JP3831804B2 - Exhaust gas denitration equipment - Google Patents

Exhaust gas denitration equipment Download PDF

Info

Publication number
JP3831804B2
JP3831804B2 JP04188298A JP4188298A JP3831804B2 JP 3831804 B2 JP3831804 B2 JP 3831804B2 JP 04188298 A JP04188298 A JP 04188298A JP 4188298 A JP4188298 A JP 4188298A JP 3831804 B2 JP3831804 B2 JP 3831804B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
concentration
catalyst
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04188298A
Other languages
Japanese (ja)
Other versions
JPH11235516A (en
Inventor
準次 藤井
裕明 世良
徹哉 岩瀬
直之 近藤
喜通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP04188298A priority Critical patent/JP3831804B2/en
Publication of JPH11235516A publication Critical patent/JPH11235516A/en
Application granted granted Critical
Publication of JP3831804B2 publication Critical patent/JP3831804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を燃焼させて発生した排ガスにアンモニア(以下「NH3」とも云う)を注入して窒素酸化物(以下「NOx」とも云う)を除去する排ガスの脱硝装置に係り、特に加圧流動層ボイラ(PFBCボイラ)から発生する排ガスの窒素酸化物を除去する排ガスの脱硝装置に関するものである。
【0002】
【従来の技術】
近年、地球環境問題として、環境汚染物質の排出規制が厳しくなってきている。化石燃料を燃焼し発電する火力発電は、環境性能向上、発電効率向上に向け、研究開発がなされている。この中で現在注目されているのがボイラを圧力容器の中に入れ加圧化で石炭を燃焼させ発電する加圧流動層ボイラを利用した発電装置である。
【0003】
加圧流動層ボイラを利用した発電装置は、ガスタービン(以下「GT」との云う)とスチームタービンを組み合わせた複合発電によって発電効率の向上を図り、流動層を形成する石灰石によって炉内脱硫を行なうことにより脱硫装置を省き、更に比較的低温で燃焼させること及び流動層中のカーボン等の還元物質による還元反応で流動層出口のNOx濃度を低減すること等のメリットを有するものである。
【0004】
しかし、従来の排ガスの脱硝技術では触媒のみによる脱硝によりガスタービン排気ガス中のNOx濃度を低減しており、脱硝装置の性能上、脱硝効率には上限があり、それ以上の脱硝性能の向上は出来なかった。
【0005】
図10は、加圧流動層ボイラを利用した発電装置に使用された従来の排ガスの脱硝装置の一例を示す系統図である。コンプレッサ6に導入された燃焼空気5は、火炉入口配管4を通って圧力容器3内の加圧流動層ボイラ1に導入される。燃料(CWP(Coal Water Paste)と云う)供給ノズル23を介して流動層を形成する流動媒体(BM)2に供給される燃料が燃焼することによって発生する排ガスは、火炉出口配管7を通りガスタービン8に導入され発電を行なうと同時にコンプレッサ6を駆動する。ガスタービン8を出た排ガスは、ガスタービン出口ダクト9を通って節炭器10に導入されるが、排ガス温度が約400℃と高温であるため、節炭器10で熱回収され、煙突出口ダクト12を通り煙突29より放出される。
【0006】
上記加圧流動層ボイラを利用した発電装置の中でNOxを低減、除去する装置は、節炭器10内に設けられた脱硝触媒を有する触媒脱硝装置11のみである。触媒脱硝装置11入口に設けられた有触媒入口NOx濃度計測装置22aにより有触媒必要アンモニア量が計算され、アンモニア気化器15から送られたアンモニアは、有触媒アンモニア流量調整弁19で流量調整され、アンモニア希釈空気14が加えられ有触媒アンモニア注入ノズル13より注入される。有触媒脱硝装置11入口NOx濃度が計画値以上の場合、アンモニアを過剰に注入する必要があり、有触媒脱硝装置11出口の漏洩アンモニア(以下「リークアンモニア」とも云う)も多くなり煙突29より排出されることになるが、一方ではこれにより煙突29から排出されるNOx濃度を低減している。
【0007】
図11は、ボイラ燃焼装置に使用された従来の別の排ガスの脱硝装置の例を示す系統図である。このボイラ燃焼装置は、燃焼室40の出口側に設けられた無触媒脱硝手段41と、同無触媒脱硝手段41の下流部で煙道42に設けられた触媒脱硝手段43とを有すると共に、熱交換器44にて排ガスと空気とが熱交換されるものである(実開昭53−163347号)。
【0008】
図12は、加圧流動層ボイラを利用した発電装置に使用された従来の更に別の排ガスの脱硝装置の例を示す系統図である。この排ガスの脱硝装置は、GT55下流の触媒脱硝装置58入口のNOx濃度56に応じて、触媒脱硝装置58入口でのアンモニア注入57と、加圧容器50内の火炉51で発生した排ガスに対して無触媒脱硝用のアンモニア注入52、54とを調整して行なうものである。尚、符号53は脱塵装置、符号59は低圧給水ヒータ、符号60は高圧給水ヒータ、符号61は煙突である。(特表平5−504290号)
【0009】
【発明が解決しようとする課題】
図10に示した排ガスの脱硝装置は、触媒脱硝装置11により排ガス中のNOx濃度を低減し、環境規制値以下として煙突より排出するものであるが、脱硝効率の上限値以上を出すことが出来ず、リークアンモニアも過剰となり、それ以上の脱硝効率の向上を行なうことは困難であった。
【0010】
図11に示した排ガスの脱硝装置は、高温度の熱還元雰囲気下で熱還元による無触媒脱硝を行ない低温度域で触媒脱硝を行なうものであるが、消費するアンモニア量を最小とする目的で各箇所に注入するアンモニア量を最適に制御する手段がない。この従来技術を加圧流動層ボイラに適用する場合、高温度の熱還元雰囲気領域は、図10に示したガスタービン8の上流側に該当するが、加圧流動層ボイラではガスタービン入口までは高温条件に加えて高圧条件であるため、排ガス中の酸素分圧は図11に示したボイラ燃焼装置の約10倍程度であり、その結果この領域に注入するアンモニアが酸素により窒素と水蒸気に分解する反応が顕著となり、注入アンモニアが充分有効に脱硝反応に使用されないことになる。更に加圧流動層ボイラは部分負荷においては排ガス圧力が10気圧から5気圧程度まで減少するため、注入アンモニアの分解反応も運転圧力に大きく影響を受ける。
【0011】
更に、このボイラ燃焼装置に使用された排ガスの脱硝装置は、注入するアンモニアの有効利用効率が運転負荷によって大きく左右される加圧流動層ボイラにおいて、注入するアンモニア量を最小とする経済的な制御を実施することは出来ない。
【0012】
図12に示した排ガスの脱硝装置は、無触媒脱硝と触媒脱硝の組み合わせにより煙突入口までの脱硝効率向上が可能であるが、ガスタービン55上流の無触媒脱硝でのアンモニア注入量は、触媒脱硝装置58入口NOx濃度56を設定値になるように決定され、触媒脱硝装置58入口でのアンモニア注入量は触媒脱硝装置入口NOx濃度56に応じて決定されるため、排ガス中の残存アンモニア濃度、即ちリークアンモニアを最小にするアンモニア注入配分については、特に配慮されていなかった。
【0013】
本発明の課題は、上記問題点を解決し、外部に排出される窒素酸化物濃度を環境規制値以下に維持すると共に、排ガスの脱硝に使用するアンモニア量と外部に排出される漏洩アンモニア量を最小にすることである。
【0014】
【課題を解決するための手段】
上記課題を解決するため本発明は、燃料を燃焼させて発生した燃焼排ガスにアンモニアを注入して前記燃焼排ガス中の窒素酸化物を低減した低減処理排ガスとし、更に該低減処理排ガスにアンモニアを注入し触媒の存在の基に該低減処理排ガスの窒素酸化物を除去する排ガスの脱硝装置において、前記燃焼排ガスにアンモニアを注入する注入位置より上流側で該燃焼排ガスの窒素酸化物濃度を計測し、該計測した窒素酸化物濃度による制御信号に基づいて前記燃焼排ガスに注入するアンモニア注入量を制御する第1のアンモニア注入制御手段を備えたことである。
【0015】
第1のアンモニア注入制御手段を備えたことにより、燃料、例えばCWPを燃焼させる加圧流動層ボイラで発生した燃焼排ガス中のNOxは、第1のアンモニア注入制御手段により注入されるアンモニアで気相還元反応を起こして窒素と水に分解され低減される。この際、低減されるべき燃焼排ガス中の窒素酸化物濃度を計測し、この計測信号から演算された制御信号に基づいてアンモニア注入量が決められるので必要以上の過剰なアンモニアが注入されることがない。
【0016】
更に、上記排ガスの脱硝装置において、前記低減処理排ガスにアンモニアを注入する注入位置より上流側で前記低減処理排ガスの窒素酸化物濃度及びアンモニア濃度を計測し、該計測した窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号に基づいて前記低減処理排ガスに注入するアンモニア注入量を制御する第2のアンモニア注入制御手段を備えたことである。
【0017】
第2のアンモニア注入制御手段を備えた排ガスの脱硝装置は、上記排ガスの脱硝装置の作用に加え、第1のアンモニア注入制御手段により低減されたNOxが、第2のアンモニア注入制御手段により更に除去され流動層ボイラ全体としての脱硝性能を向上させる。ここで、第1のアンモニア注入制御手段は、無触媒脱硝反応又は気相還元反応で利用され、第2のアンモニア注入制御手段は、有触媒脱硝反応で利用される。
【0018】
更に、上記第2のアンモニア注入制御手段を備えた排ガスの脱硝装置において、前記第2のアンモニア注入制御手段は、前記触媒を通過した触媒通過排ガスの窒素酸化物濃度を計測し、該計測した窒素酸化物濃度の計測信号で、前記計測した低減処理排ガスの窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して前記低減処理排ガスに注入するアンモニア注入量を制御することである。
【0019】
第2のアンモニア注入制御手段が窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して低減処理排ガスに注入するアンモニア注入量を制御する排ガスの脱硝装置は、上記第2のアンモニア注入制御手段を備えた排ガスの脱硝装置の作用に加え、触媒脱硝装置出口煙道又は煙突入口にNOx濃度計測装置を設置して、触媒脱硝装置出口NOx濃度値が規制値に対して一定偏差以上の差異を生じた場合には、偏差幅に応じて、有触媒脱硝装置入口又は流動層ボイラ出口でのアンモニア注入量を補助的に制御することで、応答性を向上することが可能である。
