JPS6342721A - Controlling device for injection amount of ammonia - Google Patents

Controlling device for injection amount of ammonia

Info

Publication number
JPS6342721A
JPS6342721A JP61185326A JP18532686A JPS6342721A JP S6342721 A JPS6342721 A JP S6342721A JP 61185326 A JP61185326 A JP 61185326A JP 18532686 A JP18532686 A JP 18532686A JP S6342721 A JPS6342721 A JP S6342721A
Authority
JP
Japan
Prior art keywords
signal
molar ratio
outlet
concentration
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61185326A
Other languages
Japanese (ja)
Other versions
JPH0811171B2 (en
Inventor
Minoru Izutsu
井筒 実
Hajime Furubayashi
肇 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61185326A priority Critical patent/JPH0811171B2/en
Publication of JPS6342721A publication Critical patent/JPS6342721A/en
Publication of JPH0811171B2 publication Critical patent/JPH0811171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To reduce the amount of NH3 to be leaked at a time for starting a boiler in case the temp. of exhaust gas is low by changing over a switching device to a start-up arithmetic unit calculating both the compensation signal of molar ratio and the correction signal of molar ratio based on the signal of NH3 concn. in an outlet and controlling the flow rate of NH3 to be necessitated. CONSTITUTION:At the time of starting a boiler, when the temp. of exhaust gas is low, the preset signal 43 of NH3 concn. in an outlet is converted to a precedence signal 46 of molar ratio, on the other hand, both a signal 41 of NH3 concn. at the outlet and the preset signal 43 are converted to a compensation signal 44 of molar ratio, and the precedence signal 46 of molar ratio is converted to a correction signal 48 of molar ratio. Both the correction signal 48 of molar ratio and a signal 19 of total NOX amount are multiplied in a multiplier 30 to obtain a signal 31 of flow rate of NH3 to be necessitated, the deviation between the signal 31 and a signal 33 of measured flow rate of NH3 is made to a control signal 35, and the flow rate of NH3 to be injected is controlled thereby. When the gas temp. of exhaust gas is increased and the deviation between a signal 25 of measured NOX concn. in the outlet and a signal 21 of NOX concn. in the outlet is made to zero, a switching device 38 is changed over to perform ordinary control for the flow rate of NH3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアンモニアの注入量制御装置に係り、特に、排
ガス中の窒素酸化物(NOx)を除去する乾式脱硝装置
へアンモニア(NH,)を注入するアンモニアの注入量
制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ammonia injection amount control device, and in particular, to a dry denitrification device that removes nitrogen oxides (NOx) from exhaust gas. This invention relates to an apparatus for controlling the amount of ammonia to be injected.

〔従来の技術〕[Conventional technology]

近年、我がfflにおいては重油供給せのひっ迫から石
油依存度の是正を計るために1従米の重油専焼から石炭
専焼、LNG (液化天然ガス)専焼へと燃料を変換し
つつあり、特に事業用ボイラにおいては石炭専焼、LN
G専焼の大容量火力発電所が建設されている。
In recent years, our FFL has been converting its fuel from heavy oil-only combustion to coal-fired and LNG (liquefied natural gas)-only combustion in order to correct its dependence on oil due to the tight supply of heavy oil, especially for commercial use. For boilers, coal-fired, LN
A large-capacity G-fired thermal power plant is being constructed.

ところが、石炭燃料は石油給料、ガス燃料に比べて燃料
性が悪いので排ガス中に含まれるNOx及び未燃分が発
生しやすく、特にNOxの低減対策のために火炎の分割
、排ガスの再循環、二段燃焼及び炉内脱硝などを採用し
て緩慢な燃焼を行なわせてNOxを低減することも行な
われている。
However, since coal fuel has poor fuel properties compared to oil and gas fuels, NOx and unburned substances contained in the exhaust gas are likely to be generated.In particular, measures to reduce NOx include splitting the flame, recirculating the exhaust gas, Two-stage combustion, in-furnace denitrification, and the like are also being used to achieve slow combustion and reduce NOx.

そしてこの石炭専焼火力、LNG専焼火力においては、
ボイラ負荷が常に全負荷で運転されるものは少なく、負
荷を75チ負荷、50%負荷、25チ負向へと負荷を上
げ、下げして運転したり、運転を停止するなど、いわゆ
る毎日起動停止(DailyStart 5top以下
単にL)88という)運転や、週末起動停止(Week
ly’ 5tart 5top以下単にWSSという)
運転を行なって中間負荷を担う火力発電プラントへ移行
しつつある。
And in this coal-fired thermal power and LNG-fired thermal power,
There are few boilers that are always operated at full load, and the load is raised and lowered to 75 cm, 50% load, 25 cm in the negative direction, and operation is stopped, so-called daily startup. Stop (Daily Start 5top below simply referred to as L) 88) operation, Weekend start/stop (Weekend start/stop)
ly' 5tart 5top hereafter simply referred to as WSS)
A transition is being made to thermal power plants that operate and handle intermediate loads.

