JPS61153124A - Method for controlling injection of ammonia in noncatalytic denitrating process - Google Patents

Method for controlling injection of ammonia in noncatalytic denitrating process

Info

Publication number
JPS61153124A
JPS61153124A JP59276580A JP27658084A JPS61153124A JP S61153124 A JPS61153124 A JP S61153124A JP 59276580 A JP59276580 A JP 59276580A JP 27658084 A JP27658084 A JP 27658084A JP S61153124 A JPS61153124 A JP S61153124A
Authority
JP
Japan
Prior art keywords
amount
nox
injected
concentration
amt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59276580A
Other languages
Japanese (ja)
Inventor
Hidetoshi Watanabe
秀利 渡辺
Hiroshi Tanido
谷戸 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59276580A priority Critical patent/JPS61153124A/en
Publication of JPS61153124A publication Critical patent/JPS61153124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of NH3 by obtaining the provisional amt. of NH3 to be injected from the amt. of combustion gas, the concn. of generated NOx, and the concn. of NOx after denitration, obtaining further the amt. to be injected by the concn. of the residual NH3, and controlling by a temp. selector. CONSTITUTION:The amt. of combustion gas is calculated by an arithmetic unit 13 of the amt. of combustion gas, and the amt. of NOx is calculated along with the signal from an NOx analyzer 10b. The signal 15 of the set NOx concn., the signal of the denitration rate by a denitration rate arithmetic unit 19, and the signal of an arithmetic unit 18 of the amt. of excess NOx are inputted to an arithmetic unit 21 of the amt. of injected NH3 to obtain a provisional amt. (I) of injected NH3. A provisional amt. (II) of injected NH3 is obtained at an arithmetic unit 28 of the amt. of injected NH3 from the signal of an arithmetic unit 22 of the amt. of residual NH3 and the signal of a storage device 25 of the amt. of injected NH3. The smaller value between the provisional amts. of injected NH3 (I) and (II) is selected by a low selector 29, inputted to a temp. selector 26, then inputted directly to a NH3 flow rate regulator 30 when the denitration temp. is appropriate, and NH3 is injected from a nozzle 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はボイラー等の排ガス中のNOxを除去する際の
無触媒脱硝法におけるNH3注入量制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the amount of NH3 injected in a non-catalytic denitrification method when removing NOx from exhaust gas from a boiler or the like.

従来の技術 従来、ボイラー等の排ガスの無触媒脱硝法は、特公昭5
0−35908号公報に記載されているようにNHaを
注入しておシ、実際の操作は第4図に示すようにボイラ
ー401の火炉402と連通する水管部403の入口部
404にNOxセンサー405及び、水管2〜3列後ろ
の火炎の影響を受けない部分に、NHa注入ノズル40
6を有するNHj注入装置401を配設し、また水管部
403の出口と連通している煙道408に、排ガス流量
計409及びNOxセンサー410を取付け、NH3注
入量を前記排ガス流量計409及び2つのNOxセンサ
ー405と410との濃度から脱硝率を求め、これと予
じめ設定した設定脱硝率(′nとからNHa注入量大量
定している。
Conventional technology Conventionally, the non-catalytic denitrification method for exhaust gas from boilers, etc.
NHa is injected as described in Japanese Patent No. 0-35908, and the actual operation is as shown in FIG. In addition, NHa injection nozzle 40 is installed in the part unaffected by the flame behind 2 to 3 rows of water pipes.
6, an exhaust gas flow meter 409 and a NOx sensor 410 are attached to the flue 408 communicating with the outlet of the water pipe section 403, and the NH3 injection amount is measured by the exhaust gas flow meter 409 and the NOx sensor 410. The denitrification rate is determined from the concentrations of the two NOx sensors 405 and 410, and a large amount of NHa injection is determined from this and a preset denitrification rate ('n).

即ち、前述従来のNHa注入量大量御因子は脱硝率であ
り、ボイラーが低負荷の場合でも、脱硝率を制御因子と
する場合には、常に設定脱硝率となる様にNHsが注入
されている◇本発明が解決しようとする問題点 一般に、燃焼ガス中の発生NOx濃度及び燃焼ガス温度
は、第5図及び第6図に示すように、ボイラー負荷に支
配され、ボイラーが低負荷である場合には発生NOx濃
度及び燃焼ガス温度は低下する。
In other words, the conventional control factor for the large amount of NHa injection is the denitration rate, and even when the boiler is under low load, when the denitration rate is used as a control factor, NHs is always injected so that the set denitration rate is achieved. ◇Problems to be solved by the present invention In general, the NOx concentration in the combustion gas and the combustion gas temperature are dominated by the boiler load, as shown in Figures 5 and 6, and when the boiler is under low load. In this case, the NOx concentration and combustion gas temperature decrease.

