JP2003164725A - Ammonia blow-in control method for denitration catalyst device of waste treatment equipment - Google Patents

Ammonia blow-in control method for denitration catalyst device of waste treatment equipment

Info

Publication number
JP2003164725A
JP2003164725A JP2001369281A JP2001369281A JP2003164725A JP 2003164725 A JP2003164725 A JP 2003164725A JP 2001369281 A JP2001369281 A JP 2001369281A JP 2001369281 A JP2001369281 A JP 2001369281A JP 2003164725 A JP2003164725 A JP 2003164725A
Authority
JP
Japan
Prior art keywords
ammonia
concentration
exhaust gas
amount
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369281A
Other languages
Japanese (ja)
Other versions
JP3902737B2 (en
Inventor
Yoshihiro Ono
義広 小野
Nobuhiro Tanigaki
信宏 谷垣
Atsushi Kobayashi
淳志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001369281A priority Critical patent/JP3902737B2/en
Publication of JP2003164725A publication Critical patent/JP2003164725A/en
Application granted granted Critical
Publication of JP3902737B2 publication Critical patent/JP3902737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ammonia blow-in quantity control method in a denitration catalyst device capable of stably controlling the concentration of NOX in a flue and capable of reducing the amount of leaked ammonia in the exhaust gas treatment equipment of a waste treatment furnace. <P>SOLUTION: In the ammonia blow-in quantity control method for the denitration catalyst device for decomposing NOX by blowing ammonia in the denitration catalyst device in the exhaust gas treatment equipment for treating the exhaust gas discharged from the waste treatment furnace of the waste treatment equipment, the concentration of NOX at the inlet of the denitration catalyst device is proportional to the amount of the exhaust gas passing through the denitration catalyst device. Therefore, ammonia is blown in the denitration catalyst device in an amount necessary for decomposing NOX calculated on the basis of the amount of the exhaust gas to decompose NOX to control the concentration of NOX at the outlet of a flue. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物処理設備に
おいて、溶融炉や焼却炉などの廃棄物処理炉の排ガス処
理設備における脱硝触媒装置のアンモニア吹き込み量制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the amount of ammonia blown into a denitration catalyst device in an exhaust gas treatment facility of a waste treatment furnace such as a melting furnace or an incinerator in a waste treatment facility.

【0002】[0002]

【従来の技術】都市ごみなどの廃棄物の処理として、焼
却炉を用いた焼却処理、溶融炉を用いた溶融処理などが
知られている。これらの廃棄物処理設備は、廃棄物処理
炉から排出される排ガス中の有害物質を除去して無害化
するために、排ガス処理設備を備えている。
2. Description of the Related Art As the treatment of waste such as municipal waste, incineration treatment using an incinerator and melting treatment using a melting furnace are known. These waste treatment facilities are equipped with an exhaust gas treatment facility in order to remove harmful substances in the exhaust gas discharged from the waste treatment furnace to render them harmless.

【0003】図5は従来の廃棄物溶融処理設備の排ガス
処理の系統図で、廃棄物溶融炉1、燃焼室2、廃熱ボイ
ラ3、排ガス温度調節器4、集じん器5、脱硝触媒装置
6、煙突7が順次接続されている。廃棄物溶融炉1で発
生した可燃性の排ガスは燃焼室2へ送って燃焼させ、燃
焼により発生した排ガスは廃熱ボイラ3に送られて熱回
収され、排ガス温度調節器4で排ガス温度を調整し、集
じん器5に導入して集じんする。
FIG. 5 is a system diagram of exhaust gas treatment of a conventional waste melting treatment facility. The waste melting furnace 1, the combustion chamber 2, the waste heat boiler 3, the exhaust gas temperature controller 4, the dust collector 5, the denitration catalyst device. 6 and chimney 7 are sequentially connected. The combustible exhaust gas generated in the waste melting furnace 1 is sent to the combustion chamber 2 for combustion, and the exhaust gas generated by combustion is sent to the waste heat boiler 3 for heat recovery, and the exhaust gas temperature controller 4 adjusts the exhaust gas temperature. Then, the dust collector 5 is introduced to collect dust.