一方、この中間負荷火力用にはこの火力発電ボイラの他
に、起動特性のよいガスタービンと排熱回収ボイラな組
合せた、いわゆるコンバインドブランドも用いられ、D
SS運転やWSS運転を行なって電力需要の多い昼間の
み運転し、夜間は運転を停止する本のが建設されようと
している。
On the other hand, in addition to this thermal power generation boiler, the so-called combined brand, which combines a gas turbine with good starting characteristics and an exhaust heat recovery boiler, is also used for intermediate load thermal power generation.
There are plans to build a system that will perform SS or WSS operation, operating only during the day when electricity demand is high, and shutting down at night.

ところが、この石炭4暁、LNG辱焼の中間負荷用ボイ
ラ、ガスタービンにおいてもNOx排出濃度の規制強化
に伴ない、従来の燃焼改′4に加えて、NH,を還元剤
として触媒の存在下で脱硝を行なう乾式接触還元脱硝装
mを設置するプラントが増加している。
However, with the tightening of NOx emission concentration regulations for intermediate-load boilers and gas turbines for coal and LNG combustion, in addition to the conventional combustion reform, NH is being used as a reducing agent in the presence of a catalyst. An increasing number of plants are installing dry catalytic reduction denitrification equipment.

それは石炭専焼ボイラにおいては燃料の燃焼性が悪いの
で、Noxlitが増加し、LNF専焼ボイラ。
In coal-fired boilers, the fuel has poor combustibility, so Noxlit increases, and in LNF-fired boilers.

ガスタービンプラントにおいては酸素蓋が多く制温燃焼
を行なうために、石炭専焼ボイラと同様に、排ガス中に
は多量のNOxを含有しているので、第3図に示す様な
脱硝装置が設置−される。
In gas turbine plants, there are many oxygen caps and temperature controlled combustion is carried out, so similar to coal-fired boilers, the exhaust gas contains a large amount of NOx, so a denitrification device as shown in Figure 3 is installed. be done.

第3図は脱硝装置が設置tされたボイラの代表的な煙風
道系統図である。
Figure 3 is a typical flue duct system diagram of a boiler equipped with a denitrification device.

空気ダクト1内の燃焼用空気は押込通風機2にて昇圧さ
れ、空気予熱器3にて排ガスダクト4の排ガスによって
加熱された後ウィンドボックス5よりボイラ6へ供給さ
れる。
The combustion air in the air duct 1 is pressurized by the forced draft fan 2, heated by the exhaust gas from the exhaust gas duct 4 in the air preheater 3, and then supplied from the wind box 5 to the boiler 6.

一方ボイラ6内で燃焼した排ガスは、排ガスダクト4で
NH,注入管7からのNH,によって脱硝されると共に
、下流に配噴した脱硝装[8内の触媒9において脱硝を
促進し、排ガス中のNOxは除去されて空気予熱器3.
集塵機10.誘引通風機11で昇圧され大気へ放出され
る。
On the other hand, the exhaust gas combusted in the boiler 6 is denitrified by NH in the exhaust gas duct 4 and NH from the injection pipe 7, and the denitrification is promoted in the catalyst 9 in the denitrification device [8] disposed downstream. NOx is removed from the air preheater 3.
Dust collector10. The pressure is increased by the induced draft fan 11 and released into the atmosphere.

ところが、かかる脱硝装置j18は触媒9の種類によっ
ても多少反応温度範囲は異るが、酸も脱硝効率の^い温
度範囲は300〜400℃の比較的高温で、温度範囲は
いたって狭いので、中間負荷火力用のボイラやコンバイ
ンドサイクルの様に常にDSS運転されるものにおいて
は、負荷変動によってθFカス温度が常圧変動し、触媒
90使用可能領域をはずれてしまう欠点がある。
However, although the reaction temperature range of such a denitrification device j18 differs depending on the type of catalyst 9, the temperature range in which acid also has high denitrification efficiency is a relatively high temperature range of 300 to 400°C, and the temperature range is quite narrow. In a boiler for load thermal power or a combined cycle which is constantly operated under DSS, there is a drawback that the θF scum temperature fluctuates under normal pressure due to load fluctuations, and the catalyst 90 is out of the range in which it can be used.

