지로, 전자제어유닛으로 구성되어 있다. 이 보일러 운전부(17)는, 탈초 분배부(18)와 접속되어 있으며, 보일러(1)의 부하나 보일러(1)에서 연소되는 연료의 종류와 같은 정보를 탈초 분배부(18)에 출력한다. 다만, 보일러(1)의 부하는, 예컨대, 보일러(1)에서 연소되는 연료의 양으로부터 결정할 수 있다.The boiler operation unit 17 is for controlling the operation of the boiler 1 and is constituted by an electronic control unit like the catalyst deterioration detection unit 16. [ The boiler operation unit 17 is connected to the denitration / distribution unit 18 and outputs information such as the type of fuel burned in the boiler 1 or the boiler 1 to the denitration / distribution unit 18 . However, the load of the boiler 1 can be determined, for example, from the amount of fuel burned in the boiler 1.

탈초 분배부(18)는, NH3공급부(19)로부터 제1 NH3주입부(7) 및 제2 NH3주입부(8)에 공급되는 NH3의 양을 결정하여 제어하는 제어수단으로서 기능하는 것으로서, 촉매열화 검지부(16)와 마찬가지로, 전자제어유닛으로 구성되어 있다.The denitrification distributor 18 functions as control means for determining and controlling the amount of NH 3 supplied from the NH 3 supply unit 19 to the first NH 3 injection unit 7 and the second NH 3 injection unit 8 And is constituted by an electronic control unit in the same manner as the catalyst deterioration detecting unit 16.

도 2는 제1 상관관계를 나타내는 그래프, 도 3은 제2 상관관계를 나타내는 그래프이다. 탈초 분배부(18)는, 도 2에 나타내는 바와 같은, 보일러(1)의 부하(가로축)와 제1 NH3주입량(Ain1)(세로축)의 상관관계인 제1 상관관계를 나타내는 그래프를 기억하고 있다. 이 제1 상관관계를 나타내는 그래프는, 탈초촉매의 열화의 정도 및 보일러(1)에서 연소되는 연료의 종류에 따라, 복수 기억되어 있다. 이로써, 탈초 분배부(18)는, 탈초촉매의 열화의 정도 및 보일러(1)에서 연소되는 연료의 종류에 따라, 보일러 운전부(17)로부터 입력된 보일러(1)의 부하의 정보를 근거로, 제1 NH3주입부(7)에 공급하는 제1 NH3주입량(Ain1)을 결정한다(상세히는 후술).Fig. 2 is a graph showing a first correlation, and Fig. 3 is a graph showing a second correlation. Denitration distributor 18 is configured to store a graph showing a correlation relationship a first correlation between the load (horizontal axis) of the boiler (1) as shown in Figure 2 with the first NH 3 injection amount (A in1) (vertical axis) have. A plurality of graphs showing the first correlation are stored in accordance with the degree of deterioration of the denitration catalyst and the type of fuel burned in the boiler 1. Thus, the denitration / distribution unit 18 is configured to determine the denitration amount of the denitration catalyst based on the information of the load of the boiler 1 input from the boiler operation unit 17 in accordance with the degree of deterioration of the denitration catalyst and the type of fuel burned in the boiler 1 , The first NH 3 injection amount A in1 to be supplied to the first NH 3 injection portion 7 is determined (to be described later in detail).

여기에서, 결정된 제1 NH3주입량(Ain1)에 따라, NH3을 제1 NH3주입부(7)에 공급한 경우에, 무촉매 탈초를 행한 배가스에 잔류하는 NOx의 농도(입구 NOx농도(Cin))는, 예컨대, 플랜트(P)의 시운전 시에 측정하여 기억해 둠으로써, 그 후는 예측하는 것이 가능하다. 즉, 보일러(1)의 부하를 근거로 제1 NH3주입량(Ain1)을 결정함과 동시에, 그 때의 입구 NOx농도(Cin)를 예측하는 것이 가능하다.Here, when NH 3 is supplied to the first NH 3 injecting section 7 in accordance with the determined first NH 3 injection amount A in1 , the concentration of NO x remaining in the exhaust gas subjected to the non-catalytic denitration (the inlet NO x concentration (C in ) is measured and stored at the time of trial operation of the plant P, for example, and can be predicted thereafter. That is, it is possible to determine the first NH 3 injection amount A in1 based on the load of the boiler 1, and also to predict the inlet NOx concentration C in at that time.