【0004】集じん器5から排出される排ガスは、触媒
層が形成された脱硝触媒装置(以下「SCR」とい
う。)に導入され、窒素酸化物(NO)がアンモニア
によって還元分解され、煙突7から放出される排ガスの
NO濃度を低減している。NO とアンモニア(NH
)とは、 4NO+4NH+O→4N+6HO の反応式で反応するので、この反応式から最適なアンモ
ニア吹き込み量を決定し、リークアンモニアを出さない
ようにし、かつNO濃度を規制値以下に抑えている。
The exhaust gas discharged from the dust collector 5 is a catalyst.
A denitration catalyst device with a layer (hereinafter referred to as "SCR")
U ), Nitrogen oxides (NOX) Is ammonia
Of the exhaust gas that is reduced and decomposed by the
NOXThe concentration has been reduced. NO XAnd ammonia (NH
Three) Is 4NO + 4NHThree+ OTwo→ 4NTwo+ 6HTwoO Since it reacts according to the reaction formula of
Determines the amount of near-blowing and does not emit leak ammonia
And NOXThe concentration is kept below the regulation value.

【0005】図4(a)は従来のSCRへのアンモニア
吹き込みのフィードバック制御システムを示す図であ
り、(b)はフィードフォワード制御システムの例を示
す図である。
FIG. 4A is a diagram showing a conventional feedback control system for blowing ammonia into an SCR, and FIG. 4B is a diagram showing an example of a feedforward control system.

【0006】理想的なアンモニア吹き込み量の制御方法
は、図4(b)のようなフィードフォワード制御である
が、NO測定器15をもう1台必要とすること、及び
NO 測定の時間遅れがあり、実際のNO濃度変化に
十分追従できないこと等のために図4(a)に示すよう
なフィードバック制御がよく採用されている。
An ideal method of controlling the amount of injected ammonia
Is feedforward control as shown in FIG.
But noXRequires another measuring device 15, and
NO XActual NO due to measurement delayXFor changes in concentration
As shown in Fig. 4 (a) due to insufficient tracking.
Feedback control is often adopted.

【0007】図4(a)では、SCR11に吹き込むア
ンモニア吹き込み量は、SCR11の出口の排ガス流量
を流量計12で測定するとともに、NO測定器13で
NO 濃度を測定して制御弁14によりアンモニア吹き
込み量を制御する。
In FIG. 4A, the air blown into the SCR 11 is
The amount of ammonia blown is the exhaust gas flow rate at the exit of the SCR11.
Is measured by the flow meter 12 and NOXWith the measuring device 13
NO XMeasure the concentration and blow ammonia with the control valve 14.
Control the amount of inclusion.

【0008】図4(a)では、SCR11入口のNO
濃度をある値として仮定し、これに排ガス流量をかける
ことで必要なアンモニア供給量を算出して吹き込む方法
である。この際反応の過不足は出口NO濃度によって
アンモニア吹込量の過不足の修正を行う。
In FIG. 4 (a), NO X at the inlet of the SCR 11
This is a method in which the concentration is assumed to be a certain value, and the exhaust gas flow rate is applied to this to calculate the required ammonia supply amount and blow it. At this time, the excess or deficiency of the reaction is corrected by adjusting the outlet NO X concentration.

【0009】 NO濃度(仮定値)×排ガス量=NH吹込量 図3(a)は従来のフィードバック制御の場合のSCR
1の入口NO濃度と排ガス量との関係を示すグラフ、
(b)はアンモニア吹き込み量と排ガス量との関係を示
すグラフである。
NO X concentration (assumed value) × exhaust gas amount = NH 3 injection amount FIG. 3 (a) is an SCR in the case of conventional feedback control.
A graph showing the relationship between the inlet NO X concentration of No. 1 and the amount of exhaust gas,
(B) is a graph showing the relationship between the amount of injected ammonia and the amount of exhaust gas.