この場合、触媒9の使用カス温度が高過ぎると、触媒9
の組織が変化して触媒9としての機能がそこなわれ、ま
た使用ガス温度が低すぎると排ガス中に存在する無水硫
酸(So、)と反応してやはり触媒90機能か劣化する
In this case, if the temperature of the used catalyst 9 is too high, the catalyst 9
The structure of the catalyst changes and the function of the catalyst 9 is impaired, and if the temperature of the gas used is too low, it reacts with sulfuric anhydride (So) present in the exhaust gas, which also deteriorates the function of the catalyst 90.

一方、常にDSS運転やWSS運転される火力発電用ボ
イラ、コンバインドサイクルにおいては、排ガス量およ
びNOx濃度が費動じ、これによって脱硝性能の追従性
が悪くなる欠点がある。
On the other hand, in thermal power generation boilers and combined cycle systems that are constantly operated in DSS or WSS mode, the amount of exhaust gas and the concentration of NOx fluctuate, which has the disadvantage that the followability of denitrification performance deteriorates.

それは、触媒9−ヒでのNOxとNH,の反応機構に起
因する排ガス量およびNOx濃夏が起動時、負荷変化時
のように変動する場合には、負荷変動に合わせてNH,
注入量を変化させても脱硝性能が負荷変動に追従できな
いからである。
When the exhaust gas amount and NOx concentration caused by the reaction mechanism of NOx and NH in the catalyst 9-H fluctuate, such as during startup or load changes, NH, NH,
This is because the denitrification performance cannot follow load fluctuations even if the injection amount is changed.

これらの問題を回避するために、従来のNH,の注入量
制御装置の代表的な例を第4図に示す。
In order to avoid these problems, a typical example of a conventional NH injection amount control device is shown in FIG.

第4図において、入口NoX@I&検出器12で検出さ
れた入口NOx濃度信号13と、空気流量検出器】4で
検出された空気流jit−佃号15を関数変換器16で
変換、この変換した排ガス流量イど号17を乗算器18
で乗算して総N08甘信号19を算出する。一方入口N
Ox濃度1可号13と出口NOx濃度設定器20からの
出口NOx濃度設定信号21によってモル比演算器22
で先行モル比(NOx量とNH。
In FIG. 4, the inlet NOx concentration signal 13 detected by the inlet No Exhaust gas flow rate number 17 is multiplier 18
The total N08 sweet signal 19 is calculated by multiplying by . On the other hand entrance N
The molar ratio calculator 22 is determined by the Ox concentration 1 signal 13 and the outlet NOx concentration setting signal 21 from the outlet NOx concentration setting device 20.
The preceding molar ratio (NOx amount and NH.

童の比率)信号23を算出し、これに出口NOx濃度検
出器24で検出された実測出口NOx濃度信号25と、
出口NOx濃度設定器20からの出口NOx濃度設定信
号21との偏差を調節計26で修正し゛ た出口NOx
(M差修正信号27と、先に説明した先行モル比信号2
3を加算器28で加算し、修正モル比信号29を演算す
る。
23, and add to it the measured outlet NOx concentration signal 25 detected by the outlet NOx concentration detector 24,
Outlet NOx whose deviation from the outlet NOx concentration setting signal 21 from the outlet NOx concentration setting device 20 is corrected by the controller 26
(M difference correction signal 27 and the preceding molar ratio signal 2 explained earlier)
3 is added by an adder 28 to calculate a corrected molar ratio signal 29.

そして、この修正モル比信号29と総NOx量信号19
と修正モル比信号29を乗算器30で乗算し必要NH,
流量信号31を演算する。
Then, this modified molar ratio signal 29 and the total NOx amount signal 19
and the corrected molar ratio signal 29 are multiplied by the multiplier 30 to obtain the required NH,
A flow rate signal 31 is calculated.

この必要NH,流量信号31とNH,流量検出器32で
検出された実測NH,流量信号33を調節器34で比較
し偏差を比例積分動作させ、必要弁開度の制#信号35
に変換し、NH,配管36のNH,流電調節弁37の開
度を開、閉してアンモニアの注入量が制御されていた。
The controller 34 compares the required NH, flow rate signal 31 and the actual measured NH, flow rate signal 33 detected by the NH, flow rate detector 32, and performs a proportional integral operation on the deviation, and a control signal 35 for the required valve opening.
The amount of ammonia injected was controlled by opening and closing the NH of the NH pipe 36 and the current control valve 37.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様に従来のNH,注入量制御装置にお(・て(まN
Ox濃度が高く、ガス温度が低い起動時にお(・て第3
図の脱硝装[8を運転すると、リークNH,濃度が異常
に高くなる欠点がある。
In this way, the conventional NH injection amount control device
During startup when the Ox concentration is high and the gas temperature is low,
When the denitrification system [8] shown in the figure is operated, there is a drawback that the leak NH concentration becomes abnormally high.