しかし、脱硝率のみを制御因子としてNH3を注入する
場合、即ち排ガス中のNOx濃度が低い場合でも、ボイ
ラー負荷と関係なく NH8を注入することになる。し
かし、NOx濃度が低い場合には、NHa / No 
X比が同一となるようにNH,を注入しても、高No、
xl1度時に比較して、低NOx濃度時では・NH3分
子とNOx分子とが反応する確率が小さく、従って脱硝
率は悪い。
However, when NH3 is injected with only the denitrification rate as a control factor, that is, even when the NOx concentration in the exhaust gas is low, NH8 is injected regardless of the boiler load. However, when the NOx concentration is low, NHa/No
Even if NH is injected so that the X ratio is the same, high No.
Compared to when xl is 1 degree, when the NOx concentration is low, the probability that NH3 molecules and NOx molecules will react is small, and therefore the denitrification rate is poor.

その為、脱硝率のみを制御因子とする場合、設定脱硝率
を得ようとするため多量のNHaが注入され、その結果
排ガス中の残留NH3量の増加を招く。
Therefore, when the NOx removal rate is the only control factor, a large amount of NHa is injected in order to obtain the set NOx removal rate, resulting in an increase in the amount of NH3 remaining in the exhaust gas.

また、従来方法では、燃焼ガス温度を脱硝反応温度範囲
に維持するため、ボイ2−に過剰空気を加えたシ、アフ
ターバーナー等で温度を調整しているが、ボイラーの効
率の低下を招く。
In addition, in the conventional method, in order to maintain the combustion gas temperature within the denitrification reaction temperature range, the temperature is adjusted by adding excess air to the boiler 2-, using an afterburner, etc., but this results in a decrease in the efficiency of the boiler.

以上のように従来の方法ではボイラーの負荷変動それに
伴な5 NOx濃度の変動及びガス温度の変動に対応で
きず、脱硝効率が悪く、さらに消費NH3量の増加に伴
なう排ガス中の残留、NHa量が許容濃度(25ppm
以下)を越えるばかりか、NH3消費量増大に伴うコス
ト高を招来する。
As mentioned above, conventional methods cannot cope with fluctuations in boiler load, NOx concentration, and gas temperature, resulting in poor denitrification efficiency, and the amount of NH3 remaining in exhaust gas due to increased consumption of NH3. The amount of NHa is within the permissible concentration (25 ppm
(below), and also lead to higher costs due to increased NH3 consumption.

問題点を解決するための手段 本発明はボイラー等の排ガス中のNOxをNH3で除去
する無触媒脱硝法において、燃焼ガス量と発生NOx濃
度を測定して燃焼ガス中のNOx量を求めると共に、脱
硝後のNOx濃度と、予じめ設定した設定排出NOx濃
度とから暫定注入NH3量を算出し、他方、排ガス中の
残留NH3濃度と予じめ設定した設定排出残留NH,濃
度とから排ガス中のNH,残留率を求め、これと前記燃
焼ガの暫定注入NH3量を比較して、注入NH3量の少
ない方を選択し、さらに燃焼ガス温度が脱硝反応温度で
あるか否かをチェックしてNHsを注入する無触媒脱硝
法におけるNH3注入量制御方法である。
Means for Solving the Problems The present invention is a non-catalytic denitrification method in which NOx in the exhaust gas of a boiler or the like is removed using NH3, and the amount of NOx in the combustion gas is determined by measuring the amount of combustion gas and the concentration of NOx generated. The provisional injection amount of NH3 is calculated from the NOx concentration after denitrification and the preset set discharge NOx concentration, and on the other hand, the amount of provisionally injected NH3 is calculated from the residual NH3 concentration in the exhaust gas and the preset discharge residual NH concentration. Find the NH, residual rate, compare this with the provisionally injected NH3 amount of the combustion gas, select the one with the smaller injected NH3 amount, and check whether the combustion gas temperature is the denitrification reaction temperature or not. This is a method for controlling the amount of NH3 injection in a non-catalytic denitrification method in which NHs is injected.

作用、効果 本発明は以上の如き構成のものからなシ、発生NOx濃
度、脱硝後の排ガス中のNOx濃度及び燃焼ガス量を測
定し、また、予じめ設定した設定排出NOx濃度と脱硝
後のNOx濃度から脱硝割合を求め、これらから注入N
Ha量を算出する(これを暫定注入量■とする)。
Functions and Effects The present invention is constructed as described above, and measures the generated NOx concentration, the NOx concentration in the exhaust gas after denitration, and the amount of combustion gas, and also measures the preset exhaust NOx concentration and the after-denitration concentration. The denitrification rate is determined from the NOx concentration of
Calculate the amount of Ha (this is set as the provisional injection amount ■).

他方、排ガス中の残留NH3濃度を求め、予じめ設定し
た設定残留NH3濃度を比較し、また燃焼ガス量から注
入NH3量を算出する(これを暫e!2片1凰TIXL
、J−1 以上のようにして得られた暫定注入量(1)及び(n)
とを比較し、NHg量の少ない方を選択する。
On the other hand, calculate the residual NH3 concentration in the exhaust gas, compare it with the preset residual NH3 concentration, and calculate the amount of NH3 to be injected from the amount of combustion gas (this is temporarily e!2 piece 1 TIXL
, J-1 Provisional injection amounts (1) and (n) obtained as above
and select the one with the smaller amount of NHg.