【0010】図4(a)に示すフィードバック制御の場
合、図3(a)に示すように排ガス量に関係なくSCR
入口NO濃度を一定に設定し、排ガス量とアンモニア
吹き込み量との関係が図3(b)に示すように比例関係
となるように、アンモニア吹き込み量を制御し、SCR
11出口NO測定器13の測定結果にて過不足の調整
を行っている。
In the case of the feedback control shown in FIG. 4 (a), as shown in FIG. 3 (a), the SCR
The inlet NO X concentration is set to a constant value, and the ammonia injection amount is controlled so that the relationship between the exhaust gas amount and the ammonia injection amount is in a proportional relationship as shown in FIG.
11 Exhaust is adjusted based on the measurement result of the NO X measuring device 13.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
フィードバック制御の場合、SCRの入口NO濃度を
図3(a)に示すように実績値から一定値に設定し、ま
た、図3(b)に示すように、SCRの入口NO濃度
を一定に設定していることからアンモニアを排ガス量と
比例関係で吹き込む制御を行っている。しかし、実際
は、廃棄物の量及び質、排ガス量などによりNO濃度
が変化しており、SCR入口のNO濃度の変動に対し
て適正量のアンモニア吹き込みが難しい。
[0006] However, the conventional feedback control, to set the inlet concentration of NO X SCR from actual values, as shown in FIG. 3 (a) to a constant value, FIG. 3 (b) As shown in (1), since the inlet NO X concentration of the SCR is set to be constant, control is performed to blow ammonia in a proportional relationship with the exhaust gas amount. However, in reality, the NO X concentration changes depending on the amount and quality of waste, the amount of exhaust gas, etc., and it is difficult to inject an appropriate amount of ammonia with respect to fluctuations in the NO X concentration at the SCR inlet.

【0012】そのため、アンモニア過剰吹き込みによる
脱硝触媒の機能が低下や、あるいは逆にアンモニア吹き
込み量が不足によるSCR出口NO濃度が増加したり
し、その結果として煙突NO濃度は、図2の煙突NO
濃度と処理時間との関係を示すグラフの従来例に示す
ようにふれ幅が大きくなっている。
[0012] Therefore, the ammonia excess blowing function of the denitration catalyst by the or increased SCR outlet NO X concentration by insufficient amount blown ammonia reduction and or reverse, chimney NO X concentration as a result of which, in FIG. 2 chimney NO
As shown in the conventional example of the graph showing the relationship between the X concentration and the processing time, the deflection width is large.

【0013】そこで、本発明は、廃棄物処理炉の排ガス
処理設備において、煙突NO濃度を安定して制御で
き、リークアンモニア量を低減することができる、脱硝
触媒装置におけるアンモニア吹き込み量制御方法を提供
するものである。
[0013] Therefore, the present invention is, in the exhaust gas treatment equipment of waste incinerator, chimney NO X concentration can stably controlled, it is possible to reduce the leakage amount of ammonia, ammonia blowing amount control method in the denitration catalyst device It is provided.

【0014】[0014]

【課題を解決するための手段】本発明は、廃棄物処理設
備の廃棄物処理炉から排出される排ガスを処理する排ガ
ス処理設備における脱硝触媒装置にアンモニアを吹き込
んでNOを分解する脱硝触媒装置のアンモニア吹き込
み量制御方法において、脱硝触媒装置入口NO 濃度が
脱硝触媒装置を通過する排ガス量に比例することから前
記排ガス量に基づいて求めたNOの分解に必要な量の
アンモニアを吹き込んでNOを分解して煙突出口NO
濃度を制御することを特徴とする。
The present invention is directed to a waste treatment facility.
Exhaust gas that treats the exhaust gas emitted from the waste treatment furnace of Bibi
Ammonia is blown into the denitration catalyst device in the gas treatment facility
So noXInjection of ammonia into the denitration catalyst device
In the amount control method, the denitration catalyst device inlet NO XConcentration
Since it is proportional to the amount of exhaust gas passing through the denitration catalyst device,
NO calculated based on the exhaust gas amountXThe amount of
Blow ammonia and NOXTo disassemble the smoke outlet NO
XIt is characterized by controlling the concentration.