第5図は縦軸に脱硝率、横軸にガス温度を示した特性曲
線図であり、第5図に示す様にガス温度が低い起動時に
は触媒の脱硝性能は低下する。
FIG. 5 is a characteristic curve diagram in which the vertical axis shows the denitrification rate and the horizontal axis shows the gas temperature. As shown in FIG. 5, the denitrification performance of the catalyst decreases when the gas temperature is low at startup.

第6図は縦軸にNH,濃度、ガス温度、NOx濃度を示
し、横軸に時間を示した特性曲線図である。
FIG. 6 is a characteristic curve diagram in which the vertical axis shows NH, concentration, gas temperature, and NOx concentration, and the horizontal axis shows time.

第6図において、曲線Aはガス温度曲線、曲線Bは脱硝
装置の入口NOx濃度曲線、曲線Cは脱硝装置の出口N
Ox濃度曲線、曲信りはNH,注入量曲線、曲線Eは脱
硝装置の出口のNH,濃度曲線を示す。
In Figure 6, curve A is the gas temperature curve, curve B is the NOx concentration curve at the inlet of the denitrification equipment, and curve C is the exit N of the denitrification equipment.
The Ox concentration curve, the bending curve shows the NH injection amount curve, and the curve E shows the NH concentration curve at the outlet of the denitrification device.

第6図に示す様に、ボイラ起動時はガス温度が低いため
NH,を注入しても第5図に示す様に脱硝性能は低い値
いとなり、この様な条件Fにおいて第4図に示す従来の
NH,注入量制御装置でNH,を注入した場合、脱硝装
置の出口NOx濃度が出口NOx濃度曲線CのFで示す
様に設定値迄低下しないため注入NH,竜はNH,注入
量曲線りのGで示す様に極端に増加し、脱硝・装置の出
口NH,濃度は出口NR濃度が曲線EのHで示す様に異
常に高くなり、公害規制上好ましくない。
As shown in Fig. 6, the gas temperature is low when the boiler is started, so even if NH is injected, the denitrification performance is low as shown in Fig. 5. When NH is injected using a conventional NH injection rate control device, the NOx concentration at the outlet of the denitrification device does not decrease to the set value as shown by F in the outlet NOx concentration curve C, so the injection rate curve The NH concentration at the outlet of the denitrification equipment becomes abnormally high, as shown by G in curve E, and the NR concentration at the outlet becomes abnormally high, as shown by H in curve E, which is unfavorable in terms of pollution control.

従って近年のようにDSS運転やWSS運転を頻繁に行
ない、ガス温度が低いボイラ起動時等におけるNH,注
入流電制#装置としては適していない。
Therefore, it is not suitable as an NH and injection current control device when DSS operation or WSS operation is frequently performed as in recent years, and when the gas temperature is low, such as when starting up a boiler.

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、ボイラ等起動直後の排ガス温
度が低い場合でも脱硝装置出口のNH,濃度を抑制し、
起動・停止時のNOx濃度を抑制することができるアン
モニアの注入量制御装置を提供するものである。
The present invention aims to eliminate such conventional drawbacks,
The purpose is to suppress the NH concentration at the outlet of the denitrification equipment even when the exhaust gas temperature is low immediately after starting the boiler, etc.
An object of the present invention is to provide an ammonia injection amount control device that can suppress NOx concentration during startup and shutdown.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述の目的を達成するために、加算器と乗算器
の間に切替器を設けると共に、出口NH。
In order to achieve the above-mentioned object, the present invention provides a switch between an adder and a multiplier, and also provides an output NH.

濃度検出器からの出口NH,!I&信号と出口NH,設
定器からの出口NH,濃度設定信号からモル比補正16
号を演算する調節計と、出口NH,濃度設定信号から先
行モル比信号を演算する先行モル比演算器と、モル比補
正偏号と先行モル比信号から修正モル比信号を演算する
モル比加算器とからなる起動時演算装置を設け、排ガス
湿層が低い場合は起動時演算装置に切替えて必要NH,
流賢を制御するようにしたものである。
Outlet NH from the concentration detector,! I & signal and outlet NH, outlet NH from setting device, molar ratio correction from concentration setting signal 16
a controller that calculates the preceding molar ratio signal from the outlet NH and concentration setting signal, and a molar ratio adder that calculates the corrected molar ratio signal from the molar ratio correction deviation sign and the preceding molar ratio signal. A startup calculation device is installed, which consists of a
It is designed to control flow.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係るアンモニアの注入量制御
装置の制御系統図、第2図は第1図の制御系統図におけ
る特性曲線図である。
FIG. 1 is a control system diagram of an ammonia injection amount control device according to an embodiment of the present invention, and FIG. 2 is a characteristic curve diagram in the control system diagram of FIG. 1.