【0020】
更に、上記第2のアンモニア注入制御手段を備えたいずれかの排ガスの脱硝装置において、前記第2のアンモニア注入制御手段は、前記触媒を通過した触媒通過排ガスのアンモニア濃度を計測し、該計測したアンモニア濃度の計測信号で、前記計測した低減処理排ガスの窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して前記低減処理排ガスに注入するアンモニア注入量を制御することである。
【0021】
第2のアンモニア注入制御手段が窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して前記低減処理排ガスに注入するアンモニア注入量を制御する排ガスの脱硝装置は、上記第2のアンモニア注入制御手段を備えたいずれかの排ガスの脱硝装置の作用に加え、触媒脱硝装置出口煙道又は煙突入口にアンモニア濃度計測装置を設置して、触媒脱硝装置出口残存アンモニア濃度が一定値以下になるように、計測値との偏差に応じて有触媒脱硝装置入口又は流動層ボイラ出口でのアンモニア注入量を補助的に制御することで、リークアンモニア量を補助的に制御することが出来る。
【0022】
更に、先の第1のアンモニア注入制御手段を備えた排ガスの脱硝装置において、前記触媒を通過した触媒通過排ガスの窒素酸化物濃度を計測し、該計測した窒素酸化物濃度の計測信号から演算された制御信号に基づいて、前記低減処理排ガスにアンモニアを注入し、前記触媒通過排ガスの窒素酸化物濃度が予め設定された濃度範囲に収まるように制御する第3のアンモニア注入制御手段を備えたことである。
【0023】
第3のアンモニア注入制御手段を備えた排ガスの脱硝装置は、先の第1のアンモニア注入制御手段を備えた排ガスの脱硝装置の作用に加え、触媒脱硝装置出口NOx濃度が規制値以下になるということは、アンモニアが過剰の状態であることを示し、アンモニア流出量が増加している可能性を示す。逆に触媒脱硝装置出口のNOx濃度が規制値以上になるということはアンモニアは脱硝反応に消費されて排出量が減少している一方で系外への流出NOxが増加していることを示す。従って、触媒脱硝装置出口又は下流ダクトで計測するNOx濃度が規制値上限と下限の範囲内に維持出来るよう触媒脱硝装置入口又は上流ダクトに注入するアンモニア量を制御することにより触媒脱硝装置出口のNOx排出量及びアンモニア排出量を低減することが出来る。
【0024】
そして、先の第1のアンモニア注入制御手段を備えた排ガスの脱硝装置において、前記触媒を通過した触媒通過排ガスのアンモニア濃度を計測し、該計測したアンモニア濃度の計測信号から演算された制御信号に基づいて、前記低減処理排ガスにアンモニアを注入し、前記触媒通過排ガスのアンモニア濃度が予め設定された濃度範囲に収まるように制御する第4のアンモニア注入制御手段を備えたことである。
【0025】
第4のアンモニア注入制御手段を備えた排ガスの脱硝装置は、先の第1のアンモニア注入制御手段を備えた排ガスの脱硝装置の作用に加え、触媒脱硝装置出口NOx濃度が規制値以下になるということは、アンモニアが不足の状態であることを示し、NOx流出量が増加している可能性を示す。逆に触媒脱硝装置出口のNH3濃度が規制値以上になるというとこは、アンモニアが過剰に存在している状態でNOxの排出は抑制されているが系外への流出アンモニアが増加していることを示す。従って、触媒脱硝装置出口又は下流ダクトで計測するNH3濃度が規制値上限と下限の範囲内に維持出来るよう触媒脱硝装置入口又は上流ダクトに注入するアンモニア量を制御することにより触媒脱硝装置出口のNOx排出量及びアンモニア排出量を低減することが出来る。
【0026】
ところで、アンモニアは物性上熱分解を起こしやすい特性を有しているため、注入されたアンモニアが熱分解を起こす前にNOxを還元することが出来る能力には上限がある。即ち、第1のアンモニア注入手段において一定量以上の過剰のアンモニアを注入しても、ある割合からはNOx濃度は平衡傾向となる。そこで、アンモニア注入位置の上流側でNOx濃度を計測し、この計測信号から演算される必要NOx/NH3のモル比率に相当する適正アンモニア(NOx低減に寄与する必要最小限の過剰アンモニア)を注入することで、不必要に過剰なアンモニア注入を避けることが出来る。
【0027】
熱分解やNOxとの気相還元反応を起こさずに残留したアンモニアは、第2のアンモニア注入手段によって注入されるアンモニアと合わせて再利用される。脱硝触媒を設けた触媒脱硝装置入口のアンモニア注入位置より上流側に設置するNOx濃度計測装置から触媒脱硝装置出口のNOx濃度を規制値に維持するのに必要なアンモニア量が計算出来、アンモニア濃度計測装置から低減処理排ガス中に残存するアンモニア量が計算出来るため、必要アンモニア量から残存アンモニア量を差し引いた量のアンモニアを触媒脱硝装置入口に注入すれば、必要最小限の過剰アンモニア量以上に注入することがなくなるのでリークアンモニア量を最小化出来る。
【0028】
無触媒脱硝は、NH3によるNOxの気相直接熱還元反応を利用したものであるが、同時にNH3自体も熱分解してN2とH2Oになる。
【0029】
4NH3+6NO → 5N2 +6H2
4NH3+3O2 → 2N2 +6H2
従って、注入したNH3は一部がNOxの還元に寄与し、残りの一部は酸素によって分解されN2とH2Oとなり、残りの他の一部はリークアンモニアとなる。本発明者等の試験実績によれば、NH3/NOモル比で2〜3以上はNH3を過剰に投入してもNOxは殆ど平衡値に達し、投入NH3の脱硝としての有効利用率は低下する。
【0030】
図8は、加圧流動層ボイラ排ガスの無触媒脱硝におけるNH3/NOxモル比とNOx濃度、注入NH3の関係曲線図である。この図に示すように、出口NOx濃度に応じてNH3を注入する場合は、NH3/NOxモル比が過剰であっても一定割合以上はNH3の有効利用率が低く経済的でない。
【0031】
本発明においては、入口NOx濃度に応じて一定モル比のNH3を注入することでNH3を有効に利用出来る範囲までNOx濃度を低減するものである。加圧流動層ボイラにおいては最適モル比は約2〜3であり、この場合無触媒脱硝だけだと出口NOx濃度が規制値を守れない恐れがあるが、加圧流動層ボイラにおいてはガスタービン(GT)出口に有触媒脱硝装置があるので、規制値までの低減は有触媒脱硝で行なう。
【0032】
有触媒脱硝では、触媒脱硝装置入口のNOx濃度を触媒脱硝装置出口で規制値まで除去するのに必要なNH3を入口NOx濃度計測値から計算で予測する。但し、触媒脱硝装置入口の低減処理排ガス中に上流の無触媒脱硝での残留NH3が含まれるため、触媒脱硝装置入口で注入するNH3量は、計算予想値(必要値)から残留NH3分を除いた差分に相当するNH3を注入すれば良い。
【0033】
図9は、加圧流動層ボイラ排ガスの触媒脱硝における運転負荷とNOx濃度、残留NH3濃度、有触媒入口NH3濃度の関係曲線図である。加圧流動層ボイラにおいては、ボイラ出口〜GTまでのガス温度、ガス圧力が負荷によって変動するため上記の関係を横軸を運転負荷で整理すると、無触媒脱硝は熱還元反応のため注入NH3モル比が一定でも排ガス温度が低下する部分負荷時には脱硝効率が低下するため触媒脱硝装置入口でのNOx濃度は上昇傾向となる(図9の▲1▼)。
【0034】
一方、無触媒脱硝の余剰NH3の熱分解反応は部分負荷で温度が低下することと、排ガス圧力低下に伴うO2分圧低下に伴い分解が抑制される傾向であるため、残留NH3としての存在割合が上昇する(図9の▲2▼)。従って、有触媒入口においては、部分負荷でNOx濃度が上昇するため排ガス量に対して必要NH3割合も増加する(図9の▲3▼)が、無触媒脱硝での残留NH3濃度も増加するので、必要量から残留NH3量を引いた有触媒入口でのNH3注入量は著しく増加することはない(図9の▲4▼)。
【0035】
有触媒入口でのNOx濃度に対して一定割合のNH3を注入する場合は、既に排ガス中に存在する残留NH3量がNH3に加算されるので、必要以上に過剰なNH3がリークNH3として煙突へ排出されることになるので経済的ではない。尚、無触媒脱硝での残留NH3量は、上記のように加圧流動層特有の排ガス温度と排ガス圧力によって変動するので計算等で精度よく予想することは困難であり、実際の測定値を制御信号として使用することが応答性の面でも効果的である。以上より、煙突入口ダクトでのNOx及びリークアンモニアを最小レベルに抑えることが出来る。
【0036】
次に、燃料を燃焼させて発生した燃焼排ガスにアンモニアを注入して前記燃焼排ガス中の窒素酸化物を低減した低減処理排ガスとし、更に該低減処理排ガスにアンモニアを注入し触媒の存在の基に該低減処理排ガスの窒素酸化物を除去する排ガスの脱硝装置において、前記燃料を燃焼させる燃焼装置にかかる負荷の負荷信号に応じて前記燃焼排ガスに注入するアンモニア注入量を制御する第5のアンモニア注入制御手段を備え、先の第3のアンモニア注入制御手段又は第4のアンモニア注入制御手段を備えたことである。
【0037】
第5のアンモニア注入制御手段を備えた排ガスの脱硝装置は、先の第3のアンモニア注入制御手段又は第4のアンモニア注入制御手段を備えた排ガスの脱硝装置の作用に加え、例えば流動層ボイラの運転条件を負荷によって一定のパターンに固定して運転する場合は、NOx濃度を計測しなくても、注入するアンモニア量を負荷と相関させた制御関数として予め設定し、負荷信号により、気相還元脱硝部に注入するアンモニア量を制御することも可能である。
【0038】
本発明の排ガスの脱硝装置は、第1のアンモニア注入制御手段31又は第5のアンモニア注入制御手段35である無触媒脱硝装置により低減されたNOxは、触媒脱硝装置11で第2〜第4のアンモニア注入制御手段32、33、34により注入されたアンモニアによって更に除去され脱硝効率を触媒脱硝装置11のみによる場合の上限値以上に向上させることが可能となり、厳しい環境規制値に対応することが出来る。
【0039】
又、無触媒脱硝と有触媒脱硝で使用するアンモニア量を、煙突入口NOx濃度を規制値以下に維持しつつ、分解消失するアンモニア量と未反応で系外に排出されるアンモニア量を最小にするように制御する。
【0040】
【発明の実施の形態】
以下、本発明に係る排ガスの脱硝装置の実施の形態を図面に基づいて詳細に説明する。尚、図1〜7において、同一又は同等部分には同一符号を付けて示し、図2〜7における図1と同じ符号部分の説明は省略する。
【0041】
図1は、加圧流動層ボイラを利用した発電装置に使用された本発明に係る排ガスの脱硝装置の第1実施形態を示す系統図である。ガスタービン8によって駆動されるコンプレッサ6に導入された燃焼空気5は、火炉入口配管4を通って圧力容器3内の加圧流動層ボイラ1に導入される。流動層を形成する流動媒体(BM)2にCWP供給ノズル23によって供給された燃料としてのCWPは、燃焼することによって燃焼排ガスG1を発生する。加圧流動層ボイラ1で発生した燃焼排ガスG1は、火炉出口配管7内で気相還元反応による無触媒脱硝が行なわれる。窒素酸化物が低減された低減処理排ガスG2は、更に火炉出口配管7を通りガスタービン8に導入され発電を行なうと同時にコンプレッサ6を駆動する。ガスタービン8を出た低減処理排ガスG2は、ガスタービン出口ダクト9より上流側の節炭器10に導入されるが、排ガス温度が約400℃と高温であるため、上流側の節炭器10及び下流側の節炭器10を通って熱回収され煙突入口ダクト12を通過し煙突29より放出される。