【0015】前記構成において、煙突出口NO濃度に
よって補正を加えることで煙突出口NO濃度を制御す
ること、あるいは出口NO濃度、排ガス量、アンモニ
ア吹き込み量よりNO濃度を算出して最適なアンモニ
ア吹き込み量の設定を更新していくこともできる。
[0015] In the arrangement, it controls the chimney outlet NO X concentration by adding the correction by the chimney outlet NO X concentration, or the outlet NO X concentration, the amount of exhaust gas, the optimum calculates the NO X concentration from the ammonia blown amount It is also possible to update the setting of the amount of injected ammonia.

【0016】[0016]

【発明の実施の形態】本発明者は、排ガス量とSCR入
口NO濃度の関係及び排ガス量とアンモニア吹き込み
量の関係について実験・検討した結果、排ガス量によっ
てSCR入口NO濃度が変化することを知見した。
DETAILED DESCRIPTION OF THE INVENTION The present inventors have, exhaust gas amount and the SCR inlet concentration of NO X relationship, and the exhaust gas amount and the ammonia blown quantity of the result of experiment and study about the relationship, that the SCR inlet NO X concentration varies with the amount of exhaust gas I found out.

【0017】すなわち、図1(a)の排ガス量とSCR
入口NO濃度の関係のグラフに示されるように、排ガ
ス量が増加するとSCR入口NO濃度も増加し、排ガ
ス量とSCR入口NO濃度が比例関係にあることを知
見した。これは、排ガス量の増減は燃焼負荷の増減と同
義であることから、燃焼負荷の増加により燃焼室内部で
高温部が多くなることでNO濃度が高くなり、逆に燃
焼負荷が減少すると燃焼室内部で高温部が少なくなるこ
とから、NO濃度が低くなることになるものと考えら
れる。
That is, the amount of exhaust gas and the SCR of FIG.
As shown in the graph of the relationship between the inlet NO X concentration, it was found that the SCR inlet NO X concentration increases as the exhaust gas amount increases, and the exhaust gas amount and the SCR inlet NO X concentration have a proportional relationship. This is because the increase / decrease in the amount of exhaust gas is synonymous with the increase / decrease in the combustion load. Therefore, the increase in the combustion load increases the number of high-temperature parts in the combustion chamber, resulting in a higher NO X concentration. It is conceivable that the NO x concentration will be low because the high temperature part will be reduced in the indoor part.

【0018】本発明は、SCR入口NO濃度が排ガス
量に比例するという関係から排ガス量に基づいてSCR
入口NO濃度を予測し、NO分解に必要なアンモニ
ア吹き込み量を算出して煙突出口NO濃度を制御する
ことが可能となる。
According to the present invention, the SCR inlet NO X concentration is proportional to the exhaust gas amount, and therefore the SCR based on the exhaust gas amount is used.
It is possible to predict the inlet NO X concentration, calculate the amount of ammonia blown in for NO X decomposition, and control the smoke outlet NO X concentration.

【0019】本発明は、図4(a)に示すフィードバッ
ク制御システムと同様のシステム構成で実施することが
可能であり、脱硝触媒装置を通過する排ガス量を脱硝触
媒装置の出側(あるいは入側)に設けられた流量計で測
定し、排ガス量により求められるSCR入口NO濃度
(図1(a))を求めNO分解に必要なアンモニア吹
き込み量(図1(b))を制御弁4により制御して脱硝
触媒装置にアンモニアを吹き込んで煙突出口NO濃度
を制御する。その結果、図2の煙突NO濃度と処理時
間との関係を示すグラフの実施例に示すように、煙突出
口NO濃度のふれ幅を小さくし、安定した煙突NO
濃度に制御することができる。また、排ガス量により予
測されたSCR入口NO濃度に対してNO分解に必
要なアンモニアが吹き込まれるので、アンモニア過剰吹
き込みによるリークアンモニアを低減させ、また、アン
モニア過剰吹き込みによる脱硝触媒の機能低下の防止を
図ることができる。
The present invention can be carried out in a system configuration similar to the feedback control system shown in FIG. 4 (a), and the amount of exhaust gas passing through the denitration catalyst device can be adjusted to the outlet side (or inlet side) of the denitration catalyst device. ), The SCR inlet NO X concentration (Fig. 1 (a)) determined by the amount of exhaust gas is measured, and the ammonia blowing amount (Fig. 1 (b)) required for NO X decomposition is determined by the control valve 4. controlled and by controlling the chimney outlet NO X concentration by blowing ammonia denitration catalyst device. As a result, as shown in the example of the graph of the relationship between the chimney NO X concentration and the processing time in FIG. 2, the fluctuation range of the chimney outlet NO X concentration is reduced, and a stable chimney NO X is obtained.
The concentration can be controlled. Further, since ammonia required for NO X decomposition is blown into the SCR inlet NO X concentration predicted by the amount of exhaust gas, leak ammonia caused by excessive blowing of ammonia is reduced, and the function of the denitration catalyst is lowered due to excessive blowing of ammonia. It can be prevented.

【0020】また、フィードフォワード制御に必要であ
るSCR入口NO測定器を設置する必要もない。
Further, it is not necessary to install the SCR inlet NO X measuring device necessary for the feedforward control.

【0021】また、図4(a)に示すように、SCR出
口にNO濃度測定器13を設け、SCR出口NO
度の増減にあわせてNH供給量の補正を加えるフィー
ドバック制御もかけてもよい。
Further, as shown in FIG. 4 (a), a NO X concentration measuring instrument 13 is provided at the SCR outlet, and feedback control is performed so as to correct the NH 3 supply amount as the NO X concentration at the SCR outlet increases or decreases. Good.

【0022】さらに、触媒が健全な状態であれば、SC
R出口NO濃度+(アンモニア吹き込み量/排ガス
量)=SCR入口NO濃度であることから、図1
(a)の関係と随時更新することで、より精度の高いS
CR入口NO濃度の予測も可能である。
Further, if the catalyst is in a healthy state, SC
Since the R outlet NO X concentration + (ammonia injection amount / exhaust gas amount) = SCR inlet NO X concentration, FIG.
By updating the relationship in (a) and updating at any time, S with higher accuracy can be obtained.
It is also possible to predict the CR inlet NO X concentration.

【0023】[0023]

【発明の効果】脱硝触媒入口NO計を設置することな
く、入口NO濃度を予測することで適正量のアンモニ
ア供給が可能になり、リークアンモニア量を減らし、か
つ、煙突NO濃度を一定に制御することができる。
Without installing a denitration catalyst inlet NO X meter according to the present invention, by predicting the inlet NO X concentration enables ammonia supply an appropriate amount to reduce the leakage amount of ammonia, and constant chimney NO X concentration Can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)の排ガス量とSCR入口NO濃度の関
係のグラフ、(b)は排ガス量とアンモニア吹き込み量
の関係を示すグラフ
[1] the amount of exhaust gas and the SCR inlet NO X concentration graph of the (a), (b) is a graph showing the relationship between the quantity of exhaust gas and ammonia blowing amount

【図2】煙突NO濃度と処理時間との関係を示すグラ
FIG. 2 is a graph showing the relationship between the stack NO X concentration and the processing time.

【図3】(a)は従来のフィードバック制御の場合のS
CR1の入口NO濃度と排ガス量との関係を示すグラ
フ、(b)はNH吹込量と排ガス量との関係を示すグ
ラフ
FIG. 3A shows S in the case of conventional feedback control.
A graph showing the relationship between the inlet NO X concentration of CR1 and the exhaust gas amount, (b) is a graph showing the relationship between the NH 3 blowing amount and the exhaust gas amount

【図4】(a)はSCRへのNH吹き込みのフィード
バック制御システムを示す図であり、(b)はフィード
フォワード制御システムの例を示す図
FIG. 4A is a diagram showing a feedback control system for blowing NH 3 into the SCR, and FIG. 4B is a diagram showing an example of a feedforward control system.

【図5】従来の廃棄物溶融処理設備の排ガス処理の系統
図。
FIG. 5 is a system diagram of exhaust gas treatment of a conventional waste melting treatment facility.

【符号の説明】[Explanation of symbols]

1:廃棄物溶融炉 2:燃焼室 3:廃熱ボイラ 4:
排ガス温度調節器 5:集じん器 6:脱硝触媒装置
7:煙突 11:SCR 12:流量計 13:NO
濃度測定器 14:制御弁 15:NO濃度測定器
1: Waste melting furnace 2: Combustion chamber 3: Waste heat boiler 4:
Exhaust gas temperature controller 5: Dust collector 6: DeNOx catalyst device
7: Chimney 11: SCR 12: Flowmeter 13: NO X
Concentration measuring instrument 14: Control valve 15: NO X concentration measuring instrument

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 淳志 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社エンジニアリング事業本部内 Fターム(参考) 4D002 AA12 AC04 BA06 BA14 CA07 DA07 EA02 GA02 GA03 GB01 GB02 GB06 4D048 AA06 AB02 AC04 CC38 CC61 DA01 DA02 DA03 DA05 DA08 DA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Atsushi Kobayashi             46-59 Nakahara, Tobata-ku, Kitakyushu City Made in Japan             Engineering Co., Ltd. F-term (reference) 4D002 AA12 AC04 BA06 BA14 CA07                       DA07 EA02 GA02 GA03 GB01                       GB02 GB06                 4D048 AA06 AB02 AC04 CC38 CC61                       DA01 DA02 DA03 DA05 DA08                       DA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物処理設備の廃棄物処理炉から排出
される排ガスを処理する排ガス処理設備における脱硝触
媒装置にアンモニアを吹き込んでNOを分解する脱硝
触媒装置のアンモニア吹き込み制御方法において、脱硝
触媒装置入口NO濃度が脱硝触媒装置を通過する排ガ
ス量に比例することから前記排ガス量に基づいて求めた
NOの分解に必要なアンモニア吹き込み量のアンモニ
アを吹き込んでNOを分解して煙突出口NO濃度を
制御することを特徴とする廃棄物処理設備の脱硝触媒装
置のアンモニア吹き込み制御方法。
1. A method for controlling ammonia injection in a denitration catalyst device for decomposing NO x by injecting ammonia into a denitration catalyst device in an exhaust gas treatment facility for treating exhaust gas discharged from a waste treatment furnace of a waste treatment facility. was bubbled ammonia blowing amount of ammonia necessary for the breakdown of the NO X calculated based on the amount of exhaust gas from the catalytic converter inlet NO X concentration is proportional to the amount of exhaust gas passing through the denitration catalyst device by decomposing NO X chimney A method for controlling injection of ammonia in a denitration catalyst device of a waste treatment facility, which comprises controlling an outlet NO X concentration.
【請求項2】 煙突出口NO濃度によって補正を加え
ることで煙突出口NO濃度を制御することを特徴とす
る請求項1記載の廃棄物処理設備の脱硝触媒装置のアン
モニア吹き込み制御方法。
Wherein ammonia blowing control method of a denitration catalyst unit waste treatment facility according to claim 1, wherein the controlling the chimney outlet NO X concentration by adding the correction by the chimney outlet NO X concentration.
【請求項3】 煙突出口NO濃度、排ガス量、アンモ
ニア吹き込み量よりNO濃度を算出して最適なアンモ
ニア吹き込み量の設定を更新していくことを特徴とする
請求項1または2記載の廃棄物処理設備の脱硝触媒装置
のアンモニア吹き込み制御方法。
3. The disposal according to claim 1 or 2, wherein the NO x concentration is calculated from the smoke outlet NO x concentration, the exhaust gas amount, and the ammonia blowing amount to update the optimum ammonia blowing amount setting. A method for controlling ammonia injection in a denitration catalyst device of a material treatment facility.
JP2001369281A 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility Expired - Lifetime JP3902737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369281A JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369281A JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Publications (2)

Publication Number Publication Date
JP2003164725A true JP2003164725A (en) 2003-06-10
JP3902737B2 JP3902737B2 (en) 2007-04-11

Family

ID=19178700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369281A Expired - Lifetime JP3902737B2 (en) 2001-12-03 2001-12-03 Ammonia injection control method for denitration catalyst device of waste treatment facility

Country Status (1)

Country Link
JP (1) JP3902737B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2012050912A (en) * 2010-08-31 2012-03-15 Nippon Steel Engineering Co Ltd Denitration controller and denitration control method
JP2013132566A (en) * 2011-12-26 2013-07-08 Hitachi Zosen Corp Reducing agent supply method and reducing agent supply device for incinerator
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment
CN113304609A (en) * 2021-05-28 2021-08-27 上海明华电力科技有限公司 Balance control method for thermal power generating unit denitration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2012050912A (en) * 2010-08-31 2012-03-15 Nippon Steel Engineering Co Ltd Denitration controller and denitration control method
JP2013132566A (en) * 2011-12-26 2013-07-08 Hitachi Zosen Corp Reducing agent supply method and reducing agent supply device for incinerator
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment
CN113304609A (en) * 2021-05-28 2021-08-27 上海明华电力科技有限公司 Balance control method for thermal power generating unit denitration system

Also Published As

Publication number Publication date
JP3902737B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
US7712306B2 (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
US7824636B1 (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
KR20160109999A (en) Low Pressure Selective Catalytic Reduction System and Operation Control Method Thereof
JP2005508486A (en) Continuous-variable adjustment method of pollution reducing agent for combustion source
JP2006023076A (en) Method and system for operating combustion system
EP2121167B1 (en) Tertiary air addition to solid waste-fired furnaces for nox control
JP6685133B2 (en) How to operate a gas turbine to reduce ammonia slip
JP2006192406A (en) METHOD AND APPARATUS FOR TREATING NOx OF WASTE TREATMENT FACILITY
JP5276460B2 (en) Exhaust gas purification device
JP2003164725A (en) Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
KR100294991B1 (en) Method and apparatus for controlling the amount of treated material administered to reduce the content of nitrogen oxides in the exhaust gases emitted from the combustion process
JP3831804B2 (en) Exhaust gas denitration equipment
JP2005169331A (en) Denitrification control method and program for the same
JP4690597B2 (en) Combustion type abatement system
JP2006064291A (en) Non-catalytic denitrification method and non-catalytic denitrification device for in-boiler gas
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
JP6413034B1 (en) Combustion control method for an incinerator with a biogas combustion engine
JP6458298B2 (en) Incineration equipment
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP3526490B2 (en) Exhaust gas denitration device and denitration method
JPH06272809A (en) Combustion device and combustion method
JP2022182313A (en) Combustion treatment facility, and method of operating combustion treatment facility
CN116850762A (en) Denitration ammonia injection control system and method
JP2020020503A (en) Denitration and corrosion decreasing method for waste incineration facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070104

R150 Certificate of patent or registration of utility model

Ref document number: 3902737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term