第1図において、符号1から37は第4図のものと同一
のものを示す。
In FIG. 1, numerals 1 to 37 indicate the same parts as in FIG.

38は加算器28と乗算器300間に設けた切替器、3
9は本発明になる起動時演算装置、40は出口N比濃度
検出器、41は出口NH,濃鹿栖号、42は出口NH,
設定器、43は出口NH,濃度設定信号、44はモル比
補正1g号、45は調節計、46は先行モル比信号、4
7は先行モル比演算器、48は修正モル比信号、49は
モル比加算器、50はモニターリレーである。
38 is a switch provided between the adder 28 and the multiplier 300;
9 is a startup calculation device according to the present invention, 40 is an outlet N ratio concentration detector, 41 is an exit NH, Nokasu No., 42 is an exit NH,
Setting device, 43 is the outlet NH, concentration setting signal, 44 is the molar ratio correction No. 1g, 45 is the controller, 46 is the preceding molar ratio signal, 4
7 is a preceding molar ratio calculator, 48 is a modified molar ratio signal, 49 is a molar ratio adder, and 50 is a monitor relay.

この様な構造において、起動時演算装首39は、出ロN
H,濃度検出器40.出口NH,濃度信号41、出口N
H,設定器42、出口NH,濃度設定信号43、モル比
補正信号44、調節計45、先行モル比信号46、先行
モル比演算器47、修正モル比信号48およびモル比加
算器49によって構成され、この起動時演算装#t39
はDSS運転やWSS運転時のように排ガス温度が低い
場合に切替器38の接点b y cケ接続してNH,注
入量が制御され、出口NOx濃度設定信号21と実測出
口NOx濃度信号25の偏差が零になると切替器38の
接点a。
In such a structure, the arithmetic unit 39 at startup has an output of N
H, concentration detector 40. Exit NH, concentration signal 41, exit N
H, setting device 42, outlet NH, concentration setting signal 43, molar ratio correction signal 44, controller 45, preceding molar ratio signal 46, preceding molar ratio calculator 47, corrected molar ratio signal 48, and molar ratio adder 49. At this startup, the arithmetic unit #t39
When the exhaust gas temperature is low, such as during DSS operation or WSS operation, the contacts b y c of the switch 38 are connected to control the NH injection amount, and the output NOx concentration setting signal 21 and the measured outlet NOx concentration signal 25 are When the deviation becomes zero, contact a of the switch 38 is activated.

CがII %Nされ、接点す、cは切断されてNH,の
注入量が制御される。
C is filled with II%N, and contacts S and C are cut to control the injection amount of NH.

第1図において、ガス温度が低いボイラ等起動時には出
口Nu−1.設定器42により設定された出口NH,濃
度設定信号43から先行モル比演算器47により先行モ
ル比信号46に変換する。一方出口NH3m度噴出器4
0により検出された出口NH8濃度イ6号41と先の出
口NH,濃度設定信号43から調節計45によりモル比
補正信号44に変換し、モル比加蜂g:;49により先
の先行モル比信号46を補正し修正モル比信号48に変
棟する。この修正モル比信号48と総N0xt信号19
とを乗算器30で乗算して起動時の必要N Ha流量信
号31とし、この必要NH,流量信号31と実測NH,
流−Il侶号33の偏差を制御信号35としてNH,注
入流鎗を制御する。
In FIG. 1, when starting a boiler or the like where the gas temperature is low, the exit Nu-1. The outlet NH and concentration setting signal 43 set by the setter 42 is converted into a preceding molar ratio signal 46 by a preceding molar ratio calculator 47. On the other hand, outlet NH3m degree spout 4
The exit NH8 concentration A6 41 detected by 0 and the previous exit NH, the concentration setting signal 43 are converted into a molar ratio correction signal 44 by the controller 45, and the previous preceding molar ratio is determined by the molar ratio g:;49. The signal 46 is corrected and transformed into a modified molar ratio signal 48. This modified molar ratio signal 48 and the total N0xt signal 19
is multiplied by the multiplier 30 to obtain the required NHa flow rate signal 31 at startup, and this required NH, flow rate signal 31 and the actual measured NH,
The deviation of the flow-Il number 33 is used as a control signal 35 to control the NH and injection flow.