따라서, 탈초 분배부(18)는, 입구 NOx농도(Cin)를 예측하기 위하여, 도 3에 나타내는 바와 같이, 보일러(1)의 부하(가로축)와 입구 NOx농도(Cin(세로축))의 상관관계인 제2 상관관계를 나타내는 그래프를 기억하고 있다. 이 제2 상관관계를 나타내는 그래프는, 상술과 같이, 예컨대, 플랜트(P)의 시운전 시의 측정결과로부터 작성하는 것이 가능하다. 또한, 이 제2 상관관계를 나타내는 그래프는, 제1 상관관계를 나타내는 그래프에 대응하여, 탈초촉매의 열화의 정도 및 보일러(1)에서 연소되는 연료의 종류에 따라 복수 기억되어 있다. 이로써, 탈초 분배부(18)는, 탈초촉매의 열화의 정도 및 보일러(1)에서 연소되는 연료의 종류에 따라, 보일러 운전부(17)로부터 입력된 보일러(1)의 부하의 정보를 근거로, 입구 NOx농도(Cin)를 예측한다(상세히는 후술).3, in order to predict the inlet NOx concentration C in , the denitrification component distributor 18 distributes the inlet NOx concentration C in (vertical axis) and the load (horizontal axis) of the boiler 1 And a graph indicating a second correlation that is a correlation. The graph showing the second correlation can be generated from the measurement result at the time of trial operation of the plant P, for example, as described above. In the graph showing the second correlation, a plurality of graphs corresponding to the graph showing the first correlation are stored according to the degree of deterioration of the denitration catalyst and the type of fuel burned in the boiler 1. Thus, the denitration / distribution unit 18 is configured to determine the denitration amount of the denitration catalyst based on the information of the load of the boiler 1 input from the boiler operation unit 17 in accordance with the degree of deterioration of the denitration catalyst and the type of fuel burned in the boiler 1 , And the inlet NOx concentration (C in ) (details will be described later).

또한, 탈초 분배부(18)는, 제2 상관관계로부터 예측된 입구 NOx농도(Cin)에 근거하여, 하기 수학식 2에 의하여, 제2 NH3주입량(Ain2)을 결정한다.Further, the denitration distributor 18 determines the second NH 3 injection amount (A in2 ) by the following equation (2) based on the inlet NOx concentration (C in ) predicted from the second correlation.

Figure 112013092418259-pct00002
Figure 112013092418259-pct00002

여기에서, Ctarget은, 유촉매 탈초 후에 있어서의 목표 NOx의 농도인 탈초목표 NOx농도(ppm)를 나타내고 있다.Here, C target represents the denitration target NO x concentration (ppm), which is the target NO x concentration after the catalytic denitration.

탈초 분배부(18)는, 촉매열화 검지부(16)로부터 탈초촉매 설치부(9)가 소정 이상으로 열화되었다는 정보의 신호가 입력된 경우에, 제1 NH3주입량(Ain1)을 결정하기 위한 그래프, 및, 입구 NOx농도(Cin)를 예측하기 위한 그래프를, 기억되어 있는 다른 그래프로 개서할 수 있게 되어 있다(상세히는 후술).The denitrification component distributor 18 is a device for determining the first NH 3 injection amount A in1 when a signal indicating that the denitration catalyst installation part 9 has deteriorated more than a predetermined amount is input from the catalyst deterioration detection part 16 The graph and the graph for predicting the inlet NOx concentration (C in ) can be rewritten into another stored graph (to be described in detail later).

탈초 분배부(18)에는, 도시하지 않은 수동 스위치가 설치되어 있다. 이 수동 스위치가 눌러지면, 탈초 분배부(18)는, 촉매열화 검지부(16)로부터 탈초촉매 설치부(9)가 소정 이상으로 열화되었다는 정보의 신호가 입력되어 있지 않은 경우이더라도, 제1 NH3주입량(Ain1)을 결정하기 위한 그래프, 및, 입구 NOx농도(Cin)를 예측하기 위한 그래프를, 기억되어 있는 다른 그래프로 강제적으로 개서할 수 있게 되어 있다.A manual switch (not shown) is provided in the denitration / distribution portion 18. The ground manual switch is pressed, the denitration distributor 18, even if the denitration catalyst installation section (9) from a catalyst deterioration detecting unit 16 that is not the input signal of the information to indicate that the deterioration in a predetermined or more, a 1 NH 3 A graph for determining the injection amount A in1 and a graph for predicting the inlet NOx concentration C in can be forcibly rewritten into another stored graph.