【0042】
ここで、第1実施形態の排ガスの脱硝装置は、燃料としてCWPを燃焼させる加圧流動層ボイラ1で発生した燃焼排ガスG1にアンモニアを注入して燃焼排ガスG1中の窒素酸化物を低減して低減処理排ガスG2とし、更にこの低減処理排ガスG2にアンモニアを注入し脱硝触媒(触媒)を有する脱硝触媒装置11で低減処理排ガスG2の窒素酸化物を除去し、触媒通過排ガスG3として系外に排出するものである。そして、燃焼排ガスG1にアンモニアを注入する注入位置I1より上流側で燃焼排ガスG1の窒素酸化物濃度を計測する火炉出口NOx濃度計測装置21を有し、このNOx濃度計測装置21で計測した窒素酸化物濃度による制御信号c0に基づいて燃焼排ガスG1に注入するアンモニア注入量を制御する第1のアンモニア注入制御手段31を備えている。
【0043】
更に、低減処理排ガスG2にアンモニアを注入する注入位置I2より上流側に低減処理排ガスG2の窒素酸化物濃度を計測する有触媒入口NOx濃度計測装置22a及びアンモニア濃度を計測する有触媒入口NH3濃度計測装置22bが設置され、これらの計測装置で計測した窒素酸化物濃度及びアンモニア濃度の計測信号i2、i3から演算された制御信号c1に基づいて低減処理排ガスG2に注入するアンモニア注入量を制御する第2のアンモニア注入制御手段32を備えている。
【0044】
そして、第1実施形態の排ガスの脱硝装置において、第1のアンモニア注入制御手段31は、火炉出口NOx濃度計測装置21によって火炉出口NOx濃度を計測し、この計測信号によってアンモニア必要量が計算された後、制御信号c0を無触媒アンモニア流量調整弁20に送って制御する。制御信号c0を受けた無触媒アンモニア流量調整弁20は、触媒脱硝と共用されるアンモニア気化器15から必要量のアンモニアを火炉出口配管7内の圧力以上に昇圧する無触媒アンモニア昇圧ファン(コンプレッサ)16に送る。無触媒アンモニア昇圧ファン16から送られたアンモニアは、混合器30においてアンモニア希釈空気17を混合され無触媒アンモニアノズル18より火炉出口配管7内に注入される。
【0045】
注入されたアンモニアは、火炉出口配管7内の排ガス中に拡散し気相還元反応によりNOxを低減すると同時に熱分解を起こしながらガスタービン8を経て触媒脱硝装置11入口まで到達する。このときのNOx濃度及びアンモニア濃度をNOx濃度計測装置22a及びNH3濃度計測装置22bにて計測し、その計測信号i2、i3を触媒層入口NH3注入量演算装置25に取り込み、触媒脱硝で必要とする注入アンモニア量を演算し、演算された制御信号c1を有触媒アンモニア流量調整弁19に送って制御し、この有触媒アンモニア流量調整弁19から送られたアンモニアをアンモニア希釈空気14で希釈し、有触媒アンモニア注入ノズル13より注入する。
【0046】
触媒脱硝装置11入口でのNOxは、触媒により更に除去され、無触媒脱硝の第1のアンモニア注入手段31と組み合わせることで脱硝触媒のみで行なう脱硝効率の限界値を結果的にさらに向上させることになる。又、無触媒脱硝でのリークアンモニアを有触媒脱硝で有効利用することから煙突から排出されるアンモニア濃度も最小とすることが出来る。消費するアンモニアは常に注入位置の上流側のNOx濃度に必要な最小限に過剰な量とすることが出来るので、アンモニア消費量を最小とすることが出来る。
【0047】
図2は、第2実施形態を示す系統図である。第2実施形態の排ガスの脱硝装置は、上記第2のアンモニア注入制御手段32に、触媒脱硝装置11を通過した触媒通過排ガスG3の窒素酸化物濃度を計測する有触媒出口NOx濃度計測装置24aを有し、この有触媒出口NOx濃度計測装置24aで計測した窒素酸化物濃度の計測信号i4で、先に計測した低減処理排ガスG2の窒素酸化物濃度及びアンモニア濃度の計測信号i2、i3から演算された制御信号c1を触媒層入口NH3注入量補正演算装置26で補正して制御信号c2を有触媒アンモニア流量調整弁19に送って制御し、有触媒アンモニア注入ノズル13よりアンモニアを低減処理排ガスG2に注入、制御する。出口NOx濃度が設定又は規制NOx濃度値より小さくなるように補正する。
【0048】
図3は、第3実施形態を示す系統図である。第3実施形態の排ガスの脱硝装置は、上記第2のアンモニア注入制御手段32に、触媒脱硝装置11を通過した触媒通過排ガスG3のアンモニア濃度を計測する有触媒出口NH3濃度計測装置24bを有し、この有触媒出口NOx濃度計測装置24bで計測したNH3濃度の計測信号i5で、先に計測した低減処理排ガスG2の窒素酸化物濃度及びアンモニア濃度の計測信号i2、i3から演算された制御信号c1を触媒層入口NH3注入量補正演算装置26で補正して制御信号c3とし、制御信号c3を有触媒アンモニア流量調整弁19に送って制御し、低減処理排ガスG2に注入するアンモニア注入量を制御する。出口NH3濃度が設定濃度値より小さくなるように補正を加え有触媒アンモニア流量調整弁19を制御し有触媒アンモニア注入ノズル13よりアンモニアを注入する。
【0049】
図4は、第4実施形態を示す系統図である。第4実施形態の排ガスの脱硝装置は、触媒通過排ガスG3の窒素酸化物濃度が予め設定された濃度範囲に収まるように制御する第3のアンモニア注入制御手段33を備えている。第3のアンモニア注入制御手段33は、触媒脱硝装置11を通過した触媒通過排ガスG3の窒素酸化物濃度を計測する有触媒出口NOx濃度計測装置24aを有し、この有触媒出口NOx濃度計測装置24aで計測した窒素酸化物濃度の計測信号i4を触媒層入口NH3注入演算装置27に入力し、この触媒層入口NH3注入演算装置27から演算された制御信号c4に基づいて、有触媒アンモニア流量調整弁19を制御して低減処理排ガスG2にアンモニアを注入する。
【0050】
更に、第4実施形態の排ガスの脱硝装置において、火炉出口配管7の気相還元脱硝部に注入するアンモニアは、第1のアンモニア注入手段31で注入する。一方、触媒脱硝装置11入口部に注入するアンモニアは、触媒脱硝装置11出口NOx濃度を計測して、その値が設定した濃度範囲以内になるように第3のアンモニア注入制御手段33で注入する。触媒脱硝装置11出口NOx濃度が設定値以下になるということは、アンモニアが過剰の状態であることを示し、アンモニアが流出している可能性があることを示す。逆に、触媒脱硝装置11出口NOx濃度が設定値以上になるということは、アンモニアは反応に使用され流出の心配がなくなるが、NOxは系外に流出することになる。従って、有触媒出口NOx濃度計測装置24aにより計測したNOx濃度が、設定上限及び下限の範囲内の値になるように有触媒アンモニア注入ノズル13からのアンモニア注入量を制御することにより、NOx及びNH3の排出を低減させることが出来る。この場合、有触媒出口NOx濃度計測装置24aだけで、上記の効果を発揮させ得るので、NOx計測装置及びNH3計測装置を多くいらない。
【0051】
図5は、第5実施形態を示す系統図である。第5実施形態の排ガスの脱硝装置は、触媒通過排ガスG3のアンモニア濃度が予め設定された濃度範囲に収まるように制御する第4のアンモニア注入制御手段34を備えている。第4のアンモニア注入制御手段34は、触媒脱硝装置11を通過した触媒通過排ガスG3のアンモニア濃度を計測する有触媒出口NH3濃度計測装置24bを有し、この有触媒出口NH3濃度計測装置24bで計測したアンモニア濃度の計測信号i5を触媒層入口NH3注入演算装置27に入力し、この触媒層入口NH3注入演算装置27から演算された制御信号c5に基づいて、有触媒アンモニア流量調整弁19を制御して低減処理排ガスG2にアンモニアを注入する。
【0052】
更に、第5実施形態の排ガスの脱硝装置において、火炉出口配管7の気相還元脱硝部に注入するアンモニアは、第1のアンモニア注入手段31で注入する。一方、触媒脱硝装置11入口部に注入するアンモニアは、触媒脱硝装置11出口NH3濃度を計測して、その値が設定した濃度範囲以内になるように第4のアンモニア注入制御手段34で注入する。触媒脱硝装置11出口NH3濃度が設定値以下になるということは、NOxが過剰の状態であることを示し、NOxが流出している可能性があることを示す。逆に、触媒脱硝装置11出口NH3濃度が設定値以上になるということは、NOxは反応に使用され流出の心配が無くなるが、NH3は系外に流出することになる。従って、有触媒出口NH3濃度計測装置24bにより計測したNH3濃度が、設定上限及び下限の範囲内の値になるように有触媒アンモニア注入ノズル13からのアンモニア注入量を制御することにより、NOx及びNH3の流出を低減させることが出来る。この場合、有触媒出口NH3濃度計測装置24bだけで、上記効果を発揮させ得るので、NOx計測装置及びNH3計測装置を多くいらない。
【0053】
図6は、第6実施形態を示す系統図である。第6実施形態の排ガスの脱硝装置は、CWPの燃料を燃焼させる加圧流動層ボイラ1にかかる負荷の負荷信号fに応じて燃焼排ガスG1に注入するアンモニア注入量を制御する第5のアンモニア注入制御手段35を備えている。更に、触媒脱硝装置11の出口のNOx濃度を計測し、触媒脱硝装置11の入口のアンモニア注入位置I2でのアンモニア注入量を制御する第3のアンモニア注入制御手段33を備えている。
【0054】
第1〜5実施形態の排ガスの脱硝装置は、火炉出口に注入するアンモニア量を加圧流動層ボイラ火炉出口配管7のアンモニア注入位置より上流側に火炉出口NOx濃度計測装置を設置して、このNOx計測装置の計測信号c0に応じて加圧流動層ボイラ出口煙道へのアンモニア注入量を制御するが、第6実施形態の排ガスの脱硝装置は、加圧流動層ボイラの運転条件を負荷によって一定のパターンに固定して運転する場合は、NOx濃度を計測しなくても、注入するアンモニア量を負荷と相関させた制御関数として予め設定し、負荷信号fにより、気相還元脱硝部に注入するアンモニア量を制御する。
【0055】
図7は、第7実施形態を示す系統図である。第7実施形態の排ガスの脱硝装置は、第6実施形態の排ガスの脱硝装置と同様にCWPの燃料を燃焼させる加圧流動層ボイラ1にかかる負荷の負荷信号fに応じて燃焼排ガスG1に注入するアンモニア注入量を制御する第5のアンモニア注入制御手段35を備えているが、第6実施形態の排ガスの脱硝装置における触媒脱硝装置11の出口のNOx濃度を計測する有触媒出口NOx計測装置24aの代わりに有触媒出口NH3計測装置24bを有する第4のアンモニア注入制御手段34を備えている。
【0056】
第6実施形態の排ガスの脱硝装置と同様に、第7実施形態の排ガスの脱硝装置は、加圧流動層ボイラの運転条件を負荷によって一定のパターンに固定して運転する場合は、NOx濃度を計測しなくても、注入するアンモニア量を負荷と相関させた制御関数として予め設定し、負荷信号fにより、気相還元脱硝部に注入するアンモニア量を制御する。
【0057】
【発明の効果】
本発明の排ガスの脱硝装置によれば、外部に排出される窒素酸化物濃度を環境規制値以下に維持すると共に、排ガスの脱硝に使用するアンモニア量と外部に排出される漏洩アンモニア量を最小にする。
【図面の簡単な説明】
【図1】加圧流動層ボイラを利用した発電装置に使用された本発明に係る排ガスの脱硝装置の第1実施形態を示す系統図である。
【図2】第2実施形態を示す系統図である。
【図3】第3実施形態を示す系統図である。
【図4】第4実施形態を示す系統図である。
【図5】第5実施形態を示す系統図である。
【図6】第6実施形態を示す系統図である。
【図7】第7実施形態を示す系統図である。
【図8】加圧流動層ボイラ排ガスの無触媒脱硝におけるNH3/NOxモル比とNOx濃度、注入NH3の関係曲線図である。
【図9】加圧流動層ボイラ排ガスの触媒脱硝における運転負荷とNOx濃度、残留NH3濃度、有触媒入口NH3濃度の関係曲線図である。
【図10】加圧流動層ボイラを利用した発電装置に使用された従来の排ガスの脱硝装置の一例を示す系統図である。
【図11】ボイラ燃焼装置に使用された従来の別の排ガスの脱硝装置の例を示す系統図である。
【図12】加圧流動層ボイラを利用した発電装置に使用された従来の更に別の排ガスの脱硝装置の例を示す系統図である。
【符号の説明】
31 第1のアンモニア注入手段
32 第2のアンモニア注入手段
33 第3のアンモニア注入手段
34 第4のアンモニア注入手段
35 第5のアンモニア注入手段
1、I2 注入位置
2〜i5 計測信号
0〜c5 制御信号
f 負荷信号
1 燃焼排ガス
2 低減処理排ガス
3 触媒通過排ガス
[0001]
BACKGROUND OF THE INVENTION
In the present invention, ammonia (hereinafter referred to as “NH”) is added to exhaust gas generated by burning fuel. Three In addition, the present invention relates to an exhaust gas denitration device that removes nitrogen oxides (hereinafter also referred to as “NOx”), and particularly removes nitrogen oxides in exhaust gas generated from a pressurized fluidized bed boiler (PFBC boiler). The present invention relates to an exhaust gas denitration apparatus.
[0002]
[Prior art]
In recent years, as a global environmental problem, emission control of environmental pollutants has become stricter. Thermal power generation, which generates electricity by burning fossil fuels, has been researched and developed to improve environmental performance and power generation efficiency. Among these, a power generation apparatus using a pressurized fluidized bed boiler that generates power by placing a boiler in a pressure vessel and burning coal by pressurization is the focus of attention.
[0003]
The power generation device using a pressurized fluidized bed boiler improves power generation efficiency by combined power generation that combines a gas turbine (hereinafter referred to as “GT”) and a steam turbine, and performs desulfurization in the furnace by limestone that forms a fluidized bed. By doing so, there are advantages such as omitting the desulfurization apparatus, burning at a relatively low temperature, and reducing the NOx concentration at the outlet of the fluidized bed by a reduction reaction with a reducing substance such as carbon in the fluidized bed.
[0004]
However, conventional NOx denitration technology reduces NOx concentration in the gas turbine exhaust gas by denitration using only the catalyst, and there is an upper limit to the denitration efficiency in terms of denitration equipment performance. I could not do it.
[0005]
FIG. 10 is a system diagram showing an example of a conventional exhaust gas denitration apparatus used in a power generation apparatus using a pressurized fluidized bed boiler. The combustion air 5 introduced into the compressor 6 is introduced into the pressurized fluidized bed boiler 1 in the pressure vessel 3 through the furnace inlet pipe 4. Exhaust gas generated by the combustion of fuel supplied to a fluidized medium (BM) 2 that forms a fluidized bed through a fuel (referred to as CWP (Coal Water Paste)) supply nozzle 23 passes through a furnace outlet pipe 7. The compressor 6 is driven at the same time as it is introduced into the turbine 8 to generate electric power. The exhaust gas exiting the gas turbine 8 is introduced into the economizer 10 through the gas turbine outlet duct 9, but the exhaust gas temperature is as high as about 400 ° C., so that the heat is recovered by the economizer 10 and the smoke outlet It is discharged from the chimney 29 through the duct 12.
[0006]
Of the power generation apparatus using the pressurized fluidized bed boiler, the apparatus for reducing and removing NOx is only the catalyst denitration apparatus 11 having the denitration catalyst provided in the economizer 10. The required ammonia amount of the catalyst is calculated by the catalyst inlet NOx concentration measuring device 22a provided at the inlet of the catalyst denitration device 11, and the amount of ammonia sent from the ammonia vaporizer 15 is adjusted by the catalyst ammonia flow rate adjusting valve 19, Ammonia-diluted air 14 is added and injected from the catalyst-ammonia injection nozzle 13. When the NOx concentration at the inlet of the catalytic denitration device 11 is higher than the planned value, it is necessary to inject excessive ammonia, and the amount of leaked ammonia at the outlet of the catalytic denitration device 11 (hereinafter also referred to as “leaked ammonia”) increases and is discharged from the chimney 29. However, on the other hand, the NOx concentration discharged from the chimney 29 is thereby reduced.
[0007]
FIG. 11 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a boiler combustion apparatus. The boiler combustion apparatus includes a non-catalytic denitration means 41 provided on the outlet side of the combustion chamber 40 and a catalytic denitration means 43 provided in the flue 42 at a downstream portion of the non-catalytic denitration means 41 and a heat Heat is exchanged between exhaust gas and air in the exchanger 44 (Japanese Utility Model Publication No. 53-163347).
[0008]
FIG. 12 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a power generation apparatus using a pressurized fluidized bed boiler. This exhaust gas denitration apparatus is adapted to ammonia injection 57 at the catalyst denitration apparatus 58 inlet and exhaust gas generated in the furnace 51 in the pressurized vessel 50 in accordance with the NOx concentration 56 at the catalyst denitration apparatus 58 downstream of the GT 55. This is performed by adjusting ammonia injections 52 and 54 for non-catalytic denitration. Reference numeral 53 denotes a dust removing device, reference numeral 59 denotes a low-pressure water heater, reference numeral 60 denotes a high-pressure water heater, and reference numeral 61 denotes a chimney. (Special Table No. 5-504290)
[0009]
[Problems to be solved by the invention]
The exhaust gas denitration apparatus shown in FIG. 10 reduces the NOx concentration in the exhaust gas by the catalyst denitration apparatus 11 and discharges it from the chimney below the environmental regulation value, but it can exceed the upper limit value of the denitration efficiency. In addition, the amount of leaked ammonia was excessive, and it was difficult to further improve the denitration efficiency.
[0010]
The exhaust gas denitration apparatus shown in FIG. 11 performs non-catalytic denitration by thermal reduction in a high-temperature thermal reduction atmosphere and performs catalytic denitration in a low temperature range, but for the purpose of minimizing the amount of ammonia consumed. There is no means to optimally control the amount of ammonia injected into each location. When this prior art is applied to a pressurized fluidized bed boiler, the high temperature thermal reduction atmosphere region corresponds to the upstream side of the gas turbine 8 shown in FIG. Since it is a high pressure condition in addition to a high temperature condition, the oxygen partial pressure in the exhaust gas is about 10 times that of the boiler combustion apparatus shown in FIG. 11, and as a result, the ammonia injected into this region is decomposed into nitrogen and water vapor by oxygen. As a result, the injected ammonia is not effectively used for the denitration reaction. Further, in the pressurized fluidized bed boiler, the exhaust gas pressure decreases from about 10 atm to about 5 atm at a partial load, so that the decomposition reaction of the injected ammonia is greatly affected by the operating pressure.
[0011]
Furthermore, the exhaust gas denitration device used in this boiler combustion device is an economical control that minimizes the amount of ammonia to be injected in a pressurized fluidized bed boiler in which the effective utilization efficiency of the ammonia to be injected is greatly influenced by the operating load. Cannot be implemented.
[0012]
The exhaust gas denitration apparatus shown in FIG. 12 can improve the denitration efficiency up to the chimney entrance by a combination of noncatalytic denitration and catalytic denitration, but the ammonia injection amount in the noncatalytic denitration upstream of the gas turbine 55 is the catalyst denitration amount. Since the NOx concentration 56 at the inlet of the apparatus 58 is determined to be a set value, and the ammonia injection amount at the inlet of the catalyst denitration apparatus 58 is determined according to the NOx concentration 56 at the inlet of the catalyst denitration apparatus, the residual ammonia concentration in the exhaust gas, that is, No particular consideration was given to the distribution of ammonia injection to minimize leaked ammonia.
[0013]
The object of the present invention is to solve the above-mentioned problems, maintain the nitrogen oxide concentration discharged to the outside below the environmental regulation value, and reduce the amount of ammonia used for denitration of exhaust gas and the amount of leaked ammonia discharged to the outside. To minimize.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a reduced processing exhaust gas in which ammonia is injected into combustion exhaust gas generated by burning fuel to reduce nitrogen oxides in the combustion exhaust gas, and further ammonia is injected into the reduced exhaust gas. In the exhaust gas denitration device that removes nitrogen oxides of the reduced exhaust gas based on the presence of the catalyst, the nitrogen oxide concentration of the combustion exhaust gas is measured upstream from the injection position for injecting ammonia into the combustion exhaust gas, A first ammonia injection control means for controlling the amount of ammonia injected into the combustion exhaust gas based on the control signal based on the measured nitrogen oxide concentration is provided.
[0015]
By providing the first ammonia injection control means, NOx in the combustion exhaust gas generated in the pressurized fluidized bed boiler that combusts fuel, for example, CWP, is a gas phase with ammonia injected by the first ammonia injection control means. It is reduced to nitrogen and water by causing a reduction reaction. At this time, the concentration of nitrogen oxides in the combustion exhaust gas to be reduced is measured, and the ammonia injection amount is determined based on the control signal calculated from this measurement signal, so excessive ammonia more than necessary may be injected. Absent.
[0016]
Further, in the exhaust gas denitration apparatus, the nitrogen oxide concentration and ammonia concentration of the reduced treatment exhaust gas are measured upstream from the injection position for injecting ammonia into the reduced treatment exhaust gas, and the measured nitrogen oxide concentration and ammonia concentration are measured. The second ammonia injection control means for controlling the ammonia injection amount injected into the reduced processing exhaust gas based on the control signal calculated from the measurement signal is provided.
[0017]
In the exhaust gas denitration apparatus provided with the second ammonia injection control means, in addition to the action of the exhaust gas denitration apparatus, NOx reduced by the first ammonia injection control means is further removed by the second ammonia injection control means. The denitration performance of the fluidized bed boiler as a whole is improved. Here, the first ammonia injection control means is used in a non-catalytic denitration reaction or a gas phase reduction reaction, and the second ammonia injection control means is used in a catalytic denitration reaction.
[0018]
Further, in the exhaust gas denitration apparatus provided with the second ammonia injection control means, the second ammonia injection control means measures the nitrogen oxide concentration of the catalyst passing exhaust gas that has passed through the catalyst, and the measured nitrogen By controlling the ammonia injection amount injected into the reduced processing exhaust gas by correcting the control signal calculated from the measured nitrogen oxide concentration and ammonia concentration measurement signals of the measured reduced processing exhaust gas with the oxide concentration measurement signal. is there.
[0019]
The exhaust gas denitration device in which the second ammonia injection control means corrects the control signal calculated from the measurement signals of the nitrogen oxide concentration and the ammonia concentration and controls the ammonia injection amount to be injected into the reduced processing exhaust gas. In addition to the action of the exhaust gas denitration device equipped with ammonia injection control means, a NOx concentration measurement device is installed at the exhaust flue or chimney inlet of the catalyst denitration device, and the NOx concentration value at the catalyst denitration device outlet is a constant deviation from the regulation value When the above difference occurs, the responsiveness can be improved by auxiliary control of the ammonia injection amount at the inlet of the catalytic denitration device or the outlet of the fluidized bed boiler according to the deviation width. .
[0020]
Furthermore, in any exhaust gas denitration apparatus provided with the second ammonia injection control means, the second ammonia injection control means measures and measures the ammonia concentration of the catalyst passing exhaust gas that has passed through the catalyst. The ammonia concentration measurement signal is used to control the ammonia injection amount to be injected into the reduced treatment exhaust gas by correcting the control signal calculated from the measured nitrogen oxide concentration and ammonia concentration measurement signal of the reduced treatment exhaust gas. .
[0021]
The second ammonia injection control means corrects the control signal calculated from the measurement signals of the nitrogen oxide concentration and the ammonia concentration and controls the ammonia injection amount injected into the reduced exhaust gas. In addition to the action of any exhaust gas denitration device equipped with ammonia injection control means, an ammonia concentration measuring device is installed in the catalyst denitration device outlet flue or chimney inlet, and the catalyst denitration device outlet residual ammonia concentration is below a certain value Thus, the amount of leaked ammonia can be controlled in an auxiliary manner by controlling the amount of ammonia injected at the inlet of the catalyst denitration device or the fluidized bed boiler according to the deviation from the measured value.
[0022]
Further, in the exhaust gas denitration apparatus provided with the first ammonia injection control means, the nitrogen oxide concentration of the exhaust gas passing through the catalyst that has passed through the catalyst is measured, and is calculated from the measurement signal of the measured nitrogen oxide concentration. And a third ammonia injection control means for controlling the nitrogen oxide concentration of the exhaust gas passing through the catalyst to fall within a preset concentration range based on the control signal. It is.
[0023]
The exhaust gas denitration apparatus equipped with the third ammonia injection control means is said to have the NOx concentration of the catalyst denitration apparatus outlet NOx lower than the regulation value in addition to the action of the exhaust gas denitration apparatus provided with the first ammonia injection control means. This indicates that ammonia is in an excessive state, and the ammonia outflow amount may be increased. Conversely, the NOx concentration at the outlet of the catalyst denitration apparatus exceeding the regulation value indicates that ammonia is consumed in the denitration reaction and the discharge amount is decreasing, while the outflow NOx to the outside of the system is increasing. Therefore, by controlling the amount of ammonia injected into the catalyst denitration device inlet or upstream duct so that the NOx concentration measured at the catalyst denitration device outlet or downstream duct can be maintained within the upper and lower limits of the regulation value, the NOx at the catalyst denitration device outlet is controlled. Emissions and ammonia emissions can be reduced.
[0024]
Then, in the exhaust gas denitration apparatus provided with the first ammonia injection control means, the ammonia concentration of the exhaust gas passing through the catalyst that has passed through the catalyst is measured, and a control signal calculated from the measured signal of the ammonia concentration is obtained. On the basis of this, there is provided fourth ammonia injection control means for injecting ammonia into the reduced treatment exhaust gas and controlling the ammonia concentration of the catalyst passing exhaust gas to fall within a preset concentration range.
[0025]
The exhaust gas denitration apparatus equipped with the fourth ammonia injection control means is said to have the NOx concentration at the catalyst denitration apparatus outlet NOx lower than the regulation value in addition to the action of the exhaust gas denitration apparatus provided with the first ammonia injection control means. This indicates that ammonia is in a deficient state, and the NOx outflow amount may increase. Conversely, NH at the catalyst denitration equipment outlet Three The fact that the concentration is equal to or higher than the regulation value indicates that NOx emission is suppressed in a state where ammonia is excessively present, but the outflow ammonia to the outside of the system is increasing. Therefore, NH measured at the catalyst denitration equipment outlet or downstream duct Three By controlling the amount of ammonia injected into the catalyst denitration device inlet or upstream duct so that the concentration can be maintained within the upper and lower limits of the regulation value, the NOx emission amount and ammonia emission amount at the catalyst denitration device outlet can be reduced.
[0026]
By the way, since ammonia has the property of easily causing thermal decomposition due to its physical properties, there is an upper limit on the ability of the injected ammonia to reduce NOx before thermal decomposition occurs. That is, even if an excess of a certain amount or more of ammonia is injected in the first ammonia injection means, the NOx concentration tends to be balanced from a certain ratio. Therefore, the NOx concentration is measured on the upstream side of the ammonia injection position, and the required NOx / NH calculated from this measurement signal Three By injecting the appropriate ammonia corresponding to the molar ratio (the minimum necessary excess ammonia that contributes to NOx reduction), it is possible to avoid unnecessary ammonia injection.
[0027]
Ammonia remaining without causing thermal decomposition or gas phase reduction reaction with NOx is reused together with ammonia injected by the second ammonia injection means. The amount of ammonia required to maintain the NOx concentration at the catalyst denitration device outlet at the regulated value can be calculated from the NOx concentration measurement device installed upstream of the ammonia injection position at the catalyst denitration device inlet with the denitration catalyst, and the ammonia concentration measurement Since the amount of ammonia remaining in the reduced treatment exhaust gas can be calculated from the equipment, if the amount of ammonia obtained by subtracting the amount of residual ammonia from the required amount of ammonia is injected into the inlet of the catalyst denitration device, the amount of ammonia exceeding the minimum required amount will be injected. As a result, the amount of leaked ammonia can be minimized.
[0028]
Non-catalytic denitration is NH Three NOx by vapor phase direct thermal reduction reaction, but at the same time NH Three N itself is also pyrolyzed 2 And H 2 Become O.
[0029]
4NH Three + 6NO → 5N 2 + 6H 2 O
4NH Three + 3O 2 → 2N 2 + 6H 2 O
Therefore, the injected NH Three Partly contributes to the reduction of NOx and the other part is decomposed by oxygen and N 2 And H 2 O, and the remaining other part becomes leaked ammonia. According to the test results of the inventors, NH Three 2 to 3 or more by NH / NO molar ratio is NH Three NOx almost reaches the equilibrium value even if excessively charged, and the charged NH Three The effective utilization rate of denitration decreases.
[0030]
FIG. 8 shows NH in non-catalytic denitration of pressurized fluidized bed boiler exhaust gas. Three / NOx molar ratio and NOx concentration, injected NH Three FIG. As shown in this figure, NH depends on the outlet NOx concentration. Three When injecting NH Three Even if the / NOx molar ratio is excessive, a certain proportion or more is NH Three The effective utilization rate is low and not economical.
[0031]
In the present invention, a fixed molar ratio of NH according to the inlet NOx concentration. Three By injecting NH Three The NOx concentration is reduced to a range where it can be effectively used. In a pressurized fluidized bed boiler, the optimum molar ratio is about 2 to 3. In this case, there is a possibility that the NOx concentration at the outlet may not meet the regulation value only with non-catalytic denitration, but in a pressurized fluidized bed boiler, a gas turbine ( GT) Since there is a catalyst denitration device at the outlet, reduction to the regulation value is performed by catalyst denitration.
[0032]
In catalytic denitration, the NH required to remove the NOx concentration at the catalyst denitration device inlet to the regulated value at the catalyst denitration device outlet Three Is predicted by calculation from the measured inlet NOx concentration. However, the residual NH in the upstream non-catalytic denitration in the reduced treatment exhaust gas at the catalyst denitration equipment inlet Three NH that is injected at the inlet of the catalyst denitration equipment Three The amount of residual NH from the calculated expected value (necessary value) Three NH corresponding to the difference excluding minutes Three Can be injected.
[0033]
FIG. 9 shows operating load, NOx concentration and residual NH in catalytic denitration of pressurized fluidized bed boiler exhaust gas. Three Concentration, catalyst inlet NH Three It is a relationship curve figure of density | concentration. In a pressurized fluidized bed boiler, the gas temperature and gas pressure from the boiler outlet to GT fluctuate depending on the load. Three Even when the molar ratio is constant, the NOx removal efficiency decreases at the partial load when the exhaust gas temperature decreases, so the NOx concentration at the catalyst denitration apparatus inlet tends to increase ((1) in FIG. 9).
[0034]
On the other hand, excess NH for non-catalytic denitration Three The thermal decomposition reaction of O2 occurs when the temperature decreases at partial load and O 2 Since decomposition tends to be suppressed as the partial pressure decreases, residual NH Three As a result, the existence ratio increases as (2) in FIG. Therefore, at the inlet with catalyst, the NOx concentration rises at a partial load, so the NH required for the amount of exhaust gas is required. Three The ratio also increases ((3) in FIG. 9), but residual NH by non-catalytic denitration Three Since the concentration also increases, the residual NH Three NH at the inlet of the catalyst with the amount subtracted Three The injection amount does not increase significantly ((4) in FIG. 9).
[0035]
A certain percentage of the NHx concentration at the catalyst inlet Three Injecting residual NH that already exists in the exhaust gas. Three Amount is NH Three Excessively more than necessary. Three Leaked NH Three It is not economical because it will be discharged to the chimney. Residual NH by non-catalytic denitration Three The amount varies depending on the exhaust gas temperature and exhaust gas pressure peculiar to the pressurized fluidized bed as described above, so it is difficult to predict accurately by calculation, etc.It is responsive to use actual measured values as control signals. It is also effective in terms. As described above, NOx and leaked ammonia in the chimney inlet duct can be suppressed to the minimum level.
[0036]
Next, ammonia is injected into the combustion exhaust gas generated by burning the fuel to obtain a reduced treatment exhaust gas in which nitrogen oxides in the combustion exhaust gas are reduced. Further, ammonia is injected into the reduction treatment exhaust gas to determine the presence of the catalyst. In the exhaust gas denitration device that removes nitrogen oxides from the reduced exhaust gas, a fifth ammonia injection that controls the amount of ammonia injected into the combustion exhaust gas in accordance with a load signal of a load applied to the combustion device that combusts the fuel A control means, and the third ammonia injection control means or the fourth ammonia injection control means.
[0037]
The exhaust gas denitration apparatus provided with the fifth ammonia injection control means includes, for example, a fluidized bed boiler in addition to the action of the exhaust gas denitration apparatus provided with the third ammonia injection control means or the fourth ammonia injection control means. When operating with the operating conditions fixed to a certain pattern depending on the load, even if NOx concentration is not measured, the ammonia amount to be injected is set in advance as a control function correlated with the load, and the gas phase reduction is performed according to the load signal. It is also possible to control the amount of ammonia injected into the denitration unit.
[0038]
In the exhaust gas denitration device of the present invention, NOx reduced by the non-catalytic denitration device which is the first ammonia injection control means 31 or the fifth ammonia injection control means 35 is converted into the second to fourth by the catalyst denitration device 11. It is further removed by the ammonia injected by the ammonia injection control means 32, 33, 34, and the denitration efficiency can be improved to the upper limit value or more when only the catalyst denitration device 11 is used, and it is possible to cope with strict environmental regulation values. .
[0039]
In addition, the amount of ammonia used for non-catalytic denitration and catalytic denitration is kept at the chimney inlet NOx concentration below the regulation value, while the amount of ammonia that decomposes and disappears and the amount of ammonia that is unreacted and discharged outside the system is minimized. To control.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an exhaust gas denitration apparatus according to the present invention will be described below in detail with reference to the drawings. 1 to 7, the same or equivalent parts are denoted by the same reference numerals, and description of the same reference numerals as in FIG. 1 in FIGS.
[0041]
FIG. 1 is a system diagram showing a first embodiment of an exhaust gas denitration apparatus according to the present invention used in a power generation apparatus using a pressurized fluidized bed boiler. The combustion air 5 introduced into the compressor 6 driven by the gas turbine 8 is introduced into the pressurized fluidized bed boiler 1 in the pressure vessel 3 through the furnace inlet pipe 4. CWP as fuel supplied to the fluidized medium (BM) 2 forming the fluidized bed by the CWP supply nozzle 23 is combusted to produce combustion exhaust gas G. 1 Is generated. Combustion exhaust gas G generated in the pressurized fluidized bed boiler 1 1 In the furnace outlet pipe 7, non-catalytic denitration is performed by a gas phase reduction reaction. Reduced exhaust gas G with reduced nitrogen oxides 2 Further passes through the furnace outlet pipe 7 and is introduced into the gas turbine 8 to generate power and simultaneously drive the compressor 6. Reduced exhaust gas G from the gas turbine 8 2 Is introduced into the economizer 10 upstream of the gas turbine outlet duct 9, but the exhaust gas temperature is as high as about 400 ° C., so that it passes through the upstream economizer 10 and the downstream economizer 10. Then, the heat is recovered, passes through the chimney inlet duct 12, and is discharged from the chimney 29.
[0042]
Here, the exhaust gas denitration apparatus of the first embodiment is a combustion exhaust gas G generated in a pressurized fluidized bed boiler 1 that combusts CWP as fuel. 1 Ammonia is injected into the combustion exhaust gas G 1 Reduced nitrogen oxides to reduce exhaust gas G 2 Furthermore, this reduced exhaust gas G 2 Ammonia is injected into the denitration catalyst device 11 having a denitration catalyst (catalyst) and reduced exhaust gas G 2 Remove the nitrogen oxides from the catalyst and exhaust the exhaust gas G through the catalyst. Three Are discharged outside the system. And combustion exhaust gas G 1 Injection position I for injecting ammonia into 1 Combustion exhaust gas G on the upstream side 1 The NOx concentration measuring device 21 at the furnace outlet for measuring the nitrogen oxide concentration of the furnace, and a control signal c based on the nitrogen oxide concentration measured by the NOx concentration measuring device 21 0 Combustion exhaust gas G based on 1 The first ammonia injection control means 31 is provided for controlling the amount of ammonia injected into the gas tank.
[0043]
Furthermore, reduced exhaust gas G 2 Injection position I for injecting ammonia into 2 Reduced exhaust gas G further upstream 2 Catalyst inlet NOx concentration measuring device 22a for measuring the nitrogen oxide concentration of the catalyst and catalyst inlet NH for measuring the ammonia concentration Three A concentration measuring device 22b is installed, and a measurement signal i of nitrogen oxide concentration and ammonia concentration measured by these measuring devices. 2 , I Three Control signal c calculated from 1 Reduced exhaust gas G based on 2 The second ammonia injection control means 32 is provided for controlling the ammonia injection amount to be injected into the tank.
[0044]
In the exhaust gas denitration apparatus of the first embodiment, the first ammonia injection control means 31 measures the furnace outlet NOx concentration by the furnace outlet NOx concentration measuring device 21, and the ammonia required amount is calculated from this measurement signal. After that, the control signal c 0 Is sent to the non-catalyst ammonia flow control valve 20 for control. Control signal c 0 The non-catalyst ammonia flow rate adjusting valve 20 that has received the pressure sends the necessary amount of ammonia from the ammonia vaporizer 15 shared with the catalyst denitration to a non-catalyst ammonia booster fan (compressor) 16 that boosts the pressure above the pressure in the furnace outlet pipe 7. . Ammonia sent from the non-catalytic ammonia booster fan 16 is mixed with ammonia diluted air 17 in the mixer 30 and injected into the furnace outlet pipe 7 from the non-catalytic ammonia nozzle 18.
[0045]
The injected ammonia diffuses into the exhaust gas in the furnace outlet pipe 7 and reduces NOx by a gas phase reduction reaction, and at the same time reaches the inlet of the catalyst denitration device 11 via the gas turbine 8 while causing thermal decomposition. At this time, the NOx concentration and ammonia concentration are measured by the NOx concentration measuring device 22a and NH. Three The measurement signal i is measured by the concentration measuring device 22b. 2 , I Three The catalyst layer inlet NH Three The control signal c calculated by taking in the injection amount calculation device 25 and calculating the injection ammonia amount required for catalyst denitration. 1 Is sent to the catalytic ammonia flow rate adjusting valve 19, and the ammonia sent from the catalytic ammonia flow rate adjusting valve 19 is diluted with ammonia diluted air 14 and injected from the catalytic ammonia injection nozzle 13.
[0046]
NOx at the inlet of the catalyst denitration device 11 is further removed by the catalyst, and in combination with the first ammonia injection means 31 for non-catalytic denitration, the limit value of the denitration efficiency performed only with the denitration catalyst is further improved. Become. Further, since ammonia leaked by non-catalytic denitration is effectively used by catalytic denitration, the concentration of ammonia discharged from the chimney can be minimized. Since the consumed ammonia can always be an excessive amount necessary for the NOx concentration upstream of the injection position, the ammonia consumption can be minimized.
[0047]
FIG. 2 is a system diagram showing the second embodiment. The exhaust gas denitration apparatus according to the second embodiment is configured such that the second ammonia injection control means 32 has the catalyst passing exhaust gas G that has passed through the catalyst denitration apparatus 11. Three The measurement signal i of the nitrogen oxide concentration measured by the catalyst outlet NOx concentration measuring device 24a is provided. Four In the reduction treatment exhaust gas G measured earlier 2 Measurement signal i of nitrogen oxide concentration and ammonia concentration 2 , I Three Control signal c calculated from 1 The catalyst layer inlet NH Three The control signal c is corrected by the injection amount correction arithmetic unit 26. 2 Is sent to the catalytic ammonia flow rate adjusting valve 19 to control and reduce ammonia from the catalytic ammonia injection nozzle 13. 2 Inject and control. Correction is made so that the outlet NOx concentration becomes smaller than the set or regulated NOx concentration value.
[0048]
FIG. 3 is a system diagram showing a third embodiment. In the exhaust gas denitration device of the third embodiment, the catalyst passing exhaust gas G that has passed through the catalyst denitration device 11 is added to the second ammonia injection control means 32. Three NH with catalyst for measuring ammonia concentration Three NH having a concentration measuring device 24b and measured by the catalyst outlet NOx concentration measuring device 24b Three Concentration measurement signal i Five In the reduction treatment exhaust gas G measured earlier 2 Measurement signal i of nitrogen oxide concentration and ammonia concentration 2 , I Three Control signal c calculated from 1 The catalyst layer inlet NH Three The control signal c is corrected by the injection amount correction arithmetic unit 26. Three And control signal c Three Is sent to the catalytic ammonia flow rate adjusting valve 19 to control and reduce exhaust gas G 2 To control the amount of ammonia injected. Exit NH Three Correction is performed so that the concentration becomes smaller than the set concentration value, and the catalyst ammonia flow rate adjusting valve 19 is controlled to inject ammonia from the catalyst ammonia injection nozzle 13.
[0049]
FIG. 4 is a system diagram showing the fourth embodiment. The exhaust gas denitration apparatus of the fourth embodiment is a catalyst passing exhaust gas G. Three Is provided with a third ammonia injection control means 33 for controlling the nitrogen oxide concentration to fall within a preset concentration range. The third ammonia injection control means 33 is a catalyst passing exhaust gas G that has passed through the catalyst denitration device 11. Three The measurement signal i of the nitrogen oxide concentration measured by the catalyst outlet NOx concentration measuring device 24a is provided. Four The catalyst layer inlet NH Three This is input to the injection arithmetic unit 27 and this catalyst layer inlet NH Three Control signal c computed from injection computing device 27 Four On the basis of the control, the catalytic ammonia flow rate adjusting valve 19 is controlled to reduce the exhaust gas G 2 Inject ammonia.
[0050]
Furthermore, in the exhaust gas denitration apparatus of the fourth embodiment, ammonia to be injected into the gas phase reduction denitration part of the furnace outlet pipe 7 is injected by the first ammonia injection means 31. On the other hand, ammonia to be injected into the inlet portion of the catalyst denitration device 11 is measured by the NOx concentration at the outlet of the catalyst denitration device 11 and injected by the third ammonia injection control means 33 so that the value falls within the set concentration range. That the NOx concentration at the outlet of the catalyst denitration device 11 is equal to or lower than the set value indicates that ammonia is in an excessive state and ammonia may be flowing out. Conversely, when the NOx concentration at the outlet of the catalyst denitration apparatus 11 is equal to or higher than the set value, ammonia is used for the reaction and there is no risk of outflow, but NOx flows out of the system. Therefore, NOx and NH are controlled by controlling the ammonia injection amount from the catalyst ammonia injection nozzle 13 so that the NOx concentration measured by the catalyst outlet NOx concentration measuring device 24a becomes a value within the upper and lower limits of the setting. Three Emission can be reduced. In this case, since the above effect can be exhibited only by the catalyst outlet NOx concentration measuring device 24a, the NOx measuring device and NH Three Does not require many measuring devices.
[0051]
FIG. 5 is a system diagram showing the fifth embodiment. The exhaust gas denitration apparatus of the fifth embodiment is a catalyst passing exhaust gas G. Three There is provided a fourth ammonia injection control means 34 for controlling the ammonia concentration to fall within a preset concentration range. The fourth ammonia injection control means 34 is a catalyst passing exhaust gas G that has passed through the catalyst denitration device 11. Three NH with catalyst for measuring ammonia concentration Three Concentration measuring device 24b is provided, and this catalyst outlet NH Three Measurement signal i of ammonia concentration measured by the concentration measuring device 24b Five The catalyst layer inlet NH Three This is input to the injection arithmetic unit 27 and this catalyst layer inlet NH Three Control signal c computed from injection computing device 27 Five On the basis of the control, the catalytic ammonia flow rate adjusting valve 19 is controlled to reduce the exhaust gas G 2 Inject ammonia.
[0052]
Furthermore, in the exhaust gas denitration apparatus of the fifth embodiment, ammonia to be injected into the gas phase reduction denitration part of the furnace outlet pipe 7 is injected by the first ammonia injection means 31. On the other hand, the ammonia injected into the inlet of the catalyst denitration device 11 is the NH of the catalyst denitration device 11 Three The concentration is measured and injected by the fourth ammonia injection control means 34 so that the value falls within the set concentration range. Catalytic denitration equipment 11 outlet NH Three That the concentration is equal to or lower than the set value indicates that NOx is in an excessive state, and that NOx may be flowing out. Conversely, the catalyst denitration device 11 outlet NH Three When the concentration exceeds the set value, NOx is used in the reaction and there is no risk of outflow, but NH Three Will flow out of the system. Therefore, the catalyst outlet NH Three NH measured by the concentration measuring device 24b Three By controlling the ammonia injection amount from the catalytic ammonia injection nozzle 13 so that the concentration becomes a value within the range of the upper limit and lower limit of the setting, NOx and NH Three Can be reduced. In this case, catalyst outlet NH Three Since the above effect can be exhibited only by the concentration measuring device 24b, the NOx measuring device and NH Three Does not require many measuring devices.
[0053]
FIG. 6 is a system diagram showing a sixth embodiment. In the exhaust gas denitration apparatus of the sixth embodiment, the combustion exhaust gas G according to the load signal f of the load applied to the pressurized fluidized bed boiler 1 for burning the CWP fuel. 1 There is provided a fifth ammonia injection control means 35 for controlling the amount of ammonia injected into the gas. Further, the NOx concentration at the outlet of the catalyst denitration device 11 is measured, and the ammonia injection position I at the inlet of the catalyst denitration device 11 is measured. 2 Is provided with third ammonia injection control means 33 for controlling the ammonia injection amount.
[0054]
The denitration device for exhaust gas according to the first to fifth embodiments has a furnace outlet NOx concentration measuring device installed upstream of the ammonia injection position of the pressurized fluidized bed boiler furnace outlet pipe 7 for the amount of ammonia injected into the furnace outlet. Measurement signal c of NOx measuring device 0 In accordance with the control, the ammonia injection amount into the outlet flue of the pressurized fluidized bed boiler is controlled. In the exhaust gas denitration apparatus of the sixth embodiment, the operating conditions of the pressurized fluidized bed boiler are fixed in a certain pattern by the load. In the case of operation, the ammonia amount to be injected is set in advance as a control function correlated with the load without measuring the NOx concentration, and the ammonia amount to be injected into the gas-phase reductive denitration unit is controlled by the load signal f.