ガス温度の一ヒ昇に伴ない脱硝性能も上昇し脱硝装置の
出口NOx$2も低下して来る。ここで、出口NOx濃
度検出器24で検出された実測出口NOx濃度信号25
と出口NOx濃度設定器20で設立された出口NOx濃
度信号21の偏差が零の場合モニターリレー50で切替
器38の接点なり、cからa + eに切替え第4図で
説明した制御と同一にNH3江大甘がせ御される。
As the gas temperature rises, the denitrification performance also increases and the NOx $2 at the outlet of the denitrification device also decreases. Here, the actual measured outlet NOx concentration signal 25 detected by the outlet NOx concentration detector 24
When the deviation of the outlet NOx concentration signal 21 established by the outlet NOx concentration setting device 20 is zero, the monitor relay 50 becomes the contact point of the switch 38 and switches from c to a + e, same as the control explained in FIG. 4. NH3 Kodaiamagase is controlled.

この様に排ガス温度が低い起動時においては、第1図の
起動時演′眸装酋39によって必要NH,流鍍偏号31
が従来のものよりも小さくなるので、第2図に示すan
 < N Hs注入讐曲線I) −Iで示す如く増7J
llIIli−は少なくなり、ガス温度曲線A1人口N
Ox濃度曲線B1出DNOx濃度曲線Cが従来のものと
同様に、傷増しても、出口Nn、*rg曲線Eはモ坦に
なり、リークNH,のせも少なく二次公′痔も防出でと
る。
At startup when the exhaust gas temperature is low as described above, the required NH, flow rate deviation signal 31 is
is smaller than the conventional one, so the an
<N Hs injection curve I) As shown by -I, increase 7J
llIIli- decreases, gas temperature curve A1 population N
Even if the Ox concentration curve B1 output DNOx concentration curve C is the same as the conventional one, even if the number of scratches increases, the outlet Nn, *rg curve E becomes flat, there is less leakage NH, and less secondary hemorrhoids can be prevented. Take.

本発明の実施例によれば、脱硝装置の出口NH。According to an embodiment of the invention, the outlet NH of the denitrification device.

葉を設定し、実際の出口NH,駄が設定値内に納まる様
NH,iiが注入されるので、ガス温度が低く所定の脱
硝性能が得られないボイラ起動時であっても、出口リー
クNHs tが少なくなる。
Since the actual outlet NH is injected so that the actual outlet NH is within the set value, even when the boiler is started up when the gas temperature is low and the desired denitrification performance cannot be obtained, the outlet leak NHs is t decreases.

更に琲ガス温度が上昇し所定の脱硝性能が得られ実際の
出口NOx値が設定されたNOx値と等しくなった時点
では従来のアンモニア注入量の制御装置切替えて運転さ
れるので切替時のNOx変動もなくスムーズに運転でき
る。
Furthermore, when the ammonia gas temperature rises and the specified denitrification performance is achieved, and the actual outlet NOx value becomes equal to the set NOx value, the conventional ammonia injection amount control device is switched to operation, so NOx fluctuations at the time of switching are reduced. You can drive smoothly without any problems.

また、ガス温度が低いボイラ起m i![f&から安定
した脱硝装置iftの運転がり能となり、ボイラ等起動
時のN0Xfも抑制することができる。
In addition, the boiler with low gas temperature m i! [f& allows stable operation of the denitrification device ift, and it is also possible to suppress NOXf when starting a boiler or the like.