수동 스위치가 눌리는 경우로서는, 예컨대, 제2 NH3주입부(8)가 막히는 등의 불량에 의하여, 유촉매 탈초에 있어서의 제2 NH3주입량(Ain2)이 원하는 대로 얻어지지 않을 때에, 강제적으로, 유촉매 탈초에 있어서의 제2 NH3주입량(Ain2)을 줄이고, 대신에, 무촉매 탈초에 있어서의 제1 NH3주입량(Ain1)을 늘리는 경우 등을 들 수 있다. 또한, 예컨대, 플랜트(P)의 정기검사 시 등에 플랜트(P)를 정지시켜, 탈초촉매 설치부(9)의 발취(拔取)검사를 행하여, 탈초촉매가 열화되어 있다고 판단되었을 때에, 강제적으로, 유촉매 탈초에 있어서의 제2 NH3주입량(Ain2)을 줄이고, 대신에, 무촉매 탈초에 있어서의 제1 NH3주입량(Ain1)을 늘리는 경우 등을 들 수 있다.Examples of when the manual switch being pressed, for example, the time can not be obtained claim 2 NH 3 injection unit 8 are by the defect such as clogging, the first 2 NH 3 injection amount (A in2) in the oil catalytic denitration as desired, forced , The second NH 3 injection amount (A in2 ) in the catalyst denitration is reduced, and the first NH 3 injection amount (A in1 ) in the non catalyst-free denitration is increased. When the plant P is stopped at the periodic inspection of the plant P, for example, the denitration inspection of the denitration catalyst installation portion 9 is performed and it is judged that the denitration catalyst is deteriorated, The case where the second NH 3 injection amount (A in2 ) in the catalyst dehydration is reduced and the first NH 3 injection amount (A in1 ) in the non catalyst dehazation is increased.

탈초 분배부(18)는, 제1 조절밸브(21)와 접속되어 있고, 결정된 제1 NH3주입량(Ain1)이 얻어지도록, 제1 조절밸브(21)에 제어신호 (a)를 보낸다. 또한, 탈초 분배부(18)는, 제2 조절밸브(23)와 접속되어 있고, 결정된 제2 NH3주입량(Ain2)이 얻어지도록, 제2 조절밸브(23)에 제어신호 (b)를 보낸다.The denitrification distributor 18 is connected to the first regulating valve 21 and sends a control signal a to the first regulating valve 21 so that the determined first NH 3 injection amount A in1 is obtained. The denitrification distributor 18 is connected to the second regulating valve 23 and supplies a control signal b to the second regulating valve 23 so as to obtain the determined second NH 3 injection amount A in2 send.

다만, 탈초 분배부(18)는, 촉매출구 NOx농도계(13)로부터 입력된 출구 NOx농도(Cout)에 의하여, 원하는 탈초성능이 발휘되고 있는지 아닌지를 확인하고, 피드백 제어를 행하는 것이 가능하게 되어 있다.However, the denitration distributor 18, it is possible by the outlet NOx concentration (C out) received from the catalyst outlet NOx concentration meter 13, a check for whether or not the desired denitration performance is exerted, and for performing feedback control have.

다음으로, 탈초장치(100)의 동작에 대하여 설명한다.Next, the operation of the denitration device 100 will be described.

도 4는, 도 1에 나타내는 탈초장치의 동작을 나타내는 플로우차트이다.4 is a flow chart showing the operation of the denitration device shown in Fig.

도 4에 나타내는 바와 같이, 탈초장치(100)의 동작은, 탈초 분배부(18)가, 촉매열화 검지부(16)로부터 탈초촉매가 소정 이상으로 열화되었다는 정보의 신호가 입력되었는지 아닌지를 판정하는 촉매열화진행 자동판정을 실행하는 것으로부터 시작된다(스텝 S101). 탈초촉매가 소정 이상으로 열화되었는지 아닌지는, 촉매열화 검지부(16)가 반응속도상수(K)를 산출하고, 이 반응속도상수(K)가 미리 기억되어 있는 소정의 임계값을 하회하고 있는지 아닌지를 판정함으로써 판정한다. 이 촉매열화 검지부(16)에 의한 판정은, 소정의 간격, 예컨대 1일 1회 정도의 빈도로 행해지며, 그 이외의 운전 시에는 행해지지 않는다.4, the operation of the denitration device 100 is the same as that of the first embodiment except that the denitration and distribution section 18 detects whether or not a signal indicating that the denitration catalyst has deteriorated more than a predetermined amount from the catalyst deterioration detecting section 16 has been input (Step S101). ≪ / RTI > Whether or not the denitration catalyst has deteriorated to a predetermined degree or not can be determined by determining the reaction rate constant K by the catalyst deterioration detecting unit 16 and determining whether or not the reaction rate constant K is below a predetermined threshold value stored in advance Determination is made. The determination by the catalyst deterioration detecting unit 16 is performed at a predetermined interval, for example, about once a day, and is not performed at the time of other operations.

스텝 S101에서, 신호를 입력하고 있지 않다고 판정한 경우, 탈초 분배부(18)는, 수동 스위치가 눌렸는지 아닌지를 판정하는 촉매열화진행 수동판정을 실행한다(스텝 S103).If it is determined in step S101 that no signal is input, the denitration / distribution unit 18 executes a catalyst deterioration progress manual determination for determining whether or not the manual switch is depressed (step S103).

스텝 S103에서, 수동 스위치가 눌리지 않았다고 판정한 경우, 탈초 분배부(18)는, NH3공급부(19)로부터 제1 NH3주입부(7) 및 제2 NH3주입부(8)에 공급되는 NH3의 양을 조정하는 탈초분배조정은 불필요하다고 판단하여, 탈초장치(100)의 일련의 동작은 종료된다.When it is determined in step S103 that the manual switch has not been depressed, the denitration dispenser 18 is supplied from the NH 3 supply unit 19 to the first NH 3 injection unit 7 and the second NH 3 injection unit 8 It is determined that the denitration distribution adjustment for adjusting the amount of NH 3 is unnecessary, and the series of operations of the denitration apparatus 100 is terminated.

한편, 스텝 S101에서 신호가 입력되었다고 판정한 경우, 또는, 스텝 S103에서 수동 스위치가 눌렸다고 판정한 경우에는, 탈초 분배부(18)는, 탈초분배조정이 필요하다고 판단한다(스텝 S105).On the other hand, if it is determined in step S101 that a signal has been input, or if it is determined in step S103 that the manual switch is depressed, the denormalization distributor 18 determines that denormalization distribution adjustment is necessary (step S105).

여기에서, 탈초촉매의 열화가 적은 경우, 유촉매 탈초에 있어서의 탈초효율은 높기 때문에, 유촉매 탈초를 적극적으로 행할 수 있도록, 무촉매 탈초에 있어서의 제1 NH3주입량(Ain1)을 적게 하고, 유촉매 탈초에 있어서의 제2 NH3주입량(Ain2)을 많게 하는 것이 바람직하다. 따라서, 탈초 분배부(18)는, 도 2 (a)에 나타내는 바와 같은, 제1 NH3주입량(Ain1)이 적은 그래프를 선택하여 제1 NH3주입량(Ain1)을 결정하고, 결정된 제1 NH3주입량(Ain1)에 따라 제1 조절밸브(21)에 제어신호(a)를 송신하여 제1 NH3주입부(7)로부터 NH3을 주입함과 함께, 도 3 (a)에 나타내는 바와 같은, 입구 NOx농도(Cin)가 높은 그래프를 선택하여 입구 NOx농도(Cin)를 예측하고, 상술의 수학식 2에 근거하여, 제2 NH3주입량(Ain2)을 결정하며, 결정된 제2 NH3주입량(Ain2)에 따라 제2 조절밸브(23)에 제어신호 (b)를 송신하여 제2 NH3주입부(8)로부터 NH3을 주입한다.Here, when the deterioration of the denitration catalyst is small, the denitration efficiency in the denitration catalyst is high, so that the first amount of NH 3 injection (A in1 ) in the non-catalytic denitration can be reduced , And the second NH 3 injection amount (A in2 ) in the catalyst dehydration is preferably increased. Therefore, the denitrification component 18 selects a graph having a small first NH 3 injection amount A in1 as shown in FIG. 2 (a) to determine the first NH 3 injection amount A in1 , A control signal a is transmitted to the first control valve 21 in accordance with the NH 3 injection amount A in1 to inject NH 3 from the first NH 3 injection portion 7, as shown, the entrance NOx concentration (C in) is selected, the high graph to estimate the inlet NOx concentration (C in), and, on the basis of equation (2) above, determines the claim 2, NH 3 injection amount (a in2), And transmits a control signal b to the second control valve 23 according to the determined second NH 3 injection amount A in2 to inject NH 3 from the second NH 3 injection part 8.

그 후, 플랜트(P)의 운전에 의하여, 탈초촉매가 열화된 경우에는, 유촉매 탈초에 있어서의 탈초효율은 저하되기 때문에, 무촉매 탈초도 이용하기 위하여, 무촉매 탈초에 있어서의 제1 NH3주입량(Ain1)을 늘리고, 유촉매 탈초에 있어서의 제2 NH3주입량(Ain2)을 줄이는 것이 바람직하다.Thereafter, when the denitration catalyst is deteriorated by the operation of the plant P, the denitration efficiency in the denitration of the catalyst deteriorates. Therefore, in order to use the non-catalytic denitration, the first NH 3 injection amount (A in1 ) is increased, and the second NH 3 injection amount (A in2 ) in the oil catalyst dehydration is reduced.

따라서, 스텝 S105에서 탈초분배조정이 필요하다고 판단하면, 탈초 분배부(18)는, 다음으로, 탈초촉매의 열화에 따라, 제1 NH3주입량(Ain1)을 결정하기 위한 그래프를, 도 2 (b), (c)에 나타내는 바와 같이, 제1 NH3주입량(Ain1)이 많은 그래프로 단계적으로 개서하고(스텝 S107), 이것과 대응하도록, 입구 NOx농도(Cin)를 예측하기 위한 그래프를, 도 3 (b), (c)에 나타내는 바와 같이, 입구 NOx농도(Cin)가 낮은 그래프로 단계적으로 개서한다(스텝 S109). 그리고, 탈초장치(100)의 일련의 동작은 종료되고, 개서한 그래프에 근거하여 결정된 제1 NH3주입량(Ain1), 및, 제2 NH3주입량(Ain2)에 따라, 제1 NH3주입부(7), 및, 제2 NH3주입부(8)로부터 NH3을 주입한다.Thus, the graph for determining, claim 1 NH 3 injection amount (A in1) according to the deterioration of if it is determined that the required denitration distribution adjustment at step S105, the denitration distributor 18, to the next, the denitration catalyst 2 as shown in Figs. 10B and 10C, the first NH 3 injection amount A in1 is gradually updated in a graph (step S107), and the inlet NO x concentration C in As shown in Figs. 3 (b) and 3 (c), the graph is rewritten stepwise in a graph having a low inlet NOx concentration C in (step S109). And, the 1 NH 3, a series of operation of the denitration apparatus 100 is terminated, in accordance with claim 1 NH 3 injection amount (A in1), and, claim 2 NH 3 injection amount (A in2) determined on the basis of the rewriting graph NH 3 is injected from the injecting section 7 and the second NH 3 injecting section 8.

이와 같이, 본 실시형태에 관한 탈초장치(100)에서는, 보일러(1)의 부하와, 무촉매 탈초에 주입하는 NH3의 양인 제1 NH3주입량(Ain1)이, 제1 상관관계로서 탈초 분배부(18)에 미리 기억되고, 보일러(1)의 부하에 따라 제1 NH3주입량(Ain1)이 제어된다. 또한, 보일러(1)의 부하와, 탈초촉매 설치부(9)의 입구측에 있어서의 배가스 중의 NOx의 농도인 입구 NOx농도(Cin)가, 제2 상관관계로서 탈초 분배부(18)에 미리 기억되고, 보일러(1)의 부하에 따라 입구 NOx농도(Cin)가 예측되며, 이 입구 NOx농도(Cin)에 따라 유촉매 탈초로 주입하는 NH3의 양인 제2 NH3주입량(Ain2)이 제어된다. 그리고, 탈초촉매가 열화되었다고 검지된 경우에는, 탈초촉매의 열화에 따라 제1 상관관계 및 제2 상관관계가 개서되고, 이로써, NH3의 주입량을 최적으로 조정할 수 있으며, 따라서, 유촉매 탈초에 이용하는 탈초촉매가 열화되어도, 충분히 NOx를 제거할 수 있다.Thus, the denitration apparatus, (100), NH 3 amount first NH 3 injection amount (A in1) of injecting the and of the boiler (1) Load, non-catalytic denitration of the present embodiment is, denitration as a first correlation Is stored in advance in the distribution section 18 and the first NH 3 injection amount A in1 is controlled in accordance with the load of the boiler 1. The load of the boiler 1 and the inlet NOx concentration C in which is the concentration of NOx in the exhaust gas at the inlet side of the denitration catalyst installation portion 9 are set to the denitration distributor 18 as a second correlation is stored in advance, and the inlet NOx concentration (C in) predicted according to the load of the boiler (1), an amount claim 2 NH 3 injection amount of NH 3 that oil injected into the catalytic denitration in accordance with the entrance NOx concentration (C in) (a in2 is controlled. When it is detected that the denitration catalyst has deteriorated, the first correlation and the second correlation are rewritten with deterioration of the denitration catalyst, whereby the amount of NH 3 to be injected can be optimally adjusted, Even when the denitration catalyst to be used deteriorates, it is possible to sufficiently remove NOx.

또한, 이와 같이, 본 실시형태에 관한 탈초장치(100)에서는, 미리 기억된 제2 상관관계로부터 입구 NOx농도(Cin)가 예측되기 때문에, 촉매입구 NOx농도계(11)를 탈초촉매의 열화의 판정 시에만 동작시키고, 그 이외의 운전 시에는 동작시키지 않게 할 수 있다. 이로써, 촉매입구 NOx농도계(11)의 열화나 불량을 억제할 수 있다.As described above, in the denitration apparatus 100 according to the present embodiment, the inlet NOx concentration C in is predicted from the second correlation stored in advance, It can be operated only at the time of judgment, and not at the time of other operation. This makes it possible to suppress deterioration or failure of the catalyst inlet NO x concentration meter 11.

또한, 탈초 분배부(18)는, 보일러(1)에서 연소되는 연료의 종류에 따라, 제1 상관관계 및 제2 상관관계를 복수 기억하고 있기 때문에, 보일러(1)에서 연소되는 연료의 종류에 따라, NH3의 주입량을 보다 더 최적으로 조정할 수 있다.Since the denitrification component 18 stores a plurality of first correlations and second correlations depending on the type of fuel burned in the boiler 1, the kind of fuel burned in the boiler 1 Accordingly, the injection amount of NH 3 can be adjusted more optimally.

이상, 본 발명의 탈초장치 및 탈초방법에 관한 실시형태에 대하여 설명하였는데, 본 발명은 상기 실시형태에 한정되지 않는다. 예컨대, 상기 실시형태에서는, 탈초 분배부(18)는, 제1 상관관계 및 제2 상관관계를 그래프로서 기억하고 있지만, 이 대신에, 제1 상관관계 및 제2 상관관계를 함수로서 기억하고 있어도 된다.The embodiments of the denitration apparatus and denitration method of the present invention have been described above, but the present invention is not limited to the above embodiments. For example, in the above-described embodiment, the denominator distribution unit 18 stores the first correlation and the second correlation as graphs, but instead of storing the first correlation and the second correlation as functions do.

또한, 상기 실시형태에서는, 환원제로서 NH3을 사용하고 있지만, 이 대신에, 요소수를 사용해도 된다. 또한, 제1 NH3주입부(7) 및 제2 NH3주입부(8)로 주입하는 환원제는, 동일한 것이어도 되고, 상이한 것이어도 된다.In the above embodiment, NH 3 is used as the reducing agent, but urea water may be used instead. The reducing agent injected into the first NH 3 injecting section 7 and the second NH 3 injecting section 8 may be the same or different.

또한, 상기 실시형태에서는, 무촉매 탈초수단인 제1 NH3주입부(7)는, 제1 덕트(D1)에 설치되어 있지만, 보일러(1)에 설치되어도 된다. 또한, 상기 실시형태에서는, 유촉매 탈초수단인 제2 NH3주입부(8) 및 탈초촉매 설치부(9)는, 열회수부(3, 4)의 사이에 설치되어 있지만, 이에 한정되지 않고, 배가스가 흐르는 방향에 있어서 무촉매 탈초수단인 제1 NH3주입부(7)의 하류측에 있으면 된다.In the above embodiment, the first NH 3 injection unit 7, which is the non-catalyst denitration means, is provided in the first duct D1, but may be provided in the boiler 1. Although the second NH 3 injection unit 8 and the denitration catalyst installation unit 9 are provided between the heat recovery units 3 and 4 in the embodiment described above, It may be on the downstream side of the first NH 3 injection unit 7 which is the non-catalyst denitration means in the direction in which the exhaust gas flows.

본 발명에 의하면, 유촉매 탈초에 이용하는 촉매가 열화되어도, 충분히 NOx를 제거할 수 있는 탈초장치 및 탈초방법을 제공하는 것이 가능해진다.According to the present invention, it is possible to provide a denitration device and a denitration method capable of sufficiently removing NOx even when the catalyst used for the denitration catalyst is deteriorated.

1 보일러(연소로)
7 제1 NH3주입부(무촉매 탈초수단)
8 제2 NH3주입부(유촉매 탈초수단)
9 탈초촉매 설치부(유촉매 탈초수단)
16 촉매열화 검지부(촉매열화 검지수단)
18 탈초 분배부(제어수단)
100 탈초장치
1 Boiler (combustion furnace)
7 First NH 3 injection unit (catalystless denitration unit)
8 Second NH 3 injection portion (catalyst catalyst denitration means)
9 Denitration catalyst installation part (oil catalytic denitration unit)
16 catalyst deterioration detecting portion (catalyst deterioration detecting means)
18 denitration distribution unit (control means)
100 denomination device

Claims (3)

연소로에서 발생하는 NOx를 함유한 배가스에, 환원제를 주입하여 무촉매 탈초를 행하는 무촉매 탈초수단과, 상기 무촉매 탈초를 행한 배가스에 환원제를 주입하고, 탈초촉매를 이용하여 유촉매 탈초를 행하는 유촉매 탈초수단을 구비하는 탈초장치로서,
상기 연소로의 부하와 상기 무촉매 탈초수단에 주입하는 환원제의 주입량의 상관관계인 제1 상관관계를 미리 기억하고, 상기 제1 상관관계에 근거하여 상기 무촉매 탈초수단으로 주입하는 환원제의 주입량을 제어하며, 또한, 상기 연소로의 부하와 상기 탈초촉매의 입구측에 있어서의 NOx의 농도인 입구 NOx농도의 상관관계인 제2 상관관계를 미리 기억하고, 상기 제2 상관관계에 근거하여 입구 NOx농도를 예측하며, 당해 입구 NOx농도에 근거하여 상기 유촉매 탈초수단에 주입하는 환원제의 주입량을 제어하는 제어수단과,
상기 탈초촉매의 열화를 검지하는 촉매열화 검지수단
을 구비하고,
상기 제어수단은, 상기 촉매열화 검지수단에 의하여 상기 탈초촉매가 열화되었다고 검지한 경우에, 상기 탈초촉매의 열화에 따라 상기 제1 상관관계 및 상기 제2 상관관계를 개서할 수 있는 것
을 특징으로 하는 탈초장치.
Catalyst-free denitration means for injecting a reducing agent into an exhaust gas containing NOx generated in a combustion furnace to perform non-catalytic denitration, and a reforming agent is injected into the non-catalytic denitration exhaust gas, A denitration apparatus having a catalyst denitration means,
A first correlation that is a correlation between a load on the combustion furnace and an injection amount of a reducing agent injected into the non-catalyst denitration means is previously stored, and based on the first correlation, the amount of the reducing agent injected into the non- And a second correlation which is a correlation between a load on the combustion furnace and an inlet NOx concentration which is a concentration of NOx on the inlet side of the denitration catalyst is stored in advance and the inlet NOx concentration And control means for controlling an injection amount of a reducing agent to be injected into the catalyst denitration means based on the inlet NOx concentration,
Catalyst deterioration detecting means for detecting deterioration of the denitration catalyst
And,
Wherein said control means is capable of rewriting said first correlation and said second correlation in accordance with deterioration of said denitration catalyst when detecting that said denitration catalyst has deteriorated by said catalyst deterioration detecting means
.
청구항 1에 있어서,
상기 제어수단은, 상기 연소로에서 연소되는 연료의 종류에 따라, 상기 제1 상관관계 및 상기 제2 상관관계를 복수 기억하는 것이 가능한 것
을 특징으로 하는 탈초장치.
The method according to claim 1,
Wherein said control means is capable of storing a plurality of said first correlation and said second correlation in accordance with the type of fuel burned in said combustion furnace
.
연소로에서 발생하는 NOx를 함유한 배가스에, 환원제를 주입하여 무촉매 탈초를 행하고, 상기 무촉매 탈초를 행한 배가스에 환원제를 주입하고, 탈초촉매를 이용하여 유촉매 탈초를 행하는 탈초방법으로서,
상기 연소로의 부하와 상기 무촉매 탈초에 주입하는 환원제의 주입량의 상관관계인 제1 상관관계를 미리 기억하고, 상기 제1 상관관계에 근거하여 상기 무촉매 탈초로 주입하는 환원제의 주입량을 제어하며, 또한, 상기 연소로의 부하와 상기 탈초촉매의 입구측에 있어서의 NOx의 농도인 입구 NOx농와의 상관관계인 제2 상관관계를 미리 기억하고, 상기 제2 상관관계에 근거하여 입구 NOx농도를 예측하며, 당해 입구 NOx농도에 근거하여 상기 유촉매 탈초로 주입하는 환원제의 주입량을 제어하고,
상기 탈초촉매가 열화되었다고 검지한 경우에, 상기 탈초촉매의 열화에 따라 상기 제1 상관관계 및 상기 제2 상관관계를 개서하는 것
을 특징으로 하는 탈초방법.
A denitration method for performing a catalyst-free denitration by injecting a reducing agent into an exhaust gas containing NOx generated in a combustion furnace, performing a non-catalytic denitration, injecting a reducing agent into the non-catalytic denitration exhaust gas,
A first correlation that is a correlation between a load on the combustion furnace and an injection amount of a reducing agent to be injected into the non-catalytic denitration is stored in advance, and the amount of the reducing agent injected into the non-catalyst denitration is controlled based on the first correlation, In addition, a second correlation, which is a correlation between the load on the combustion furnace and the inlet NOx concentration, which is the NOx concentration on the inlet side of the denitration catalyst, is stored in advance and the inlet NOx concentration is predicted based on the second correlation , An injection amount of a reducing agent to be injected into the above-mentioned catalyst dehydrogenation is controlled based on the inlet NOx concentration,
In the case where it is detected that the denitration catalyst has deteriorated, the first correlation and the second correlation are rewritten in accordance with deterioration of the denitration catalyst
.
KR1020137027020A 2011-05-18 2012-04-24 Denitrator and denitration method KR101470784B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-111472 2011-05-18
JP2011111472A JP5575701B2 (en) 2011-05-18 2011-05-18 Denitration apparatus and denitration method
PCT/JP2012/060986 WO2012157413A1 (en) 2011-05-18 2012-04-24 Denitrator and denitration method

Publications (2)

Publication Number Publication Date
KR20130133291A KR20130133291A (en) 2013-12-06
KR101470784B1 true KR101470784B1 (en) 2014-12-08

Family

ID=47176749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137027020A KR101470784B1 (en) 2011-05-18 2012-04-24 Denitrator and denitration method

Country Status (4)

Country Link
JP (1) JP5575701B2 (en)
KR (1) KR101470784B1 (en)
MY (1) MY165561A (en)
WO (1) WO2012157413A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514726B (en) * 2019-02-02 2024-01-26 广东万引科技发展有限公司 Novel composite biomass denitration agent for dry-method cement kiln, application method of novel composite biomass denitration agent and denitration system
CN111636934B (en) * 2020-05-24 2021-03-16 西安交通大学 Efficient and clean coal-fired power generation system with high variable load rate and operation method
CN112651166B (en) * 2020-11-24 2023-03-28 呼和浩特科林热电有限责任公司 Denitration system inlet nitrogen oxide concentration prediction method and device and denitration system
CN114558434A (en) * 2022-03-04 2022-05-31 广东瑞星环境科技有限公司 Method and equipment for synergistic treatment of ultra-clean emission of biomass boiler flue gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930007494A (en) * 1991-10-14 1993-05-20 후지무라 히로유끼 Exhaust gas denitrification method and apparatus
JPH11235516A (en) * 1998-02-24 1999-08-31 Chugoku Electric Power Co Inc:The Denitrification device for exhaust gas
JP2000237536A (en) * 1998-12-21 2000-09-05 Nkk Corp Waste gas denitration device of incinerator
KR20050030900A (en) * 2002-06-14 2005-03-31 쥬코쿠 덴료쿠 가부시키 가이샤 Apparatus for monitoring nox removal catalyst of denitrizer and method of monitoring nox removal catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119469A (en) * 1997-06-30 1999-01-26 Babcock Hitachi Kk Ammonia injection controller for denitrifying reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930007494A (en) * 1991-10-14 1993-05-20 후지무라 히로유끼 Exhaust gas denitrification method and apparatus
JPH11235516A (en) * 1998-02-24 1999-08-31 Chugoku Electric Power Co Inc:The Denitrification device for exhaust gas
JP2000237536A (en) * 1998-12-21 2000-09-05 Nkk Corp Waste gas denitration device of incinerator
KR20050030900A (en) * 2002-06-14 2005-03-31 쥬코쿠 덴료쿠 가부시키 가이샤 Apparatus for monitoring nox removal catalyst of denitrizer and method of monitoring nox removal catalyst

Also Published As

Publication number Publication date
JP2012239970A (en) 2012-12-10
KR20130133291A (en) 2013-12-06
JP5575701B2 (en) 2014-08-20
MY165561A (en) 2018-04-05
WO2012157413A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN102292142B (en) Method of controlling the operation of a selective catalytic reduction plant
CA2673562C (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
TWI467119B (en) Optical flue gas monitor and control
KR101470784B1 (en) Denitrator and denitration method
JP5297215B2 (en) Exhaust gas purification device
US8268275B2 (en) Method and device for controlling the supply of a reducing agent to an SCR system
CN101713320A (en) Apparatus and method for optimizing exhaust temperature control in a vehicle during particulate filter regneration
CN102759931A (en) Method and device for controlling smoke denitration
TW201233432A (en) System and method of managing energy utilized in a flue gas processing system
JP5442411B2 (en) Exhaust gas treatment apparatus, combustion furnace, and exhaust gas treatment method
CN112105442B (en) Exhaust gas mercury removal system
WO2016117258A1 (en) Waste treatment system and nox treatment method used therein
US20100021363A1 (en) SYSTEM AND METHOD OF PROTECTING A NOx REDUCING CATALYST
EP1316352A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
JP2021185339A (en) Boiler plant and power generating unit
JPH10109018A (en) Waste gas denitration method and device therefor
JP2012130854A (en) Exhaust gas treatment apparatus
JPH06218229A (en) Method and device for controlling supply of flue gas purifying agent
JP2005211750A (en) Method for controlling ammonia injection into catalytic denitrification equipment
Ghorishi et al. Effects of SCR catalyst and wet FGD Additive on the speciation and removal of mercury within a forced-oxidized limestone scrubber
KR20220162753A (en) Exhaust gas treatment system and exhaust gas treatment method
FR3004539A1 (en) METHOD FOR CONTROLLING A CATALYTIC DENITRIFICATION REACTOR OF FUMEES
KR101343873B1 (en) The Control Apparatus for Denitrify
WO2011161507A1 (en) Method of controlling the concentration of a substance of a dust material of a process plant

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 6