[0055]
FIG. 7 is a system diagram showing a seventh embodiment. The exhaust gas denitration apparatus according to the seventh embodiment is similar to the exhaust gas denitration apparatus according to the sixth embodiment, in accordance with the load signal f of the load applied to the pressurized fluidized bed boiler 1 that combusts the CWP fuel. 1 The fifth ammonia injection control means 35 for controlling the amount of ammonia injected into the exhaust gas is provided, but the NOx concentration at the catalyst outlet for measuring the NOx concentration at the outlet of the catalyst denitration device 11 in the exhaust gas denitration device of the sixth embodiment is measured. Catalyst outlet NH instead of device 24a Three A fourth ammonia injection control means 34 having a measuring device 24b is provided.
[0056]
Similarly to the exhaust gas denitration device of the sixth embodiment, the exhaust gas denitration device of the seventh embodiment has a NOx concentration that is set when the operation condition of the pressurized fluidized bed boiler is fixed to a certain pattern according to the load. Even if not measured, the amount of ammonia to be injected is set in advance as a control function correlated with the load, and the amount of ammonia to be injected into the gas-phase reduction denitration unit is controlled by the load signal f.
[0057]
【The invention's effect】
According to the exhaust gas denitration apparatus of the present invention, the nitrogen oxide concentration discharged to the outside is maintained below the environmental regulation value, and the amount of ammonia used for exhaust gas denitration and the amount of leaked ammonia discharged to the outside are minimized. To do.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of an exhaust gas denitration apparatus according to the present invention used in a power generation apparatus using a pressurized fluidized bed boiler.
FIG. 2 is a system diagram showing a second embodiment.
FIG. 3 is a system diagram showing a third embodiment.
FIG. 4 is a system diagram showing a fourth embodiment.
FIG. 5 is a system diagram showing a fifth embodiment.
FIG. 6 is a system diagram showing a sixth embodiment.
FIG. 7 is a system diagram showing a seventh embodiment.
FIG. 8 NH in non-catalytic denitration of pressurized fluidized bed boiler exhaust gas Three / NOx molar ratio and NOx concentration, injected NH Three FIG.
[Fig. 9] Operation load, NOx concentration and residual NH in catalytic denitration of pressurized fluidized bed boiler exhaust gas. Three Concentration, catalyst inlet NH Three It is a relationship curve figure of density | concentration.
FIG. 10 is a system diagram showing an example of a conventional exhaust gas denitration device used in a power generation device using a pressurized fluidized bed boiler.
FIG. 11 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a boiler combustion apparatus.
FIG. 12 is a system diagram showing an example of another conventional exhaust gas denitration apparatus used in a power generation apparatus using a pressurized fluidized bed boiler.
[Explanation of symbols]
31 First ammonia injection means
32 Second ammonia injection means
33 Third ammonia injection means
34 Fourth ammonia injection means
35 fifth ammonia injection means
I 1 , I 2 Injection position
i 2 ~ I Five Measurement signal
c 0 ~ C Five Control signal
f Load signal
G 1 Flue gas
G 2 Reduced exhaust gas
G Three Exhaust gas passing through the catalyst

Claims (3)

燃料を燃焼させて発生した燃焼排ガスにアンモニアを注入して前記燃焼排ガス中の窒素酸化物を低減した低減処理排ガスとし、更に該低減処理排ガスにアンモニアを注入し触媒の存在の下に該低減処理排ガスの窒素酸化物を除去する排ガスの脱硝装置において、前記燃焼排ガスにアンモニアを注入する注入位置より上流側で該燃焼排ガスの窒素酸化物濃度を計測し、該計測した窒素酸化物濃度による制御信号に基づいて前記燃焼排ガスに注入するアンモニア注入量を制御する第1のアンモニア注入制御手段と、前記低減処理排ガスにアンモニアを注入する注入位置より上流側で前記低減処理排ガスの窒素酸化物濃度及びアンモニア濃度を計測し、該計測した窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号に基づいて前記低減処理排ガスに注入するアンモニア注入量を制御する第2のアンモニア注入制御手段を備えたことを特徴とする排ガスの脱硝装置。 Ammonia is injected into the combustion exhaust gas generated by burning the fuel to form a reduced treatment exhaust gas in which nitrogen oxides in the combustion exhaust gas are reduced. Further, ammonia is injected into the reduction treatment exhaust gas and the reduction treatment is performed in the presence of a catalyst. In an exhaust gas denitration device for removing nitrogen oxides in exhaust gas, the nitrogen oxide concentration of the combustion exhaust gas is measured upstream from the injection position for injecting ammonia into the combustion exhaust gas, and a control signal based on the measured nitrogen oxide concentration First ammonia injection control means for controlling the amount of ammonia injected into the combustion exhaust gas based on the above, and the nitrogen oxide concentration and ammonia of the reduced treatment exhaust gas upstream of the injection position for injecting ammonia into the reduced treatment exhaust gas Based on the control signal calculated from the measured nitrogen oxide concentration and ammonia concentration measurement signals. Denitration apparatus of the exhaust gas, comprising the second ammonia injection control means for controlling the ammonia injection amount to be injected into reduction process flue gas. 請求項において、前記第2のアンモニア注入制御手段は、前記触媒を通過した触媒通過排ガスの窒素酸化物濃度を計測し、該計測した窒素酸化物濃度の計測信号で、前記計測した低減処理排ガスの窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して前記低減処理排ガスに注入するアンモニア注入量を制御することを特徴とする排ガスの脱硝装置。In Claim 1 , the said 2nd ammonia injection | pouring control means measures the nitrogen oxide density | concentration of the catalyst passage exhaust gas which passed the said catalyst, and measured the said reduction processing exhaust gas with the measurement signal of this measured nitrogen oxide density | concentration. A denitration apparatus for exhaust gas, wherein a control signal calculated from measurement signals of nitrogen oxide concentration and ammonia concentration is corrected to control an ammonia injection amount to be injected into the reduced exhaust gas. 請求項1又は2において、前記第2のアンモニア注入制御手段は、前記触媒を通過した触媒通過排ガスのアンモニア濃度を計測し、該計測したアンモニア濃度の計測信号で、前記計測した低減処理排ガスの窒素酸化物濃度及びアンモニア濃度の計測信号から演算された制御信号を補正して前記低減処理排ガスに注入するアンモニア注入量を制御することを特徴とする排ガスの脱硝装置。 3. The second ammonia injection control means according to claim 1 , wherein the second ammonia injection control means measures the ammonia concentration of the exhaust gas passing through the catalyst that has passed through the catalyst, and uses the measurement signal of the measured ammonia concentration to measure the nitrogen of the measured reduced treatment exhaust gas. A denitration apparatus for exhaust gas, wherein a control signal calculated from measurement signals of oxide concentration and ammonia concentration is corrected to control an ammonia injection amount injected into the reduced processing exhaust gas.
JP04188298A 1998-02-24 1998-02-24 Exhaust gas denitration equipment Expired - Lifetime JP3831804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04188298A JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04188298A JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Publications (2)

Publication Number Publication Date
JPH11235516A JPH11235516A (en) 1999-08-31
JP3831804B2 true JP3831804B2 (en) 2006-10-11

Family

ID=12620656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04188298A Expired - Lifetime JP3831804B2 (en) 1998-02-24 1998-02-24 Exhaust gas denitration equipment

Country Status (1)

Country Link
JP (1) JP3831804B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442411B2 (en) * 2009-12-01 2014-03-12 住友重機械工業株式会社 Exhaust gas treatment apparatus, combustion furnace, and exhaust gas treatment method
JP5575701B2 (en) * 2011-05-18 2014-08-20 住友重機械工業株式会社 Denitration apparatus and denitration method
US8501131B2 (en) * 2011-12-15 2013-08-06 General Electric Company Method and apparatus to inject reagent in SNCR/SCR emission system for boiler
WO2013114614A1 (en) 2012-02-03 2013-08-08 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
CN106090969B (en) * 2016-06-16 2019-02-22 国网天津市电力公司 A kind of coal-burning boiler SNCR+SCR denitrification apparatus combined operating optimizes and revises method
CN107238093B (en) * 2017-07-18 2023-12-01 太原锅炉集团有限公司 Adsorption denitration circulating fluidized bed boiler and operation method thereof
CN114210203B (en) * 2021-11-01 2023-11-07 华能曲阜热电有限公司 Control system capable of effectively controlling ammonia gas usage amount

Also Published As

Publication number Publication date
JPH11235516A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
US7824636B1 (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
KR102182935B1 (en) Low Pressure Selective Catalytic Reduction System
JP6461503B2 (en) Gas turbine exhaust control system and method
GB2082084A (en) Apparatus for recovering heat energy and removing nox in combined cycle plants
US8783013B2 (en) Feedforward selective catalytic reduction system for turbine engines
JP2019023557A (en) Operation method of gas turbine for reducing ammonia slip
JP3831804B2 (en) Exhaust gas denitration equipment
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JP5418774B2 (en) Flue gas denitration equipment
CN106838888B (en) Combustion system and method of operating the same
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP2004184044A (en) Exhaust heat recovery device
JP3041263B2 (en) Method of controlling nitrogen oxides in flue gas from pressurized fluidized-bed boiler
JPH0811171B2 (en) Ammonia injection amount control device
WO2023210071A1 (en) Exhaust gas treatment device, combustion facility, power-generating facility, and exhaust gas treatment method
JP2003164725A (en) Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
KR102483964B1 (en) NOx REDUCTION FACILITY CONTROL METHOD OF GAS TURBINE COMBINED CYCLE POWER PLANT USING NATURAL GAS
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP6357701B1 (en) Combustion state judgment system
JPS5844204A (en) Combined cycle generating plant
JP2860876B2 (en) Hazardous trace component prediction control method and apparatus
JPS596927A (en) Catalytic denitration apparatus
JPS60257823A (en) Apparatus for controlling injection amount of ammonia
JPS61254229A (en) Apparatus for controlling injection amount of ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term