〔発明の効果〕〔Effect of the invention〕

不発明によればDSS運転Jfwss運転を行なって起
動・1亭1h i[後の排ガス温度が低くても、リーク
N Il、−が少なくなり、起動・停止直後のNOxで
・蕩北な抑制することができる。
According to the invention, by performing DSS operation and Jfwss operation, even if the exhaust gas temperature after startup is low, the leakage N Il, - will be reduced, and the NOx immediately after startup and shutdown will be suppressed. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るNH,の注入量制御装置
の制御系統図、第2図は第1図の特性曲線図、第3図は
脱硝装置が設置されたボイラの代表的な煙風道系統図、
第4図は従来のNH,の注入譬制御装首の制御系統図、
第5図は脱硝性能の温度特性曲線図、第6図は第4図の
特性曲線図である。 12・・・・・・入口NOx濃度検出器、13・・・・
・・入口NOx濃度信号、14・・・・・・空気流f検
出器、15・・・・・・空気流を信号、16・・・・・
・関数発生器、17・・・甲排ガス流ta号、18・・
・・・・乗算器、19・・・・・・総NOx量信号、2
0・・・・・・出口NOx#度設定器、21・・・・・
・出口NOx+![設定信号、22・・・・・・モル比
演眸器、23・・・・・・先行モル比1g号、24・・
・・・・出口NOx濃度検出器、25・・・・・・実測
出口NOx濃度信号、26・・・・・・調節針、27・
・・・・・出口NOx偏差修正信号、28・・・・・・
加算器、29・・・・・・+h iEモル比佃号、30
・・・・・・乗算器、31・・・・・・必埜NH1流量
イぎ号、32・・・・・・N Hs流量検出器、33・
・・・・・実測NH1ぴt峻信号、37・・・・・・N
H,流1調*I’i 7F、38・・・・・・切替器、
39・・・・・・起動時演算装置、40・・・・・・出
口NH,濃度検出器、41・・・・・・出口NH,濃度
信号、42・・・・・・出口NH,設定器、43・・・
・・・出口NH,$2設定信号、44・・・・・・モル
比補正イ=号、45・・・・・・調節計、46・・・・
・・先行モル比信号、47・・・・・・先行モル比演算
器、48・・・・・・修正モル比信号、49・・・・・
・モル比加算器。
Fig. 1 is a control system diagram of the NH injection amount control device according to the embodiment of the present invention, Fig. 2 is a characteristic curve diagram of Fig. 1, and Fig. 3 is a typical boiler equipped with a denitrification device. Smoke duct system diagram,
Figure 4 is a control system diagram of a conventional NH injection control neck.
FIG. 5 is a temperature characteristic curve diagram of denitrification performance, and FIG. 6 is a characteristic curve diagram of FIG. 4. 12... Inlet NOx concentration detector, 13...
...Inlet NOx concentration signal, 14... Air flow f detector, 15... Air flow signal, 16...
・Function generator, 17... Exhaust gas flow No. ta, 18...
... Multiplier, 19 ... Total NOx amount signal, 2
0...Outlet NOx# degree setting device, 21...
・Exit NOx+! [Setting signal, 22...molar ratio calculator, 23...preceding molar ratio 1g, 24...
...Exit NOx concentration detector, 25...Actually measured outlet NOx concentration signal, 26...Adjustment needle, 27.
...Exit NOx deviation correction signal, 28...
Adder, 29...+h iE molar ratio number, 30
...... Multiplier, 31... Necessary NH1 flow rate key number, 32... N Hs flow rate detector, 33.
...Actual measured NH1 pitch signal, 37...N
H, Flow 1 key *I'i 7F, 38...Switcher,
39...Start-up calculation device, 40...Outlet NH, concentration detector, 41...Outlet NH, concentration signal, 42...Outlet NH, setting Vessel, 43...
... Outlet NH, $2 setting signal, 44 ... Molar ratio correction I = number, 45 ... Controller, 46 ...
...Advanced molar ratio signal, 47...Advanced molar ratio calculator, 48...Modified molar ratio signal, 49...
-Molar ratio adder.

Claims (1)

【特許請求の範囲】[Claims]  空気流量検出器からの空気流量信号を基に関数発生器
で変換した排ガス流量信号と入口NO_x濃度検出器か
らの入口NO_x濃度信号によつて総NO_x量信号を
演算する乗算器と、出口NO_x濃度設定器からの出口
NO_x濃度設定信号と出口NO_x濃度検出器からの
実測出口NO_x信号から出口NO_x偏差修正信号を
演算する調節計と、入口NO_x濃度信号と出口NO_
x濃度設定信号から先行モル比信号を演算するモル比演
算器と、先行モル比信号と出口NO_x偏差修正信号か
ら修正モル比信号を演算する加算器と、総NO_x量信
号と修正モル比信号から必要NH_3流量信号を演算す
る乗算器とを設け、必要NH_3流量信号とNH_3流
量検出器からの実測NH_3流量信号との偏差によりN
H_3流量調節弁を開・閉するものにおいて、前記加算
器と乗算器の間に切替器を設けると共に、出口NH_3
濃度検出器からの出口NH_3濃度信号と出口NH_3
設定器からの出口NH_3濃度設定信号からモル比補正
信号を演算する調節計と、出口NH_3濃度設定信号か
ら先行モル比信号を演算する先行モル比演算器と、モル
比補正信号と先行モル比信号から修正モル比信号を演算
するモル比加算器とからなる起動時演算装置を設け、排
ガス温度が低い場合は起動時演算装置に切替えて必要N
H_3流量を制御するようにしたことを特徴とするアン
モニアの注入量制御装置。
A multiplier that calculates a total NO_x amount signal based on an exhaust gas flow rate signal converted by a function generator based on an air flow rate signal from an air flow rate detector and an inlet NO_x concentration signal from an inlet NO_x concentration detector, and an outlet NO_x concentration signal. A controller that calculates an outlet NO_x deviation correction signal from the outlet NO_x concentration setting signal from the setting device and the actually measured outlet NO_x signal from the outlet NO_x concentration detector, and the inlet NO_x concentration signal and the outlet NO_x concentration signal.
a molar ratio calculator that calculates a leading molar ratio signal from the x concentration setting signal; an adder that calculates a corrected molar ratio signal from the leading molar ratio signal and the exit NO_x deviation correction signal; A multiplier is provided to calculate the required NH_3 flow rate signal, and the difference between the required NH_3 flow rate signal and the measured NH_3 flow rate signal from the NH_3 flow rate detector is
In the H_3 flow control valve that opens and closes, a switch is provided between the adder and the multiplier, and the outlet NH_3
Outlet NH_3 concentration signal from the concentration detector and outlet NH_3
A controller that calculates a molar ratio correction signal from the outlet NH_3 concentration setting signal from the setting device, a leading molar ratio calculator that calculates a leading molar ratio signal from the outlet NH_3 concentration setting signal, a molar ratio correction signal and a leading molar ratio signal. A startup calculation device consisting of a molar ratio adder that calculates a corrected molar ratio signal from N is provided, and when the exhaust gas temperature is low, the startup calculation device is switched to the necessary
An ammonia injection amount control device, characterized in that the H_3 flow rate is controlled.
JP61185326A 1986-08-08 1986-08-08 Ammonia injection amount control device Expired - Fee Related JPH0811171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185326A JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185326A JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Publications (2)