即ち、暫定注入量(1)は、現時点の脱硝率より算出し
た仮の注入NH3量であシ、また暫定注入量(n)は残
留NH3濃度よシ求めた仮の注入量であり、暫定量(1
)が暫定量(II)よりも高い場合は、排ガス中の残留
NH3濃度が予じめ設定した設定残留NH3濃度を越え
てしまうため、低い値即ち暫定量(If)を選択する。
That is, the provisional injection amount (1) is the provisional injection amount of NH3 calculated from the current denitrification rate, and the provisional injection amount (n) is the provisional injection amount calculated based on the residual NH3 concentration. (1
) is higher than the provisional amount (II), the residual NH3 concentration in the exhaust gas exceeds the preset residual NH3 concentration, so a lower value, that is, the provisional amount (If) is selected.

暫定量(1)が暫定量(It)よシも低い場合、排ガス
中の残留NH3濃度の心配はなく、脱硝後のNOx濃度
を設定排出NOx濃度とするため及θNH3消費量を低
減するためにNH’a注入量の低−値、即ち暫定量(1
)を選択する。
If the provisional amount (1) is lower than the provisional amount (It), there is no need to worry about the residual NH3 concentration in the exhaust gas, and in order to set the NOx concentration after denitrification to the set exhaust NOx concentration, The low value of the NH'a injection amount, i.e. the provisional amount (1
).

また、脱硝反応は燃焼ガス温度に影響されるため、前記
のようにして選択された注入NH3量〜1200’O)
である場合にNH3流量調整弁の弁開度を調整してNH
3を注入し、脱硝反応温度範囲外であるときはNH,流
量調整弁を閉止し、残留NH,量の増加もしくはNH3
の酸化9分解によるNOxの増加を防止する。
In addition, since the denitrification reaction is affected by the combustion gas temperature, the amount of injected NH3 selected as described above ~1200'O)
, adjust the valve opening of the NH3 flow rate adjustment valve to
3, and if it is outside the denitrification reaction temperature range, close the NH flow rate adjustment valve and remove residual NH, increase in amount, or remove NH3.
Prevents the increase in NOx due to oxidative decomposition of

以上の如く本発明はボイラー等の排ガスの無触媒脱硝法
で使用するNH3注入量を、燃焼ガス量9発生NOx濃
度及び脱硝後のNOx濃度とから暫定的に求め、さらに
これを排ガス中の残留NH3濃度による暫定注入量を求
めると共に温度選択器により【制御するものであるから
、ボイラーの負荷の変動及びこれに伴なう燃焼ガス温度
に対応して適正なNHg量として注入することができる
から、過度の脱硝率が防止でき、また、排ガス中の残留
NHg量を許容範囲に制御できると共にNH3消費量を
大巾に低減することができる効果がある。
As described above, the present invention temporarily determines the NH3 injection amount used in the non-catalytic denitration method of exhaust gas from boilers, etc. from the combustion gas amount 9 generated NOx concentration and the NOx concentration after denitration, and further calculates this amount from the NOx concentration remaining in the exhaust gas. Since the provisional injection amount is determined based on the NH3 concentration and is controlled by the temperature selector, the appropriate amount of NHg can be injected in response to fluctuations in the boiler load and the associated combustion gas temperature. This has the effect of preventing an excessive denitrification rate, controlling the amount of residual NHg in the exhaust gas within an acceptable range, and greatly reducing the amount of NH3 consumed.

実施例 第1図は本発明の一実施例を示したものであるが、つぎ
に図示例によって本発明を具体的に説明する。ボイラー
1が火炉2と火炉2に続く脱硝室3、該脱硝室3に続く
水管郡4.並びに該水管郡4に続く煙道5とからなシ、
脱硝室3内にNH,注入用のノズル6、温度計(熱電対
温度計)7及びNOxセンサー8aが取付けられており
、また煙道5内に02センサー9a1NOxセンいるが
、脱硝室3を有しないボイラーであってもよい。
Embodiment FIG. 1 shows an embodiment of the present invention. Next, the present invention will be specifically explained with reference to an illustrated example. The boiler 1 is connected to a furnace 2, a denitrification chamber 3 is connected to the furnace 2, and a water pipe group 4 is connected to the denitrification chamber 3. Also, the flue 5 and Karanashi following the water pipe group 4,
A nozzle 6 for NH injection, a thermometer (thermocouple thermometer) 7, and a NOx sensor 8a are installed in the denitration chamber 3, and an 02 sensor 9a1 NOx sensor is installed in the flue 5; It may be a boiler that does not.

ボイラー1を差Ikすれげ一檄棉ガスはル相りから脱硝
室3、水管郡4及び煙道5を順次導通して排棄される。
The cotton gas passing through the boiler 1 is sequentially passed through the denitrification chamber 3, the water pipe group 4 and the flue 5 to be discharged.

このときの燃焼ガス量は次のようにして算出される。即
ち燃料流量計(F′)から燃料流量信号を出力し、燃料
流量発信器12に入力され、さらに燃焼ガス量演算器1
3に入力される。該燃焼ガス量演算器13には、煙道5
に取付けられた02センサー9aで検知し、へ分析計9
bで算出した02濃度信号が同時に入力され、前記燃料
流量信号と0□濃度信号とから燃焼ガス量演算器13で
燃焼ガス量を算出する。
The amount of combustion gas at this time is calculated as follows. That is, a fuel flow rate signal is output from the fuel flow meter (F'), inputted to the fuel flow rate transmitter 12, and further inputted to the combustion gas amount calculator 1.
3 is input. The combustion gas amount calculator 13 includes a flue 5
Detected by the 02 sensor 9a attached to the analyzer 9
The 02 concentration signal calculated in step b is input at the same time, and the combustion gas amount calculator 13 calculates the amount of combustion gas from the fuel flow rate signal and the 0□ concentration signal.

他方、煙道5では02センサ一9a%NOxセンサー1
0a及び残留NH3センサー11aで、夫々排ガス中の
0□濃度、 NOx濃度及び残留NHa濃度を検知し、
夫々02分析計9b%NOx分析計10b及rc纏SV
口、A址科慴Lklff?リイ遭穿か呟1−1中ナスー
前記NOx分析計10bの濃度信号と、前記燃料ガス量
演算器13の燃焼ガス量信号を排出NOx量演算器14
に入力して排ガス中のNOx量を算出する〇 つぎに予じめ設定した設定NOx濃度信号15及び02
分析計9bと00□濃度信号とをNOx濃度換算器16
に入力して、設定NOx濃度を、その時の0□濃度の設
定NOx濃度に換算する。これは設定NOx濃度を規定
の02濃度時(例えば02−45b)のNOx濃度に変
換する必要があるためである。
On the other hand, in the flue 5, the 02 sensor - 9a% NOx sensor 1
0a and residual NH3 sensor 11a detect the 0□ concentration, NOx concentration, and residual NHa concentration in the exhaust gas, respectively.
02 analyzer 9b% NOx analyzer 10b and rc mat SV respectively
Mouth, A 倀か慴Lklff? The concentration signal from the NOx analyzer 10b and the combustion gas amount signal from the fuel gas amount calculator 13 are output to the NOx amount calculator 14.
Calculate the amount of NOx in the exhaust gas by inputting the following information: Next, enter the preset NOx concentration signals 15 and 02.
The analyzer 9b and the 00□ concentration signal are converted into the NOx concentration converter 16.
, and convert the set NOx concentration to the set NOx concentration of 0□ concentration at that time. This is because it is necessary to convert the set NOx concentration to the NOx concentration at the specified 02 concentration (for example, 02-45b).

さらに、 NOx濃度換算器16で換算された設定NO
x濃度信号と、燃焼ガス量演算器13の燃焼ガス量信号
とを、設定排出NOx量演算器1Tに入力して、設定排
出NOx量信号に変換すると共に、該設定排出NOx量
信号と、排出NOx量演算器14で算出された実際の排
出NOx量信号とを過剰NOx量演算器18に入力し、
設定排出NOx量と実際の排出NOx量との差を求める
Furthermore, the setting NO converted by the NOx concentration converter 16
The x concentration signal and the combustion gas amount signal from the combustion gas amount calculator 13 are input to the set exhaust NOx amount calculator 1T, where they are converted into a set exhaust NOx amount signal, and the set exhaust NOx amount signal and the exhaust Inputting the actual discharged NOx amount signal calculated by the NOx amount calculator 14 to the excess NOx amount calculator 18,
The difference between the set exhaust NOx amount and the actual exhaust NOx amount is determined.

他方、脱硝率演算器19では、排出NOx量演算器14
の排出NOx量信号とNOx量演算器20で得られた発
生NOx、量信号とを入力して脱硝率を算出する。前記
NOx量演算器20は、脱硝室3のNOxセンサー8a
で検知し、NOx分析計8bで得られた発生NOx濃度
信号と燃焼ガス量演算器13で算出した燃焼ガス量信号
から発生NOx量を算出する。さらに脱硝率演算器19
で得られた脱硝率信号と過剰NOx量演算器18におけ
る設定排出NOx量と実際の排出NOx量との差の信号
とを夫々注入NHs量演算器21に入力して注入NHa
量を算出する(これを暫定注入量(I)とする)。
On the other hand, in the denitrification rate calculator 19, the exhaust NOx amount calculator 14
The denitrification rate is calculated by inputting the discharged NOx amount signal and the generated NOx amount signal obtained by the NOx amount calculator 20. The NOx amount calculator 20 is a NOx sensor 8a of the denitrification chamber 3.
The generated NOx amount is calculated from the generated NOx concentration signal obtained by the NOx analyzer 8b and the combustion gas amount signal calculated by the combustion gas amount calculator 13. Furthermore, the denitrification rate calculator 19
The denitrification rate signal obtained in step 1 and the signal of the difference between the set discharged NOx amount and the actual discharged NOx amount in the excess NOx amount calculator 18 are inputted to the injection NHs amount calculator 21 to calculate the injection NHa.
Calculate the amount (this is set as the provisional injection amount (I)).

芸に、注入NH,量演算演算器で得られた暫定量(I)
は、燃焼ガス量と発生NOx濃度及び排出NOx濃度と
から排出NOx量を算出し、これを設定排出NOx量に
よって算出したものである。
In addition, the provisional amount (I) obtained by the injection NH and the amount calculation calculator
The exhaust NOx amount is calculated from the combustion gas amount, the generated NOx concentration, and the exhaust NOx concentration, and this is calculated based on the set exhaust NOx amount.

つぎに、残留NH!センサー11aで検知し、残留NH
3分析計11bで決定した残留NH3濃度信号と燃焼ガ
ス量演算器13で算出した燃焼ガス量信号とを残留NH
a量演算演算器に入力して、残留NHa量を算出し、他
方子じめ設定した設定残留NHa濃度信号23と燃焼ガ
ス量演算器13で算出した燃焼ガス量信号とを設定残留
NHa量算比算出器に入力して設定残留NHs量を算出
する。
Next, residual NH! Detected by sensor 11a, residual NH
3 The residual NH3 concentration signal determined by the analyzer 11b and the combustion gas amount signal calculated by the combustion gas amount calculator 13 are
a, the remaining NHa amount is calculated by inputting it to the amount calculation calculator, and the set residual NHa concentration signal 23 that has been previously set and the combustion gas amount signal calculated by the combustion gas amount calculator 13 are used to calculate the set residual NHa amount. Input it into a ratio calculator to calculate the set residual NHs amount.

さらに、注入NHs量記憶器25には、燃焼ガス量演算
器13の燃焼ガス量信号が入力されると共に温度選択器
26の信号が入力され、脱硝NH3センサー11aまで
の燃焼ガス通過時間Δtを算出し、残留NH!センサー
11aで残留NH,を検知した時間よりΔを時間前の注
入NH3量を記憶しておく。即ち、NH3を注入してか
ら脱硝反応が完了し、残留NHa濃度を測定する間、燃
焼ガス流速に応じた△を時間を要し、従って注入NH3
量と残留NH3量の比較に当シ、Δを時間だけ校正する
必要がある。尚、芸で脱硝室3のノズル6から注入され
るNH3量は、後述する温度選択器26によって決定さ
れた注入量である。
Furthermore, the combustion gas amount signal from the combustion gas amount calculator 13 is inputted to the injection NHs amount storage device 25, and the signal from the temperature selector 26 is also inputted, and the combustion gas passage time Δt to the denitrification NH3 sensor 11a is calculated. Residual NH! The amount of NH3 injected Δ hours before the time when residual NH was detected by the sensor 11a is stored. That is, after the denitrification reaction is completed and the residual NHa concentration is measured after NH3 is injected, it takes time depending on the combustion gas flow rate, and therefore the injected NH3
In order to compare the amount of residual NH3 and the amount of residual NH3, it is necessary to calibrate Δ by time. Incidentally, the amount of NH3 injected from the nozzle 6 of the denitrification chamber 3 is the injection amount determined by the temperature selector 26, which will be described later.

また、前記残留NH3量演算演算器で算出された残留N
H3量信号と、前記注入NH3量記憶器25で算出した
Δを時間前の注入NH3量信号とをNH,残留率演算器
27に入力してNH3残留率を算出し、前記設定残留N
H3量算出器24の設定残留NHg量信号と前記NH3
残留率演算器27のNH3残留率信号とを注入NH3量
演量器算器に入力して注入NH3量を算出する(これを
暫定注入量■とする)。この暫定注入量(If)は、N
%を注入した後、Δを時間後に排出される残留NH3量
を設定残留NH3量と仮定し、さらにNHsの残留率が
現在もそのま\であるとした場合のNHs注入量である
In addition, the residual N calculated by the residual NH3 amount calculating unit
The H3 amount signal and the injected NH3 amount signal Δ calculated by the injected NH3 amount memory 25 are input to the NH and residual rate calculator 27 to calculate the NH3 residual rate, and the set residual N
The setting residual NHg amount signal of the H3 amount calculator 24 and the NH3
The NH3 residual rate signal from the residual rate calculator 27 is input to the injected NH3 amount calculator to calculate the injected NH3 amount (this is set as the provisional injection amount ■). This provisional injection amount (If) is N
This is the amount of NHs injected assuming that the amount of residual NH3 that is discharged after a time of Δ after injecting % is the set amount of residual NH3, and that the residual rate of NHs remains the same.

つぎに注入NHa量演量器算器で算出した暫定法人量(
II)信号と前記注入NHa量演量器算器で算出した暫
定注入量(I)とをローセレクター29に入力し、 N
H3量の少ない方を選択する。即ち、注入NH3量演量
器算器で算出した暫定注入量(■)−は設定残留NHa
濃度23の値より求めた仮の注入NHa量であシ、マた
注入NH3量演量器算器の暫定注入量(1)は、現時点
の脱硝率よシ算出した仮の注入NH3量であ夛、暫定量
(I)が暫定量(II)よりも高い場合は、排ガス中の
残留NHa濃度が予じめ設定した設定残留NH3濃度を
越えてしまうため、低い値即ち暫定量(II)を選択す
る。
Next, the provisional corporate amount (
II) Input the signal and the provisional injection amount (I) calculated by the injection NHa amount calculator to the low selector 29, and
Select the one with the smaller amount of H3. In other words, the provisional injection amount (■) calculated by the injection NH3 amount calculator - is the set residual NHa
The provisional injection amount (1) of the injection NH3 amount calculation calculator is the provisional injection amount of NHa calculated from the value of concentration 23. If the provisional amount (I) is higher than the provisional amount (II), the residual NHa concentration in the exhaust gas will exceed the preset residual NH3 concentration. select.

暫定量(1)が暫定量(If)よりも低い場合、排ガス
中の残留NH,濃度の心配はなく、脱硝後のNOx濃度
を設定排出NOx濃度とするため及びNHa消費量を低
減するためにs NHa注入量の低い値、即ち暫定量(
I)を選択する。従って、ローセレクター29に於て注
入NHa量の少ない方を選択する。
If the provisional amount (1) is lower than the provisional amount (If), there is no need to worry about the concentration of residual NH in the exhaust gas, and in order to set the NOx concentration after denitrification to the set exhaust NOx concentration and to reduce the amount of NHa consumption. s Low value of NHa injection amount, i.e. provisional amount (
Select I). Therefore, the low selector 29 selects the smaller amount of NHa to be injected.

さらにローセレクター29で選択された暫定注入量(暫
定注入量(I)又は(If)の何れか)を温度選択器2
6に入力する。該温度選択器26には、脱硝室3に取付
けられた温度計7の温度信号が入力されており、この時
の温度が脱硝温度範囲内である場合には、温度選択器2
6に入力した暫定注入量を最終的に決定した注入NHa
量とし、該注入NHa量信号を注入NHa量記憶器25
及びNHs流量調節器30へ夫々入力する。
Furthermore, the provisional injection amount (either provisional injection amount (I) or (If)) selected by the low selector 29 is transferred to the temperature selector 2.
Enter 6. The temperature signal from the thermometer 7 installed in the denitrification chamber 3 is input to the temperature selector 26, and if the temperature at this time is within the denitrification temperature range, the temperature selector 2
Injection NHa that finally determined the provisional injection amount entered in 6.
and the injected NHa amount signal is stored in the injected NHa amount memory 25.
and input to the NHs flow rate regulator 30, respectively.

NHs流量調節器30では、NHi流量計31及びNH
3流量発信器32の出力信号と、温度選択器26の信号
とが一致するようにNH3流量調整弁33の弁開度を調
整してノズル6よf) NHaを注入する。
In the NHs flow rate regulator 30, the NHi flowmeter 31 and the NH
3) Adjust the valve opening of the NH3 flow rate adjustment valve 33 so that the output signal of the flow rate transmitter 32 and the signal of the temperature selector 26 match, and inject NHa through the nozzle 6f).

また、温度選択器26で検知した燃焼ガス温度が、脱硝
温度範囲外である場合は、排出NOx濃度の多少、残留
NHs濃度の多少に係わらず、NHsの注入を停止する
。即ち、燃焼ガス温度が脱硝反応温度範囲外では、NH
3を注入しても脱硝反応は行われず、かえって残留NH
a量の増加又は注入したNH3の分解を招き、逆にNO
xが増加−F六ナー払笛ζM易fC俯nMf千手計^f
益庄NOx濃度が設定NOx濃度よシ低い場合及び脱硝
反応温度範囲にNHaを注入するように制御できるO 第2図は燃焼ガス温度と脱硝割合との関係であシ、また
第3図は燃焼ガス温度とNH,注入量との関係を示した
ものであるが(第2因、第3図中実線は従来法9点線は
本発明法を夫々示す入従来法では燃焼ガス温度約950
℃で最低脱硝割合を示している。即ち、約950℃では
過度の脱硝反応が行われている。
Further, when the combustion gas temperature detected by the temperature selector 26 is outside the denitrification temperature range, the injection of NHs is stopped regardless of the exhaust NOx concentration or the residual NHs concentration. That is, when the combustion gas temperature is outside the denitrification reaction temperature range, NH
Even if 3 is injected, the denitrification reaction does not take place, and instead the residual NH
This may lead to an increase in the amount of a or decomposition of the injected NH3, and conversely lead to NO
x increases - F six-nare whistle ζ M easy f C down n Mf thousand-handed measure ^f
When the NOx concentration is lower than the set NOx concentration, NHa can be controlled to be injected within the denitration reaction temperature range. Figure 2 shows the relationship between the combustion gas temperature and the denitrification rate, and Figure 3 shows the combustion The relationship between gas temperature and NH and injection amount is shown (the second factor is the solid line in Figure 3, which is the conventional method; the dotted line is the method of the present invention; the combustion gas temperature in the conventional method is approximately 950;
℃ shows the lowest denitrification rate. That is, at about 950°C, excessive denitrification reaction occurs.

これに対し、本発明では燃焼ガス温度800〜1100
℃即ち脱硝反応温度内でほぼソ一定の脱硝割合を維持す
ることができる。
In contrast, in the present invention, the combustion gas temperature is 800 to 1100.
It is possible to maintain a substantially constant denitrification rate within the denitrification reaction temperature.

また、第3図に示すように、従来法におけるNH3注入
量に比較して本発明では斜線で示すよへFlIJTJ3
律λ番冬す由1/jイ丘曽す乙と2かで負る。
In addition, as shown in FIG. 3, compared to the amount of NH3 injected in the conventional method, the amount of FlIJTJ3 in the present invention is indicated by diagonal lines.
Ritsu λ Banfuyu 1/j I Oka Sosu Otsu and 2.

以上の如く本発明は予じめ設定した設定排出NOx濃度
と実際の排ガス中・のNOx濃度を比較して注入NHs
量を暫定的に算出し、これをさ、らに排ガス中の残留N
Ha濃度と予じめ設定した残留NHa濃度から暫定的に
求めた注入NH,量とから適正な注入NHs量求め、ま
た温度チェックするものであるから排ガスの過度の脱硝
を抑え、また排ガス中の残留NH3量を抑えることによ
り排ガス中のNH3を許容濃度範囲に抑え、同時にNH
,の消費量の低減を図ることができる。
As described above, the present invention compares the preset exhaust NOx concentration and the actual NOx concentration in the exhaust gas to determine whether the injected NHs
The amount of residual N in the exhaust gas is calculated provisionally and
The appropriate amount of NHs to be injected is calculated from the Ha concentration and the amount of NH temporarily determined from the preset residual NHa concentration, and the temperature is checked, so excessive denitration of the exhaust gas is suppressed, and the amount of NH in the exhaust gas is By suppressing the amount of residual NH3, NH3 in the exhaust gas is kept within the permissible concentration range, and at the same time, NH3 is
, the consumption amount can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は燃焼ガス
温度に対する脱硝割合を示すグラフ1第3図は燃焼ガス
温度に対するNHa注入量大量すグラフ、第4図は従来
法の説明図、第5因はボイラー負荷に対するNOx発生
濃度を示すグラフ、第6図はボイラー負荷に対する燃焼
ガス温度を示すグラフである。 1:ボイラー、2:火炉、3:脱硝室、4:水管部、5
:煙道、6:注入ノズル、7:温度計、8a:発生NO
xセンサー、8b : NOx分析計、9 a : 0
2センサー、9 b : 02分析計、10a:NOx
センサー、10 b : NOx分析計、11a:残留
NH3センサー、11b:残留NH3分析計、12:燃
料流量発信器、13:燃焼ガス量演算器、14:排出N
Ox量演算器、15:設定NOx濃度信号、l @ :
 NOx濃度換算器、17:設定°排出NOx量演算器
、18:過剰NOx量演算器、19:脱硝率演算器、2
0 : N0xl演算器、21:注入NH3量演算演算
器2:残留NH3量演算演算器3:設定残留NHa濃度
信号、24:設定残留NHs量算出器、25:注入NH
s量記憶器、26:温度選択器、27 : NH3残留
率演算器、28:注入NHa量演算演算器9:ローセレ
クター、30 : NHs流量調節器、31 : NH
,I流量計、32 : NHs流量発信器、33 : 
NH,流量調整弁。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a graph showing the denitrification rate with respect to combustion gas temperature, Fig. 3 is a graph of large amount of NHa injection with respect to combustion gas temperature, and Fig. 4 is a graph of the conventional method. In the explanatory diagram, the fifth factor is a graph showing the NOx generation concentration with respect to the boiler load, and FIG. 6 is a graph showing the combustion gas temperature with respect to the boiler load. 1: Boiler, 2: Furnace, 3: Denitrification room, 4: Water pipe section, 5
: Flue, 6: Injection nozzle, 7: Thermometer, 8a: Generated NO
x sensor, 8b: NOx analyzer, 9a: 0
2 sensors, 9b: 02 analyzer, 10a: NOx
Sensor, 10b: NOx analyzer, 11a: Residual NH3 sensor, 11b: Residual NH3 analyzer, 12: Fuel flow transmitter, 13: Combustion gas amount calculator, 14: Emission N
Ox amount calculator, 15: Setting NOx concentration signal, l @:
NOx concentration converter, 17: Setting ° discharge NOx amount calculator, 18: Excess NOx amount calculator, 19: Denitrification rate calculator, 2
0: N0xl calculator, 21: Injected NH3 amount calculator 2: Residual NH3 amount calculator 3: Set residual NHa concentration signal, 24: Set residual NHs amount calculator, 25: Injected NH3 amount calculator
s amount storage device, 26: Temperature selector, 27: NH3 residual rate calculator, 28: Injected NHa amount calculation calculator 9: Low selector, 30: NHs flow rate regulator, 31: NH
, I flowmeter, 32: NHs flow rate transmitter, 33:
NH, flow rate adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] ボイラー等の排ガス中のNOxをNH_3で除去する無
触媒脱硝法において、燃焼ガス量と発生NOx濃度を測
定して燃焼ガス中のNOx量を求めると共に、脱硝後の
NOx濃度と、予じめ設定した設定排出NOx濃度とか
ら暫定注入NH_3量を算出し、他方排ガス中の残留N
H_3濃度と予じめ設定した設定排出残留NH_3濃度
とから排ガス中のNH_3残留率を求め、これと前記燃
焼ガス量とから暫定注入NH_3量を算出し、前記2つ
の暫定注入NH_3量を比較して注入NH_3量の少な
い方を選択し、さらに燃焼ガス温度が脱硝反応温度であ
るか否かをチエツクしてNH_3を注入することを特徴
とする無触媒脱硝法におけるNH_3注入量制御方法。
In the non-catalytic denitrification method, which removes NOx in exhaust gas from boilers, etc. using NH_3, the amount of combustion gas and the NOx concentration generated are measured to determine the amount of NOx in the combustion gas, and the NOx concentration after denitration is determined in advance. Calculate the provisional injection amount of NH_3 from the set exhaust NOx concentration, and calculate the remaining N in the exhaust gas.
The NH_3 residual rate in the exhaust gas is determined from the H_3 concentration and the preset discharge residual NH_3 concentration, the provisional injection NH_3 amount is calculated from this and the combustion gas amount, and the two provisional injection NH_3 amounts are compared. A method for controlling the amount of NH_3 injected in a non-catalytic denitrification method, characterized by selecting the smaller amount of NH_3 to be injected, and further checking whether the combustion gas temperature is at the denitrification reaction temperature before injecting NH_3.
JP59276580A 1984-12-26 1984-12-26 Method for controlling injection of ammonia in noncatalytic denitrating process Pending JPS61153124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276580A JPS61153124A (en) 1984-12-26 1984-12-26 Method for controlling injection of ammonia in noncatalytic denitrating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276580A JPS61153124A (en) 1984-12-26 1984-12-26 Method for controlling injection of ammonia in noncatalytic denitrating process

Publications (1)

Publication Number Publication Date
JPS61153124A true JPS61153124A (en) 1986-07-11

Family

ID=17571445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276580A Pending JPS61153124A (en) 1984-12-26 1984-12-26 Method for controlling injection of ammonia in noncatalytic denitrating process

Country Status (1)

Country Link
JP (1) JPS61153124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342721A (en) * 1986-08-08 1988-02-23 Babcock Hitachi Kk Controlling device for injection amount of ammonia
WO1991006506A1 (en) * 1987-03-06 1991-05-16 Fuel Tech, Inc. System for the efficient reduction of nitrogen oxides in an effluent
JPH06226043A (en) * 1992-12-22 1994-08-16 Ind Technol Res Inst Injection type noncatalytic system for controlling process of removing nitrogen oxide
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342721A (en) * 1986-08-08 1988-02-23 Babcock Hitachi Kk Controlling device for injection amount of ammonia
WO1991006506A1 (en) * 1987-03-06 1991-05-16 Fuel Tech, Inc. System for the efficient reduction of nitrogen oxides in an effluent
JPH06226043A (en) * 1992-12-22 1994-08-16 Ind Technol Res Inst Injection type noncatalytic system for controlling process of removing nitrogen oxide
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment

Similar Documents

Publication Publication Date Title
US4188190A (en) Input control method and means for nitrogen oxide removal means
US20030046928A1 (en) Method and apparatus for controlling the amount of reactant to be added to a substance using a sensor which is responsive to both the reactant and the substance
US6487852B1 (en) Method and apparatus for controlling reactant injection into an active lean NOx catalyst
CN102654776B (en) Smoke denitration ammonia injection amount control method and device
KR101542976B1 (en) Method of determining correcting logic for reacting model of selective catalytic reduction catalyst, method of correcting parameters of reacting model of selective catalytic reduction catalyst and exhaust system using the same
US10690079B2 (en) Method for diagnosing and controlling ammonia oxidation in selective catalytic reduction devices
JP5165500B2 (en) Selective catalytic reduction control system and method
US8584444B2 (en) Model-based controls for selective catalyst reduction system
US9091194B2 (en) Temperature gradient correction of ammonia storage model
US8991154B2 (en) Methods and systems for controlling reductant levels in an SCR catalyst
EP0263183B1 (en) NH3-Injection controller
KR101518941B1 (en) Method of correcting control logic of selective catalytic reduction catalyst and exhaust system using the same
US8165831B2 (en) Water level measuring apparatus and measuring method
JPS61153124A (en) Method for controlling injection of ammonia in noncatalytic denitrating process
US20200386136A1 (en) Method And Apparatus For Selective Catalytic Reduction System
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JPH0545767B2 (en)
KR20150073582A (en) Method amd system of determining suitability of correction to control logic of selective catalytic reduction catalyst
US20140127098A1 (en) Ammonia Slip Reduction
US20150075270A1 (en) Reductant delivery performance diagnostics system
JPH0645617Y2 (en) Reducing agent control device for denitration equipment
JP2865282B1 (en) Pressure guiding pipe purge device
JP4352452B2 (en) Cogeneration system
US20120282564A1 (en) METHODS FOR REDUCING NOx IN SCR FOSSIL-FUEL FIRED BOILERS
JPS58143825A (en) Apparatus for controlling pouring amount of ammonia