JP2015205272A - Reducer supply method in incineration equipment - Google Patents

Reducer supply method in incineration equipment Download PDF

Info

Publication number
JP2015205272A
JP2015205272A JP2015124312A JP2015124312A JP2015205272A JP 2015205272 A JP2015205272 A JP 2015205272A JP 2015124312 A JP2015124312 A JP 2015124312A JP 2015124312 A JP2015124312 A JP 2015124312A JP 2015205272 A JP2015205272 A JP 2015205272A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
reducing agent
amount
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124312A
Other languages
Japanese (ja)
Other versions
JP6049809B2 (en
Inventor
通孝 古林
Michitaka Furubayashi
通孝 古林
龍秀 氏原
Tatsuhide Ujihara
龍秀 氏原
彰浩 臼谷
Akihiro Usutani
彰浩 臼谷
純一 江本
Junichi Emoto
純一 江本
忠幸 新井
Tadayuki Arai
忠幸 新井
裕司 白石
Yuji Shiraishi
裕司 白石
枝里子 杉村
Eriko Sugimura
枝里子 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2015124312A priority Critical patent/JP6049809B2/en
Publication of JP2015205272A publication Critical patent/JP2015205272A/en
Application granted granted Critical
Publication of JP6049809B2 publication Critical patent/JP6049809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reducer supply method capable of supplying a proper amount of a reducer by predicting a nitrogen oxide based on an amount of exhaust gas.SOLUTION: For maintaining density of nitrogen oxide included in an amount of exhaust gas exhausted from an incineration furnace 1, based on the amount of exhaust gas exhausted from an exhaust gas treatment passage part 3, a fluid flow rate supplied to the exhaust gas treatment passage part 3 is subtracted and the amount of exhaust gas on an outlet side of the incineration furnace is determined. Then, using a relationship between the amount of exhaust gas on a position in front of reducer supply position (inlet side of denitration part) which has been measured in advance at the incineration furnace and density of the nitrogen oxide on the outlet side of the incineration furnace, the density of the nitrogen oxide on the inlet side of denitration part is determined based on the determined exhaust gas amount. Then, based on the density of nitrogen oxide, an ammonia supply amount being the reducer which is supplied from a supply nozzle 31 on the inlet side of the denitration part is determined.

Description

本発明は、焼却炉からの排ガス中の窒素酸化物(NOx)の濃度を低減し得るアンモニアなどの還元剤を供給するための還元剤供給方法に関する。   The present invention relates to a reducing agent supply method for supplying a reducing agent such as ammonia that can reduce the concentration of nitrogen oxides (NOx) in exhaust gas from an incinerator.

大気汚染防止法では、焼却炉から排出される窒素酸化物(NOx)の排出基準(例えば、250ppm;酸素12%換算)が定められているが、場所によっては、この排出基準よりも厳しい自主規制値(例えば、100ppm;酸素12%換算)が設定されている。   In the Air Pollution Control Law, emission standards for nitrogen oxides (NOx) emitted from incinerators (for example, 250 ppm; converted to 12% oxygen) are established, but depending on the location, voluntary regulations are stricter than these emission standards. A value (for example, 100 ppm; oxygen 12% conversion) is set.

ところで、低炭素社会または循環型社会の形成に向け、廃棄物処理分野においても、発電量の向上が重要視されている。
この発電量向上の方策として、触媒を用いた脱硝技術を採用しないで、排ガスの再加熱器で使用する蒸気を発電に供する方法、すなわち無脱硝触媒技術を用いたごみ焼却設備がある(例えば、特許文献1参照)。
By the way, in order to form a low-carbon society or a recycling-oriented society, improvement of power generation amount is regarded as important in the waste treatment field.
As a measure for improving the amount of power generation, there is a method for supplying steam used in an exhaust gas reheater to power generation without adopting a catalyst denitration technology, that is, a waste incineration facility using a non-denitration catalyst technology (for example, Patent Document 1).

特開平07−49112号公報Japanese Patent Application Laid-Open No. 07-49112

上述した無脱硝触媒技術を用いたごみ焼却設備においても、脱硝率の向上が望まれており、無脱硝触媒技術の向上を図るために、還元剤であるアンモニアの供給量を増やすと、排ガス中のリークアンモニア濃度が上昇し、例えば10ppmを超えると、アンモニア由来の白煙が発生してしまう。   In the incineration facilities using the above-mentioned non-denitration catalyst technology, it is desired to improve the denitration rate, and in order to improve the non-denitration catalyst technology, if the supply amount of ammonia as a reducing agent is increased, If the leaked ammonia concentration increases, for example, exceeds 10 ppm, white smoke derived from ammonia is generated.

焼却炉での燃焼状態が変化すると、発生する窒素酸化物の量も変化し、このため、還元剤であるアンモニアの供給量も変化する。
したがって、排ガス中における窒素酸化物の量を把握してアンモニアの供給量を適正にする必要があるが、焼却炉内で窒素酸化物の量を正確に計測するのが難しいという問題があった。
When the combustion state in the incinerator changes, the amount of nitrogen oxide generated also changes, and thus the supply amount of ammonia as a reducing agent also changes.
Therefore, it is necessary to grasp the amount of nitrogen oxides in the exhaust gas and make the supply amount of ammonia appropriate, but there is a problem that it is difficult to accurately measure the amount of nitrogen oxides in the incinerator.

そこで、本発明は、排ガス量から窒素酸化物を予測することで、供給する還元剤の量を適正にし得る還元剤供給方法を提供することを目的とする。   Then, an object of this invention is to provide the reducing agent supply method which can make the quantity of the reducing agent supplied appropriate by estimating nitrogen oxide from the amount of exhaust gas.

上記課題を解決するため、本発明の請求項1に係る焼却設備における還元剤供給方法は、廃棄物を燃焼させる燃焼室および当該燃焼室で発生した排ガスを外部に導く煙道が設けられた焼却炉およびこの焼却炉から排出される排ガスを大気側に導くとともに途中に排ガス処理機器が設けられた排ガス処理経路部を具備する焼却設備における上記排ガス中の窒素酸化物の発生を抑制するための還元剤の供給方法であって、
排ガス処理経路部より排出される排ガス量から当該排ガス処理経路部に供給された水・空気量などの流体流量を減算して焼却炉出口側での排ガス量(FGAS)を求め、
予め焼却炉で実測された還元剤供給手前位置での排ガス量と焼却炉出口側での窒素酸化物濃度との関係を用いて、上記求められた排ガス量(FGAS)から還元剤の供給手前位置での窒素酸化物濃度(CNOx−in)(ppm)を求め、
上記求められた窒素酸化物濃度(CNOx−in)および目標値としての窒素酸化物濃度(CNOx−out)(ppm)を下記(U1)式に代入して脱硝率xを求め、
x=1−[CNOx−out/{CNOx−in×(21−12)/(21−CO2)}] ・・・(U1)
(但し、CO2は焼却炉出口側での酸素濃度(%))
予め求められている脱硝率xと当該脱硝率xを達成するための還元剤の当量比(還元剤/窒素酸化物)λとの関係を示すデータに基づき、上記(U1)式にて求められた脱硝率xに対応する当量比λを求め、
上記当量比λを下記(U2)式に代入して、排ガス量に基づく還元剤の供給量(FRED)を求め、
RED=10−6×FGAS×(1−CH2O)×CNOx−in×λ ・・・(U2)
(但し、CH2Oは焼却炉出口側での水分(体積比))
上記求められた供給量(FRED)でもって還元剤を供給する方法である。
In order to solve the above-mentioned problem, a reducing agent supply method in an incineration facility according to claim 1 of the present invention is an incineration provided with a combustion chamber for burning waste and a flue for guiding exhaust gas generated in the combustion chamber to the outside. Reduction to suppress the generation of nitrogen oxides in the exhaust gas in an incineration facility having an exhaust gas treatment path portion in which an exhaust gas treatment device provided with an exhaust gas treatment device is provided on the way while guiding the exhaust gas discharged from the furnace and the incinerator to the atmosphere side A method of supplying the agent,
By subtracting the flow rate of fluid such as water and air supplied to the exhaust gas treatment path from the amount of exhaust gas discharged from the exhaust gas treatment path, the amount of exhaust gas (F GAS ) at the incinerator outlet side is obtained.
Using the relationship between the amount of exhaust gas at the position before the supply of the reducing agent and the nitrogen oxide concentration at the incinerator outlet side, which was measured in advance in the incinerator, the amount of exhaust gas (F GAS ) obtained before the supply of the reducing agent. Determine the nitrogen oxide concentration (C NOx-in ) (ppm) at the position,
The above-obtained nitrogen oxide concentration (C NOx-in ) and the nitrogen oxide concentration (C NOx-out ) (ppm) as the target value are substituted into the following equation (U1) to obtain the denitration rate x,
x = 1- [ CNOx-out / {CNOx -in x (21-12) / (21- CO2 )}] (U1)
(However, CO2 is the oxygen concentration (%) at the incinerator outlet side)
Based on the data indicating the relationship between the denitration rate x obtained in advance and the equivalent ratio (reducing agent / nitrogen oxide) λ of the reducing agent to achieve the denitration rate x, the above-described equation (U1) is used. The equivalent ratio λ corresponding to the denitration rate x is obtained,
Substituting the equivalent ratio λ into the following equation (U2), the supply amount of reducing agent (F RED ) based on the amount of exhaust gas is obtained,
F RED = 10 −6 × F GAS × (1-C H 2 O ) × C NOx-in × λ (U2)
(However, C H2O is moisture at the incinerator outlet side (volume ratio))
In this method, the reducing agent is supplied with the supply amount (F RED ) determined above.

また、本発明の請求項2に係る焼却設備における還元剤供給方法は、請求項1に記載の還元剤供給方法において、
還元剤の供給手前位置での窒素酸化物濃度(CNOx−in)を求める関係として下記(U)式を用いる方法である。
Moreover, the reducing agent supply method in the incineration facility according to claim 2 of the present invention is the reducing agent supply method according to claim 1,
This is a method of using the following equation (U) as a relationship for obtaining the nitrogen oxide concentration (C NOx-in ) at the position before the supply of the reducing agent.

NOx−in=A1×FGAS+A2 ・・・(U)
(但し、A1およびA2は定数)
また、本発明の請求項3に係る焼却設備における還元剤供給方法は、請求項1に記載の還元剤供給方法において、
還元剤の供給手前位置での窒素酸化物濃度を求める関係として下記(V)式を用いる方法である。
C NOx-in = A1 × F GAS + A2 (U)
(However, A1 and A2 are constants)
Moreover, the reducing agent supply method in the incineration facility according to claim 3 of the present invention is the reducing agent supply method according to claim 1,
This is a method of using the following formula (V) as a relationship for obtaining the nitrogen oxide concentration at the position before the supply of the reducing agent.

NOx−in=B1×FGAS+B2×CO2+B3 ・・・(V)
(但し、B1,B2およびB3は定数、CO2は焼却炉出口側での酸素濃度)
さらに、本発明の請求項4に係る焼却設備における還元剤供給方法は、請求項1乃至3のいずれかに記載の還元剤供給方法において、
排ガス処理経路部出口側の排ガス中の窒素酸化物濃度(CNOx−s)を計測し、当該計測された窒素酸化物濃度(CNOx−s)を下記(W)式に代入することにより供給手前位置の窒素酸化物濃度(CNOx−in)を補正して補正窒素酸化物濃度(CNOx−in−M)を求めるとともに、この求められた補正窒素酸化物濃度(CNOx−in−M)を用いて脱硝率xを補正する方法である。
C NOx-in = B1 × F GAS + B2 × C O2 + B3 (V)
(However, B1, B2 and B3 are constants, CO2 is the oxygen concentration at the incinerator outlet side)
Furthermore, the reducing agent supply method in the incineration facility according to claim 4 of the present invention is the reducing agent supply method according to any one of claims 1 to 3,
Supply by measuring the nitrogen oxide concentration (C NOx-s ) in the exhaust gas on the outlet side of the exhaust gas treatment path and substituting the measured nitrogen oxide concentration (C NOx-s ) into the following equation (W) together determine the corrected concentration of nitrogen oxides nearby position (C NOx-in) correcting the concentration of nitrogen oxides (C NOx-in-M) , thus determined correction nitrogen oxide concentration (C NOx-in-M ) To correct the denitration rate x.

NOx−in−M=(CNOx−s/CNOx−out)×CNOx−in ・・・(W) C NOx-in-M = (C NOx-s / C NOx-out ) × C NOx-in (W)

上記還元剤供給方法によると、排ガス中への還元剤の供給量をその供給手前位置における焼却炉内での窒素酸化物濃度を用いて求める際に、焼却炉内での窒素酸化物濃度を焼却炉から排出される排ガス量に基づき求めるようにしたので、還元剤の供給量を適正に、すなわち正確に求めることができる。   According to the above reducing agent supply method, when the amount of reducing agent supplied into the exhaust gas is determined using the nitrogen oxide concentration in the incinerator at the position before the supply, the nitrogen oxide concentration in the incinerator is incinerated. Since the determination is made based on the amount of exhaust gas discharged from the furnace, the supply amount of the reducing agent can be determined appropriately, that is, accurately.

本発明の実施例に係る焼却設備の略全体構成を示す図である。It is a figure which shows the substantially whole structure of the incineration equipment based on the Example of this invention. 同焼却設備における還元剤供給装置の還元剤制御部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the reducing agent control part of the reducing agent supply apparatus in the incineration equipment. 同焼却設備における還元剤供給方法で用いられる当量比と脱硝率との関係を示すグラフである。It is a graph which shows the relationship between the equivalent ratio used with the reducing agent supply method in the incinerator, and a denitration rate. 同還元剤供給装置による運転状態での窒素酸化物濃度およびリークアンモニア濃度を示すグラフである。It is a graph which shows the nitrogen oxide density | concentration and leak ammonia density | concentration in the driving | running state by the same reducing agent supply apparatus.

以下、本発明の実施例に係る焼却設備における還元剤供給方法およびこの還元剤供給方法を実施するための還元剤供給装置を、図1〜図4に基づき説明する。
まず、還元剤供給装置が具備される焼却設備の概略全体構成について説明する。
Hereinafter, a reducing agent supply method in an incineration facility according to an embodiment of the present invention and a reducing agent supply device for carrying out this reducing agent supply method will be described with reference to FIGS.
First, a schematic overall configuration of an incineration facility provided with a reducing agent supply device will be described.

この焼却設備は、図1に示すように、大きく分けて、廃棄物を焼却する焼却炉1と、この焼却炉1から排出される排ガスを導いて当該排ガスの温度を低下させるとともに排ガス中に含まれている飛灰などの粉塵を除去するための排ガス処理機器2を有する排ガス処理経路部3と、この排ガス処理経路部3で粉塵などが除去された排ガスを大気に放出するための煙突4とから構成されるとともに、焼却炉1にて発生した排ガス中に還元剤であるアンモニア(NH)を供給(「吹き込み」とも言える)して脱硝を行い有害物質である窒素酸化物(NOx)の濃度を低減させるための還元剤供給装置5とが具備されている。なお、以下の説明において、窒素酸化物を含む語句が長くなる場合、およびNOxと表した方が分かり易いと思われる場合には、窒素酸化物をNOxで表す。また、還元剤としては、アンモニアの他に、アンモニア希釈水または尿素希釈水を用いることができるが、以下の説明では、アンモニアとして説明する。なお、特許請求の範囲の請求項に記載した式中の英字の添え字については、還元剤を表す「RED」を用いたが、アンモニアを表す「NH3」を用いて説明する。 As shown in FIG. 1, the incinerator is roughly divided into an incinerator 1 for incinerating waste, and an exhaust gas discharged from the incinerator 1 to reduce the temperature of the exhaust gas and to be included in the exhaust gas. An exhaust gas treatment path section 3 having an exhaust gas treatment device 2 for removing dust such as fly ash, and a chimney 4 for releasing the exhaust gas from which dust or the like has been removed in the exhaust gas treatment path section 3 to the atmosphere In addition, ammonia (NH 3 ), which is a reducing agent, is supplied to the exhaust gas generated in the incinerator 1 (also referred to as “blowing”) to perform denitration to remove nitrogen oxide (NOx), which is a harmful substance. A reducing agent supply device 5 for reducing the concentration is provided. In the following description, when a word including nitrogen oxide is long, and when it is considered easier to express as NOx, nitrogen oxide is represented by NOx. In addition to ammonia, ammonia reducing water or urea diluted water can be used as the reducing agent, but in the following description, it will be described as ammonia. In addition, although the “RED” representing the reducing agent is used for the alphabetic subscripts in the formulas described in the claims of the claims, the description will be made using “NH 3” representing ammonia.

上記焼却炉1は、炉本体11内の下部に設けられて廃棄物を燃焼させる燃焼室12と、この燃焼室12の上方に配置されて当該燃焼室12で発生した排ガスを外部に導くための鉛直方向の第1煙道13、第2煙道14および第3煙道15とから構成されている。なお、燃焼室12の上方に配置される第1煙道13および第2煙道14は鉛直方向の通路で且つ逆U字形状にされており、またこれらの煙道にはボイラ部がそれぞれ設けられている。すなわち、第1煙道13の下端は燃焼室12の上面に開口されるとともに、第1煙道13の上端と第2煙道14の上部とは半円状でもって互いに接続され、さらに第2煙道14の下端は同じく鉛直方向で設けられた第3煙道15の下端入口側に接続されている。   The incinerator 1 is provided in the lower part of the furnace body 11 and combusts waste, and is disposed above the combustion chamber 12 to guide the exhaust gas generated in the combustion chamber 12 to the outside. The first flue 13, the second flue 14, and the third flue 15 in the vertical direction are configured. In addition, the 1st flue 13 and the 2nd flue 14 which are arrange | positioned above the combustion chamber 12 are the channel | paths of a perpendicular direction, and are made into an inverted U shape, and the boiler part is provided in these flues, respectively. It has been. That is, the lower end of the first flue 13 is opened on the upper surface of the combustion chamber 12, the upper end of the first flue 13 and the upper part of the second flue 14 are connected to each other in a semicircular shape, and the second The lower end of the flue 14 is connected to the lower end inlet side of the third flue 15 provided in the vertical direction.

上記排ガス処理経路部3には、排ガス処理機器2として、例えば焼却炉1の第3煙道15から排出される排ガスを導くとともに水を供給して排ガス温度を低下させるための減温塔(設けない場合もある)21と、この減温塔21で温度が低下された排ガスを導いて粉塵を除去するバグフィルタ22とが設けられており、また焼却炉1からの排ガスをこれら減温塔21およびバグフィルタ22を介して煙突4に導く排ガス管路23が設けられている。   In the exhaust gas treatment path section 3, as the exhaust gas treatment device 2, for example, a temperature reducing tower (provided for guiding exhaust gas discharged from the third flue 15 of the incinerator 1 and supplying water to lower the exhaust gas temperature) And a bag filter 22 that guides the exhaust gas whose temperature has been lowered in the temperature-decreasing tower 21 and removes dust, and also provides the temperature reducing tower 21 with the exhaust gas from the incinerator 1. Further, an exhaust gas conduit 23 that leads to the chimney 4 through the bag filter 22 is provided.

次に、還元剤供給装置5について説明するが、まず、NOxの還元剤であるアンモニアの供給部分について説明する。
炉本体11の第1煙道13および第2煙道14の上方半円状の接続部近傍が800〜1000℃の高い温度範囲、すなわち無触媒脱硝において、高い脱硝性能が得られる800〜900℃の温度域の排ガス中に還元剤であるアンモニアを供給するようにしている。例えば、図1に示すように、3箇所で(3箇所に限定されるものではなく、焼却するごみ質に応じて増減される)且つ煙道の横断面内でアンモニアを供給し得るように供給用ノズル(噴射用ノズルともいえる)31がそれぞれ配置されている。なお、アンモニアを煙道の横断面(a,b,c)に均一に供給し得るように、その横断面(a,b,c)に沿って且つその左右両側に、複数の供給用ノズル31が配置されることになるが、1つの横断面に対応する左右両側の供給用ノズル31をそれぞれ代表して第1供給用ノズル(31A)、第2供給用ノズル(31B)、第3供給用ノズル(31C)と称して説明する。
Next, the reducing agent supply device 5 will be described. First, an ammonia supply portion that is a NOx reducing agent will be described.
In the vicinity of the upper semicircular connection part of the first flue 13 and the second flue 14 of the furnace body 11, a high denitration performance is obtained in a high temperature range of 800 to 1000 ° C, that is, non-catalytic denitration. Ammonia, which is a reducing agent, is supplied to the exhaust gas in the temperature range. For example, as shown in FIG. 1, supply is made so that ammonia can be supplied at three locations (not limited to three locations, but increased or decreased depending on the waste quality to be incinerated) and within the cross section of the flue Nozzles for spraying (also referred to as jetting nozzles) 31 are arranged. A plurality of supply nozzles 31 are provided along the cross section (a, b, c) and on both the left and right sides so that ammonia can be uniformly supplied to the cross section (a, b, c) of the flue. The first supply nozzle (31A), the second supply nozzle (31B), and the third supply nozzle are representative of the supply nozzles 31 on both the left and right sides corresponding to one cross section. This will be referred to as a nozzle (31C).

すなわち、両煙道13,14を形成する中央の仕切壁11aの上部位置で水平方向の横断面aに沿って第1供給用ノズル31Aが配置され、仕切壁11aの上端部で前側傾斜方向の横断面bに沿って第2供給用ノズル31Bが配置され、仕切壁11aの上端部で後側傾斜方向の横断面cに沿って第3供給用ノズル31Cが配置されている。   That is, the first supply nozzle 31A is arranged along the horizontal cross section a at the upper position of the central partition wall 11a forming both the flues 13 and 14, and at the upper end of the partition wall 11a, The second supply nozzle 31B is arranged along the transverse section b, and the third supply nozzle 31C is arranged along the transverse section c in the rearward inclined direction at the upper end portion of the partition wall 11a.

具体的には、供給用ノズル31の同一設置断面においては、その左右側壁部では、0.2〜2mの範囲の距離でもって複数箇所に配置されるとともに、排ガスの流れ方向においては、1〜3mの範囲の距離でもって複数箇所(複数段)(本実施例では3箇所であるが、上述したように、3箇所に限定されるものではない)にて配置される。また、これら各供給用ノズル31は、その噴射方向が水平方向ないし排ガス流れの上流に向かって60度の角度範囲となるように設けられる。これは、アンモニアを排ガス流れの上流に供給することで、還元剤であるアンモニアを排ガス中に均一に拡散させるためである。   Specifically, in the same installation cross section of the supply nozzle 31, the left and right side wall portions are arranged at a plurality of locations with a distance in the range of 0.2 to 2 m, and in the exhaust gas flow direction, 1 to Arranged at a plurality of places (a plurality of stages) with a distance in the range of 3 m (three places in the present embodiment, but not limited to three places as described above). In addition, each of these supply nozzles 31 is provided such that its injection direction is in the horizontal direction or an angular range of 60 degrees toward the upstream of the exhaust gas flow. This is because ammonia as a reducing agent is uniformly diffused in the exhaust gas by supplying ammonia upstream of the exhaust gas flow.

そして、後述するが、これら各供給用ノズル31からのアンモニア供給量を制御する際に、その供給位置での排ガス温度に基づくようにされているため、各供給部分の温度を計測し得る第1〜第3温度計(温度計として、例えば熱電対が用いられる)36(36A,36B,36C)が設けられている。なお、温度計の設置箇所を1箇所だけにして、他の箇所については、その計測温度から計算などにより推定するようにしてもよい。   And, as will be described later, when controlling the ammonia supply amount from each of the supply nozzles 31, since it is based on the exhaust gas temperature at the supply position, the temperature of each supply portion can be measured. To third thermometer 36 (36A, 36B, 36C) (for example, a thermocouple is used as a thermometer) is provided. Note that only one thermometer may be installed, and other locations may be estimated from the measured temperature by calculation or the like.

上記各供給用ノズル31には、アンモニアおよび蒸気を供給し得る流体供給用配管32が接続されており、その途中に設けられた流量制御弁33の開度を制御する還元剤制御部34が具備されている。   Each of the supply nozzles 31 is connected to a fluid supply pipe 32 that can supply ammonia and steam, and includes a reducing agent control unit 34 that controls the opening degree of the flow control valve 33 provided in the middle thereof. Has been.

なお、以下においては、還元剤であるアンモニアの供給手前位置を脱硝部入口側と称し、アンモニアを供給した後の位置を脱硝部出口側とも称して説明する。また、脱硝部出口側については、第3煙道出口側(ボイラ部出口側でもある)または焼却炉出口側と呼ぶこともできる。   In the following description, a position before supplying ammonia as a reducing agent is referred to as a denitration unit inlet side, and a position after ammonia is supplied is also referred to as a denitration unit outlet side. Moreover, about the denitration part exit side, it can also be called the 3rd flue exit side (it is also a boiler part exit side) or an incinerator exit side.

次に、還元剤であるアンモニアを適正な量でもって供給するために必要な計測器について説明する。
すなわち、排ガス処理経路部3の出口側、具体的には、バグフィルタ22の出口側の排ガス管路23に、排ガス量を計測し得る排ガス量計測器41が設けられている。また、排ガス処理経路部3の減温塔21においては、水が噴霧されており、供給される水量および噴霧用の空気量も計測されている。さらに、バグフィルタ22の手前側にも、排ガス処理用薬剤を吹き込むための空気が供給されており、この空気量についても計測されている。
Next, a measuring instrument necessary for supplying ammonia as a reducing agent in an appropriate amount will be described.
That is, an exhaust gas amount measuring device 41 capable of measuring the exhaust gas amount is provided on the outlet side of the exhaust gas treatment path unit 3, specifically, on the exhaust gas pipe 23 on the outlet side of the bag filter 22. Further, water is sprayed in the temperature reducing tower 21 of the exhaust gas treatment path section 3, and the amount of water supplied and the amount of air for spraying are also measured. Further, air for injecting the exhaust gas treatment chemical is also supplied to the front side of the bag filter 22, and the amount of air is also measured.

このように、排ガス処理経路部3においては、水、空気などの流体がそれぞれ複数箇所で供給されているが、説明を簡単にするために、当該排ガス処理経路部3に接続される水供給管42および空気供給管43をそれぞれ1本で図示(図1参照)するとともに、水供給管42および空気供給管43に水量計測器44および空気量計測器45がそれぞれ設けられているものとして説明する。   As described above, in the exhaust gas treatment path unit 3, fluids such as water and air are supplied at a plurality of locations. However, in order to simplify the explanation, a water supply pipe connected to the exhaust gas treatment path unit 3 42 and the air supply pipe 43 are illustrated as one (see FIG. 1), and the water supply pipe 42 and the air supply pipe 43 are described as being provided with a water amount measuring device 44 and an air amount measuring device 45, respectively. .

また、排ガス処理経路部3から排出される排ガス中のNOx濃度および酸素濃度を計測するNOx濃度計(窒素酸化物濃度計)46および酸素濃度計47がそれぞれ設けられている。   Further, a NOx concentration meter (nitrogen oxide concentration meter) 46 and an oxygen concentration meter 47 for measuring the NOx concentration and oxygen concentration in the exhaust gas discharged from the exhaust gas treatment path unit 3 are provided.

さらに、第3煙道15の出口側には焼却炉出口における排ガス中の水分を計測する水分計48が設けられている。なお、設置された水分計の計測値を用いる代わりに、予め排ガス中の水分を計測しておいた計測値(採取した排ガス中の水分の計測値)を用いるようにしてもよい。   Further, a moisture meter 48 for measuring moisture in the exhaust gas at the incinerator outlet is provided on the outlet side of the third flue 15. Instead of using the measured value of the installed moisture meter, a measured value obtained by measuring moisture in the exhaust gas in advance (measured value of moisture in the collected exhaust gas) may be used.

ところで、還元剤供給装置5には、上述したように、燃焼状態に応じて還元剤を供給するための還元剤制御部34が具備されているが、この構成については、還元剤の供給方法を説明した後に説明する。   Incidentally, as described above, the reducing agent supply device 5 includes the reducing agent control unit 34 for supplying the reducing agent according to the combustion state. It will be explained after explanation.

以下、還元剤の供給方法について説明する。
まず、排ガス量計測器41で計測された排ガス量から、水量計測器44および空気量計測器45で計測された水量および空気量(纏めて、流体流量とも言うことができ、また水については蒸気量つまりガス量としての値が用いられる)を減算することにより、焼却炉出口側における排ガス量(FGAS)(mN/h・wet)を求める。
Hereinafter, a method for supplying the reducing agent will be described.
First, from the amount of exhaust gas measured by the exhaust gas amount measuring device 41, the amount of water and the amount of air measured by the water amount measuring device 44 and the air amount measuring device 45 (collectively, it can also be referred to as a fluid flow rate. The amount of exhaust gas (F GAS ) (m 3 N / h · wet) on the incinerator outlet side is obtained by subtracting the amount, that is, the value as the gas amount.

次に、この排ガス量(FGAS)を下記(1)式に代入することにより、還元剤の供給手前位置である脱硝部入口側でのNOx濃度(CNOx−in)(ppm・dry)を求める。 Next, by substituting this exhaust gas amount (F GAS ) into the following equation (1), the NOx concentration (C NOx-in ) (ppm · dry) at the inlet side of the denitration unit, which is the position before the supply of the reducing agent, is obtained. Ask.

NOx−in=A1×FGAS+A2 ・・・(1)
上記式中、A1およびA2は定数である。
なお、この(1)式は、焼却炉を実際に稼動させて、焼却炉出口側(脱硝部出口側)の排ガス量と脱硝部入口側でのNOx濃度とを実測し、多くの計測データに基づき両者の関係を表す一次式を例えば最小二乗法などを用いて求めたものである。例えば、或る焼却炉の場合では、A1が0.00311、A2は90.1であった。
C NOx-in = A1 × F GAS + A2 (1)
In the above formula, A1 and A2 are constants.
In addition, this equation (1) actually operates the incinerator and actually measures the amount of exhaust gas on the incinerator outlet side (denitration unit outlet side) and the NOx concentration on the denitration unit inlet side, and produces a lot of measurement data. Based on this, a linear expression representing the relationship between the two is obtained using, for example, the least square method. For example, in the case of a certain incinerator, A1 was 0.00311 and A2 was 90.1.

また、このとき、第3煙道出口側(ボイラ部出口側)言い換えれば焼却炉出口側での酸素濃度が求められている。すなわち、排ガス量計測器41で計測された排ガス量と酸素濃度計47で計測された酸素濃度とから排ガス処理経路部3からの排ガス中の総酸素量が求められるとともに、水量計測器44で計測された水量、空気量計測器45で計測された空気量および水分計48により計測された水分値に基づきこれら流体に含まれている追加酸素量が求められ、そして上記総酸素量から追加酸素量が減算されることにより、焼却炉出口側での酸素濃度が求められる。   At this time, the oxygen concentration at the third flue exit side (boiler part exit side), in other words, at the incinerator exit side is required. That is, the total oxygen amount in the exhaust gas from the exhaust gas treatment path unit 3 is obtained from the exhaust gas amount measured by the exhaust gas amount measuring device 41 and the oxygen concentration measured by the oxygen concentration meter 47 and measured by the water amount measuring device 44. The additional oxygen amount contained in these fluids is obtained based on the measured water amount, the air amount measured by the air amount measuring device 45 and the moisture value measured by the moisture meter 48, and the additional oxygen amount is obtained from the total oxygen amount. Is subtracted to obtain the oxygen concentration on the incinerator outlet side.

次に、上記NOx濃度(CNOx−in)および焼却炉出口における目標値としてのNOx濃度(CNOx−out)(ppm・dry)を、下記(2)式に代入することにより、脱硝率xを計算する。なお、脱硝率とは、脱硝部入口側でのNOx濃度(CNOx−in)から焼却炉出口側(脱硝部出口側)の目標値であるNOx濃度(CNOx−out)を差し引いたものを、脱硝部入口側のNOx濃度(CNOx−in)で除算したもので、下記(2)式は、酸素12%換算を考慮したものである。 Next, by substituting the NOx concentration (C NOx-in ) and the NOx concentration (C NOx-out ) (ppm · dry) as a target value at the incinerator outlet into the following equation (2), the denitration rate x Calculate The NOx removal rate is obtained by subtracting the NOx concentration ( CNOx-out ), which is the target value on the incinerator exit side (denitration unit exit side), from the NOx concentration ( CNOx-in ) on the NOx removal unit inlet side. , Divided by the NOx concentration (C NOx-in ) at the inlet side of the denitration section, and the following equation (2) takes into account oxygen 12% conversion.

x=1−[CNOx−out/{CNOx−in×(21−12)/(21−CO2)}] ・・・(2)
但し、(2)式中、CO2は焼却炉出口側での酸素濃度(dry値が用いられる)(%)である。
x = 1- [ CNOx-out / {CNOx -in x (21-12) / (21- CO2 )}] (2)
However, in the formula (2), CO 2 is the oxygen concentration at the outlet side of the incinerator (the dry value is used) (%).

次に、上記求められた脱硝率xを用いて、予め求められているNOxの目標値に対するアンモニアの当量比(アンモニア/NOx)λと脱硝率xとの関係を示すグラフ(数値データであってもよい)から、当該脱硝率xに対応する当量比λを求める。なお、NOx濃度に対するアンモニアの当量比(アンモニア/NOx)λと脱硝率xとの関係は、例えば図3のグラフに示すように、アンモニア供給位置での排ガス温度に応じて、予め、計算により求められている。勿論、アンモニア供給位置での温度は、温度計36により、所定時間毎に計測されている。なお、図3に示すグラフは、例えば第2供給用ノズル(31B)位置で且つ温度に応じて求められたものであり、勿論、アンモニア供給位置に応じて異なるものである。   Next, a graph (numerical data indicating the relationship between the equivalent ratio of ammonia (ammonia / NOx) λ and the NOx removal rate x with respect to the NOx target value obtained in advance using the obtained NOx removal rate x. The equivalent ratio λ corresponding to the denitration rate x is obtained. The relationship between the equivalent ratio of ammonia to the NOx concentration (ammonia / NOx) λ and the denitration rate x is calculated in advance according to the exhaust gas temperature at the ammonia supply position, for example, as shown in the graph of FIG. It has been. Of course, the temperature at the ammonia supply position is measured by the thermometer 36 every predetermined time. The graph shown in FIG. 3 is obtained, for example, at the position of the second supply nozzle (31B) and according to the temperature, and, of course, differs depending on the ammonia supply position.

次に、上記求められた当量比λを下記(3)式に代入して、アンモニアの供給量(FNH3)(mN/h)を算出する。
NH3=10−6×FGAS×(1−CH2O)×CNOx−in×λ ・・・(3)
但し、(3)式中、CH2Oは焼却炉出口側での水分(体積比)であり、第3煙道15の出口側に配置された水分計48により計測されている。なお、水分計48の計測値を用いる代わりに、予め、排ガス中の水分を計測しておいた水分値を用いるようにしてもよい。
Next, the above-obtained equivalent ratio λ is substituted into the following equation (3) to calculate the supply amount of ammonia (F NH3 ) (m 3 N / h).
F NH3 = 10 −6 × F GAS × (1-C H 2 O ) × C NOx-in × λ (3)
However, in the formula (3), CH 2 O is moisture (volume ratio) on the incinerator outlet side, and is measured by a moisture meter 48 arranged on the outlet side of the third flue 15. Instead of using the measured value of the moisture meter 48, a moisture value obtained by measuring moisture in the exhaust gas in advance may be used.

このように、排ガス中への還元剤の供給量をその供給手前位置における焼却炉内での窒素酸化物濃度を用いて求める際に、焼却炉内での窒素酸化物濃度を焼却炉から排出される排ガス量に基づき求めるようにしたので、還元剤の供給量を正確に求めることができる。   As described above, when the supply amount of the reducing agent in the exhaust gas is obtained using the nitrogen oxide concentration in the incinerator at the position before the supply, the nitrogen oxide concentration in the incinerator is discharged from the incinerator. Therefore, the supply amount of the reducing agent can be accurately obtained.

さらに、白煙化防止用として、以下の手順が行われる。
すなわち、上記アンモニアの供給量の算出と並行して、白煙化防止のための規制値(例えば10ppm)に対応する脱硝部入口側でのアンモニアの供給濃度(CNH3;200〜300ppm・dry)が得られるアンモニアの供給量(F′NH3)を、下記(4)式により算出する。
Furthermore, the following procedures are performed for white smoke prevention.
That is, in parallel with the calculation of the ammonia supply amount, the ammonia supply concentration (C NH3 ; 200 to 300 ppm · dry) at the inlet side of the denitration unit corresponding to the regulation value (for example, 10 ppm) for white smoke prevention the supply amount of ammonia is obtained the (F 'NH3), is calculated by the following equation (4).

F′NH3=10−6×CNH3×FGAS×(1−CH2O) ・・・(4)
次に、上記求められた両アンモニア供給量(FNH3,F′NH3)を比較し、通常は、排ガス量に基づくアンモニア供給量(FNH3)を選択するが、排ガス量に基づくアンモニア供給量(FNH3)が規制値に基づくアンモニア供給量(F′NH3)を超えた場合には、当該規制値に基づくアンモニア供給量(F′NH3)を選択する。
F ′ NH 3 = 10 −6 × C NH 3 × F GAS × (1-C H 2 O ) (4)
Next, the obtained ammonia supply amounts (F NH3 , F ′ NH3 ) are compared, and usually the ammonia supply amount (F NH3 ) based on the exhaust gas amount is selected, but the ammonia supply amount (F NH3 ) based on the exhaust gas amount ( F NH3) ammonia supply amount (F based on the regulation value 'if it exceeds NH3) is ammonia supply amount based on the regulation value (F' selects NH3).

すなわち、上記選択されたアンモニア供給量でもってアンモニアが供給用ノズル31から焼却炉1内に供給される。
なお、上記(1)式で用いられるNOx濃度(CNOx−in)は計算値であるため、実際に計測された(所定時間毎に計測されている)NOx濃度(CNOx−s)を下記(5)式に代入して補正し、この補正濃度(CNOx−in−M)(ppm・dry)を上記(2)式に代入して脱硝率xを補正する。
That is, ammonia is supplied into the incinerator 1 from the supply nozzle 31 with the selected ammonia supply amount.
Since the NOx concentration (C NOx-in ) used in the above equation (1) is a calculated value, the NOx concentration (C NOx-s ) actually measured (measured every predetermined time) is Substituting into the equation (5) for correction, the corrected concentration (C NOx-in-M ) (ppm · dry) is substituted into the above equation (2) to correct the denitration rate x.

NOx−in−M=(CNOx−s/CNOx−out)×CNOx−in ・・・(5)
ところで、焼却炉1内に配置された供給用ノズル31は、燃焼負荷に応じて、用いられるノズルが選択される。
C NOx-in-M = (C NOx-s / C NOx-out ) × C NOx-in (5)
By the way, as the nozzle 31 for supply arrange | positioned in the incinerator 1, the nozzle used is selected according to combustion load.

具体的に言うと、燃焼負荷が小さい場合には、排ガス流路の上流側が850℃程度になるため第1供給用ノズル31Aからアンモニアが供給され、燃焼負荷が中程度の場合には、その下流側が850℃程度になるため第2供給用ノズル31Bからアンモニアが供給され、燃焼負荷が大きい場合には、さらにその下流側が850℃程度になるため第3供給用ノズル31Cからアンモニアが供給される(例えば、蒸気を用いて供給される)。すなわち、燃焼負荷に応じて、使用する供給用ノズル31を、排ガスの流れ方向において、上流側から下流側に順次変更される。   Specifically, when the combustion load is small, the upstream side of the exhaust gas passage is about 850 ° C., so ammonia is supplied from the first supply nozzle 31A, and when the combustion load is medium, the downstream side Since the temperature is about 850 ° C., ammonia is supplied from the second supply nozzle 31B. When the combustion load is large, the downstream side is about 850 ° C., so ammonia is supplied from the third supply nozzle 31C ( For example, it is supplied using steam). That is, according to the combustion load, the supply nozzle 31 to be used is sequentially changed from the upstream side to the downstream side in the exhaust gas flow direction.

また、焼却炉1内で供給されるアンモニアについては、アンモニアが100%の液体でもって供給されるか、または蒸気若しくは空気により同伴されて供給される。同伴媒体として、過熱蒸気または飽和蒸気を使用する場合、その供給速度つまり噴射速度は、音速の1/2〜音速の範囲内とされる。また、ノズルから供給(噴射)されるアンモニア液体の平均粒子径が10〜500μmの範囲内とされるとともに、この場合におけるノズル先端の口径は、2〜20mmの範囲内であることが好ましい。さらに、アンモニアが供給されるノズルは、800〜1000℃の範囲内、好ましくは、800〜950℃の範囲内のものが使用される。   Moreover, about the ammonia supplied in the incinerator 1, ammonia is supplied with a 100% liquid, or it is supplied accompanied by steam or air. When superheated steam or saturated steam is used as the accompanying medium, the supply speed, that is, the injection speed, is set within a range of 1/2 to the speed of sound. In addition, the average particle diameter of the ammonia liquid supplied (injected) from the nozzle is in the range of 10 to 500 μm, and the diameter of the nozzle tip in this case is preferably in the range of 2 to 20 mm. Furthermore, the nozzle to which ammonia is supplied is in the range of 800 to 1000 ° C, preferably in the range of 800 to 950 ° C.

上記供給方法を踏まえて、還元剤制御部34の構成を説明すると以下のようになる。
すなわち、上記還元剤制御部34には、図2に示すように、排ガス量計測器41で計測された排ガス量から水量計測器44および空気量計測器45で計測された水、空気などの流体流量を減算して焼却炉出口側での排ガス量(FGAS)を求める出口側排ガス量算出部51と、
この出口側排ガス量算出部51で求められた排ガス量(FGAS)を下記(6)式に代入することにより、脱硝部入口側でのNOx濃度(CNOx−in)を算出する入口側NOx濃度算出部52と、
NOx−in=A1×FGAS+A2 ・・・(6)
[但し、(6)式中、A1およびA2は定数]
上記排ガス量計測器41で計測された排ガス量、酸素濃度計47で計測された酸素濃度、水量計測器44で計測された水量、空気量計測器45で計測された空気量、および水分計48により計測された水分値(予め計測しておいた水分値を用いてもよい)を入力して、焼却炉出口側での酸素濃度を算出する酸素濃度算出部53と、
上記NOx濃度(CNOx−in)および焼却炉出口側での目標値としてのNOx濃度(CNOx−out)を、下記(7)式に代入することにより、脱硝率xを求める脱硝率算出部54と、
x=1−[CNOx−out/{CNOx−in×(21−12)/(21−CO2)}] ・・・(7)
[但し、(7)式中、CO2は焼却炉出口側での酸素濃度]
上記求められた脱硝率xを用いて、予め求められているNOxに対するアンモニアの当量比(アンモニア/NOx)λと脱硝率xとの関係を示すグラフ(例えば、図3に示す)(数値データであってもよい)から、当該脱硝率xに対応する当量比λを求める当量比算出部55と、
上記求められた当量比λを下記(8)式に代入して、排ガスに基づくアンモニアの供給量(FNH3)を求める第1還元剤供給量算出部56とが具備され、
NH3=10−6×FGAS×(1−CH2O)×CNOx−in×λ ・・・(8)
[但し、(8)式中、CH2Oは焼却炉出口側での水分(体積比)(水分計48による計測値;なお予め計測しておいた水分値を用いてもよい)]
さらに上記アンモニアの供給量の算出と並行して、煙突4から排出されるリークアンモニア濃度の規制値(例えば10ppmなどの規制値、または上乗せ規制値である)に対応する脱硝部入口側でのアンモニア供給濃度(CNH3)を下記(9)式に代入して規制値に基づくアンモニア供給量(F′NH3)を求める第2還元剤供給量算出部57と、
F′NH3=10−6×CNH3×FGAS×(1−CH2O) ・・・(9)
上記求められた両アンモニア供給量(FNH3,F′NH3)を比較し、通常は、排ガス量に基づくアンモニア供給量(FNH3)を選択するが、当該排ガスに基づくアンモニア供給量(FNH3)が規制値に基づくアンモニア供給量(F′NH3)を超えた場合に、規制値に基づくアンモニア供給量(F′NH3)を選択する還元剤供給量選択部58と、
処理経路部出口側に設けられたNOx濃度計46で計測された排ガス中のNOx濃度(CNOx−s)を下記(10)式に代入して計算によるNOx濃度(CNOx−in)を補正する補正濃度(CNOx−in−M)に基づき脱硝率xを補正する脱硝率補正部59とが具備されている。なお、CNOx−sとして、10秒〜1時間の移動平均値を採用することもできる。
The configuration of the reducing agent control unit 34 will be described based on the above supply method.
That is, as shown in FIG. 2, the reducing agent control unit 34 includes a fluid such as water and air measured by the water amount measuring device 44 and the air amount measuring device 45 from the exhaust gas amount measured by the exhaust gas amount measuring device 41. An outlet side exhaust gas amount calculation unit 51 for subtracting the flow rate to obtain an exhaust gas amount (F GAS ) on the incinerator outlet side;
By substituting the exhaust gas amount (F GAS ) obtained by the outlet side exhaust gas amount calculation unit 51 into the following equation (6), the NOx concentration (C NOx-in ) at the denitration unit inlet side is calculated. A concentration calculator 52;
C NOx-in = A1 × F GAS + A2 (6)
[In the formula (6), A1 and A2 are constants]
The exhaust gas amount measured by the exhaust gas amount measuring device 41, the oxygen concentration measured by the oxygen concentration meter 47, the water amount measured by the water amount measuring device 44, the air amount measured by the air amount measuring device 45, and the moisture meter 48 An oxygen concentration calculation unit 53 that inputs the moisture value measured by the above (a moisture value measured in advance may be used) and calculates the oxygen concentration at the incinerator outlet side;
A NOx removal rate calculation unit for obtaining the NOx removal rate x by substituting the NOx concentration ( CNOx-in ) and the NOx concentration ( CNOx-out ) as a target value at the incinerator outlet side into the following equation (7): 54,
x = 1- [ CNOx-out / {CNOx -in x (21-12) / (21- C02 )}] (7)
[In the formula (7), CO 2 is the oxygen concentration at the incinerator outlet side]
A graph (for example, shown in FIG. 3) showing the relationship between the equivalent ratio of ammonia to NOx (ammonia / NOx) λ and the denitration rate x using the denitration rate x determined above (in numerical data) Equivalent ratio calculation unit 55 for obtaining an equivalent ratio λ corresponding to the denitration rate x,
A first reducing agent supply amount calculation unit 56 for substituting the obtained equivalent ratio λ into the following equation (8) to obtain an ammonia supply amount (F NH3 ) based on exhaust gas;
FNH3 = 10 < -6 > * FGAS * (1- CH2O ) * CNOx-in * (lambda) ... (8)
[However, in formula (8), C H2O is the moisture (volume ratio) at the outlet side of the incinerator (measured value by the moisture meter 48; the moisture value measured in advance may be used)]
Further, in parallel with the calculation of the ammonia supply amount, ammonia at the denitration unit inlet side corresponding to a regulation value (for example, a regulation value such as 10 ppm or an addition regulation value) of the leaked ammonia concentration discharged from the chimney 4 A second reducing agent supply amount calculation unit 57 for substituting the supply concentration (C NH3 ) into the following equation (9) to obtain an ammonia supply amount (F ′ NH3 ) based on a regulation value;
F ′ NH 3 = 10 −6 × C NH 3 × F GAS × (1-C H 2 O ) (9)
The obtained ammonia supply amounts (F NH3 , F ′ NH3 ) are compared, and usually the ammonia supply amount (F NH3 ) based on the exhaust gas amount is selected, but the ammonia supply amount (F NH3 ) based on the exhaust gas is selected. There 'if it exceeds (NH3, ammonia supply amount based on regulation value (F ammonia supply amount based on the regulation value F)' and the reducing agent supply amount selector 58 for selecting NH3),
The calculated NOx concentration (C NOx-in ) is corrected by substituting the NOx concentration (C NOx-s ) in the exhaust gas measured by the NOx concentration meter 46 provided on the processing path outlet side into the following equation (10). And a denitration rate correction unit 59 that corrects the denitration rate x based on the correction concentration (C NOx-in-M ). Note that a moving average value of 10 seconds to 1 hour may be employed as C NOx-s .

NOx−in−M=(CNOx−s/CNOx−out)×CNOx−in ・・・(10)
勿論、上記還元剤制御部34には、各計測機器で計測された温度、NOx濃度、排ガス量、水量、空気量、酸素濃度、水分などの各計測値が入力されるとともに、ここで求められたアンモニア供給量がアンモニアの供給量を制御する流量制御弁33に出力されている。
C NOx-in-M = (C NOx-s / C NOx-out ) × C NOx-in (10)
Of course, each of the measured values such as temperature, NOx concentration, exhaust gas amount, water amount, water amount, air amount, oxygen concentration, moisture and the like measured by each measuring device is input to the reducing agent control unit 34 and is obtained here. The ammonia supply amount is output to the flow rate control valve 33 that controls the ammonia supply amount.

上記還元剤供給方法によると、焼却炉から排出される排ガス中に、還元剤を供給して窒素酸化物の濃度を低減させる際に、供給する還元剤の量を、焼却炉から排出される排ガス量に基づき求めるようにしたので、すなわち計測器を用いることなく焼却炉内での窒素酸化物濃度を求めることができるので、適正な還元剤の供給量が得られる。さらに、還元剤の供給量を求める際に、供給量がその規制値を超えるような場合には、この規制値に基づく還元剤の供給量を優先するようにしたので、還元剤の供給量が規制値を超える場合に生じる弊害、例えば還元剤がアンモニアである場合の白煙の発生を確実に防止することができる。具体的な数値データを示すと、図4のようになる。すなわち、図4から、リークアンモニア濃度(NHリーク量)が規制値である10ppm以下を保った状態で、焼却炉出口側における窒素酸化物濃度(例えば、1h移動平均値)が安定的に40ppm以下に維持されていることが分かる。 According to the above reducing agent supply method, when reducing agent concentration is reduced by supplying a reducing agent to exhaust gas discharged from an incinerator, the amount of reducing agent to be supplied is exhausted from the incinerator. Since the determination is based on the amount, that is, the nitrogen oxide concentration in the incinerator can be determined without using a measuring instrument, an appropriate supply amount of the reducing agent can be obtained. Further, when the supply amount of the reducing agent is determined, if the supply amount exceeds the regulation value, the supply amount of the reducing agent based on the regulation value is given priority. It is possible to reliably prevent adverse effects that occur when the regulation value is exceeded, for example, the generation of white smoke when the reducing agent is ammonia. Specific numerical data is shown in FIG. That is, from FIG. 4, the nitrogen oxide concentration (for example, 1 h moving average value) at the incinerator outlet side is stably 40 ppm while the leaked ammonia concentration (NH 3 leak amount) is kept at a regulated value of 10 ppm or less. It can be seen that the following is maintained.

ところで、上記実施例では、還元剤の供給手前位置である脱硝部入口側でのNOx濃度を求める際に、(1)式を用いたが、焼却炉出口側の酸素濃度を考慮した場合、特に、図1の破線にて示すように、第3煙道15の出口側(または第2煙道14内や第3煙道15内)に設けたレーザ式酸素濃度計49(49′)により、直接、酸素濃度(wet値)(CO2)を計測している場合には、下記(11)式を用いてもよい。 By the way, in the above embodiment, when obtaining the NOx concentration on the denitration part inlet side, which is the position before the supply of the reducing agent, the formula (1) is used, but particularly when the oxygen concentration on the incinerator outlet side is taken into account. As indicated by the broken line in FIG. 1, a laser oximeter 49 (49 ′) provided on the outlet side of the third flue 15 (or in the second flue 14 or the third flue 15) When the oxygen concentration (wet value) (C O2 ) is directly measured, the following equation (11) may be used.

NOx−in=B1×FGAS+B2×CO2+B3 ・・・(11)
[但し、(11)式中、B1,B2およびB3は定数]
C NOx-in = B1 × F GAS + B2 × C O2 + B3 (11)
[However, in the formula (11), B1, B2 and B3 are constants]

1 焼却炉
2 排ガス処理機器
3 排ガス処理経路部
4 煙突
5 還元剤供給装置
11 焼却炉
12 燃焼室
13 第1煙道
14 第2煙道
15 第3煙道
21 減温塔
22 バグフィルタ
31 供給用ノズル
32 流体供給用配管
33 流量制御弁
34 還元剤制御部
36 温度計
41 排ガス量計測器
44 水量計測器
45 空気量計測器
46 NOx濃度計
47 酸素濃度計
48 水分計
49 レーザ式酸素濃度計
51 出口側排ガス量算出部
52 入口側NOx濃度算出部
53 酸素濃度算出部
54 脱硝率算出部
55 当量比算出部
56 第1還元剤供給量算出部
57 第2還元剤供給量算出部
58 還元剤供給量選択部
59 脱硝率補正部
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Exhaust gas processing equipment 3 Exhaust gas processing path part 4 Chimney 5 Reducing agent supply apparatus 11 Incinerator 12 Combustion chamber 13 1st flue 14 2nd flue 15 3rd flue 21 Temperature reduction tower 22 Bag filter 31 Supply Nozzle 32 Fluid supply pipe 33 Flow control valve 34 Reducing agent control unit 36 Thermometer 41 Exhaust gas amount measuring device 44 Water amount measuring device 45 Air amount measuring device 46 NOx concentration meter 47 Oxygen concentration meter 48 Moisture meter 49 Laser type oxygen concentration meter 51 Outlet side exhaust gas amount calculation unit 52 Inlet side NOx concentration calculation unit 53 Oxygen concentration calculation unit 54 Denitration rate calculation unit 55 Equivalent ratio calculation unit 56 First reducing agent supply amount calculation unit 57 Second reducing agent supply amount calculation unit 58 Reducing agent supply Volume selection unit 59 Denitration rate correction unit

Claims (4)

廃棄物を燃焼させる燃焼室および当該燃焼室で発生した排ガスを外部に導く煙道が設けられた焼却炉およびこの焼却炉から排出される排ガスを大気側に導くとともに途中に排ガス処理機器が設けられた排ガス処理経路部を具備する焼却設備における上記排ガス中の窒素酸化物の発生を抑制するための還元剤の供給方法であって、
排ガス処理経路部より排出される排ガス量から当該排ガス処理経路部に供給された水・空気量などの流体流量を減算して焼却炉出口側での排ガス量(FGAS)を求め、
予め焼却炉で実測された還元剤供給手前位置での排ガス量と焼却炉出口側での窒素酸化物濃度との関係を用いて、上記求められた排ガス量(FGAS)から還元剤の供給手前位置での窒素酸化物濃度(CNOx−in)(ppm)を求め、
上記求められた窒素酸化物濃度(CNOx−in)および目標値としての窒素酸化物濃度(CNOx−out)(ppm)を下記(U1)式に代入して脱硝率xを求め、
x=1−[CNOx−out/{CNOx−in×(21−12)/(21−CO2)}] ・・・(U1)
(但し、CO2は焼却炉出口側での酸素濃度(%))
予め求められている脱硝率xと当該脱硝率xを達成するための還元剤の当量比(還元剤/窒素酸化物)λとの関係を示すデータに基づき、上記(U1)式にて求められた脱硝率xに対応する当量比λを求め、
上記当量比λを下記(U2)式に代入して、排ガス量に基づく還元剤の供給量(FRED)を求め、
RED=10−6×FGAS×(1−CH2O)×CNOx−in×λ ・・・(U2)
(但し、CH2Oは焼却炉出口側での水分(体積比))
上記求められた供給量(FRED)でもって還元剤を供給することを特徴とする焼却設備における還元剤供給方法。
An incinerator provided with a combustion chamber for burning waste and a flue for guiding the exhaust gas generated in the combustion chamber to the outside, and an exhaust gas treatment device is provided in the middle of the exhaust gas discharged from the incinerator to the atmosphere side A method of supplying a reducing agent for suppressing the generation of nitrogen oxides in the exhaust gas in an incineration facility having an exhaust gas treatment path portion comprising:
By subtracting the flow rate of fluid such as water and air supplied to the exhaust gas treatment path from the amount of exhaust gas discharged from the exhaust gas treatment path, the amount of exhaust gas (F GAS ) at the incinerator outlet side is obtained.
Using the relationship between the amount of exhaust gas at the position before the supply of the reducing agent and the nitrogen oxide concentration at the incinerator outlet side, which was measured in advance in the incinerator, the amount of exhaust gas (F GAS ) obtained before the supply of the reducing agent. Determine the nitrogen oxide concentration (C NOx-in ) (ppm) at the position,
The above-obtained nitrogen oxide concentration (C NOx-in ) and the nitrogen oxide concentration (C NOx-out ) (ppm) as the target value are substituted into the following equation (U1) to obtain the denitration rate x,
x = 1- [ CNOx-out / {CNOx -in x (21-12) / (21- CO2 )}] (U1)
(However, CO2 is the oxygen concentration (%) at the incinerator outlet side)
Based on the data indicating the relationship between the denitration rate x obtained in advance and the equivalent ratio (reducing agent / nitrogen oxide) λ of the reducing agent to achieve the denitration rate x, the above-described equation (U1) is used. The equivalent ratio λ corresponding to the denitration rate x is obtained,
Substituting the equivalent ratio λ into the following equation (U2), the supply amount of reducing agent (F RED ) based on the amount of exhaust gas is obtained,
F RED = 10 −6 × F GAS × (1-C H 2 O ) × C NOx-in × λ (U2)
(However, C H2O is moisture at the incinerator outlet side (volume ratio))
A reducing agent supply method in an incineration facility, characterized in that a reducing agent is supplied with the determined supply amount (F RED ).
還元剤の供給手前位置での窒素酸化物濃度(CNOx−in)を求める関係として下記(U)式を用いることを特徴とする請求項1に記載の焼却設備における還元剤供給方法。
NOx−in=A1×FGAS+A2 ・・・(U)
(但し、A1およびA2は定数)
The method for supplying a reducing agent in an incineration facility according to claim 1, wherein the following equation (U) is used as a relationship for obtaining a nitrogen oxide concentration (C NOx-in ) at a position before the reducing agent is supplied.
C NOx-in = A1 × F GAS + A2 (U)
(However, A1 and A2 are constants)
還元剤の供給手前位置での窒素酸化物濃度を求める関係として下記(V)式を用いることを特徴とする請求項1に記載の焼却設備における還元剤供給方法。
NOx−in=B1×FGAS+B2×CO2+B3 ・・・(V)
(但し、B1,B2およびB3は定数、CO2は焼却炉出口側での酸素濃度)
The method for supplying a reducing agent in an incineration facility according to claim 1, wherein the following equation (V) is used as a relationship for obtaining the nitrogen oxide concentration at a position before the reducing agent is supplied.
C NOx-in = B1 × F GAS + B2 × C O2 + B3 (V)
(However, B1, B2 and B3 are constants, CO2 is the oxygen concentration at the incinerator outlet side)
排ガス処理経路部出口側の排ガス中の窒素酸化物濃度(CNOx−s)を計測し、当該計測された窒素酸化物濃度(CNOx−s)を下記(W)式に代入することにより供給手前位置の窒素酸化物濃度(CNOx−in)を補正して補正窒素酸化物濃度(CNOx−in−M)を求めるとともに、この求められた補正窒素酸化物濃度(CNOx−in−M)を用いて脱硝率xを補正することを特徴とする請求項1乃至3のいずれか一項に記載の焼却設備における還元剤供給方法。
NOx−in−M=(CNOx−s/CNOx−out)×CNOx−in ・・・(W)
Supply by measuring the nitrogen oxide concentration (C NOx-s ) in the exhaust gas on the outlet side of the exhaust gas treatment path and substituting the measured nitrogen oxide concentration (C NOx-s ) into the following equation (W) together determine the corrected concentration of nitrogen oxides nearby position (C NOx-in) correcting the concentration of nitrogen oxides (C NOx-in-M) , thus determined correction nitrogen oxide concentration (C NOx-in-M 4 is used to correct the denitration rate x, the reducing agent supply method in the incineration facility according to any one of claims 1 to 3.
C NOx-in-M = (C NOx-s / C NOx-out ) × C NOx-in (W)
JP2015124312A 2015-06-22 2015-06-22 Reducing agent supply method in incinerator Active JP6049809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124312A JP6049809B2 (en) 2015-06-22 2015-06-22 Reducing agent supply method in incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124312A JP6049809B2 (en) 2015-06-22 2015-06-22 Reducing agent supply method in incinerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011282567A Division JP5769614B2 (en) 2011-12-26 2011-12-26 Reducing agent supply method and reducing agent supply apparatus in incineration facility

Publications (2)

Publication Number Publication Date
JP2015205272A true JP2015205272A (en) 2015-11-19
JP6049809B2 JP6049809B2 (en) 2016-12-21

Family

ID=54602589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124312A Active JP6049809B2 (en) 2015-06-22 2015-06-22 Reducing agent supply method in incinerator

Country Status (1)

Country Link
JP (1) JP6049809B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153869A (en) * 1976-06-17 1977-12-21 Kurabo Ind Ltd Method and device for controlling equipment for removal of nitrogen oxides
US4188190A (en) * 1976-03-23 1980-02-12 Kurashiki Boseki Kabushiki Kaisha Input control method and means for nitrogen oxide removal means
JPS60202716A (en) * 1984-03-27 1985-10-14 Nippon Kokan Kk <Nkk> Method for controlling injecting rate of nh3 in noncatalytic denitrating method
JPS61153124A (en) * 1984-12-26 1986-07-11 Toyota Motor Corp Method for controlling injection of ammonia in noncatalytic denitrating process
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility
EP0263195A1 (en) * 1986-10-07 1988-04-13 Nippon Kokan Kabushiki Kaisha Method and apparatus for controlling denitration of exhaust gas
JPH06272809A (en) * 1993-03-17 1994-09-27 Babcock Hitachi Kk Combustion device and combustion method
JP2003164725A (en) * 2001-12-03 2003-06-10 Nippon Steel Corp Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2006192406A (en) * 2005-01-17 2006-07-27 Kobelco Eco-Solutions Co Ltd METHOD AND APPARATUS FOR TREATING NOx OF WASTE TREATMENT FACILITY
JP2013132566A (en) * 2011-12-26 2013-07-08 Hitachi Zosen Corp Reducing agent supply method and reducing agent supply device for incinerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188190A (en) * 1976-03-23 1980-02-12 Kurashiki Boseki Kabushiki Kaisha Input control method and means for nitrogen oxide removal means
JPS52153869A (en) * 1976-06-17 1977-12-21 Kurabo Ind Ltd Method and device for controlling equipment for removal of nitrogen oxides
JPS60202716A (en) * 1984-03-27 1985-10-14 Nippon Kokan Kk <Nkk> Method for controlling injecting rate of nh3 in noncatalytic denitrating method
JPS61153124A (en) * 1984-12-26 1986-07-11 Toyota Motor Corp Method for controlling injection of ammonia in noncatalytic denitrating process
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility
EP0263195A1 (en) * 1986-10-07 1988-04-13 Nippon Kokan Kabushiki Kaisha Method and apparatus for controlling denitration of exhaust gas
JPH06272809A (en) * 1993-03-17 1994-09-27 Babcock Hitachi Kk Combustion device and combustion method
JP2003164725A (en) * 2001-12-03 2003-06-10 Nippon Steel Corp Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
JP2005169331A (en) * 2003-12-15 2005-06-30 Jfe Engineering Kk Denitrification control method and program for the same
JP2006192406A (en) * 2005-01-17 2006-07-27 Kobelco Eco-Solutions Co Ltd METHOD AND APPARATUS FOR TREATING NOx OF WASTE TREATMENT FACILITY
JP2013132566A (en) * 2011-12-26 2013-07-08 Hitachi Zosen Corp Reducing agent supply method and reducing agent supply device for incinerator

Also Published As

Publication number Publication date
JP6049809B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5769614B2 (en) Reducing agent supply method and reducing agent supply apparatus in incineration facility
JP5931506B2 (en) Denitration apparatus and reducing agent distribution adjustment method for denitration apparatus
EP2385226B1 (en) Exhaust gas cleaning device
JP2017200668A (en) Exhaust gas desalination apparatus
CN106061584A (en) System for discharge gas treatment and method for discharge gas treatment
JP2010234321A (en) Ammonia injection amount correction controller and ammonia injection amount correction control method
JP4455349B2 (en) NOx treatment method and apparatus for waste treatment facility
JP6049809B2 (en) Reducing agent supply method in incinerator
JP5838034B2 (en) Denitration control method and exhaust gas treatment facility
JP2007232308A (en) Gas treating apparatus
JP2013017934A (en) Denitration device and denitration method
JP5302618B2 (en) Nitrogen oxide treatment equipment
Jakubiak et al. The effect of ozone feeding mode on the effectiveness of NO oxidation
KR102337026B1 (en) Apparatus for treating exhaust gas comprising nitrogen oxide in thermal power plant and Method for treating exhaust gas comprising nitrogen oxide in thermal power plant
US20100300336A1 (en) Reduction of mercury from a coal fired boiler
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
JP2013205003A (en) Non-catalytic denitration method and device
JP5501665B2 (en) Exhaust gas treatment system and boiler combustion control method
JP6458298B2 (en) Incineration equipment
JPH11235516A (en) Denitrification device for exhaust gas
KR100899105B1 (en) Ammonia tunning method applicable to burning gas exhaust system
JP2017089928A (en) Stoker type incinerator and incinerator
EP4015062A1 (en) Method of controlling lances in sncr system
JP2003164725A (en) Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
JP2012002463A (en) Combustion plant controller, and combustion plant control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250