Publication Number Publication Date
JPS6342721A true JPS6342721A (en) 1988-02-23
JPH0811171B2 JPH0811171B2 (en) 1996-02-07

Family

ID=16168868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185326A Expired - Fee Related JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Country Status (1)

Country Link
JP (1) JPH0811171B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198310A (en) * 1989-01-27 1990-08-06 Fuji Electric Co Ltd Object checking apparatus
JP2010115611A (en) * 2008-11-14 2010-05-27 Babcock Hitachi Kk Denitrification apparatus
WO2018025315A1 (en) * 2016-08-01 2018-02-08 株式会社エコ・サポート Evaluation testing apparatus and evaluation testing system
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153124A (en) * 1984-12-26 1986-07-11 Toyota Motor Corp Method for controlling injection of ammonia in noncatalytic denitrating process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153124A (en) * 1984-12-26 1986-07-11 Toyota Motor Corp Method for controlling injection of ammonia in noncatalytic denitrating process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198310A (en) * 1989-01-27 1990-08-06 Fuji Electric Co Ltd Object checking apparatus
JP2010115611A (en) * 2008-11-14 2010-05-27 Babcock Hitachi Kk Denitrification apparatus
WO2018025315A1 (en) * 2016-08-01 2018-02-08 株式会社エコ・サポート Evaluation testing apparatus and evaluation testing system
JP6446160B2 (en) * 2016-08-01 2018-12-26 株式会社エコ・サポート Evaluation test apparatus and evaluation test system
JPWO2018025315A1 (en) * 2016-08-01 2019-02-14 株式会社エコ・サポート Evaluation test apparatus and evaluation test system
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method

Also Published As

Publication number Publication date
JPH0811171B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JPS6342721A (en) Controlling device for injection amount of ammonia
JPH09317499A (en) Control method for blast furnace gas monofuel combustion gas turbine
CN103566747A (en) Interlocked protection control method for three-in-one induced draft fan between desulfurization system and main frame in 1045MW thermal power unit
JPH0633743A (en) Denitration control device
JP4859512B2 (en) Combustion boiler control method
JP2006090287A (en) Composite power generation system and fuel gas calorific value control method
JP3831804B2 (en) Exhaust gas denitration equipment
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0216040Y2 (en)
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JPH0582246B2 (en)
JPS62227426A (en) Ammonia pouring control device
KR102483964B1 (en) NOx REDUCTION FACILITY CONTROL METHOD OF GAS TURBINE COMBINED CYCLE POWER PLANT USING NATURAL GAS
JP2612284B2 (en) Combustion equipment
JPH0665708U (en) Boiler equipment
JPH0552124A (en) Gas turbine control device
JPH0510505A (en) Air ratio controller of burner at start-up time of boiler
JPS63106304A (en) Denitration control device for combined power plant
JP3584531B2 (en) Fuel cell power generation equipment
JPH0671138A (en) Denitrification control apparatus
JPS61200838A (en) Boiler with denitration apparatus
Sakai et al. Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler
Hunt et al. Integrating low‐NOx burners, overfire air, and selective non‐catalytic reduction on a utility coal‐fired boiler
JPH0216039Y2 (en)
JP2006046826A (en) Pulverized coal thermal power generation system and operation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees