WO2018025315A1 - Evaluation testing apparatus and evaluation testing system - Google Patents
Evaluation testing apparatus and evaluation testing system Download PDFInfo
- Publication number
- WO2018025315A1 WO2018025315A1 PCT/JP2016/072558 JP2016072558W WO2018025315A1 WO 2018025315 A1 WO2018025315 A1 WO 2018025315A1 JP 2016072558 W JP2016072558 W JP 2016072558W WO 2018025315 A1 WO2018025315 A1 WO 2018025315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- test
- heat exchanger
- latent heat
- temperature
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Definitions
- This disclosure relates to an evaluation test apparatus and an evaluation test system.
- Patent Document 1 As a technique related to a conventional evaluation test apparatus, for example, an apparatus described in Patent Document 1 is known.
- a gas having the same component as exhaust gas from a boiler or the like is produced.
- the produced gas is heated to substantially the same temperature as that of a boiler or the like, and then mixed with ammonia gas as a reducing agent. Then, the mixed gas is brought into contact with a test denitration catalyst to perform a denitration test.
- the exhaust gas after combustion contains many pollutants. For this reason, pollutants in the exhaust gas are removed by the smoke treatment device, and the exhaust gas is exhausted from the chimney over a wide area, thereby mitigating the influence on the surrounding environment.
- NOx nitrogen oxide
- SOx sulfur oxide
- GT gas turbine
- GTCC gas turbine combined cycle power generation system
- GTCC high temperature combustion gas is generated mainly using natural gas as fuel, the generated combustion gas is supplied to GT, and the GT is rotated to extract power and generate electric power.
- the temperature of the combustion gas at the GT inlet was increased to about 1600 ° C. by improving the material of the GT blade or the cooling method.
- the exhaust gas of GT is as high as about 600 ° C.
- steam is generated by the exhaust heat recovery boiler using the exhaust gas of GT.
- the generated steam is supplied to the ST, and the ST is rotated to extract power and generate electric power. Since power is generated in GT and ST, the total power generation efficiency is 54% (higher heating value standard), which is a high efficiency. Therefore, GTCC has been widely spread worldwide since the 1980s.
- GTCC uses clean natural gas as fuel, SOx is not included in air pollutants in exhaust gas. Further, in GTCC, air pollutants in exhaust gas do not contain suspended particulate matter (or PM2.5 therein). In the exhaust gas of GTCC, if NOx produced by the reaction between nitrogen in the atmosphere and high-temperature combustion gas is removed, air pollutants are eliminated. Therefore, there is a high possibility that the chimney can be eliminated.
- NOx countermeasures a NOx removal system was installed to reduce the NOx concentration of exhaust gas to 4-5 ppm (oxygen concentration: 16%) or less and to remove NOx by 90% (wt%) or more. As a result, the NOx concentration and the emission amount are sufficiently reduced, and the height of the chimney can be made lower than before. Thereafter, in GTCC, the NOx concentration of exhaust gas has become the de facto standard.
- GTCC satisfies 3E (Energy Security: Power Supply Stability, Ecology: Environmental Conservation, Economy) and 2S (Safety: Sustainability) as power generation energy.
- 3E Energy Security: Power Supply Stability, Ecology: Environmental Conservation, Economy
- 2S Safety: Sustainability
- advanced GTCC gas turbine combined cycle power generation system
- advanced GTCC which is a GTCC having the following features.
- Advanced GTCC can be realized with established technology.
- Eco Support Co., Ltd. announced the “Planned Environmental Considerations for the Yumeshima Natural Gas Power Plant Construction Project” based on the Environmental Impact Assessment Law.
- the opinion of the Minister of Industry has been released. This is the first project following the revision of the Environmental Impact Assessment Law.
- the superiority of the advanced GTCC is recognized by the power generation company or the parties such as GTCC manufacturers.
- an object of the present disclosure is to provide an evaluation test apparatus and an evaluation test system capable of accurately performing demonstration evaluation of an advanced GTCC on a reduced scale.
- An evaluation test apparatus is an evaluation test apparatus for demonstrative evaluation of a gas turbine combined cycle power generation system including a denitration apparatus that removes NOx in exhaust gas exhausted from a gas turbine to the atmosphere.
- a test exhaust gas supply means for continuously supplying a test exhaust gas having the same characteristics as the exhaust gas, and a part of a denitration catalyst having a honeycomb structure and usable for a denitration apparatus, is supplied from the test exhaust gas supply means.
- a heat exchanger for latent heat recovery which is disposed downstream of the test denitration catalyst in the test exhaust gas flow path and recovers the latent heat of the test exhaust gas vapor.
- a NOx concentration measuring means for measuring at least NOx concentration in a test exhaust gas upstream of the test denitration catalyst, a test exhaust gas downstream of the test denitration catalyst, and a test exhaust gas exhausted to the atmosphere And comprising.
- This evaluation test device can accurately reproduce the processing flow of the exhaust gas from the gas turbine to the atmosphere in the advanced GTCC on a reduced scale. Therefore, based on the measurement result of the NOx concentration measuring means, the demonstration evaluation of the advanced GTCC can be accurately performed on a reduced scale.
- the test exhaust gas supply means continuously burns the test exhaust gas by using a fan that supplies combustion air, and burning the fuel using the combustion air supplied by the fan.
- the fan may control the air volume supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine outlet.
- the burner is a dark / light burner including a dark burner and a light burner, and in the light / dark burner, the NOx concentration of the test exhaust gas is the same as the NOx concentration of the exhaust gas.
- a flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner may be set. According to this configuration, by setting the flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner, it is possible to generate the test exhaust gas having the same NOx concentration as that of the advanced GTCC exhaust gas.
- the test exhaust gas supply means includes a first heat exchanger that adjusts the temperature of the test exhaust gas, and a temperature of the test exhaust gas that is adjusted in temperature by the first heat exchanger.
- a first heat exchanger that adjusts the temperature of the exhaust gas for testing to be the same as the temperature of the exhaust gas at the gas turbine outlet, and the second heat exchanger May adjust the temperature of the test exhaust gas so as to be the activation temperature of the test denitration catalyst.
- the temperature of the test exhaust gas can be made the same as the exhaust gas at the gas turbine outlet of the advanced GTCC, and then the activation temperature of the test denitration catalyst can be obtained.
- the test exhaust gas supply unit may distribute the heat medium that has passed through the second heat exchanger to the first heat exchanger. According to this configuration, the heat medium in the first heat exchanger and the second heat exchanger can be operated at the same flow rate. It can easily cope with the demonstration test of the durability test of advanced GTCC.
- the test denitration catalyst may be capable of removing 99% or more of NOx in the test exhaust gas. According to this configuration, it is possible to perform an empirical evaluation of the advanced GTCC capable of removing 99% or more of NOx in the exhaust gas.
- the latent heat recovery means is disposed upstream of the latent heat recovery heat exchanger in the flow path of the test exhaust gas, and the temperature of the exhaust gas exhausted to the atmosphere is the temperature of the test exhaust gas. You may have the 3rd heat exchanger adjusted so that it may become the same. According to this configuration, the temperature of the exhaust gas for testing can be made the same as the temperature of the exhaust gas at the smoke outlet of the advanced GTCC.
- the latent heat recovery means may distribute the heat medium that has passed through the latent heat recovery heat exchanger to the third heat exchanger. According to this configuration, it is possible to operate with the heat medium flow rate in the latent heat recovery heat exchanger and the third heat exchanger being the same. It can easily cope with the demonstration test of the durability test of advanced GTCC.
- the latent heat recovery means is disposed between the third heat exchanger and the latent heat recovery heat exchanger in the flow path of the test exhaust gas, and the water vapor in the test exhaust gas is removed.
- the latent heat recovery means may include a condensed water recovery unit that recovers and accumulates the condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger.
- the unreacted reducing agent in the test exhaust gas can be evaluated by analyzing the condensed water in the condensed water recovery unit.
- At least one of the test exhaust gas supply unit and the latent heat recovery unit may be configured by a gas water heater. According to this configuration, at least one of the test exhaust gas supply means and the latent heat recovery means can be easily realized.
- An evaluation test system is an evaluation test system for demonstrative evaluation of a gas turbine combined cycle power generation system including a denitration device that removes NOx in exhaust gas exhausted from a gas turbine to the atmosphere.
- a test exhaust gas supply means for continuously supplying a test exhaust gas having the same characteristics as the exhaust gas, and a part of a denitration catalyst having a honeycomb structure and usable for a denitration apparatus, is supplied from the test exhaust gas supply means.
- a data storage unit for storing at least data relating to NOx concentration measured by the NOx concentration measuring means.
- the test exhaust gas supply means includes a fan for supplying combustion air, and a combustion supplied by the fan.
- Burner that burns fuel using industrial air and continuously generates test exhaust gas
- first heat exchanger that adjusts the temperature of the test exhaust gas, and test in which the temperature is adjusted by the first heat exchanger
- a second heat exchanger that further adjusts the temperature of the exhaust gas for exhaust gas
- the latent heat recovery means is disposed upstream of the latent heat recovery heat exchanger in the flow path of the test exhaust gas
- a third heat exchanger that adjusts the temperature to be the same as the temperature of the exhaust gas exhausted to the atmosphere, and a condensed water recovery unit that recovers and accumulates the condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger
- the fan controls the amount of combustion air to be supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine outlet, and the burner is a rich burner and A concentration burner including a light burner, and in the concentration
- This evaluation test system includes the above-described configurations of the test evaluation apparatus, and thus exhibits the same effects as described above. Furthermore, the data storage unit can store and collect data necessary for verification evaluation.
- FIG. 1 is a schematic configuration diagram showing an evaluation test system.
- FIG. 2 is a schematic diagram showing a light and dark burner.
- FIG. 3 is a perspective view showing a test denitration catalyst.
- the evaluation test system 10 includes an evaluation test apparatus 20 and a data analysis apparatus 30.
- the evaluation test apparatus 20 includes a test exhaust gas supply device (test exhaust gas supply means) 40, a test exhaust gas denitration device 50, a latent heat recovery device (latent heat recovery means) 60, and a measuring device 70.
- the evaluation test system 10 and the evaluation test apparatus 20 are used for performing demonstration evaluation of the advanced GTCC. Therefore, first, the advanced GTCC that is the target of the demonstration evaluation will be described.
- FIG. 4 is a schematic diagram showing an advanced GTCC that is an object of demonstration evaluation.
- the advanced GTCC 1 is a system obtained by evolving GTCC, and includes the following features (1) and (2).
- the advanced GTCC 1 may also be referred to as advanced GTCC, super GTCC, or sustainable GTCC.
- a heat exchanger is further installed downstream of the heat exchanger that sets the temperature of the exhaust gas discharged from the chimney into the atmosphere to 85 to 90 ° C., and the latent heat of the vapor in the exhaust gas is recovered.
- the recovered water is almost pure water and is used as makeup water.
- Advanced GTCC1 is a system that constitutes a 500,000 kW class power generation facility, for example.
- the advanced GTCC 1 includes a gas turbine T 1, a steam turbine T 2, a generator 2, a condenser 3, a denitration device 4, a waste heat recovery heat exchanger 5, a latent heat recovery heat exchanger 6, and a chimney 7.
- the advanced GTCC 1 shown in the figure is a general configuration example.
- the configuration of the advanced GTCC 1 is not particularly limited.
- the advanced GTCC 1 shown in the figure is a one-axis type system, but may be a different-axis type system.
- the gas turbine T1 and the steam turbine T2 are connected to a common generator 2.
- a condenser 3 is connected to the steam outlet of the steam turbine T2.
- the condenser 3 condenses high-temperature steam from the steam outlet of the steam turbine T2 with circulating cooling water.
- the combustor N attached to the gas turbine T1 is supplied with natural gas (LNG) as fuel gas.
- LNG natural gas
- the combustion gas generated in the combustor N is supplied to the gas turbine T1. Thereby, the gas turbine T1 is driven.
- the exhaust side of the gas turbine T1 is connected to the structure K.
- an exhaust heat recovery heat exchanger 5 and a latent heat recovery heat exchanger 6 are arranged.
- the exhaust gas from the gas turbine T1 passes through the heat exchanger 5 for exhaust heat recovery and the heat exchanger 6 for latent heat recovery in this order in the structure K and is heat-exchanged in this order, and then exhausted from the chimney 7 to the atmosphere.
- a denitration device 4 is disposed upstream of the heat exchanger 5 for exhaust heat recovery.
- the denitration device 4 is a selective deoxidation method (SCR method) dry denitration device.
- Ammonia (NH 3 ) is supplied from the ammonia supply device 8 to the denitration device 4.
- NOx in the exhaust gas is reduced by ammonia on the denitration catalyst and decomposed into nitrogen and water vapor.
- the denitration catalyst of the denitration apparatus 4 here has a honeycomb structure and can remove 99% of exhaust gas NOx.
- the water condensed in the condenser 3 is supplied to the latent heat recovery heat exchanger 6 by the feed water pump P in the condensate circulation system 9 and is subjected to heat exchange in the latent heat recovery heat exchanger 6, and then the heat for exhaust heat recovery. Heat is exchanged in the exchanger 5.
- the high-pressure steam obtained by the heat exchanger 5 for exhaust heat recovery is supplied to the steam turbine T2. Thereby, the steam turbine T2 is driven together with the gas turbine T1.
- the high temperature steam from the steam outlet of the steam turbine T2 is condensed by the condenser 3 and circulated in the condensate circulation system 9.
- a membrane separator M is disposed between the heat exchanger 5 for exhaust heat recovery and the heat exchanger 6 for latent heat recovery.
- the membrane separation device M has at least one of a membrane that separates and recovers water vapor in the exhaust gas and a membrane that separates and recovers carbon dioxide in the exhaust gas.
- a condensed water recovery unit 6 a is connected to the lower side of the latent heat recovery heat exchanger 6. The condensed water recovered in the condensed water recovery unit 6 a is supplied as makeup water for the condensate circulation system 9.
- the test exhaust gas supply device 40 continuously supplies the test exhaust gas having the same properties as the exhaust gas from the gas turbine T1 of the advanced GTCC1.
- the test exhaust gas supply apparatus 40 is an apparatus using an FF type (forced supply / exhaust type) household gas water heater using city gas. That is, the test exhaust gas supply device 40 is configured by a gas water heater.
- the properties of the exhaust gas from the gas turbine T1 of the advanced GTCC 1 can be obtained based on publicly disclosed specification data.
- the test exhaust gas supply device 40 has a sealed structure.
- the test exhaust gas supply device 40 includes a fan 41, a burner 42, a first heat exchanger 43, and a second heat exchanger 44.
- the fan 41 supplies combustion air from the intake duct into the housing 45.
- the fan 41 controls the amount of combustion air to be supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine T1 outlet.
- the amount of combustion air to be supplied can be controlled by adjusting the rotational speed of the fan 41 or the opening of a control damper provided at the intake port of the fan 41.
- the fan 41 is not particularly limited, and various known fans can be used.
- the burner 42 uses the combustion air supplied by the fan 41 to burn gas fuel in the housing 45 and continuously generate test exhaust gas.
- the amount of gas fuel supplied to the burner 42 can be set as follows. First, based on the SV value required for the test denitration catalyst 51 described later, the flow rate of the test exhaust gas to be passed through the test denitration catalyst 51 is determined in consideration of the scale of the evaluation test apparatus 20 for the advanced GTCC 1. . The amount of gas fuel in the burner 42 is set so that a test exhaust gas capable of realizing this flow rate is generated.
- the burner 42 is a dark and light burner including a dark burner 42x and a light burner 42y.
- the rich burner 42x is an auxiliary burner for continuing stable combustion, and generates a rich flame (Bunsen flame) having a high NOx concentration.
- the light burner 42y is a main burner and generates a light flame (lean flame) having a sufficiently low NOx concentration.
- the dark burners 42x and the light burners 42y are alternately arranged.
- the burner 42 which is a light and dark burner realizes low NOx properties and high flame holding properties.
- the flow rate ratio between the gas flow rate of the rich burner 42x and the gas flow rate of the light burner 42y (the nozzle ratio of the light and dark burner) so that the NOx concentration of the exhaust gas for test becomes the same as the NOx concentration of the exhaust gas of the gas turbine T1 Is set.
- the flow rate ratio is set as follows.
- the concentration burner has an actual value of NOx concentration of 42 ⁇ 10 ppm (oxygen concentration 0% conversion), for example.
- the NOx concentration of the exhaust gas from the gas turbine T1 is, for example, 50 ppm in terms of 0% oxygen concentration. Therefore, the nozzle of the dark burner 42x is enlarged so that the amount of gas from the dark burner 42x increases by about 20%. Specifically, the cross-sectional area of the nozzle is 1.2 times (the nozzle diameter is 1.1 times). As a result, the NOx concentration of the exhaust gas for test becomes about 50 ppm, so that it can be set within a predetermined concentration standard by fine adjustment. Such a setting is possible by controlling the ejection pressure and gas amount from the nozzle with a gas governor built in the test exhaust gas supply device 40 as a gas water heater.
- the combustion gas amount is from the light burner 42y, changes in the gas amount from the rich burner 42x are unlikely to affect the whole.
- Increasing the amount of gas in the rich burner 42x increases the NOx concentration but stabilizes combustion. If the NOx concentration of the test exhaust gas under the initial conditions is measured, the nozzle diameter of the concentrated burner 42x can be predicted. In one or two trials, the NOx concentration can be set within a desired range.
- the amount of combustion gas in the burner 42 can be grasped from the temperature and flow rate of the test exhaust gas. The amount of combustion gas in the burner 42 can be controlled by setting the combustion temperature.
- the first heat exchanger 43 and the second heat exchanger 44 are arranged in the housing 45 in this order in the flow direction of the test exhaust gas.
- the first heat exchanger 43 and the second heat exchanger 44 perform heat exchange using water (here, tap water) as a heat medium.
- the downstream side of the water flow path 44a of the second heat exchanger 44 and the upstream side of the water flow path 43a of the first heat exchanger 43 are connected to each other so as to be a direct current. Thereby, the water (warm water) that has passed through the second heat exchanger 44 is circulated to the first heat exchanger 43.
- the amount of water in the first heat exchanger 43 and the second heat exchanger 44 can be adjusted by the valve opening degree of the valve 46.
- the amount of water in the first heat exchanger 43 and the second heat exchanger 44 is measured with a water flow meter (not shown).
- the water flow path 43a and the water flow path 44a may be connected in reverse to the above, that is, the downstream side of the water flow path 43a of the first heat exchanger 43 and the water flow path 44a of the second heat exchanger 44.
- the upstream side may be connected to each other so as to be a direct current.
- the water flow path 43a of the first heat exchanger 43 and the water flow path 44a of the second heat exchanger 44 may be configured independently of each other without being connected so as to be direct current.
- the heat transfer area (number of fins and area) of the first heat exchanger 43 and the second heat exchanger 44 is set to be the same. It is preferable to adjust. This is particularly effective when the durability test described later is performed.
- the first heat exchanger 43 adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas at the gas turbine T1 outlet (about 600 ° C.).
- the second heat exchanger 44 further adjusts the temperature of the test exhaust gas whose temperature has been adjusted by the first heat exchanger 43.
- the second heat exchanger 44 adjusts the temperature of the test exhaust gas so that it becomes an activation temperature of a test denitration catalyst 51 described later of the test exhaust gas denitration apparatus 50.
- the activation temperature is a temperature at which the activity of the catalyst is present and the performance of the catalyst can be exhibited.
- the activation temperature is, for example, 350 ⁇ 100 ° C.
- the temperature adjustment of the test exhaust gas by the first heat exchanger 43 and the second heat exchanger 44 can be realized by adjusting the amount of water flow through the first heat exchanger 43 and the second heat exchanger 44 by the valve 46.
- the flow rate of the test exhaust gas can be controlled by the rotational speed of the fan 41 or the control damper.
- the temperature of the test exhaust gas at the outlet of the test exhaust gas supply device 40 can be adjusted by the amount of combustion gas in the burner 42 in addition to the above-described water flow rate adjustment by the first heat exchanger 43 and the second heat exchanger 44. .
- the test exhaust gas denitration device 50 is constantly and continuously supplied with the test exhaust gas. Can supply.
- the test exhaust gas denitration device 50 denitrates the test exhaust gas supplied from the test exhaust gas supply device 40 and supplies it to the latent heat recovery heat exchanger 62 in the subsequent stage.
- the test exhaust gas denitration apparatus 50 includes a plurality of test denitration catalysts 51 and a reducing agent input device (reducing agent input means) 52.
- the test denitration catalyst 51 has a honeycomb structure and denitrates the test exhaust gas.
- the test denitration catalyst 51 can remove 99% or more of NOx in the test exhaust gas. Removal of 99% or more of NOx indicates a state where there is substantially no air pollution. The state where 99% or more of NOx is removed may be a state where NOx is always below the environmental standard in the ground space where humans exist. “99%” includes measurement errors and the like.
- the test denitration catalyst 51 is made of, for example, TiO 2 -supported vanadium pentoxide (V 2 O 5 ) or TiO 2 -supported copper oxide (CuO). The test denitration catalyst 51 has a sufficient surface area for the denitration reaction.
- the test denitration catalyst 51 is composed of a part of the denitration catalyst that can be used in the denitration apparatus 4 (see FIG. 4) of the advanced GTCC 1. Specifically, the test denitration catalyst 51 has a structure corresponding to the unit of the denitration catalyst of the denitration apparatus 4.
- the test denitration catalyst 51 has a block shape of, for example, a cross-sectional area of 150 mm ⁇ 150 mm and a thickness of 50 mm (see FIG. 3).
- the test denitration catalyst 51 may have, for example, a cylindrical shape with a diameter of 150 mm and a thickness of 50 mm in order to make the flow rate of the test exhaust gas uniform.
- the mesh size and SV value of the test denitration catalyst 51 are the same as those of the denitration catalyst 4 of the advanced GTCC 1 (see FIG. 4).
- the test denitration catalyst 51 is incorporated in a metal frame.
- the test denitration catalyst 51 is arranged in multiple stages (here, three stages) in the duct 53 along the flow direction of the test exhaust gas.
- the flow rate of the test exhaust gas passing through the test denitration catalyst 51 can be determined by setting the SV value to 45000, for example.
- the shape, size, and number of the test denitration catalyst 51 are not limited, and may be appropriately changed according to specifications, conditions, and the like.
- each of the plurality of test denitration catalysts 51 is referred to as a first stage, a second stage, and a third stage from the upstream side in the flow direction of the test exhaust gas.
- the reducing agent charging device 52 is a reducing agent having an equivalent ratio of NOx of the test exhaust gas to NOx of 1.0 or more in the test exhaust gas supplied from the test exhaust gas supply device 40 to the test denitration catalyst 51 (here, Ammonia gas).
- the “equivalent ratio” is the ratio of the amount of reducing agent to be added to the amount of reducing agent necessary for denitrating all NOx in the test exhaust gas. That is, a reducing agent having an equivalent ratio of 1.0 or more with respect to NOx is a reducing agent in an amount more than the amount of reducing agent necessary for denitrating all NOx in the exhaust gas for test.
- the reducing agent charging device 52 When the reducing agent is ammonia gas, the reducing agent charging device 52 performs feedback control so that the amount of the reducing agent to be charged is equal to or more than the amount of NOx in the test exhaust gas.
- the reducing agent charging device 52 is disposed in the duct 53 upstream of the test denitration catalyst 51.
- the reducing agent charging device 52 shown in the figure injects a certain amount of reducing agent according to the NOx concentration of the test exhaust gas while the diameter of the duct 53 is gradually increasing from the inlet toward the first-stage test denitration catalyst 51. To do.
- the reducing agent input device 52 controls the amount of reducing agent input so that the ratio of the reducing agent to NOx in the test exhaust gas becomes constant.
- the reducing agent is ammonia gas
- the reducing agent charging device 52 inputs a slightly larger amount (1.2 times) of the reducing agent than NOx of the test exhaust gas.
- the reducing agent charging device 52 dilutes the reducing agent with air in advance.
- the reducing agent input device 52 can automatically input the reducing agent into the test exhaust gas. It does not specifically limit as a reducing agent, Other various reducing agents may be sufficient.
- the reducing agent may be urea (CO (NH 2 ) 2 ) gas.
- the reducing agent which is ammonia gas
- the reducing agent has an equivalent reaction with NOx and reacts with NOx in a one-to-one relationship. Since the reducing agent, which is urea gas, has two Ns in the molecule, it reacts two-to-one with NOx.
- the latent heat recovery device 60 is a device that uses an FF-type household gas water heater using city gas, like the test exhaust gas supply device 40. That is, the latent heat recovery device 60 is configured by a gas water heater. The latent heat recovery device 60 is disposed downstream of the test denitration catalyst 51 in the test exhaust gas flow path. The latent heat recovery device 60 has a sealed structure.
- the latent heat recovery device 60 includes a third heat exchanger 61, a latent heat recovery heat exchanger 62, a condensed water recovery unit 63, and a membrane separation device 64.
- the third heat exchanger 61 and the latent heat recovery heat exchanger 62 are arranged in the casing 65 in this order in the flow direction of the test exhaust gas.
- the third heat exchanger 61 and the latent heat recovery heat exchanger 62 perform heat exchange using water (here, tap water) as a heat medium.
- the upstream side of the water flow path 61a of the third heat exchanger 61 and the downstream side of the water flow path 62a of the latent heat recovery heat exchanger 62 are connected to each other so as to be a direct current. Thereby, the water (hot water) that has passed through the latent heat recovery heat exchanger 62 is circulated to the third heat exchanger 61.
- the amount of water in the third heat exchanger 61 and the latent heat recovery heat exchanger 62 can be adjusted by the valve opening of the valve 66.
- the amount of water in the third heat exchanger 61 and the latent heat recovery heat exchanger 62 is measured by a water flow meter (not shown).
- the water channel 61a and the water channel 62a may be connected in reverse to the above, that is, the upstream side of the water channel 62a of the latent heat recovery heat exchanger 62 and the water channel 61a of the third heat exchanger 61. May be connected to each other so as to be a direct current.
- the water flow path 61a of the third heat exchanger 61 and the water flow path 62a of the latent heat recovery heat exchanger 62 may be configured independently of each other without being connected to form a direct current.
- the third heat exchanger 61 is disposed upstream of the latent heat recovery heat exchanger 62 in the test exhaust gas flow path.
- the third heat exchanger 61 adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas exhausted to the atmosphere by the advanced GTCC 1 (exhaust gas outlet temperature).
- exhaust gas outlet temperature of the advanced GTCC 1 the outlet temperature of the chimney 7 is used and is 85 to 90 ° C.
- the outlet temperature of the chimney 7 is designed at a lower limit temperature at which water vapor is not liquefied.
- the latent heat recovery heat exchanger 62 recovers the latent heat of the steam of the test exhaust gas. Specifically, the latent heat recovery heat exchanger 62 adjusts the temperature of the test exhaust gas to 50 ° C. The adjustment of the temperature of the test exhaust gas by the third heat exchanger 61 and the latent heat recovery heat exchanger 62 can be realized by adjusting the water flow rate of the third heat exchanger 61 and the latent heat recovery heat exchanger 62 by the valve 66. .
- the condensate recovery unit 63 collects and accumulates the condensed water generated by the latent heat recovery by the latent heat recovery heat exchanger 62 in the housing 65.
- the condensed water recovery unit 63 is not particularly limited, and various known configurations can be used.
- the membrane separation device 64 is disposed between the third heat exchanger 61 and the latent heat recovery heat exchanger 62 in the test exhaust gas flow path.
- the membrane separation device 64 includes at least one of a membrane for separating and collecting water vapor in the test exhaust gas and a membrane for separating and collecting carbon dioxide in the test exhaust gas.
- the membrane separation device 64 here includes a membrane for separating and collecting water vapor, or includes a membrane for separating and collecting water vapor and a membrane for separating and collecting carbon dioxide.
- the membrane separation device 64 is not particularly limited, and various known devices can be used. Note that the membrane separation device 64 may not be provided. In the case where the membrane separation device 64 is not provided, the membrane separation device 64 may be arranged (attachable) in the housing 65 so that the membrane separation device 64 can be mounted in the future, for example.
- the measuring device 70 is a device that measures data relating to the test exhaust gas.
- the measuring device 70 includes first analyzers (NOx concentration measuring means) 71a to 71e, a second analyzer 72, and temperature sensors 73a to 73d.
- the first analyzers 71a to 71e continuously measure at least NOx concentration and ammonia concentration of the test exhaust gas.
- the first analyzer 71a analyzes the exhaust gas for testing on the upstream side (inlet) of the first-stage test denitration catalyst 51.
- the first analyzer 71b analyzes the test exhaust gas between the first-stage test denitration catalyst 51 and the second-stage test denitration catalyst 51.
- the first analyzer 71c analyzes the test exhaust gas between the second-stage test denitration catalyst 51 and the third-stage test denitration catalyst 51.
- the first analyzer 71d analyzes the test exhaust gas downstream (outlet) of the third-stage test denitration catalyst 51.
- the first analyzer 71e analyzes the test exhaust gas exhausted from the latent heat recovery device 60 to the atmosphere.
- the second analyzer 72 measures at least the ammonia concentration of the condensed water collected by the condensed water collecting unit 63.
- the first analyzers 71a to 71e and the second analyzer 72 are not particularly limited, and various known analyzers can be applied.
- an infrared analyzer may be used, or a batch type analyzer may be used.
- a batch type analyzer may be used.
- the first analyzers 71a to 71e general-purpose gas measuring instruments that are widely used may be used.
- the temperature sensor 73 a is provided downstream of the first heat exchanger 43.
- the temperature sensor 73 a detects the temperature of the test exhaust gas downstream of the first heat exchanger 43.
- the temperature sensor 73 b is provided downstream of the second heat exchanger 44.
- the temperature sensor 73 b detects the temperature of the test exhaust gas downstream of the second heat exchanger 44.
- the temperature sensor 73 c is provided downstream of the third heat exchanger 61.
- the temperature sensor 73 c detects the temperature of the test exhaust gas downstream of the third heat exchanger 61.
- the temperature sensor 73d is provided downstream of the latent heat recovery heat exchanger 62.
- the temperature sensor 73d detects the temperature of the test exhaust gas downstream of the latent heat recovery heat exchanger 62.
- the temperature sensors 73a to 73d are not particularly limited, and various known temperature sensors can be applied.
- Various data measured by the measuring device 70 is output to the data analyzing device 30.
- various data measured by the measuring device 70 are appropriately output to each element of the evaluation test apparatus 20, and thereby each element of the evaluation test apparatus 20 is appropriately controlled based on the data.
- the data analysis device 30 executes at least one of monitoring, collection, storage, analysis, and output of various data measured by the measurement device 70.
- the data storage unit 31 stores (records) and stores various data measured by the measurement device 70. That is, the data storage unit 31 stores at least data relating to the NOx concentration of the test exhaust gas measured by the first analyzers 71a to 71e.
- the data analysis device 30 may include an operation unit and a display unit (not shown), and may output various data measured by the measurement device 70 to the display unit in response to an operation input from the operation unit.
- the data analysis device 30 accumulates various data measured by the measurement device 70 in the data storage unit 31.
- the data analyzer 30 constantly monitors whether various data are within the design standard or the management standard.
- test exhaust gas supply device 40 In the above-described evaluation test system 10, first, in the test exhaust gas supply device 40, combustion air is supplied by the fan 41, gas fuel is burned by the burner 42 using this combustion air, and the test exhaust gas. Occurs continuously.
- the test exhaust gas is heat-exchanged by the first heat exchanger 43 and the second heat exchanger 44 and then continuously supplied to the test exhaust gas denitration apparatus 50.
- the reducing agent input device 52 supplies a reducing agent having an equivalent ratio of 1.0 or more to NOx of the test exhaust gas into the test exhaust gas.
- the test exhaust gas is continuously supplied to the latent heat recovery device 60 after 99% or more of NOx is removed by the test denitration catalyst 51.
- the latent heat recovery device 60 the test exhaust gas is heat-exchanged by the third heat exchanger 61, and at least one of water vapor and carbon dioxide is separated and recovered by the membrane separation device 64, and the latent heat recovery is performed by the latent heat recovery heat exchanger 62. And then exhausted to the atmosphere.
- Various data are measured by the measuring device 70 in conjunction with a series of processes including continuous supply, denitration, latent heat recovery, and exhaust for the test exhaust gas.
- the data analysis device 30 at least one of monitoring, collection, storage, analysis, and output of various data measured by the measurement device 70 is performed.
- the reduction rate (for example, 1 / 10,000) of the evaluation test system 10
- the combustion gas amount of the burner 42 of the evaluation test system 10 is set.
- the reduction rate is generally determined from the combustion parameters of the original gas water heater that constitutes the test exhaust gas supply device 40. Based on this, the excess air ratio and the NOx concentration are determined so as to be the same as the exhaust gas of the advanced GTCC1.
- gas fuel is supplied to the test exhaust gas supply device 40 and water is passed through the test exhaust gas supply device 40.
- the test exhaust gas is continuously supplied to the test exhaust gas denitration device 50, and denitration is performed by the test denitration catalyst 51.
- the temperature of the test exhaust gas controlled by the first heat exchanger 43 and the second heat exchanger 44 is adjusted by the water flow rate of the first heat exchanger 43 and the second heat exchanger 44.
- the temperature of the exhaust gas for test is adjusted to the exhaust gas temperature (about 600 ° C.) at the outlet of the gas turbine T1 by adjusting the water flow rate of the first heat exchanger 43.
- the temperature of the test exhaust gas (the outlet temperature of the test exhaust gas of the test exhaust gas supply device 40) measured by the temperature sensor 73 b is changed to the test denitration catalyst 51. It controls so that it may become active temperature (350 +/- 100 degreeC).
- the combustion gas amount of the burner 42 is set so that the excess air ratio of the exhaust gas for test becomes the same as the excess air ratio of the exhaust gas at the outlet of the gas turbine T1 (see FIG. 4) (the excess air ratio determined as described above). While setting to a predetermined amount and burning, the air amount of the combustion air of the fan 41 is adjusted.
- the excess air ratio of the test exhaust gas is obtained by measuring the oxygen concentration in the test exhaust gas with a measuring instrument (not shown).
- the excess air ratio of the exhaust gas at the gas turbine T1 outlet can be determined from known data.
- the flow rate of the test exhaust gas to be passed through the test denitration catalyst 51 is obtained from the SV value of the test denitration catalyst 51 and the scale of the evaluation test apparatus 20, and the burner is generated so that the test exhaust gas capable of realizing this flow rate is generated.
- the NOx concentration measured by the first analyzer 71a becomes the same as the NOx concentration of the exhaust gas of the gas turbine T1 (the NOx concentration determined as described above) by changing the nozzle ratio of the rich burner 42x and the light burner 42y. Adjust as follows.
- the amount of reducing agent introduced into the test exhaust gas by the reducing agent introduction device 52 is such that the equivalent ratio with respect to NOx measured by the first analyzer 71a is 1.0 or more and the ratio to NOx is constant. Control.
- the exhaust gas properties of the test exhaust gas on the downstream side of the test denitration catalyst 51 are measured by the first analyzer 71d. From this measurement result, the test denitration catalyst 51 is evaluated.
- the first analyzers 71b and 71c measure the exhaust gas properties of the test exhaust gas between the adjacent test denitration catalysts 51. From this measurement result, the status of the denitration reaction at the intermediate stage is evaluated. Then, the measurement result and the evaluation result are stored and collected in the data storage unit 31 as optimum design data, maintenance management data, or development data.
- test denitration catalyst 51 As a result, at least the following effects are obtained with respect to the test denitration catalyst 51. 1) It can be evaluated that 99% denitration can be achieved at the initial design value. 2) Through the demonstration evaluation, it is possible to develop a high-performance catalyst device with a larger SV value.
- the exhaust gas property of the test exhaust gas exhausted to the atmosphere is measured by the first analyzer 71e.
- the amount of condensed water condensed by the latent heat recovery of the latent heat recovery heat exchanger 62 and recovered in the condensed water recovery unit 63 is confirmed.
- the property of the condensed water is measured by the second analyzer 72. Then, the measurement results are stored in the data storage unit 31 and collected.
- Various data are measured by the first analyzers 71a to 71e, the second analyzer 72, and the temperature sensors 73a to 73d. Various data may be measured continuously or periodically. Then, the measurement results are stored in the data storage unit 31 and collected.
- a reducing agent having an equivalent ratio of NO to NOx of 1.0 or more of the test exhaust gas is included in the test exhaust gas continuously supplied from the test exhaust gas supply device 40 to the test denitration catalyst 51. throw into. Therefore, even when using a test denitration catalyst 51 with advanced denitration performance (that is, NOx can be removed by 99% or more), there is no shortage of reducing agent necessary for denitration reaction, and it can handle denitration. it can. Further, the latent heat of the exhaust gas for the test exhaust gas can be recovered by the latent heat recovery device 60. That is, according to the present embodiment, it is possible to accurately reproduce the processing flow of the exhaust gas from the gas turbine T1 to the atmosphere in the advanced GTCC 1 with a reduced scale of about 1 / 10,000 to 1 / 10,000. .
- the advanced GTCC 1 can be verified on a reduced scale with high accuracy. Through the demonstration evaluation results, it is possible to acquire know-how and request technical personnel. It is possible to develop the performance and flexibility of the advanced GTCC1. By grasping the basic performance of the advanced GTCC1, necessary design development data can be collected. Based on these data, the heat transfer area of the heat exchanger of the advanced GTCC 1 can be adjusted.
- the test exhaust gas supply device 40 includes a fan 41 and a burner 42.
- a test exhaust gas having the same properties as the exhaust gas of the advanced GTCC 1 can be generated.
- the fan 41 controls the amount of air to be supplied so that the excess air ratio of the exhaust gas for test becomes the same as the excess air ratio of the exhaust gas at the gas turbine T1 outlet.
- By controlling the air volume of the fan 41 it is possible to generate a test exhaust gas having the same excess air ratio as the exhaust gas of the advanced GTCC1.
- the burner 42 is a dark and light burner including a dark burner 42x and a light burner 42y.
- the flow rate ratio between the gas flow rate of the rich burner 42x and the gas flow rate of the light burner 42y it is possible to generate a test exhaust gas having the same NOx concentration as the exhaust gas of the advanced GTCC1.
- the test exhaust gas supply device 40 includes a first heat exchanger 43 and a second heat exchanger 44. According to this configuration, the temperature of the test exhaust gas is made the same as the exhaust gas at the gas turbine T1 outlet of the advanced GTCC 1 by the first heat exchanger 43, and then the activity of the test denitration catalyst 51 is increased by the second heat exchanger 44. Can be temperature.
- the heat medium that has passed through the second heat exchanger 44 is circulated to the first heat exchanger 43.
- the heat medium in the first heat exchanger 43 and the second heat exchanger 44 can be operated at the same flow rate. It is possible to easily cope with the above-described durability test of the advanced GTCC1.
- the test denitration catalyst 51 can remove 99% or more of NOx in the test exhaust gas. According to this configuration, it is possible to perform a demonstration evaluation of the advanced GTCC 1 capable of removing 99% or more of NOx in the exhaust gas.
- the latent heat recovery device 60 includes a third heat exchanger 61.
- the temperature of the exhaust gas for testing is adjusted by the third heat exchanger 61 so as to be the same as the temperature of the exhaust gas exhausted to the atmosphere in the advanced GTCC 1. According to this configuration, the temperature of the exhaust gas for testing can be made the same as the temperature of the exhaust gas at the exit of the chimney 7 (see FIG. 4) of the advanced GTCC 1.
- the heat medium that has passed through the latent heat recovery heat exchanger 62 is circulated to the third heat exchanger 61.
- the latent heat recovery heat exchanger 62 and the third heat exchanger 61 can be operated at the same flow rate of the heat medium. It is possible to easily cope with the above-described durability test of the advanced GTCC1.
- the latent heat recovery device 60 has a membrane separation device 64. According to this configuration, it is possible to perform a demonstration evaluation of the advanced type GTCC 1 in which the membrane separation device 64 is incorporated. In other words, it is possible to perform proof evaluation incorporating a membrane separation technique. The expandability and developability of the evaluation test system 10 and the evaluation test apparatus 20 can be improved.
- the latent heat recovery device 60 has a condensed water recovery unit 63 that recovers and accumulates condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger 62.
- the unreacted reducing agent (ammonia dissolved in the condensed water) in the test exhaust gas can be evaluated. Ammonia is considered to be changed to ammonium carbonate or the like when dissolved in water.
- the test exhaust gas supply device 40 and the latent heat recovery device 60 are constituted by a gas water heater. According to this configuration, the test exhaust gas supply device 40 and the latent heat recovery device 60 can be easily realized. Only one of the test exhaust gas supply device 40 and the latent heat recovery device 60 may be constituted by a gas water heater.
- the data storage unit 31 can store and collect various data necessary for verification evaluation.
- the exhaust gas properties of the test exhaust gas between the adjacent test denitration catalysts 51 are measured by the first analyzers 71b and 71c. Thereby, the status of the denitration reaction in the intermediate stage can be monitored. Maintenance management information such as performance deterioration or replacement of the test denitration catalyst 51 can be easily obtained.
- the exhaust gas properties of the test exhaust gas exhausted to the atmosphere are measured by the first analyzer 71e. Thereby, ammonia and NOx finally exhausted can be monitored, and it can be confirmed and confirmed that these are within the control standard.
- the difference in pressure loss or the like between the advanced GTCC 1 and the evaluation test system 10 (evaluation test apparatus 20) can be dealt with by physical measures such as diffusion of test exhaust gas or prevention of drift.
- the evaluation test system 10 or the evaluation test apparatus 20 can be used to evaluate catalysts from a plurality of catalyst manufacturers.
- the evaluation test system 10 or the evaluation test apparatus 20 can function as a voluntary performance assurance system by a third party organization.
- a gas turbine manufacturer, a power generation company, and a catalyst manufacturer can use the evaluation test system 10 or the evaluation test apparatus 20 by themselves.
- Power generation companies can voluntarily disclose information, such as disclosing necessary data, and can build a transparent system.
- -A system or device that can act equally with large companies such as GTCC manufacturers and power generation companies can be provided. Participating companies can secure appropriate and stable earnings. -New entry into the advanced GTCC1 as an open innovation system.
- a data system that guarantees the concept of IoT Internet of Things
- the advanced GTCC 1 can be operated stably for a long period of time based on various data accumulated by monitoring the situation in the evaluation test system 10 or the evaluation test apparatus 20.
- the evaluation test system 10 or the evaluation test apparatus 20 can be incorporated with a system having a platform that can be flexibly developed and coped with technological progress. -Benefits such as shortening the evaluation period and ease of procurement and evaluation of business funds.
- the advanced GTCC 1 has the following merits in addition to the merits of normal GTCC. a) There is no air pollutant and no chimney is required. i) This saves the cost of making a chimney. ii) Landscape considerations are much smaller. There is no influence of the radio interference by the chimney. iii) Air pollution impact assessment, which is the main item of environmental impact assessment, is small. As a result, it is easy to form a consensus in the local area in the environmental impact assessment procedure, and shorten the period until operation. b) An efficient power plant for local production for local consumption can be realized. i) It is easy to use infrastructure facilities such as natural gas or high-voltage power distribution network in large urban areas. ii) Transmission loss is small and more economical.
- thermal power plants without air pollution are evaluated internationally based on JICA's social environment consideration guidelines.
- Conventional thermal power plants are category A even if they are GTCC.
- the business risk can be significantly reduced by reducing the environmental load, and positioning in the category B can be an effective target.
- this indication is not limited to the said embodiment.
- the present disclosure may be modified without changing the gist described in each claim. You may combine arbitrarily at least one part of the said embodiment.
- the term “identical” in the above includes not only completely the same but substantially the same, and includes errors in design, measurement, manufacturing, and the like.
- the term “same” in the above includes not only completely the same case but also substantially the same case, and includes errors such as design, measurement, and manufacturing.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
This evaluation testing apparatus is for empirically evaluating a gas turbine combined cycle power generation system provided with a denitrification device that removes NOx from an exhaust gas discharged from a gas turbine to the atmosphere, and provided with: a test exhaust gas supply means for continuously supplying a test exhaust gas having a property identical to that of the exhaust gas; a test denitrification catalyst for denitrifying the test exhaust gas from the test exhaust gas supply means, the test denitrification catalyst having a honeycomb structure and being formed from a part of a denitrification catalyst usable for the denitrification device; a reducing agent charging means for charging a reducing agent, the equivalence ratio of which with respect to NOx in the test exhaust gas is 1.0 or higher, into the test exhaust gas supplied from the test exhaust gas supply means to the test denitrification catalyst; a latent heat recovery means that has a latent heat recovery heat exchanger for recovering latent heat from the steam of the test exhaust gas and that is arranged downstream of the test denitrification catalyst; and an NOx concentration measurement means for at least measuring the NOx concentration in the test exhaust gas.
Description
本開示は、評価試験装置及び評価試験システムに関する。
This disclosure relates to an evaluation test apparatus and an evaluation test system.
従来の評価試験装置に関する技術として、例えば特許文献1に記載された装置が知られている。特許文献1に記載された装置では、ボイラー等の排ガスと同じ成分のガスを製造する。製造したガスを、ボイラー等とほぼ同じ温度まで昇温させた後、還元剤であるアンモニアガスと混合させる。そして、当該混合ガスを試験用の脱硝触媒に接触させて、脱硝試験を行う。
As a technique related to a conventional evaluation test apparatus, for example, an apparatus described in Patent Document 1 is known. In the apparatus described in Patent Document 1, a gas having the same component as exhaust gas from a boiler or the like is produced. The produced gas is heated to substantially the same temperature as that of a boiler or the like, and then mixed with ammonia gas as a reducing agent. Then, the mixed gas is brought into contact with a test denitration catalyst to perform a denitration test.
ところで、19世紀から20世紀後半にかけては、一般的に、石炭又は石油等の燃料を燃焼させて得た蒸気で蒸気タービン(以下、「ST」という)を回転させることにより、発電を行っていた。発電効率は、蒸気温度と蒸気温度で決まる蒸気圧力とにより高めることができる。現在、蒸気温度は、600℃を超えるまでになり、発電効率は、最高で40%(高位発熱量基準)近くまで向上している。
By the way, from the 19th century to the latter half of the 20th century, power generation was generally performed by rotating a steam turbine (hereinafter referred to as “ST”) with steam obtained by burning fuel such as coal or oil. . The power generation efficiency can be increased by the steam temperature and the steam pressure determined by the steam temperature. At present, the steam temperature exceeds 600 ° C., and the power generation efficiency is improved to a maximum of nearly 40% (higher heating value standard).
燃焼後の排ガス中には、多くの汚染物質を含んでいる。そのため、排ガス中の汚染物質を排煙処理装置で除去し、当該排ガスを煙突から広範囲に排気することで、周辺環境への影響を緩和している。代表的な排煙処理として、脱硝装置による排ガス中のNOx(窒素酸化物)の除去、電気集塵機等によるばいじん処理、及び、燃料に含まれる硫黄(S分)の燃焼によって発生する排ガス中の硫黄酸化物(SOx)の除去がある。
The exhaust gas after combustion contains many pollutants. For this reason, pollutants in the exhaust gas are removed by the smoke treatment device, and the exhaust gas is exhausted from the chimney over a wide area, thereby mitigating the influence on the surrounding environment. As typical flue gas treatment, removal of NOx (nitrogen oxide) in exhaust gas by denitration equipment, soot treatment by electric dust collector, etc., and sulfur in exhaust gas generated by combustion of sulfur (S content) contained in fuel There is removal of oxide (SOx).
ガスタービン(以下、「GT」という)は、飛行機のジェットエンジンと同様な原理及び構造で動力を取り出す。GTは、小型で高温ガスを生成して大出力を取り出すことができる。GTでは、性能の安定性、信頼性も高い。
A gas turbine (hereinafter referred to as “GT”) extracts power with the same principle and structure as an airplane jet engine. GT is small and can generate high temperature gas and take out a large output. GT has high performance stability and reliability.
ガスタービンコンバインドサイクル発電システム(以下、「GTCC」という)は、GT及びSTを組み合わせて利用するシステムであり、STよりも発電効率が高いという特徴を有する。GTCCでは、主に天然ガスを燃料として高温の燃焼ガスを生成し、生成した燃焼ガスをGTに供給し、GTを回転させて動力を取り出して発電する。GTの入口における燃焼ガスの温度は、GTの羽根の材料又は冷却方法を改善することで、1600℃程度まで高くなった。また、GTCCでは、GTの排ガスが600℃程度と高温であるため、GTの排ガスを利用して排熱回収ボイラーで蒸気を生成する。生成した蒸気をSTに供給し、STを回転させて動力を取り出して発電する。GT及びSTにおいて発電するため、両方の合計として発電効率が54%(高位発熱量基準)と高効率となる。よって、GTCCは、1980年代から世界的に広く普及してきた。
The gas turbine combined cycle power generation system (hereinafter referred to as “GTCC”) is a system that uses a combination of GT and ST, and has a feature that power generation efficiency is higher than ST. In GTCC, high temperature combustion gas is generated mainly using natural gas as fuel, the generated combustion gas is supplied to GT, and the GT is rotated to extract power and generate electric power. The temperature of the combustion gas at the GT inlet was increased to about 1600 ° C. by improving the material of the GT blade or the cooling method. Moreover, in GTCC, since the exhaust gas of GT is as high as about 600 ° C., steam is generated by the exhaust heat recovery boiler using the exhaust gas of GT. The generated steam is supplied to the ST, and the ST is rotated to extract power and generate electric power. Since power is generated in GT and ST, the total power generation efficiency is 54% (higher heating value standard), which is a high efficiency. Therefore, GTCC has been widely spread worldwide since the 1980s.
GTCCでは、クリーンな天然ガスを燃料とすることから、排ガス中の大気汚染物質にSOxが含まれていない。また、GTCCでは、排ガス中の大気汚染物質に浮遊粒子状物質(又はその中のPM2.5)が含まれていない。GTCCの排ガスでは、大気中の窒素と高温燃焼ガスとが反応して生成されるNOxを除去すれば、大気汚染物質はなくなる。そのため、煙突を不要にできる可能性が高い。
Since GTCC uses clean natural gas as fuel, SOx is not included in air pollutants in exhaust gas. Further, in GTCC, air pollutants in exhaust gas do not contain suspended particulate matter (or PM2.5 therein). In the exhaust gas of GTCC, if NOx produced by the reaction between nitrogen in the atmosphere and high-temperature combustion gas is removed, air pollutants are eliminated. Therefore, there is a high possibility that the chimney can be eliminated.
NOx対策について、脱硝装置を設置し、排ガスのNOx濃度を4~5ppm(酸素濃度:16%)以下とし、NOxを90%(wt%)以上除去する対応を図った。これにより、NOx濃度及び排出量が十分に小さくなり、煙突の高さを従来にない低いものとすることが可能となった。その後、GTCCにおいて、排ガスのNOx濃度がデファクトスタンダードとなっている。
Regarding NOx countermeasures, a NOx removal system was installed to reduce the NOx concentration of exhaust gas to 4-5 ppm (oxygen concentration: 16%) or less and to remove NOx by 90% (wt%) or more. As a result, the NOx concentration and the emission amount are sufficiently reduced, and the height of the chimney can be made lower than before. Thereafter, in GTCC, the NOx concentration of exhaust gas has become the de facto standard.
日本政府は、エネルギ基本政策を見直し、次の方向付けを行った。
・ 脱原発依存
・ 再生可能エネルギの増強
・ LNG(液化天然ガス)によるGTCCの増強
一方で、地球温暖化対策が国際的な最重要課題である。2015年12月のCOP21で「パリ協定」が成立した。今後批准に向けた動きが進み、「パリ協定」は比較的早い時期に批准される見通しである。 The Japanese government reviewed the basic energy policy and made the following directions.
・ Dependence on nuclear denuclearization ・ Enhancement of renewable energy ・ Enhancement of GTCC with LNG (liquefied natural gas) On the other hand, global warming countermeasures are the most important international issues. The “Paris Agreement” was finalized at COP21 in December 2015. Moving forward, ratification is expected and the Paris Agreement will be ratified relatively early.
・ 脱原発依存
・ 再生可能エネルギの増強
・ LNG(液化天然ガス)によるGTCCの増強
一方で、地球温暖化対策が国際的な最重要課題である。2015年12月のCOP21で「パリ協定」が成立した。今後批准に向けた動きが進み、「パリ協定」は比較的早い時期に批准される見通しである。 The Japanese government reviewed the basic energy policy and made the following directions.
・ Dependence on nuclear denuclearization ・ Enhancement of renewable energy ・ Enhancement of GTCC with LNG (liquefied natural gas) On the other hand, global warming countermeasures are the most important international issues. The “Paris Agreement” was finalized at COP21 in December 2015. Moving forward, ratification is expected and the Paris Agreement will be ratified relatively early.
GTCCは、発電用エネルギとして3E(Energy Security:電力の供給安定性、Ecology:環境保全性、Economy:経済性)及び2S(Safety:安全性、Sustainability:持続可能性)を充足している。GTCCの優位性がより明確になり、今後普及が進むことが予測される。
GTCC satisfies 3E (Energy Security: Power Supply Stability, Ecology: Environmental Conservation, Economy) and 2S (Safety: Sustainability) as power generation energy. The superiority of GTCC will become clearer, and it is expected that it will spread in the future.
ここで、近年、次の特徴を備えたGTCCである先進型ガスタービンコンバインドサイクル発電システム(以下、「先進型GTCC」という)の開発が進められている。
a)脱硝装置の脱硝性能の高度化。
b)大気中に放出していた排ガス中の蒸気の潜熱回収。 Here, in recent years, development of an advanced gas turbine combined cycle power generation system (hereinafter referred to as “advanced GTCC”), which is a GTCC having the following features, has been under development.
a) Sophistication of denitration performance of denitration equipment.
b) Recovery of latent heat of vapor in the exhaust gas released into the atmosphere.
a)脱硝装置の脱硝性能の高度化。
b)大気中に放出していた排ガス中の蒸気の潜熱回収。 Here, in recent years, development of an advanced gas turbine combined cycle power generation system (hereinafter referred to as “advanced GTCC”), which is a GTCC having the following features, has been under development.
a) Sophistication of denitration performance of denitration equipment.
b) Recovery of latent heat of vapor in the exhaust gas released into the atmosphere.
先進型GTCCは、確立した技術により実現が可能である。2014年1月には、環境影響評価法に基づく「夢洲天然ガス発電所建設事業の計画段階環境配慮書」を株式会社エコ・サポートが事業主体として公告しており、同年4月14日付経済産業大臣意見が公表されている。これは、環境影響評価法改正に伴う第一号案件である。発電事業者ないしはGTCCメーカー等の関係者に先進型GTCCの優位性は認知されている。
Advanced GTCC can be realized with established technology. In January 2014, Eco Support Co., Ltd. announced the “Planned Environmental Considerations for the Yumeshima Natural Gas Power Plant Construction Project” based on the Environmental Impact Assessment Law. The opinion of the Minister of Industry has been released. This is the first project following the revision of the Environmental Impact Assessment Law. The superiority of the advanced GTCC is recognized by the power generation company or the parties such as GTCC manufacturers.
先進型GTCCの実際の実現に当たり、実機を想定すると、資金面で必要な絶対額が相当に大きい。また、経済性があるか、技術的に対応できるか、又は、長期間運転稼働させることができるか等の検討が要される場合がある。先進型GTCCについて、わが国内及び海外で普及させるために、排ガスの性状を測定及び監視し、適切な維持管理を行うことにより、長期間性能保証できることが重要である。上記の経緯から、先進型GTCCについて、例えば実機の1万分の1から数万分の1程度の縮小規模で実証評価を精度良く行い得る評価試験装置が望まれている。
In actual implementation of advanced GTCC, assuming an actual machine, the absolute amount required in terms of funds is considerably large. In addition, it may be necessary to consider whether it is economical, technically compatible, or can be operated for a long period of time. In order to disseminate advanced GTCC in Japan and overseas, it is important to be able to guarantee performance for a long period of time by measuring and monitoring the properties of exhaust gas and performing appropriate maintenance. From the above circumstances, there is a demand for an evaluation test apparatus that can perform proof evaluation with high accuracy on a reduced scale of about 1 / 10,000 to tens of thousands of real GTCC, for example.
そこで、本開示は、先進型GTCCの実証評価を縮小規模で精度良く行うことができる評価試験装置及び評価試験システムを提供することを目的とする。
Therefore, an object of the present disclosure is to provide an evaluation test apparatus and an evaluation test system capable of accurately performing demonstration evaluation of an advanced GTCC on a reduced scale.
本開示の一形態に係る評価試験装置は、ガスタービンから大気へ排気される排ガス中のNOxを除去する脱硝装置を備えたガスタービンコンバインドサイクル発電システムの実証評価用の評価試験装置であって、排ガスと同一性状の試験用排ガスを連続的に供給する試験用排ガス供給手段と、ハニカム構造を有し、脱硝装置に使用可能な脱硝触媒の一部で構成され、試験用排ガス供給手段から供給された試験用排ガスを脱硝する試験用脱硝触媒と、試験用排ガス供給手段から試験用脱硝触媒へ供給される試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤を投入する還元剤投入手段と、試験用排ガスの流路において試験用脱硝触媒の下流に配置され、試験用排ガスの蒸気の潜熱を回収する潜熱回収用熱交換器を有する潜熱回収手段と、試験用脱硝触媒の上流の試験用排ガス、試験用脱硝触媒の下流の試験用排ガス、及び、大気へ排気される試験用排ガスにおけるNOx濃度を少なくとも測定するNOx濃度測定手段と、を備える。
An evaluation test apparatus according to an embodiment of the present disclosure is an evaluation test apparatus for demonstrative evaluation of a gas turbine combined cycle power generation system including a denitration apparatus that removes NOx in exhaust gas exhausted from a gas turbine to the atmosphere. A test exhaust gas supply means for continuously supplying a test exhaust gas having the same characteristics as the exhaust gas, and a part of a denitration catalyst having a honeycomb structure and usable for a denitration apparatus, is supplied from the test exhaust gas supply means. A test denitration catalyst for denitrating the test exhaust gas and a test agent exhaust gas supplied from the test exhaust gas supply means to the test denitration catalyst, wherein the equivalent ratio of the test exhaust gas to NOx is 1.0 or more And a heat exchanger for latent heat recovery, which is disposed downstream of the test denitration catalyst in the test exhaust gas flow path and recovers the latent heat of the test exhaust gas vapor. And a NOx concentration measuring means for measuring at least NOx concentration in a test exhaust gas upstream of the test denitration catalyst, a test exhaust gas downstream of the test denitration catalyst, and a test exhaust gas exhausted to the atmosphere And comprising.
この評価試験装置では、先進型GTCCにおけるガスタービンから大気への排ガスの処理フローを、縮小規模で精度良く再現することが可能である。したがって、NOx濃度測定手段の測定結果に基づくことで、先進型GTCCの実証評価を縮小規模で精度良く行うことができる。
This evaluation test device can accurately reproduce the processing flow of the exhaust gas from the gas turbine to the atmosphere in the advanced GTCC on a reduced scale. Therefore, based on the measurement result of the NOx concentration measuring means, the demonstration evaluation of the advanced GTCC can be accurately performed on a reduced scale.
本開示の一形態に係る評価試験装置では、試験用排ガス供給手段は、燃焼用空気を供給するファンと、ファンで供給された燃焼用空気を利用して燃料を燃焼させ、試験用排ガスを連続的に発生させるバーナと、を有し、ファンは、試験用排ガスの空気過剰率がガスタービン出口における排ガスの空気過剰率と同じになるように、供給する風量を制御してもよい。この構成によれば、ファンの風量を制御することで、先進型GTCCの排ガスと同じ空気過剰率の試験用排ガスを生成できる。
In the evaluation test apparatus according to an aspect of the present disclosure, the test exhaust gas supply means continuously burns the test exhaust gas by using a fan that supplies combustion air, and burning the fuel using the combustion air supplied by the fan. The fan may control the air volume supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine outlet. According to this structure, the exhaust gas for a test with the same excess air ratio as the exhaust gas of advanced GTCC can be produced | generated by controlling the air volume of a fan.
本開示の一形態に係る評価試験装置では、バーナは、濃バーナ及び淡バーナを含む濃淡バーナであって、濃淡バーナでは、試験用排ガスのNOx濃度が排ガスのNOx濃度と同じになるように、濃バーナのガス流量と淡バーナのガス流量との流量比率が設定されていてもよい。この構成によれば、濃バーナのガス流量と淡バーナのガス流量との流量比率を設定することで、先進型GTCCの排ガスと同じNOx濃度の試験用排ガスを生成できる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the burner is a dark / light burner including a dark burner and a light burner, and in the light / dark burner, the NOx concentration of the test exhaust gas is the same as the NOx concentration of the exhaust gas. A flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner may be set. According to this configuration, by setting the flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner, it is possible to generate the test exhaust gas having the same NOx concentration as that of the advanced GTCC exhaust gas.
本開示の一形態に係る評価試験装置では、試験用排ガス供給手段は、試験用排ガスの温度を調整する第1熱交換器と、第1熱交換器で温度が調整された試験用排ガスの温度を更に調整する第2熱交換器と、を有し、第1熱交換器は、試験用排ガスの温度を、ガスタービン出口における排ガスの温度と同じになるように調整し、第2熱交換器は、試験用排ガスの温度を、試験用脱硝触媒の活性温度となるように調整してもよい。この構成によれば、試験用排ガスの温度を、先進型GTCCのガスタービン出口における排ガスと同じにした後、試験用脱硝触媒の活性温度にすることができる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the test exhaust gas supply means includes a first heat exchanger that adjusts the temperature of the test exhaust gas, and a temperature of the test exhaust gas that is adjusted in temperature by the first heat exchanger. A first heat exchanger that adjusts the temperature of the exhaust gas for testing to be the same as the temperature of the exhaust gas at the gas turbine outlet, and the second heat exchanger May adjust the temperature of the test exhaust gas so as to be the activation temperature of the test denitration catalyst. According to this configuration, the temperature of the test exhaust gas can be made the same as the exhaust gas at the gas turbine outlet of the advanced GTCC, and then the activation temperature of the test denitration catalyst can be obtained.
本開示の一形態に係る評価試験装置では、試験用排ガス供給手段では、第2熱交換器を通過した熱媒体を第1熱交換器へ流通させてもよい。この構成によれば、第1熱交換器及び第2熱交換器における熱媒体の流量を同一にして稼働できる。先進型GTCCの耐久試験の実証評価に容易に対応できる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the test exhaust gas supply unit may distribute the heat medium that has passed through the second heat exchanger to the first heat exchanger. According to this configuration, the heat medium in the first heat exchanger and the second heat exchanger can be operated at the same flow rate. It can easily cope with the demonstration test of the durability test of advanced GTCC.
本開示の一形態に係る評価試験装置では、試験用脱硝触媒は、試験用排ガスにおけるNOxを99%以上除去可能であってもよい。この構成によれば、排ガス中のNOxを99%以上除去可能な先進型GTCCの実証評価を行うことができる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the test denitration catalyst may be capable of removing 99% or more of NOx in the test exhaust gas. According to this configuration, it is possible to perform an empirical evaluation of the advanced GTCC capable of removing 99% or more of NOx in the exhaust gas.
本開示の一形態に係る評価試験装置では、潜熱回収手段は、試験用排ガスの流路において潜熱回収用熱交換器の上流に配置され、試験用排ガスの温度を大気へ排気される排ガスの温度と同じになるように調整する第3熱交換器を有していてもよい。この構成によれば、試験用排ガスの温度を、先進型GTCCの煙突出口の排ガスの温度と同じにすることができる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the latent heat recovery means is disposed upstream of the latent heat recovery heat exchanger in the flow path of the test exhaust gas, and the temperature of the exhaust gas exhausted to the atmosphere is the temperature of the test exhaust gas. You may have the 3rd heat exchanger adjusted so that it may become the same. According to this configuration, the temperature of the exhaust gas for testing can be made the same as the temperature of the exhaust gas at the smoke outlet of the advanced GTCC.
本開示の一形態に係る評価試験装置において、潜熱回収手段では、潜熱回収用熱交換器を通過した熱媒体を第3熱交換器へ流通させてもよい。この構成によれば、潜熱回収用熱交換器及び第3熱交換器における熱媒体の流量を同一にして稼働できる。先進型GTCCの耐久試験の実証評価に容易に対応できる。
In the evaluation test apparatus according to an aspect of the present disclosure, the latent heat recovery means may distribute the heat medium that has passed through the latent heat recovery heat exchanger to the third heat exchanger. According to this configuration, it is possible to operate with the heat medium flow rate in the latent heat recovery heat exchanger and the third heat exchanger being the same. It can easily cope with the demonstration test of the durability test of advanced GTCC.
本開示の一形態に係る評価試験装置では、潜熱回収手段は、試験用排ガスの流路において第3熱交換器と潜熱回収用熱交換器との間に配置され、試験用排ガス中の水蒸気を分離回収する膜及び試験用排ガス中の二酸化炭素を分離回収する膜の少なくとも何れかを含む膜分離装置を有していてもよい。この構成によれば、膜分離装置が組み込まれた先進型GTCCの実証評価を行うことができる。
In the evaluation test apparatus according to an aspect of the present disclosure, the latent heat recovery means is disposed between the third heat exchanger and the latent heat recovery heat exchanger in the flow path of the test exhaust gas, and the water vapor in the test exhaust gas is removed. You may have the membrane separation apparatus containing at least any one of the film | membrane which isolate | separates and collects, and the film | membrane which isolate | separates and collects the carbon dioxide in the test exhaust gas. According to this configuration, it is possible to perform demonstration evaluation of the advanced type GTCC in which the membrane separation apparatus is incorporated.
本開示の一形態に係る評価試験装置では、潜熱回収手段は、潜熱回収用熱交換器による潜熱の回収により発生した凝縮水を回収して溜める凝縮水回収部を有していてもよい。この場合、凝縮水回収部の凝縮水を分析することで、試験用排ガス中の未反応の還元剤を評価できる。
In the evaluation test apparatus according to an embodiment of the present disclosure, the latent heat recovery means may include a condensed water recovery unit that recovers and accumulates the condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger. In this case, the unreacted reducing agent in the test exhaust gas can be evaluated by analyzing the condensed water in the condensed water recovery unit.
本開示の一形態に係る評価試験装置では、試験用排ガス供給手段及び潜熱回収手段の少なくとも一方は、ガス給湯器により構成されていてもよい。この構成によれば、試験用排ガス供給手段及び潜熱回収手段の少なくとも一方を容易に実現できる。
In the evaluation test apparatus according to an embodiment of the present disclosure, at least one of the test exhaust gas supply unit and the latent heat recovery unit may be configured by a gas water heater. According to this configuration, at least one of the test exhaust gas supply means and the latent heat recovery means can be easily realized.
本開示の一形態に係る評価試験システムは、ガスタービンから大気へ排気される排ガス中のNOxを除去する脱硝装置を備えたガスタービンコンバインドサイクル発電システムの実証評価用の評価試験システムであって、排ガスと同一性状の試験用排ガスを連続的に供給する試験用排ガス供給手段と、ハニカム構造を有し、脱硝装置に使用可能な脱硝触媒の一部で構成され、試験用排ガス供給手段から供給された試験用排ガスを脱硝する試験用脱硝触媒と、試験用排ガス供給手段から試験用脱硝触媒へ供給される試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤を投入する還元剤投入手段と、試験用排ガスの流路において試験用脱硝触媒の下流に配置され、試験用排ガスの蒸気の潜熱を回収する潜熱回収用熱交換器を有する潜熱回収手段と、試験用脱硝触媒の上流の試験用排ガス、試験用脱硝触媒の下流の試験用排ガス、及び、大気へ排気される試験用排ガスにおけるNOx濃度を少なくとも測定するNOx濃度測定手段と、NOx濃度測定手段で測定したNOx濃度に関するデータを少なくとも格納するデータ記憶部と、を備え、試験用排ガス供給手段は、燃焼用空気を供給するファンと、ファンで供給された燃焼用空気を利用して燃料を燃焼させ、試験用排ガスを連続的に発生させるバーナと、試験用排ガスの温度を調整する第1熱交換器と、第1熱交換器で温度が調整された試験用排ガスの温度を更に調整する第2熱交換器と、を有し、潜熱回収手段は、試験用排ガスの流路において潜熱回収用熱交換器の上流に配置され、試験用排ガスの温度を大気へ排気される排ガスの温度と同じになるように調整する第3熱交換器と、潜熱回収用熱交換器による潜熱の回収により発生した凝縮水を回収して溜める凝縮水回収部と、を有し、ファンは、試験用排ガスの空気過剰率がガスタービン出口における排ガスの空気過剰率と同じになるように、供給する燃焼用空気の空気量を制御し、バーナは、濃バーナ及び淡バーナを含む濃淡バーナであり、濃淡バーナでは、試験用排ガスのNOx濃度が排ガスのNOx濃度と同じになるように、濃バーナのガス流量と淡バーナのガス流量との流量比率が設定され、第1熱交換器は、試験用排ガスの温度を、ガスタービン出口における排ガスの温度と同じになるように調整し、第2熱交換器は、試験用排ガスの温度を、試験用脱硝触媒の活性温度となるように調整する。
An evaluation test system according to an embodiment of the present disclosure is an evaluation test system for demonstrative evaluation of a gas turbine combined cycle power generation system including a denitration device that removes NOx in exhaust gas exhausted from a gas turbine to the atmosphere. A test exhaust gas supply means for continuously supplying a test exhaust gas having the same characteristics as the exhaust gas, and a part of a denitration catalyst having a honeycomb structure and usable for a denitration apparatus, is supplied from the test exhaust gas supply means. A test denitration catalyst for denitrating the test exhaust gas and a test agent exhaust gas supplied from the test exhaust gas supply means to the test denitration catalyst, wherein the equivalent ratio of the test exhaust gas to NOx is 1.0 or more A reductant charging means for charging the exhaust gas and a latent heat recovery system arranged downstream of the test denitration catalyst in the test exhaust gas flow path to recover the latent heat of the test exhaust gas vapor NOx for measuring at least NOx concentration in a latent heat recovery means having a heat exchanger, a test exhaust gas upstream of the test denitration catalyst, a test exhaust gas downstream of the test denitration catalyst, and a test exhaust gas exhausted to the atmosphere And a data storage unit for storing at least data relating to NOx concentration measured by the NOx concentration measuring means. The test exhaust gas supply means includes a fan for supplying combustion air, and a combustion supplied by the fan. Burner that burns fuel using industrial air and continuously generates test exhaust gas, first heat exchanger that adjusts the temperature of the test exhaust gas, and test in which the temperature is adjusted by the first heat exchanger A second heat exchanger that further adjusts the temperature of the exhaust gas for exhaust gas, and the latent heat recovery means is disposed upstream of the latent heat recovery heat exchanger in the flow path of the test exhaust gas, A third heat exchanger that adjusts the temperature to be the same as the temperature of the exhaust gas exhausted to the atmosphere, and a condensed water recovery unit that recovers and accumulates the condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger; And the fan controls the amount of combustion air to be supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine outlet, and the burner is a rich burner and A concentration burner including a light burner, and in the concentration burner, the flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner is set so that the NOx concentration of the exhaust gas for test becomes the same as the NOx concentration of the exhaust gas, The first heat exchanger adjusts the temperature of the test exhaust gas to be the same as the temperature of the exhaust gas at the gas turbine outlet, and the second heat exchanger adjusts the temperature of the test exhaust gas to the activity of the test denitration catalyst. With temperature Adjust so that.
この評価試験システムは、上述した試験評価装置の各構成を備えており、よって、上記と同様な各効果を奏する。更に、データ記憶部により、実証評価に必要なデータを記憶して収集することができる。
This evaluation test system includes the above-described configurations of the test evaluation apparatus, and thus exhibits the same effects as described above. Furthermore, the data storage unit can store and collect data necessary for verification evaluation.
本開示によれば、先進型GTCCの実証評価を縮小規模で精度良く行うことができる評価試験装置及び評価試験システムを提供することが可能となる。
According to the present disclosure, it is possible to provide an evaluation test apparatus and an evaluation test system that can accurately perform an advanced GTCC demonstration evaluation on a reduced scale.
以下、添付図面を参照して、本開示に係る実施形態について詳細に説明する。以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
図1は、評価試験システムを示す概略構成図である。図2は、濃淡バーナを示す模式図である。図3は、試験用脱硝触媒を示す斜視図である。図1に示されるように、評価試験システム10は、評価試験装置20及びデータ解析装置30を含んで構成されている。評価試験装置20は、試験用排ガス供給装置(試験用排ガス供給手段)40と、試験用排ガス脱硝装置50と、潜熱回収装置(潜熱回収手段)60と、計測装置70と、を備えている。
FIG. 1 is a schematic configuration diagram showing an evaluation test system. FIG. 2 is a schematic diagram showing a light and dark burner. FIG. 3 is a perspective view showing a test denitration catalyst. As shown in FIG. 1, the evaluation test system 10 includes an evaluation test apparatus 20 and a data analysis apparatus 30. The evaluation test apparatus 20 includes a test exhaust gas supply device (test exhaust gas supply means) 40, a test exhaust gas denitration device 50, a latent heat recovery device (latent heat recovery means) 60, and a measuring device 70.
評価試験システム10及び評価試験装置20は、先進型GTCCの実証評価を行うために用いられる。そこで、まず、実証評価の対象となる先進型GTCCについて説明する。
The evaluation test system 10 and the evaluation test apparatus 20 are used for performing demonstration evaluation of the advanced GTCC. Therefore, first, the advanced GTCC that is the target of the demonstration evaluation will be described.
図4は、実証評価の対象となる先進型GTCCを示す概略図である。図4に示されるように、先進型GTCC1は、GTCCを進化させたシステムであって、以下の特徴(1),(2)を具備する。先進型GTCC1は、アドバンスドGTCC、スーパーGTCC、又はサステイナブルGTCCとも称する場合もある。
(1) 脱硝装置の脱硝性能の高度化。具体的には、排ガス中のNOxを99%除去して、排ガスのNOx濃度を0.4ppm以下と実質的に大気汚染のない状態にする。
(2) 大気中に放出していた排ガス中の蒸気の潜熱回収。具体的には、煙突から大気中に放出する排ガスの温度を85~90℃にする熱交換器の後流に更に熱交換器を設置し、排ガス中の蒸気の潜熱を回収する。回収水はほぼ純水であり補給水として利用する。 FIG. 4 is a schematic diagram showing an advanced GTCC that is an object of demonstration evaluation. As shown in FIG. 4, theadvanced GTCC 1 is a system obtained by evolving GTCC, and includes the following features (1) and (2). The advanced GTCC 1 may also be referred to as advanced GTCC, super GTCC, or sustainable GTCC.
(1) Advancement of denitration performance of denitration equipment. Specifically, 99% of NOx in the exhaust gas is removed, and the NOx concentration of the exhaust gas is set to 0.4 ppm or less so that there is substantially no air pollution.
(2) Recovery of latent heat of steam in exhaust gas that had been released into the atmosphere. Specifically, a heat exchanger is further installed downstream of the heat exchanger that sets the temperature of the exhaust gas discharged from the chimney into the atmosphere to 85 to 90 ° C., and the latent heat of the vapor in the exhaust gas is recovered. The recovered water is almost pure water and is used as makeup water.
(1) 脱硝装置の脱硝性能の高度化。具体的には、排ガス中のNOxを99%除去して、排ガスのNOx濃度を0.4ppm以下と実質的に大気汚染のない状態にする。
(2) 大気中に放出していた排ガス中の蒸気の潜熱回収。具体的には、煙突から大気中に放出する排ガスの温度を85~90℃にする熱交換器の後流に更に熱交換器を設置し、排ガス中の蒸気の潜熱を回収する。回収水はほぼ純水であり補給水として利用する。 FIG. 4 is a schematic diagram showing an advanced GTCC that is an object of demonstration evaluation. As shown in FIG. 4, the
(1) Advancement of denitration performance of denitration equipment. Specifically, 99% of NOx in the exhaust gas is removed, and the NOx concentration of the exhaust gas is set to 0.4 ppm or less so that there is substantially no air pollution.
(2) Recovery of latent heat of steam in exhaust gas that had been released into the atmosphere. Specifically, a heat exchanger is further installed downstream of the heat exchanger that sets the temperature of the exhaust gas discharged from the chimney into the atmosphere to 85 to 90 ° C., and the latent heat of the vapor in the exhaust gas is recovered. The recovered water is almost pure water and is used as makeup water.
先進型GTCC1は、例えば50万kW級の発電施設を構成するシステムである。先進型GTCC1は、ガスタービンT1、蒸気タービンT2、発電機2、復水器3、脱硝装置4、排熱回収用熱交換器5、潜熱回収用熱交換器6、煙突7を備える。なお、図示する先進型GTCC1は、一般的な構成例である。先進型GTCC1の構成等は、特に限定されない。例えば、図示する先進型GTCC1は、1軸型のシステムであるが、他軸型のシステムであっても勿論よい。
Advanced GTCC1 is a system that constitutes a 500,000 kW class power generation facility, for example. The advanced GTCC 1 includes a gas turbine T 1, a steam turbine T 2, a generator 2, a condenser 3, a denitration device 4, a waste heat recovery heat exchanger 5, a latent heat recovery heat exchanger 6, and a chimney 7. The advanced GTCC 1 shown in the figure is a general configuration example. The configuration of the advanced GTCC 1 is not particularly limited. For example, the advanced GTCC 1 shown in the figure is a one-axis type system, but may be a different-axis type system.
ガスタービンT1及び蒸気タービンT2は、共通の発電機2に連結されている。蒸気タービンT2の蒸気出口には、復水器3が接続されている。復水器3は、循環する冷却水により、蒸気タービンT2の蒸気出口からの高温蒸気を凝縮する。ガスタービンT1に取り付けられた燃焼器Nには、燃料ガスとして天然ガス(LNG)が供給される。燃焼器Nで発生した燃焼ガスは、ガスタービンT1に供給される。これにより、ガスタービンT1が駆動される。
The gas turbine T1 and the steam turbine T2 are connected to a common generator 2. A condenser 3 is connected to the steam outlet of the steam turbine T2. The condenser 3 condenses high-temperature steam from the steam outlet of the steam turbine T2 with circulating cooling water. The combustor N attached to the gas turbine T1 is supplied with natural gas (LNG) as fuel gas. The combustion gas generated in the combustor N is supplied to the gas turbine T1. Thereby, the gas turbine T1 is driven.
ガスタービンT1の排気側は、構体Kに接続されている。この構体K内には、排熱回収用熱交換器5及び潜熱回収用熱交換器6が配置されている。ガスタービンT1からの排ガスは、構体K内において排熱回収用熱交換器5及び潜熱回収用熱交換器6をこの順に通過して熱交換された後、煙突7から大気へ排気される。
The exhaust side of the gas turbine T1 is connected to the structure K. In this structure K, an exhaust heat recovery heat exchanger 5 and a latent heat recovery heat exchanger 6 are arranged. The exhaust gas from the gas turbine T1 passes through the heat exchanger 5 for exhaust heat recovery and the heat exchanger 6 for latent heat recovery in this order in the structure K and is heat-exchanged in this order, and then exhausted from the chimney 7 to the atmosphere.
排熱回収用熱交換器5の上流には、脱硝装置4が配設されている。脱硝装置4は、選択接触還元法(SCR法)の乾式脱硝装置である。脱硝装置4に対してアンモニア供給装置8からアンモニア(NH3)が供給される。脱硝装置4では、その脱硝触媒上で、排ガス中のNOxがアンモニアにより還元されて窒素と水蒸気とに分解される。ここでの脱硝装置4の脱硝触媒は、ハニカム構造を有し、排ガスのNOxを99%除去可能である。
A denitration device 4 is disposed upstream of the heat exchanger 5 for exhaust heat recovery. The denitration device 4 is a selective deoxidation method (SCR method) dry denitration device. Ammonia (NH 3 ) is supplied from the ammonia supply device 8 to the denitration device 4. In the denitration device 4, NOx in the exhaust gas is reduced by ammonia on the denitration catalyst and decomposed into nitrogen and water vapor. The denitration catalyst of the denitration apparatus 4 here has a honeycomb structure and can remove 99% of exhaust gas NOx.
復水器3で凝縮された水は、復水循環系9において給水ポンプPにより潜熱回収用熱交換器6へ供給され、潜熱回収用熱交換器6で熱交換された後、排熱回収用熱交換器5で熱交換される。排熱回収用熱交換器5で得られた高圧蒸気は、蒸気タービンT2に供給される。これにより、ガスタービンT1と共に蒸気タービンT2が駆動される。蒸気タービンT2の蒸気出口からの高温蒸気は、復水器3により凝縮され、復水循環系9にて循環される。構体K内において、排熱回収用熱交換器5と潜熱回収用熱交換器6との間には、膜分離装置Mが配置されている。膜分離装置Mは、排ガス中の水蒸気を分離回収する膜及び排ガス中の二酸化炭素を分離回収する膜の少なくとも何れかを有する。潜熱回収用熱交換器6の下側には、凝縮水回収器6aが接続されている。凝縮水回収器6aに回収した凝縮水は、復水循環系9の補給水として供給される。
The water condensed in the condenser 3 is supplied to the latent heat recovery heat exchanger 6 by the feed water pump P in the condensate circulation system 9 and is subjected to heat exchange in the latent heat recovery heat exchanger 6, and then the heat for exhaust heat recovery. Heat is exchanged in the exchanger 5. The high-pressure steam obtained by the heat exchanger 5 for exhaust heat recovery is supplied to the steam turbine T2. Thereby, the steam turbine T2 is driven together with the gas turbine T1. The high temperature steam from the steam outlet of the steam turbine T2 is condensed by the condenser 3 and circulated in the condensate circulation system 9. In the structure K, a membrane separator M is disposed between the heat exchanger 5 for exhaust heat recovery and the heat exchanger 6 for latent heat recovery. The membrane separation device M has at least one of a membrane that separates and recovers water vapor in the exhaust gas and a membrane that separates and recovers carbon dioxide in the exhaust gas. A condensed water recovery unit 6 a is connected to the lower side of the latent heat recovery heat exchanger 6. The condensed water recovered in the condensed water recovery unit 6 a is supplied as makeup water for the condensate circulation system 9.
次に、図1~図3を参照して、評価試験システム10について説明する。
Next, the evaluation test system 10 will be described with reference to FIGS.
図1に示されるように、試験用排ガス供給装置40は、先進型GTCC1のガスタービンT1からの排ガスと同一性状の試験用排ガスを連続的に供給する。試験用排ガス供給装置40は、都市ガスによるFF式(強制給排気式)の家庭用ガス給湯器を利用した装置である。つまり、試験用排ガス供給装置40は、ガス給湯器により構成される。先進型GTCC1のガスタービンT1からの排ガスの性状は、一般公表されている諸元データに基づいて取得できる。
As shown in FIG. 1, the test exhaust gas supply device 40 continuously supplies the test exhaust gas having the same properties as the exhaust gas from the gas turbine T1 of the advanced GTCC1. The test exhaust gas supply apparatus 40 is an apparatus using an FF type (forced supply / exhaust type) household gas water heater using city gas. That is, the test exhaust gas supply device 40 is configured by a gas water heater. The properties of the exhaust gas from the gas turbine T1 of the advanced GTCC 1 can be obtained based on publicly disclosed specification data.
試験用排ガス供給装置40は、密閉構造を有する。試験用排ガス供給装置40は、ファン41、バーナ42、第1熱交換器43及び第2熱交換器44を備えている。
The test exhaust gas supply device 40 has a sealed structure. The test exhaust gas supply device 40 includes a fan 41, a burner 42, a first heat exchanger 43, and a second heat exchanger 44.
ファン41は、筐体45内に吸気ダクトから燃焼用空気を供給する。ファン41は、試験用排ガスの空気過剰率がガスタービンT1出口における排ガスの空気過剰率と同じになるように、供給する燃焼用空気の空気量を制御する。例えば供給する燃焼用空気の空気量は、ファン41の回転数もしくは、ファン41の吸気口に設けた制御用ダンパーの開度を調整することで制御できる。ファン41としては、特に限定されず、種々の公知のファンを用いることができる。
The fan 41 supplies combustion air from the intake duct into the housing 45. The fan 41 controls the amount of combustion air to be supplied so that the excess air ratio of the test exhaust gas is the same as the excess air ratio of the exhaust gas at the gas turbine T1 outlet. For example, the amount of combustion air to be supplied can be controlled by adjusting the rotational speed of the fan 41 or the opening of a control damper provided at the intake port of the fan 41. The fan 41 is not particularly limited, and various known fans can be used.
バーナ42は、ファン41で供給された燃焼用空気を利用してガス燃料を筐体45内で燃焼させ、試験用排ガスを連続的に発生させる。バーナ42に供給されるガス燃料量については、次のとおり設定できる。まず、後述する試験用脱硝触媒51に要求されるSV値に基づき、先進型GTCC1に対する評価試験装置20のスケールを考慮して、当該試験用脱硝触媒51を通過させるべき試験用排ガスの流量を求める。この流量を実現できる試験用排ガスが発生するように、バーナ42のガス燃料量を設定する。
The burner 42 uses the combustion air supplied by the fan 41 to burn gas fuel in the housing 45 and continuously generate test exhaust gas. The amount of gas fuel supplied to the burner 42 can be set as follows. First, based on the SV value required for the test denitration catalyst 51 described later, the flow rate of the test exhaust gas to be passed through the test denitration catalyst 51 is determined in consideration of the scale of the evaluation test apparatus 20 for the advanced GTCC 1. . The amount of gas fuel in the burner 42 is set so that a test exhaust gas capable of realizing this flow rate is generated.
図2に示されるように、バーナ42は、濃バーナ42x及び淡バーナ42yを含む濃淡バーナである。濃バーナ42xは、安定した燃焼を続けるための補助的なバーナであって、NOx濃度が高い濃火炎(ブンゼン炎)を生じさせる。淡バーナ42yは、主バーナであって、NOx濃度が十分に低い淡火炎(希薄炎)を生じさせる。濃バーナ42xと淡バーナ42yとは、交互に配置されている。濃淡バーナであるバーナ42は、低NOx性及び高い保炎性を実現する。
As shown in FIG. 2, the burner 42 is a dark and light burner including a dark burner 42x and a light burner 42y. The rich burner 42x is an auxiliary burner for continuing stable combustion, and generates a rich flame (Bunsen flame) having a high NOx concentration. The light burner 42y is a main burner and generates a light flame (lean flame) having a sufficiently low NOx concentration. The dark burners 42x and the light burners 42y are alternately arranged. The burner 42 which is a light and dark burner realizes low NOx properties and high flame holding properties.
バーナ42では、試験用排ガスのNOx濃度がガスタービンT1の排ガスのNOx濃度と同じになるように、濃バーナ42xのガス流量と淡バーナ42yのガス流量との流量比率(濃淡バーナのノズル比率)が設定されている。例えばバーナ42では、次のように当該流量比率が設定されている。
In the burner 42, the flow rate ratio between the gas flow rate of the rich burner 42x and the gas flow rate of the light burner 42y (the nozzle ratio of the light and dark burner) so that the NOx concentration of the exhaust gas for test becomes the same as the NOx concentration of the exhaust gas of the gas turbine T1 Is set. For example, in the burner 42, the flow rate ratio is set as follows.
濃淡バーナは、例えばNOx濃度が42±10ppm(酸素濃度0%換算)の実績値を有する。ガスタービンT1からの排ガスのNOx濃度は、酸素濃度0%換算では、例えば50ppmになる。そこで、濃バーナ42xのノズルを、濃バーナ42xからのガス量が20%程度増加するように大きくする。具体的には、当該ノズルの断面積を1.2倍(ノズル径を1.1倍)にする。これにより、試験用排ガスのNOx濃度が50ppm程度になるため、微調整をすれば、所定の濃度基準内に設定できる。このような設定については、ガス給湯器としての試験用排ガス供給装置40に内蔵されているガスガバナで当該ノズルからの噴出圧力及びガス量を制御することにより可能である。
The concentration burner has an actual value of NOx concentration of 42 ± 10 ppm (oxygen concentration 0% conversion), for example. The NOx concentration of the exhaust gas from the gas turbine T1 is, for example, 50 ppm in terms of 0% oxygen concentration. Therefore, the nozzle of the dark burner 42x is enlarged so that the amount of gas from the dark burner 42x increases by about 20%. Specifically, the cross-sectional area of the nozzle is 1.2 times (the nozzle diameter is 1.1 times). As a result, the NOx concentration of the exhaust gas for test becomes about 50 ppm, so that it can be set within a predetermined concentration standard by fine adjustment. Such a setting is possible by controlling the ejection pressure and gas amount from the nozzle with a gas governor built in the test exhaust gas supply device 40 as a gas water heater.
なお、燃焼ガス量の大半が淡バーナ42yからの量であるため、濃バーナ42xからのガス量変化が全体に影響を与えることは少ない。濃バーナ42xのガス量を増やすとNOx濃度は高くなるが、燃焼は安定する。初期条件での試験用排ガスのNOx濃度を測定すれば、濃バーナ42xのノズル径は予測可能である。1,2回のトライアルで、NOx濃度を所望の範囲内に設定できる。バーナ42の燃焼ガス量は、試験用排ガスの温度及び流量から把握できる。バーナ42の燃焼ガス量は、燃焼温度を設定することにより制御できる。
Note that since most of the combustion gas amount is from the light burner 42y, changes in the gas amount from the rich burner 42x are unlikely to affect the whole. Increasing the amount of gas in the rich burner 42x increases the NOx concentration but stabilizes combustion. If the NOx concentration of the test exhaust gas under the initial conditions is measured, the nozzle diameter of the concentrated burner 42x can be predicted. In one or two trials, the NOx concentration can be set within a desired range. The amount of combustion gas in the burner 42 can be grasped from the temperature and flow rate of the test exhaust gas. The amount of combustion gas in the burner 42 can be controlled by setting the combustion temperature.
図1に戻り、第1熱交換器43及び第2熱交換器44は、試験用排ガスの流れ方向おいてこの順で、筐体45内に配置されている。第1熱交換器43及び第2熱交換器44は、水(ここでは、水道水)を熱媒体として熱交換を行う。第2熱交換器44の水流路44aの下流側と第1熱交換器43の水流路43aの上流側とは、直流となるように互いに連結されている。これにより、第2熱交換器44を通過した水(温水)は、第1熱交換器43へ流通される。第1熱交換器43及び第2熱交換器44の水量は、バルブ46の弁開度により調整することができる。第1熱交換器43及び第2熱交換器44の水量は、水流量計(不図示)で測定される。なお、水流路43a及び水流路44aは、上記とは逆に連結されていてもよく、すなわち、第1熱交換器43の水流路43aの下流側と第2熱交換器44の水流路44aの上流側とが、直流となるように互いに連結されていてもよい。第1熱交換器43の水流路43aと第2熱交換器44の水流路44aとが、直流となるように連結されずに互いに独立して構成されていてもよい。ちなみに、第1熱交換器43及び第2熱交換器44の水量が同じようにするために、第1熱交換器43及び第2熱交換器44の伝熱面積(フィンの数及び面積)を調整するのが好ましい。これは、後述の耐久試験を実施する場合に特に有効である。
1, the first heat exchanger 43 and the second heat exchanger 44 are arranged in the housing 45 in this order in the flow direction of the test exhaust gas. The first heat exchanger 43 and the second heat exchanger 44 perform heat exchange using water (here, tap water) as a heat medium. The downstream side of the water flow path 44a of the second heat exchanger 44 and the upstream side of the water flow path 43a of the first heat exchanger 43 are connected to each other so as to be a direct current. Thereby, the water (warm water) that has passed through the second heat exchanger 44 is circulated to the first heat exchanger 43. The amount of water in the first heat exchanger 43 and the second heat exchanger 44 can be adjusted by the valve opening degree of the valve 46. The amount of water in the first heat exchanger 43 and the second heat exchanger 44 is measured with a water flow meter (not shown). The water flow path 43a and the water flow path 44a may be connected in reverse to the above, that is, the downstream side of the water flow path 43a of the first heat exchanger 43 and the water flow path 44a of the second heat exchanger 44. The upstream side may be connected to each other so as to be a direct current. The water flow path 43a of the first heat exchanger 43 and the water flow path 44a of the second heat exchanger 44 may be configured independently of each other without being connected so as to be direct current. Incidentally, in order to make the amount of water in the first heat exchanger 43 and the second heat exchanger 44 the same, the heat transfer area (number of fins and area) of the first heat exchanger 43 and the second heat exchanger 44 is set to be the same. It is preferable to adjust. This is particularly effective when the durability test described later is performed.
第1熱交換器43は、試験用排ガスの温度を、ガスタービンT1出口における排ガスの温度と同じ(約600℃)になるように調整する。第2熱交換器44は、第1熱交換器43で温度が調整された試験用排ガスの温度を更に調整する。第2熱交換器44は、試験用排ガスの温度を、試験用排ガス脱硝装置50の後述する試験用脱硝触媒51の活性温度となるように調整する。活性温度は、触媒の活性があり、触媒の性能を発揮できる温度である。活性温度は、例えば350±100℃である。第1熱交換器43及び第2熱交換器44による試験用排ガスの温度調整は、バルブ46によって第1熱交換器43及び第2熱交換器44の通水量を調整することにより実現できる。
The first heat exchanger 43 adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas at the gas turbine T1 outlet (about 600 ° C.). The second heat exchanger 44 further adjusts the temperature of the test exhaust gas whose temperature has been adjusted by the first heat exchanger 43. The second heat exchanger 44 adjusts the temperature of the test exhaust gas so that it becomes an activation temperature of a test denitration catalyst 51 described later of the test exhaust gas denitration apparatus 50. The activation temperature is a temperature at which the activity of the catalyst is present and the performance of the catalyst can be exhibited. The activation temperature is, for example, 350 ± 100 ° C. The temperature adjustment of the test exhaust gas by the first heat exchanger 43 and the second heat exchanger 44 can be realized by adjusting the amount of water flow through the first heat exchanger 43 and the second heat exchanger 44 by the valve 46.
このような試験用排ガス供給装置40では、試験用排ガスの流量は、ファン41の回転数又は制御用ダンパーにより制御できる。試験用排ガス供給装置40の出口部における試験用排ガスの温度は、第1熱交換器43及び第2熱交換器44による上述の通水量調整に加えて、バーナ42の燃焼ガス量によっても調整できる。第1熱交換器43及び第2熱交換器44を通過した温水の温度(湯温)が一定となるように制御することで、定常的且つ連続的に試験用排ガスを試験用排ガス脱硝装置50へ供給できる。
In such a test exhaust gas supply device 40, the flow rate of the test exhaust gas can be controlled by the rotational speed of the fan 41 or the control damper. The temperature of the test exhaust gas at the outlet of the test exhaust gas supply device 40 can be adjusted by the amount of combustion gas in the burner 42 in addition to the above-described water flow rate adjustment by the first heat exchanger 43 and the second heat exchanger 44. . By controlling the temperature (hot water temperature) of the hot water that has passed through the first heat exchanger 43 and the second heat exchanger 44 to be constant, the test exhaust gas denitration device 50 is constantly and continuously supplied with the test exhaust gas. Can supply.
試験用排ガス脱硝装置50は、試験用排ガス供給装置40から供給された試験用排ガスを脱硝し、後段の潜熱回収用熱交換器62へ供給する。試験用排ガス脱硝装置50は、複数の試験用脱硝触媒51及び還元剤投入装置(還元剤投入手段)52を備えている。
The test exhaust gas denitration device 50 denitrates the test exhaust gas supplied from the test exhaust gas supply device 40 and supplies it to the latent heat recovery heat exchanger 62 in the subsequent stage. The test exhaust gas denitration apparatus 50 includes a plurality of test denitration catalysts 51 and a reducing agent input device (reducing agent input means) 52.
試験用脱硝触媒51は、ハニカム構造を有し、試験用排ガスを脱硝する。試験用脱硝触媒51は、試験用排ガスにおけるNOxを99%以上除去可能である。NOxの99%以上除去とは、大気汚染が実質的にない状態を示す。NOxの99%以上除去した状態とは、人間が存在する地上空間でNOxが必ず環境基準以下である状態であればよい。「99%」には、計測上の誤差等が含まれる。試験用脱硝触媒51は、例えば、TiO2担持の五酸化バナジウム(V2O5)又はTiO2担持の酸化銅(CuO)により形成されている。試験用脱硝触媒51では、脱硝反応に十分な表面積が確保されている。
The test denitration catalyst 51 has a honeycomb structure and denitrates the test exhaust gas. The test denitration catalyst 51 can remove 99% or more of NOx in the test exhaust gas. Removal of 99% or more of NOx indicates a state where there is substantially no air pollution. The state where 99% or more of NOx is removed may be a state where NOx is always below the environmental standard in the ground space where humans exist. “99%” includes measurement errors and the like. The test denitration catalyst 51 is made of, for example, TiO 2 -supported vanadium pentoxide (V 2 O 5 ) or TiO 2 -supported copper oxide (CuO). The test denitration catalyst 51 has a sufficient surface area for the denitration reaction.
試験用脱硝触媒51は、先進型GTCC1の脱硝装置4(図4参照)に使用可能な脱硝触媒の一部で構成されている。具体的には、試験用脱硝触媒51は、脱硝装置4の脱硝触媒の単位ユニットに対応する構造とされている。試験用脱硝触媒51は、例えば150mm×150mmの断面積で厚さが50mmのブロック形状を呈する(図3参照)。なお、試験用脱硝触媒51は、試験用排ガスの流速の均一化を図るべく、例えば直径が150mmで厚さが50mmの円柱形状を呈していてもよい。試験用脱硝触媒51のメッシュの大きさ及びSV値は、先進型GTCC1の脱硝装置4(図4参照)の脱硝触媒と同じである。
The test denitration catalyst 51 is composed of a part of the denitration catalyst that can be used in the denitration apparatus 4 (see FIG. 4) of the advanced GTCC 1. Specifically, the test denitration catalyst 51 has a structure corresponding to the unit of the denitration catalyst of the denitration apparatus 4. The test denitration catalyst 51 has a block shape of, for example, a cross-sectional area of 150 mm × 150 mm and a thickness of 50 mm (see FIG. 3). The test denitration catalyst 51 may have, for example, a cylindrical shape with a diameter of 150 mm and a thickness of 50 mm in order to make the flow rate of the test exhaust gas uniform. The mesh size and SV value of the test denitration catalyst 51 are the same as those of the denitration catalyst 4 of the advanced GTCC 1 (see FIG. 4).
試験用脱硝触媒51は、金属製の金枠内に組み込まれている。試験用脱硝触媒51は、ダクト53内において、試験用排ガスの流れ方向に沿って多段(ここでは、三段)に配置されている。試験用脱硝触媒51を通過する試験用排ガスの流量は、例えばSV値を45000とすることで決定できる。なお、試験用脱硝触媒51の形状、大きさ及び個数は限定されず、仕様や条件等に応じて適宜変更してもよい。以下では、複数の試験用脱硝触媒51それぞれについて、試験用排ガスの流れ方向上流側から一段目、二段目及び三段目と称する。試験用脱硝触媒51は、その当初の仕様として、SV=45000で設計されている。試験用脱硝触媒51では、性能が向上したこと、及び、クリーンな天然ガスを燃料としていることから、SV値を高くすることができる。
The test denitration catalyst 51 is incorporated in a metal frame. The test denitration catalyst 51 is arranged in multiple stages (here, three stages) in the duct 53 along the flow direction of the test exhaust gas. The flow rate of the test exhaust gas passing through the test denitration catalyst 51 can be determined by setting the SV value to 45000, for example. Note that the shape, size, and number of the test denitration catalyst 51 are not limited, and may be appropriately changed according to specifications, conditions, and the like. Hereinafter, each of the plurality of test denitration catalysts 51 is referred to as a first stage, a second stage, and a third stage from the upstream side in the flow direction of the test exhaust gas. The test denitration catalyst 51 is designed with SV = 45000 as its initial specification. Since the test denitration catalyst 51 has improved performance and clean natural gas is used as fuel, the SV value can be increased.
還元剤投入装置52は、試験用排ガス供給装置40から試験用脱硝触媒51へ供給される試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤(ここでは、アンモニアガス)を投入する。この「当量比」とは、試験用排ガス中の全NOxを脱硝させるために必要な還元剤量に対する、投入する還元剤量の割合である。つまり、NOxに対する当量比が1.0以上の還元剤とは、試験用排ガス中の全NOxを脱硝させるために必要な還元剤量以上の量の還元剤である。還元剤投入装置52は、還元剤がアンモニアガスの場合、投入する還元剤の量を、当該試験用排ガス中のNOxと同量以上となるようにフィードバック制御する。還元剤投入装置52は、ダクト53内における試験用脱硝触媒51の上流に配置されている。図示する還元剤投入装置52は、ダクト53において入口から一段目の試験用脱硝触媒51に向かって緩やかに拡径している途中に、試験用排ガスのNOx濃度に応じた定量の還元剤を噴射する。
The reducing agent charging device 52 is a reducing agent having an equivalent ratio of NOx of the test exhaust gas to NOx of 1.0 or more in the test exhaust gas supplied from the test exhaust gas supply device 40 to the test denitration catalyst 51 (here, Ammonia gas). The “equivalent ratio” is the ratio of the amount of reducing agent to be added to the amount of reducing agent necessary for denitrating all NOx in the test exhaust gas. That is, a reducing agent having an equivalent ratio of 1.0 or more with respect to NOx is a reducing agent in an amount more than the amount of reducing agent necessary for denitrating all NOx in the exhaust gas for test. When the reducing agent is ammonia gas, the reducing agent charging device 52 performs feedback control so that the amount of the reducing agent to be charged is equal to or more than the amount of NOx in the test exhaust gas. The reducing agent charging device 52 is disposed in the duct 53 upstream of the test denitration catalyst 51. The reducing agent charging device 52 shown in the figure injects a certain amount of reducing agent according to the NOx concentration of the test exhaust gas while the diameter of the duct 53 is gradually increasing from the inlet toward the first-stage test denitration catalyst 51. To do.
還元剤投入装置52は、還元剤の投入量を、試験用排ガス中のNOxに対する還元剤の比率が一定になるように制御する。還元剤がアンモニアガスの場合、還元剤投入装置52は、試験用排ガスのNOxよりも少し多め(1.2倍)の還元剤を投入する。還元剤投入装置52は、還元剤を予め空気で希釈する。還元剤投入装置52は、試験用排ガス中に還元剤を自動的に投入可能である。還元剤としては、特に限定されず、その他の種々の還元剤であってもよい。例えば還元剤は、尿素(CO(NH2)2)ガスであってもよい。なお、アンモニアガスである還元剤は、NOxと当量反応であり、NOxと1対1で反応する。尿素ガスである還元剤は、分子中に2つのNを有するため、NOxと2対1で反応する。
The reducing agent input device 52 controls the amount of reducing agent input so that the ratio of the reducing agent to NOx in the test exhaust gas becomes constant. When the reducing agent is ammonia gas, the reducing agent charging device 52 inputs a slightly larger amount (1.2 times) of the reducing agent than NOx of the test exhaust gas. The reducing agent charging device 52 dilutes the reducing agent with air in advance. The reducing agent input device 52 can automatically input the reducing agent into the test exhaust gas. It does not specifically limit as a reducing agent, Other various reducing agents may be sufficient. For example, the reducing agent may be urea (CO (NH 2 ) 2 ) gas. Note that the reducing agent, which is ammonia gas, has an equivalent reaction with NOx and reacts with NOx in a one-to-one relationship. Since the reducing agent, which is urea gas, has two Ns in the molecule, it reacts two-to-one with NOx.
潜熱回収装置60は、試験用排ガス供給装置40と同様に、都市ガスによるFF式の家庭用ガス給湯器を利用した装置である。つまり、潜熱回収装置60は、ガス給湯器により構成される。潜熱回収装置60は、試験用排ガスの流路において試験用脱硝触媒51の下流に配置されている。潜熱回収装置60は、密閉構造を有する。潜熱回収装置60は、第3熱交換器61、潜熱回収用熱交換器62、凝縮水回収部63及び膜分離装置64を備えている。
The latent heat recovery device 60 is a device that uses an FF-type household gas water heater using city gas, like the test exhaust gas supply device 40. That is, the latent heat recovery device 60 is configured by a gas water heater. The latent heat recovery device 60 is disposed downstream of the test denitration catalyst 51 in the test exhaust gas flow path. The latent heat recovery device 60 has a sealed structure. The latent heat recovery device 60 includes a third heat exchanger 61, a latent heat recovery heat exchanger 62, a condensed water recovery unit 63, and a membrane separation device 64.
第3熱交換器61及び潜熱回収用熱交換器62は、試験用排ガスの流れ方向おいてこの順で、筐体65内に配置されている。第3熱交換器61及び潜熱回収用熱交換器62は、水(ここでは、水道水)を熱媒体として熱交換を行う。第3熱交換器61の水流路61aの上流側と潜熱回収用熱交換器62の水流路62aの下流側とは、直流となるように互いに連結されている。これにより、潜熱回収用熱交換器62を通過した水(温水)は、第3熱交換器61へ流通される。第3熱交換器61及び潜熱回収用熱交換器62の水量は、バルブ66の弁開度により調整することができる。第3熱交換器61及び潜熱回収用熱交換器62の水量は、水流量計(不図示)で測定される。なお、水流路61a及び水流路62aは、上記とは逆に連結されていてもよく、すなわち、潜熱回収用熱交換器62の水流路62aの上流側と第3熱交換器61の水流路61aの下流側とが、直流となるように互いに連結されていてもよい。第3熱交換器61の水流路61aと潜熱回収用熱交換器62の水流路62aとは、直流となるように連結されずに互いに独立して構成されていてもよい。
The third heat exchanger 61 and the latent heat recovery heat exchanger 62 are arranged in the casing 65 in this order in the flow direction of the test exhaust gas. The third heat exchanger 61 and the latent heat recovery heat exchanger 62 perform heat exchange using water (here, tap water) as a heat medium. The upstream side of the water flow path 61a of the third heat exchanger 61 and the downstream side of the water flow path 62a of the latent heat recovery heat exchanger 62 are connected to each other so as to be a direct current. Thereby, the water (hot water) that has passed through the latent heat recovery heat exchanger 62 is circulated to the third heat exchanger 61. The amount of water in the third heat exchanger 61 and the latent heat recovery heat exchanger 62 can be adjusted by the valve opening of the valve 66. The amount of water in the third heat exchanger 61 and the latent heat recovery heat exchanger 62 is measured by a water flow meter (not shown). The water channel 61a and the water channel 62a may be connected in reverse to the above, that is, the upstream side of the water channel 62a of the latent heat recovery heat exchanger 62 and the water channel 61a of the third heat exchanger 61. May be connected to each other so as to be a direct current. The water flow path 61a of the third heat exchanger 61 and the water flow path 62a of the latent heat recovery heat exchanger 62 may be configured independently of each other without being connected to form a direct current.
第3熱交換器61は、試験用排ガスの流路において潜熱回収用熱交換器62の上流に配置されている。第3熱交換器61は、試験用排ガスの温度を、先進型GTCC1で大気へ排気される排ガスの温度(排ガス出口温度)と同じになるように調整する。先進型GTCC1の排ガス出口温度としては、煙突7の出口温度が用いられ、85~90℃である。煙突7の出口温度は、水蒸気が液化しない下限温度で設計される。
The third heat exchanger 61 is disposed upstream of the latent heat recovery heat exchanger 62 in the test exhaust gas flow path. The third heat exchanger 61 adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas exhausted to the atmosphere by the advanced GTCC 1 (exhaust gas outlet temperature). As the exhaust gas outlet temperature of the advanced GTCC 1, the outlet temperature of the chimney 7 is used and is 85 to 90 ° C. The outlet temperature of the chimney 7 is designed at a lower limit temperature at which water vapor is not liquefied.
潜熱回収用熱交換器62は、試験用排ガスの蒸気の潜熱を回収する。具体的には、潜熱回収用熱交換器62は、試験用排ガスの温度を50℃になるように調整する。第3熱交換器61及び潜熱回収用熱交換器62による試験用排ガスの温度調整は、バルブ66によって第3熱交換器61及び潜熱回収用熱交換器62の通水量を調整することにより実現できる。
The latent heat recovery heat exchanger 62 recovers the latent heat of the steam of the test exhaust gas. Specifically, the latent heat recovery heat exchanger 62 adjusts the temperature of the test exhaust gas to 50 ° C. The adjustment of the temperature of the test exhaust gas by the third heat exchanger 61 and the latent heat recovery heat exchanger 62 can be realized by adjusting the water flow rate of the third heat exchanger 61 and the latent heat recovery heat exchanger 62 by the valve 66. .
凝縮水回収部63は、筐体65内において潜熱回収用熱交換器62による潜熱の回収により発生した凝縮水を、回収して溜める。凝縮水回収部63としては、特に限定されず、種々の公知の構成を用いることができる。
The condensate recovery unit 63 collects and accumulates the condensed water generated by the latent heat recovery by the latent heat recovery heat exchanger 62 in the housing 65. The condensed water recovery unit 63 is not particularly limited, and various known configurations can be used.
膜分離装置64は、試験用排ガスの流路において第3熱交換器61と潜熱回収用熱交換器62との間に配置されている。膜分離装置64は、試験用排ガス中の水蒸気を分離回収する膜、及び、試験用排ガス中の二酸化炭素を分離回収する膜の少なくとも何れかを含む。ここでの膜分離装置64は、水蒸気を分離回収する膜を含んでいる、もしくは、水蒸気を分離回収する膜と二酸化炭素を分離回収する膜とを含んでいる。膜分離装置64としては、特に限定されず、種々の公知の装置を用いることができる。なお、膜分離装置64は、設けられていなくてもよい。膜分離装置64が設けられていない場合、例えば将来に膜分離装置64を搭載できるように、筐体65内に膜分離装置64が配置可能(取付け可能)に構成されていてもよい。
The membrane separation device 64 is disposed between the third heat exchanger 61 and the latent heat recovery heat exchanger 62 in the test exhaust gas flow path. The membrane separation device 64 includes at least one of a membrane for separating and collecting water vapor in the test exhaust gas and a membrane for separating and collecting carbon dioxide in the test exhaust gas. The membrane separation device 64 here includes a membrane for separating and collecting water vapor, or includes a membrane for separating and collecting water vapor and a membrane for separating and collecting carbon dioxide. The membrane separation device 64 is not particularly limited, and various known devices can be used. Note that the membrane separation device 64 may not be provided. In the case where the membrane separation device 64 is not provided, the membrane separation device 64 may be arranged (attachable) in the housing 65 so that the membrane separation device 64 can be mounted in the future, for example.
計測装置70は、試験用排ガスに関するデータを計測する装置である。計測装置70は、第1分析計(NOx濃度測定手段)71a~71e、第2分析計72、及び、温度センサ73a~73dを備えている。
The measuring device 70 is a device that measures data relating to the test exhaust gas. The measuring device 70 includes first analyzers (NOx concentration measuring means) 71a to 71e, a second analyzer 72, and temperature sensors 73a to 73d.
第1分析計71a~71eは、試験用排ガスの少なくともNOx濃度及びアンモニア濃度を連続測定する。第1分析計71aは、一段目の試験用脱硝触媒51の上流側(入口)の試験用排ガスを分析する。第1分析計71bは、一段目の試験用脱硝触媒51と二段目の試験用脱硝触媒51との間の試験用排ガスを分析する。第1分析計71cは、二段目の試験用脱硝触媒51と三段目の試験用脱硝触媒51との間の試験用排ガスを分析する。第1分析計71dは、三段目の試験用脱硝触媒51の下流側(出口)の試験用排ガスを分析する。第1分析計71eは、潜熱回収装置60から大気へ排気される試験用排ガスを分析する。
The first analyzers 71a to 71e continuously measure at least NOx concentration and ammonia concentration of the test exhaust gas. The first analyzer 71a analyzes the exhaust gas for testing on the upstream side (inlet) of the first-stage test denitration catalyst 51. The first analyzer 71b analyzes the test exhaust gas between the first-stage test denitration catalyst 51 and the second-stage test denitration catalyst 51. The first analyzer 71c analyzes the test exhaust gas between the second-stage test denitration catalyst 51 and the third-stage test denitration catalyst 51. The first analyzer 71d analyzes the test exhaust gas downstream (outlet) of the third-stage test denitration catalyst 51. The first analyzer 71e analyzes the test exhaust gas exhausted from the latent heat recovery device 60 to the atmosphere.
第2分析計72は、凝縮水回収部63で回収した凝縮水の少なくともアンモニア濃度を測定する。第1分析計71a~71e及び第2分析計72としては、特に限定されず、種々の公知の分析計を適用できる。例えば第1分析計71a~71e及び第2分析計72としては、赤外線分析計を用いてもよいし、バッチ式の分析計を用いてもよい。例えば第1分析計71a~71eとしては、広く普及している汎用のガス測定器を用いてもよい。
The second analyzer 72 measures at least the ammonia concentration of the condensed water collected by the condensed water collecting unit 63. The first analyzers 71a to 71e and the second analyzer 72 are not particularly limited, and various known analyzers can be applied. For example, as the first analyzers 71a to 71e and the second analyzer 72, an infrared analyzer may be used, or a batch type analyzer may be used. For example, as the first analyzers 71a to 71e, general-purpose gas measuring instruments that are widely used may be used.
温度センサ73aは、第1熱交換器43の下流に設けられている。温度センサ73aは、第1熱交換器43の下流における試験用排ガスの温度を検出する。温度センサ73bは、第2熱交換器44の下流に設けられている。温度センサ73bは、第2熱交換器44の下流における試験用排ガスの温度を検出する。温度センサ73cは、第3熱交換器61の下流に設けられている。温度センサ73cは、第3熱交換器61の下流における試験用排ガスの温度を検出する。温度センサ73dは、潜熱回収用熱交換器62の下流に設けられている。温度センサ73dは、潜熱回収用熱交換器62の下流における試験用排ガスの温度を検出する。温度センサ73a~73dとしては、特に限定されず、種々の公知の温度センサを適用できる。
The temperature sensor 73 a is provided downstream of the first heat exchanger 43. The temperature sensor 73 a detects the temperature of the test exhaust gas downstream of the first heat exchanger 43. The temperature sensor 73 b is provided downstream of the second heat exchanger 44. The temperature sensor 73 b detects the temperature of the test exhaust gas downstream of the second heat exchanger 44. The temperature sensor 73 c is provided downstream of the third heat exchanger 61. The temperature sensor 73 c detects the temperature of the test exhaust gas downstream of the third heat exchanger 61. The temperature sensor 73d is provided downstream of the latent heat recovery heat exchanger 62. The temperature sensor 73d detects the temperature of the test exhaust gas downstream of the latent heat recovery heat exchanger 62. The temperature sensors 73a to 73d are not particularly limited, and various known temperature sensors can be applied.
計測装置70が計測した各種データは、データ解析装置30へ出力される。また、計測装置70が計測した各種データは、評価試験装置20の各要素に適宜出力され、これにより、評価試験装置20の各要素は、当該データに基づいて適宜制御される。
Various data measured by the measuring device 70 is output to the data analyzing device 30. In addition, various data measured by the measuring device 70 are appropriately output to each element of the evaluation test apparatus 20, and thereby each element of the evaluation test apparatus 20 is appropriately controlled based on the data.
データ解析装置30は、計測装置70が計測した各種データの監視、収集、蓄積、分析及び出力の少なくとも何れかを実行する。データ記憶部31は、計測装置70が計測した各種データを記憶(記録)して格納する。つまり、データ記憶部31は、第1分析計71a~71eで測定した試験用排ガスのNOx濃度に関するデータを少なくとも格納する。データ解析装置30は、不図示の操作部及び表示部を備え、操作部の操作入力に応じて、計測装置70が計測した各種データを表示部に出力してもよい。データ解析装置30は、計測装置70が計測した各種データをデータ記憶部31に蓄積する。データ解析装置30は、各種データが設計基準内ないしは管理基準内に入っているかを常時監視する。
The data analysis device 30 executes at least one of monitoring, collection, storage, analysis, and output of various data measured by the measurement device 70. The data storage unit 31 stores (records) and stores various data measured by the measurement device 70. That is, the data storage unit 31 stores at least data relating to the NOx concentration of the test exhaust gas measured by the first analyzers 71a to 71e. The data analysis device 30 may include an operation unit and a display unit (not shown), and may output various data measured by the measurement device 70 to the display unit in response to an operation input from the operation unit. The data analysis device 30 accumulates various data measured by the measurement device 70 in the data storage unit 31. The data analyzer 30 constantly monitors whether various data are within the design standard or the management standard.
以上のような評価試験システム10では、まず、試験用排ガス供給装置40において、ファン41で燃焼用空気が供給され、この燃焼用空気を利用してガス燃料がバーナ42で燃焼され、試験用排ガスが連続的に発生する。試験用排ガスは、第1熱交換器43及び第2熱交換器44で熱交換された後、試験用排ガス脱硝装置50へ連続的に供給される。
In the above-described evaluation test system 10, first, in the test exhaust gas supply device 40, combustion air is supplied by the fan 41, gas fuel is burned by the burner 42 using this combustion air, and the test exhaust gas. Occurs continuously. The test exhaust gas is heat-exchanged by the first heat exchanger 43 and the second heat exchanger 44 and then continuously supplied to the test exhaust gas denitration apparatus 50.
試験用排ガス脱硝装置50において、還元剤投入装置52により、試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤が投入される。試験用排ガスは、試験用脱硝触媒51によりNOxが99%以上除去された後、潜熱回収装置60に連続的に供給される。潜熱回収装置60において、試験用排ガスは、第3熱交換器61で熱交換され、膜分離装置64で水蒸気及び二酸化炭素の少なくとも何れかが分離回収され、潜熱回収用熱交換器62で潜熱回収された後、大気へ排気される。
In the test exhaust gas denitration device 50, the reducing agent input device 52 supplies a reducing agent having an equivalent ratio of 1.0 or more to NOx of the test exhaust gas into the test exhaust gas. The test exhaust gas is continuously supplied to the latent heat recovery device 60 after 99% or more of NOx is removed by the test denitration catalyst 51. In the latent heat recovery device 60, the test exhaust gas is heat-exchanged by the third heat exchanger 61, and at least one of water vapor and carbon dioxide is separated and recovered by the membrane separation device 64, and the latent heat recovery is performed by the latent heat recovery heat exchanger 62. And then exhausted to the atmosphere.
試験用排ガスについての連続的供給、脱硝、潜熱回収及び排気を含む一連のプロセスに併せて、計測装置70により各種データが計測される。データ解析装置30において、計測装置70が計測した各種データの監視、収集、蓄積、分析及び出力の少なくとも何れかが行われる。
Various data are measured by the measuring device 70 in conjunction with a series of processes including continuous supply, denitration, latent heat recovery, and exhaust for the test exhaust gas. In the data analysis device 30, at least one of monitoring, collection, storage, analysis, and output of various data measured by the measurement device 70 is performed.
次に、評価試験システム10を用いた各実証評価について説明する。
Next, each demonstration evaluation using the evaluation test system 10 will be described.
[I 脱硝触媒の実証評価及び開発用データの収集]
先進型GTCC1(実機)の発電出力(例えば約50万kW)及び発電効率(例えば60%(低位発熱量))に基づいて、評価試験システム10の縮小率(例えば1万分の1)から、当該評価試験システム10のバーナ42の燃焼ガス量を設定する。縮小率は、一般に、試験用排ガス供給装置40を構成する元のガス給湯器の燃焼諸元から決定される。これをもとにして、先進型GTCC1の排ガスと同じになるように空気過剰率及びNOx濃度を決定する。 [I Demonstration evaluation of NOx removal catalyst and collection of development data]
Based on the power generation output (for example, about 500,000 kW) and power generation efficiency (for example, 60% (low heating value)) of the advanced GTCC 1 (actual machine), the reduction rate (for example, 1 / 10,000) of theevaluation test system 10 The combustion gas amount of the burner 42 of the evaluation test system 10 is set. The reduction rate is generally determined from the combustion parameters of the original gas water heater that constitutes the test exhaust gas supply device 40. Based on this, the excess air ratio and the NOx concentration are determined so as to be the same as the exhaust gas of the advanced GTCC1.
先進型GTCC1(実機)の発電出力(例えば約50万kW)及び発電効率(例えば60%(低位発熱量))に基づいて、評価試験システム10の縮小率(例えば1万分の1)から、当該評価試験システム10のバーナ42の燃焼ガス量を設定する。縮小率は、一般に、試験用排ガス供給装置40を構成する元のガス給湯器の燃焼諸元から決定される。これをもとにして、先進型GTCC1の排ガスと同じになるように空気過剰率及びNOx濃度を決定する。 [I Demonstration evaluation of NOx removal catalyst and collection of development data]
Based on the power generation output (for example, about 500,000 kW) and power generation efficiency (for example, 60% (low heating value)) of the advanced GTCC 1 (actual machine), the reduction rate (for example, 1 / 10,000) of the
そして、試験用排ガス供給装置40にガス燃料を供給すると共に、試験用排ガス供給装置40に通水する。これにより、試験用排ガスを試験用排ガス脱硝装置50に連続的に供給し、試験用脱硝触媒51で脱硝を行う。このとき、第1熱交換器43及び第2熱交換器44により制御する試験用排ガスの温度を、第1熱交換器43及び第2熱交換器44の通水量で調整する。具体的には、第1熱交換器43の通水量を調整することにより、試験用排ガスの温度を、ガスタービンT1出口における排ガス温度(約600℃)になるように調整する。第2熱交換器44の通水量を調整することにより、温度センサ73bにより測定される試験用排ガスの温度(試験用排ガス供給装置40の試験用排ガスの出口温度)を、試験用脱硝触媒51の活性温度(350±100℃)となるように制御する。
Then, gas fuel is supplied to the test exhaust gas supply device 40 and water is passed through the test exhaust gas supply device 40. As a result, the test exhaust gas is continuously supplied to the test exhaust gas denitration device 50, and denitration is performed by the test denitration catalyst 51. At this time, the temperature of the test exhaust gas controlled by the first heat exchanger 43 and the second heat exchanger 44 is adjusted by the water flow rate of the first heat exchanger 43 and the second heat exchanger 44. Specifically, the temperature of the exhaust gas for test is adjusted to the exhaust gas temperature (about 600 ° C.) at the outlet of the gas turbine T1 by adjusting the water flow rate of the first heat exchanger 43. By adjusting the water flow rate of the second heat exchanger 44, the temperature of the test exhaust gas (the outlet temperature of the test exhaust gas of the test exhaust gas supply device 40) measured by the temperature sensor 73 b is changed to the test denitration catalyst 51. It controls so that it may become active temperature (350 +/- 100 degreeC).
また、試験用排ガスの空気過剰率がガスタービンT1(図4参照)出口における排ガスの空気過剰率(上述したように決定した空気過剰率)と同じになるように、バーナ42の燃焼ガス量を所定量に設定して燃焼させると共に、ファン41の燃焼用空気の空気量を調整する。試験用排ガスの空気過剰率は、試験用排ガス中の酸素濃度を計測器(不図示)で計測することにより求められる。ガスタービンT1出口における排ガスの空気過剰率は、公知のデータから求めることができる。
Further, the combustion gas amount of the burner 42 is set so that the excess air ratio of the exhaust gas for test becomes the same as the excess air ratio of the exhaust gas at the outlet of the gas turbine T1 (see FIG. 4) (the excess air ratio determined as described above). While setting to a predetermined amount and burning, the air amount of the combustion air of the fan 41 is adjusted. The excess air ratio of the test exhaust gas is obtained by measuring the oxygen concentration in the test exhaust gas with a measuring instrument (not shown). The excess air ratio of the exhaust gas at the gas turbine T1 outlet can be determined from known data.
また、試験用脱硝触媒51のSV値及び評価試験装置20のスケールから試験用脱硝触媒51を通過させるべき試験用排ガスの流量を求め、この流量を実現できる試験用排ガスが発生するように、バーナ42へのガス燃料を設定する。第1分析計71aで測定されたNOx濃度を、濃バーナ42x及び淡バーナ42yのノズル比率を変えることで、ガスタービンT1の排ガスのNOx濃度(上述したように決定したNOx濃度)と同じになるように調整する。還元剤投入装置52で試験用排ガスに投入する還元剤の量を、第1分析計71aで測定されたNOxに対し当量比が1.0以上で且つ当該NOxとの比率が一定となるように制御する。
Further, the flow rate of the test exhaust gas to be passed through the test denitration catalyst 51 is obtained from the SV value of the test denitration catalyst 51 and the scale of the evaluation test apparatus 20, and the burner is generated so that the test exhaust gas capable of realizing this flow rate is generated. Set gas fuel to 42. The NOx concentration measured by the first analyzer 71a becomes the same as the NOx concentration of the exhaust gas of the gas turbine T1 (the NOx concentration determined as described above) by changing the nozzle ratio of the rich burner 42x and the light burner 42y. Adjust as follows. The amount of reducing agent introduced into the test exhaust gas by the reducing agent introduction device 52 is such that the equivalent ratio with respect to NOx measured by the first analyzer 71a is 1.0 or more and the ratio to NOx is constant. Control.
第1分析計71dにより、試験用脱硝触媒51の下流側における試験用排ガスの排ガス性状を測定する。この測定結果から、試験用脱硝触媒51を評価する。第1分析計71b,71cにより、隣接する試験用脱硝触媒51の間の試験用排ガスの排ガス性状を測定する。この測定結果から、中間段階での脱硝反応の状況を評価する。そして、測定結果及び評価結果を、最適設計用データ、維持管理用データ又は開発用データとしてデータ記憶部31に記憶して収集する。
The exhaust gas properties of the test exhaust gas on the downstream side of the test denitration catalyst 51 are measured by the first analyzer 71d. From this measurement result, the test denitration catalyst 51 is evaluated. The first analyzers 71b and 71c measure the exhaust gas properties of the test exhaust gas between the adjacent test denitration catalysts 51. From this measurement result, the status of the denitration reaction at the intermediate stage is evaluated. Then, the measurement result and the evaluation result are stored and collected in the data storage unit 31 as optimum design data, maintenance management data, or development data.
その結果、試験用脱硝触媒51に関して、少なくとも以下の効果が得られる。
1)当初設計値で99%脱硝できることを評価できる。
2)実証評価を通じて、さらにSV値を大きく取って高性能な触媒装置を開発することができる。 As a result, at least the following effects are obtained with respect to thetest denitration catalyst 51.
1) It can be evaluated that 99% denitration can be achieved at the initial design value.
2) Through the demonstration evaluation, it is possible to develop a high-performance catalyst device with a larger SV value.
1)当初設計値で99%脱硝できることを評価できる。
2)実証評価を通じて、さらにSV値を大きく取って高性能な触媒装置を開発することができる。 As a result, at least the following effects are obtained with respect to the
1) It can be evaluated that 99% denitration can be achieved at the initial design value.
2) Through the demonstration evaluation, it is possible to develop a high-performance catalyst device with a larger SV value.
[II 排ガス中の潜熱回収及び回収水の性状確認]
潜熱回収装置60に通水し、試験用脱硝触媒51を通過した試験用排ガスに対して熱交換を行うと共に、回収した凝縮水のデータを収集する。このとき、第3熱交換器61の通水量を調整し、温度センサ73cで検出される温度を、先進型GTCC1の排ガス出口温度(85~90℃)となるように制御する。潜熱回収用熱交換器62の通水量を調整し、温度センサ73dで検出される温度を50℃となるように制御する。 [II. Recovery of latent heat in exhaust gas and confirmation of recovered water properties]
Water is passed through the latentheat recovery device 60, heat exchange is performed on the test exhaust gas that has passed through the test denitration catalyst 51, and data of recovered condensed water is collected. At this time, the amount of water flow through the third heat exchanger 61 is adjusted, and the temperature detected by the temperature sensor 73c is controlled to be the exhaust gas outlet temperature (85 to 90 ° C.) of the advanced GTCC1. The amount of water passing through the latent heat recovery heat exchanger 62 is adjusted, and the temperature detected by the temperature sensor 73d is controlled to be 50 ° C.
潜熱回収装置60に通水し、試験用脱硝触媒51を通過した試験用排ガスに対して熱交換を行うと共に、回収した凝縮水のデータを収集する。このとき、第3熱交換器61の通水量を調整し、温度センサ73cで検出される温度を、先進型GTCC1の排ガス出口温度(85~90℃)となるように制御する。潜熱回収用熱交換器62の通水量を調整し、温度センサ73dで検出される温度を50℃となるように制御する。 [II. Recovery of latent heat in exhaust gas and confirmation of recovered water properties]
Water is passed through the latent
第1分析計71eにより、大気へ排気される試験用排ガスの排ガス性状を測定する。潜熱回収用熱交換器62の潜熱回収により凝縮して凝縮水回収部63に回収された凝縮水の水量を確認する。当該凝縮水の性状を、第2分析計72により測定する。そして、測定結果をデータ記憶部31に記憶して収集する。
The exhaust gas property of the test exhaust gas exhausted to the atmosphere is measured by the first analyzer 71e. The amount of condensed water condensed by the latent heat recovery of the latent heat recovery heat exchanger 62 and recovered in the condensed water recovery unit 63 is confirmed. The property of the condensed water is measured by the second analyzer 72. Then, the measurement results are stored in the data storage unit 31 and collected.
[III 耐久試験の実施確認]
試験用排ガス供給装置40にガス燃料を連続供給すると共に、試験用排ガス供給装置40及び潜熱回収装置60に連続的に通水する。還元剤投入装置52において、還元剤が試験用排ガス中へ自動投入されるように設定する。耐久試験は連続して行う必要があり、性能変化を把握するために、少なくとも年間6000時間程度は実施できるようにする。 [III Confirmation of endurance test]
Gas fuel is continuously supplied to the test exhaustgas supply device 40 and water is continuously passed through the test exhaust gas supply device 40 and the latent heat recovery device 60. The reducing agent charging device 52 is set so that the reducing agent is automatically charged into the test exhaust gas. The endurance test must be performed continuously, and at least about 6000 hours per year can be performed in order to grasp the change in performance.
試験用排ガス供給装置40にガス燃料を連続供給すると共に、試験用排ガス供給装置40及び潜熱回収装置60に連続的に通水する。還元剤投入装置52において、還元剤が試験用排ガス中へ自動投入されるように設定する。耐久試験は連続して行う必要があり、性能変化を把握するために、少なくとも年間6000時間程度は実施できるようにする。 [III Confirmation of endurance test]
Gas fuel is continuously supplied to the test exhaust
第1分析計71a~71e、第2分析計72、及び、温度センサ73a~73dにより、各種データを測定する。各種データの測定は、連続測定してもよいし、定期的に測定してもよい。そして、測定結果をデータ記憶部31に記憶して収集する。
Various data are measured by the first analyzers 71a to 71e, the second analyzer 72, and the temperature sensors 73a to 73d. Various data may be measured continuously or periodically. Then, the measurement results are stored in the data storage unit 31 and collected.
以上、本実施形態では、試験用排ガス供給装置40から試験用脱硝触媒51へ連続的に供給される試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤を投入する。そのため、脱硝性能が高度化した(つまり、NOxを99%以上除去可能な)試験用脱硝触媒51を用いた場合でも、脱硝反応に必要な還元剤の不足を生じることがなく、その脱硝に対応できる。さらに、潜熱回収装置60により、試験用排ガスの蒸気の潜熱を回収できる。すなわち、本実施形態によれば、先進型GTCC1におけるガスタービンT1から大気への排ガスの処理フローを、1万分の1から数万分の1程度の縮小規模で精度良く再現することが可能である。
As described above, in the present embodiment, a reducing agent having an equivalent ratio of NO to NOx of 1.0 or more of the test exhaust gas is included in the test exhaust gas continuously supplied from the test exhaust gas supply device 40 to the test denitration catalyst 51. throw into. Therefore, even when using a test denitration catalyst 51 with advanced denitration performance (that is, NOx can be removed by 99% or more), there is no shortage of reducing agent necessary for denitration reaction, and it can handle denitration. it can. Further, the latent heat of the exhaust gas for the test exhaust gas can be recovered by the latent heat recovery device 60. That is, according to the present embodiment, it is possible to accurately reproduce the processing flow of the exhaust gas from the gas turbine T1 to the atmosphere in the advanced GTCC 1 with a reduced scale of about 1 / 10,000 to 1 / 10,000. .
したがって、計測装置70により計測された各種データに基づくことで、先進型GTCC1の実証評価を縮小規模で精度良く行うことができる。実証評価結果を通じて、ノウハウの習得及び技術要員の要請等を行うことができる。先進型GTCC1の性能及び柔軟性等の開発を行うことができる。先進型GTCC1の基本性能を把握することで、必要な設計開発データが収集できる。これらのデータをもとに、先進型GTCC1の熱交換器の伝熱面積等を調整できる。
Therefore, based on the various data measured by the measuring device 70, the advanced GTCC 1 can be verified on a reduced scale with high accuracy. Through the demonstration evaluation results, it is possible to acquire know-how and request technical personnel. It is possible to develop the performance and flexibility of the advanced GTCC1. By grasping the basic performance of the advanced GTCC1, necessary design development data can be collected. Based on these data, the heat transfer area of the heat exchanger of the advanced GTCC 1 can be adjusted.
本実施形態では、試験用排ガス供給装置40は、ファン41及びバーナ42を有している。ファン41及びバーナ42を利用して、先進型GTCC1の排ガスと同一性状の試験用排ガスを生成できる。そして、ファン41は、試験用排ガスの空気過剰率がガスタービンT1出口における排ガスの空気過剰率と同じになるように、供給する風量を制御する。ファン41の風量を制御することで、先進型GTCC1の排ガスと同じ空気過剰率の試験用排ガスを生成できる。
In the present embodiment, the test exhaust gas supply device 40 includes a fan 41 and a burner 42. By using the fan 41 and the burner 42, a test exhaust gas having the same properties as the exhaust gas of the advanced GTCC 1 can be generated. The fan 41 controls the amount of air to be supplied so that the excess air ratio of the exhaust gas for test becomes the same as the excess air ratio of the exhaust gas at the gas turbine T1 outlet. By controlling the air volume of the fan 41, it is possible to generate a test exhaust gas having the same excess air ratio as the exhaust gas of the advanced GTCC1.
本実施形態では、バーナ42は、濃バーナ42x及び淡バーナ42yを含む濃淡バーナである。濃バーナ42xのガス流量と淡バーナ42yのガス流量との流量比率を設定することで、先進型GTCC1の排ガスと同じNOx濃度の試験用排ガスを生成できる。
In this embodiment, the burner 42 is a dark and light burner including a dark burner 42x and a light burner 42y. By setting the flow rate ratio between the gas flow rate of the rich burner 42x and the gas flow rate of the light burner 42y, it is possible to generate a test exhaust gas having the same NOx concentration as the exhaust gas of the advanced GTCC1.
本実施形態では、試験用排ガス供給装置40は、第1熱交換器43及び第2熱交換器44を有している。この構成によれば、試験用排ガスの温度を、第1熱交換器43によって先進型GTCC1のガスタービンT1出口における排ガスと同じにした後、第2熱交換器44によって試験用脱硝触媒51の活性温度にすることができる。
In the present embodiment, the test exhaust gas supply device 40 includes a first heat exchanger 43 and a second heat exchanger 44. According to this configuration, the temperature of the test exhaust gas is made the same as the exhaust gas at the gas turbine T1 outlet of the advanced GTCC 1 by the first heat exchanger 43, and then the activity of the test denitration catalyst 51 is increased by the second heat exchanger 44. Can be temperature.
本実施形態では、試験用排ガス供給装置40では、第2熱交換器44を通過した熱媒体を第1熱交換器43へ流通させる。この構成によれば、第1熱交換器43及び第2熱交換器44における熱媒体の流量を同一にして稼働できる。先進型GTCC1における上述した耐久試験の実証評価に容易に対応できる。
In the present embodiment, in the test exhaust gas supply device 40, the heat medium that has passed through the second heat exchanger 44 is circulated to the first heat exchanger 43. According to this configuration, the heat medium in the first heat exchanger 43 and the second heat exchanger 44 can be operated at the same flow rate. It is possible to easily cope with the above-described durability test of the advanced GTCC1.
本実施形態では、試験用脱硝触媒51は、試験用排ガスにおけるNOxを99%以上除去可能である。この構成によれば、排ガス中のNOxを99%以上除去可能な先進型GTCC1の実証評価を行うことができる。
In the present embodiment, the test denitration catalyst 51 can remove 99% or more of NOx in the test exhaust gas. According to this configuration, it is possible to perform a demonstration evaluation of the advanced GTCC 1 capable of removing 99% or more of NOx in the exhaust gas.
本実施形態では、潜熱回収装置60は、第3熱交換器61を有している。第3熱交換器61により、試験用排ガスの温度を、先進型GTCC1において大気へ排気される排ガスの温度と同じになるように調整する。この構成によれば、試験用排ガスの温度を、先進型GTCC1の煙突7(図4参照)出口の排ガスの温度と同じにすることができる。
In the present embodiment, the latent heat recovery device 60 includes a third heat exchanger 61. The temperature of the exhaust gas for testing is adjusted by the third heat exchanger 61 so as to be the same as the temperature of the exhaust gas exhausted to the atmosphere in the advanced GTCC 1. According to this configuration, the temperature of the exhaust gas for testing can be made the same as the temperature of the exhaust gas at the exit of the chimney 7 (see FIG. 4) of the advanced GTCC 1.
本実施形態において、潜熱回収装置60では、潜熱回収用熱交換器62を通過した熱媒体を第3熱交換器61へ流通させる。この構成によれば、潜熱回収用熱交換器62及び第3熱交換器61における熱媒体の流量を同一にして稼働できる。先進型GTCC1における上述した耐久試験の実証評価に容易に対応できる。
In the present embodiment, in the latent heat recovery device 60, the heat medium that has passed through the latent heat recovery heat exchanger 62 is circulated to the third heat exchanger 61. According to this configuration, the latent heat recovery heat exchanger 62 and the third heat exchanger 61 can be operated at the same flow rate of the heat medium. It is possible to easily cope with the above-described durability test of the advanced GTCC1.
本実施形態では、潜熱回収装置60は膜分離装置64を有している。この構成によれば、膜分離装置64が組み込まれた先進型GTCC1の実証評価を行うことができる。換言すると、膜分離技術を組み込んだ実証評価が可能となる。評価試験システム10及び評価試験装置20の拡張性及び発展性を高めることができる。
In the present embodiment, the latent heat recovery device 60 has a membrane separation device 64. According to this configuration, it is possible to perform a demonstration evaluation of the advanced type GTCC 1 in which the membrane separation device 64 is incorporated. In other words, it is possible to perform proof evaluation incorporating a membrane separation technique. The expandability and developability of the evaluation test system 10 and the evaluation test apparatus 20 can be improved.
本実施形態では、潜熱回収装置60は、潜熱回収用熱交換器62による潜熱の回収により発生した凝縮水を回収して溜める凝縮水回収部63を有している。凝縮水回収部63の凝縮水を第2分析計72で分析することで、試験用排ガス中の未反応の還元剤(凝縮水に溶けたアンモニア)を評価できる。アンモニアは、水に溶けた状態では炭酸アンモニウム等に変化していると考えられる。
In the present embodiment, the latent heat recovery device 60 has a condensed water recovery unit 63 that recovers and accumulates condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger 62. By analyzing the condensed water in the condensed water recovery unit 63 with the second analyzer 72, the unreacted reducing agent (ammonia dissolved in the condensed water) in the test exhaust gas can be evaluated. Ammonia is considered to be changed to ammonium carbonate or the like when dissolved in water.
本実施形態では、試験用排ガス供給装置40及び潜熱回収装置60は、ガス給湯器により構成されている。この構成によれば、試験用排ガス供給装置40及び潜熱回収装置60を容易に実現できる。なお、試験用排ガス供給装置40及び潜熱回収装置60の何れか一方のみがガス給湯器により構成されていてもよい。
In the present embodiment, the test exhaust gas supply device 40 and the latent heat recovery device 60 are constituted by a gas water heater. According to this configuration, the test exhaust gas supply device 40 and the latent heat recovery device 60 can be easily realized. Only one of the test exhaust gas supply device 40 and the latent heat recovery device 60 may be constituted by a gas water heater.
本実施形態では、データ記憶部31により、実証評価に必要な各種データを記憶して収集することができる。
In the present embodiment, the data storage unit 31 can store and collect various data necessary for verification evaluation.
本実施形態では、第1分析計71b,71cにより、隣接する試験用脱硝触媒51の間の試験用排ガスの排ガス性状を測定する。これにより、中間段階での脱硝反応の状況を監視できる。試験用脱硝触媒51の性能劣化又は交換等の維持管理情報を容易に取得できる。また、本実施形態では、第1分析計71eにより、大気へ排気される試験用排ガスの排ガス性状を測定する。これにより、最終的に排気されるアンモニア及びNOxを監視し、これらが管理基準内であることを確認ひいては保証できる。
In the present embodiment, the exhaust gas properties of the test exhaust gas between the adjacent test denitration catalysts 51 are measured by the first analyzers 71b and 71c. Thereby, the status of the denitration reaction in the intermediate stage can be monitored. Maintenance management information such as performance deterioration or replacement of the test denitration catalyst 51 can be easily obtained. In the present embodiment, the exhaust gas properties of the test exhaust gas exhausted to the atmosphere are measured by the first analyzer 71e. Thereby, ammonia and NOx finally exhausted can be monitored, and it can be confirmed and confirmed that these are within the control standard.
本実施形態において、先進型GTCC1と評価試験システム10(評価試験装置20)との間における圧力損失等の差は、試験用排ガスの拡散又は偏流防止等の物理的な対策により対応できる。
In this embodiment, the difference in pressure loss or the like between the advanced GTCC 1 and the evaluation test system 10 (evaluation test apparatus 20) can be dealt with by physical measures such as diffusion of test exhaust gas or prevention of drift.
GTCCを先進型GTCC1にすることによるメリットが極めて大きいことは、定性的に又は計算上把握できる。しかし、実機での設備投資規模が1000億円と巨大なインフラ施設であり、数10年間長期に安定して稼働する事業である。この事業化及び採用に向けては一般的にリスクが大きい。この点、本実施形態では、先進型GTCC1について、実証評価を通じて具体的に課題検討し、見える化することが可能となる。
It can be grasped qualitatively or computationally that the benefits of making the GTCC an advanced GTCC1 are extremely large. However, it is a huge infrastructure facility with an actual equipment investment of 100 billion yen, and it is a business that operates stably for a long period of several decades. In general, there are significant risks for commercialization and adoption. In this regard, in the present embodiment, it is possible to specifically examine and visualize the advanced GTCC 1 through demonstration evaluation.
評価試験システム10及び評価試験装置20によれば、以下の効果も奏する。
・評価試験システム10ないしは評価試験装置20を用いて、複数の触媒メーカーの触媒の評価が可能になる。
・評価試験システム10ないしは評価試験装置20が第三者機関による自主的な性能保証システムとして機能できる。
・ガスタービンメーカー、発電事業者、触媒メーカーが自ら、評価試験システム10ないしは評価試験装置20を利用できる。
・必要なデータの公開等、発電事業者が自主的に情報公開を実施し、透明な制度を構築できる。
・GTCCメーカー及び発電事業者等の大企業と対等に行動できるシステムないしは装置を提供できる。参画企業は適切で安定した収益を確保できる。
・先進型GTCC1について、オープンイノベーションのシステムとして新規参入が図れる。
・評価試験システム10ないしは評価試験装置20を用いて、IoT(Internet of Things)の概念を保証するデータシステムを構築できる。
・評価試験システム10ないしは評価試験装置20にて状況を監視して蓄積した各種データに基づいて、長期間安定して先進型GTCC1を稼働できる。
・評価試験システム10ないしは評価試験装置20には、技術進歩に伴い柔軟に発展及び対応できるプラットホームを持ったシステムを組み込むことができる。
・評価期間の短縮、事業資金の調達・評価のしやすさ等のメリットを得ることができる。 According to theevaluation test system 10 and the evaluation test apparatus 20, the following effects are also exhibited.
Theevaluation test system 10 or the evaluation test apparatus 20 can be used to evaluate catalysts from a plurality of catalyst manufacturers.
Theevaluation test system 10 or the evaluation test apparatus 20 can function as a voluntary performance assurance system by a third party organization.
A gas turbine manufacturer, a power generation company, and a catalyst manufacturer can use theevaluation test system 10 or the evaluation test apparatus 20 by themselves.
・ Power generation companies can voluntarily disclose information, such as disclosing necessary data, and can build a transparent system.
-A system or device that can act equally with large companies such as GTCC manufacturers and power generation companies can be provided. Participating companies can secure appropriate and stable earnings.
-New entry into the advanced GTCC1 as an open innovation system.
A data system that guarantees the concept of IoT (Internet of Things) can be constructed using theevaluation test system 10 or the evaluation test apparatus 20.
Theadvanced GTCC 1 can be operated stably for a long period of time based on various data accumulated by monitoring the situation in the evaluation test system 10 or the evaluation test apparatus 20.
Theevaluation test system 10 or the evaluation test apparatus 20 can be incorporated with a system having a platform that can be flexibly developed and coped with technological progress.
-Benefits such as shortening the evaluation period and ease of procurement and evaluation of business funds.
・評価試験システム10ないしは評価試験装置20を用いて、複数の触媒メーカーの触媒の評価が可能になる。
・評価試験システム10ないしは評価試験装置20が第三者機関による自主的な性能保証システムとして機能できる。
・ガスタービンメーカー、発電事業者、触媒メーカーが自ら、評価試験システム10ないしは評価試験装置20を利用できる。
・必要なデータの公開等、発電事業者が自主的に情報公開を実施し、透明な制度を構築できる。
・GTCCメーカー及び発電事業者等の大企業と対等に行動できるシステムないしは装置を提供できる。参画企業は適切で安定した収益を確保できる。
・先進型GTCC1について、オープンイノベーションのシステムとして新規参入が図れる。
・評価試験システム10ないしは評価試験装置20を用いて、IoT(Internet of Things)の概念を保証するデータシステムを構築できる。
・評価試験システム10ないしは評価試験装置20にて状況を監視して蓄積した各種データに基づいて、長期間安定して先進型GTCC1を稼働できる。
・評価試験システム10ないしは評価試験装置20には、技術進歩に伴い柔軟に発展及び対応できるプラットホームを持ったシステムを組み込むことができる。
・評価期間の短縮、事業資金の調達・評価のしやすさ等のメリットを得ることができる。 According to the
The
The
A gas turbine manufacturer, a power generation company, and a catalyst manufacturer can use the
・ Power generation companies can voluntarily disclose information, such as disclosing necessary data, and can build a transparent system.
-A system or device that can act equally with large companies such as GTCC manufacturers and power generation companies can be provided. Participating companies can secure appropriate and stable earnings.
-New entry into the advanced GTCC1 as an open innovation system.
A data system that guarantees the concept of IoT (Internet of Things) can be constructed using the
The
The
-Benefits such as shortening the evaluation period and ease of procurement and evaluation of business funds.
なお、先進型GTCC1は、通常のGTCCのメリットに加えて、更に次のメリットを有する。
a)大気汚染物質がなく煙突が不要である。
i)これにより煙突を作るための費用が節約できる。
ii)景観面の配慮が格段に小さくて済む。煙突による電波障害などの影響もない。
iii)環境影響評価の主要項目である大気汚染の影響評価が小さい。結果として、環境影響評価手続で地域の合意形成がしやすく、稼働までの期間の短縮が図れる。
b)地産地消の効率的な発電所が実現できる。
i)大都市域の天然ガス又は高圧送配電網等のインフラ施設が利用しやすい。
ii)送電ロスが小さく、より経済的である。
iii)設置の自由度が高い。計画から稼働まで短期間に推進できる。
c)潜熱回収及び水の有効利用。
i)熱交換器は家庭用の給湯器にあるシステムの規模を大きくするだけで実現でき、使用環境は安定する。経済効果は非常に大きい。
ii)回収した凝縮水は基本的には蒸留水である。水質の品質が高い補給水として立地場所を選ばずに有効利用できる。
iii)更なる水の有効利用に向けて、本開示に関わる実証評価及び開発評価を通じて検討を進めやすい。例えば、冷却塔方式であるが、従来の空気熱交による冷却塔に比べて、回収した凝縮水で水及び空気のハイブリッド冷却塔として実証確認できる。 Theadvanced GTCC 1 has the following merits in addition to the merits of normal GTCC.
a) There is no air pollutant and no chimney is required.
i) This saves the cost of making a chimney.
ii) Landscape considerations are much smaller. There is no influence of the radio interference by the chimney.
iii) Air pollution impact assessment, which is the main item of environmental impact assessment, is small. As a result, it is easy to form a consensus in the local area in the environmental impact assessment procedure, and shorten the period until operation.
b) An efficient power plant for local production for local consumption can be realized.
i) It is easy to use infrastructure facilities such as natural gas or high-voltage power distribution network in large urban areas.
ii) Transmission loss is small and more economical.
iii) High degree of freedom in installation. It can be promoted in a short time from planning to operation.
c) Latent heat recovery and effective use of water.
i) A heat exchanger can be realized simply by increasing the scale of a system in a domestic water heater, and the use environment is stabilized. The economic effect is very large.
ii) The recovered condensed water is basically distilled water. It can be used effectively regardless of the location as makeup water with high water quality.
iii) For further effective use of water, it is easy to proceed with examination through demonstration evaluation and development evaluation related to this disclosure. For example, although it is a cooling tower system, compared with the cooling tower by the conventional air heat exchange, it can demonstrate as a hybrid cooling tower of water and air with the recovered condensed water.
a)大気汚染物質がなく煙突が不要である。
i)これにより煙突を作るための費用が節約できる。
ii)景観面の配慮が格段に小さくて済む。煙突による電波障害などの影響もない。
iii)環境影響評価の主要項目である大気汚染の影響評価が小さい。結果として、環境影響評価手続で地域の合意形成がしやすく、稼働までの期間の短縮が図れる。
b)地産地消の効率的な発電所が実現できる。
i)大都市域の天然ガス又は高圧送配電網等のインフラ施設が利用しやすい。
ii)送電ロスが小さく、より経済的である。
iii)設置の自由度が高い。計画から稼働まで短期間に推進できる。
c)潜熱回収及び水の有効利用。
i)熱交換器は家庭用の給湯器にあるシステムの規模を大きくするだけで実現でき、使用環境は安定する。経済効果は非常に大きい。
ii)回収した凝縮水は基本的には蒸留水である。水質の品質が高い補給水として立地場所を選ばずに有効利用できる。
iii)更なる水の有効利用に向けて、本開示に関わる実証評価及び開発評価を通じて検討を進めやすい。例えば、冷却塔方式であるが、従来の空気熱交による冷却塔に比べて、回収した凝縮水で水及び空気のハイブリッド冷却塔として実証確認できる。 The
a) There is no air pollutant and no chimney is required.
i) This saves the cost of making a chimney.
ii) Landscape considerations are much smaller. There is no influence of the radio interference by the chimney.
iii) Air pollution impact assessment, which is the main item of environmental impact assessment, is small. As a result, it is easy to form a consensus in the local area in the environmental impact assessment procedure, and shorten the period until operation.
b) An efficient power plant for local production for local consumption can be realized.
i) It is easy to use infrastructure facilities such as natural gas or high-voltage power distribution network in large urban areas.
ii) Transmission loss is small and more economical.
iii) High degree of freedom in installation. It can be promoted in a short time from planning to operation.
c) Latent heat recovery and effective use of water.
i) A heat exchanger can be realized simply by increasing the scale of a system in a domestic water heater, and the use environment is stabilized. The economic effect is very large.
ii) The recovered condensed water is basically distilled water. It can be used effectively regardless of the location as makeup water with high water quality.
iii) For further effective use of water, it is easy to proceed with examination through demonstration evaluation and development evaluation related to this disclosure. For example, although it is a cooling tower system, compared with the cooling tower by the conventional air heat exchange, it can demonstrate as a hybrid cooling tower of water and air with the recovered condensed water.
ところで、大気汚染のない火力発電所は国際的にはJICAの社会環境配慮指針に基づき、評価される。従来の火力発電所はGTCCであってもカテゴリーAである。これに対して、先進型GTCC1では、環境負荷が低減することにより、事業リスクが大幅に軽減でき、カテゴリーBに位置付けることを有効な目標にできる。
By the way, thermal power plants without air pollution are evaluated internationally based on JICA's social environment consideration guidelines. Conventional thermal power plants are category A even if they are GTCC. On the other hand, in the advanced type GTCC1, the business risk can be significantly reduced by reducing the environmental load, and positioning in the category B can be an effective target.
以上、本開示に係る実施形態について説明したが、本開示は、上記実施形態に限定されない。本開示は、各請求項に記載した要旨を変更しない範囲で変形してもよい。上記実施形態の少なくとも一部を任意に組み合わせてもよい。上記における「同一」の語は、完全同一だけでなく略同一を含み、設計上、計測上又は製造上等の誤差を含む。上記における「同じ」の語は、完全に同じ場合だけでなく略同じ場合を含み、設計上、計測上又は製造上等の誤差を含む。
As mentioned above, although embodiment which concerns on this indication was described, this indication is not limited to the said embodiment. The present disclosure may be modified without changing the gist described in each claim. You may combine arbitrarily at least one part of the said embodiment. The term “identical” in the above includes not only completely the same but substantially the same, and includes errors in design, measurement, manufacturing, and the like. The term “same” in the above includes not only completely the same case but also substantially the same case, and includes errors such as design, measurement, and manufacturing.
1…先進型GTCC、4…脱硝装置、10…評価試験システム、20…評価試験装置、30…データ解析装置、31…データ記憶部、40…試験用排ガス供給装置(試験用排ガス供給手段)、41…ファン、42…バーナ、42x…濃バーナ、42y…淡バーナ、43…第1熱交換器、44…第2熱交換器、50…試験用排ガス脱硝装置、51…試験用脱硝触媒、52…還元剤投入装置(還元剤投入手段)、60…潜熱回収装置(潜熱回収手段)、61…第3熱交換器、62…潜熱回収用熱交換器、63…凝縮水回収部、64…膜分離装置、71a~71e…第1分析計(NOx濃度測定手段)、T1…ガスタービン。
DESCRIPTION OF SYMBOLS 1 ... Advanced type GTCC, 4 ... Denitration device, 10 ... Evaluation test system, 20 ... Evaluation test device, 30 ... Data analysis device, 31 ... Data storage part, 40 ... Exhaust gas supply device for test (exhaust gas supply means for test), 41 ... Fan, 42 ... Burner, 42x ... Dense burner, 42y ... Light burner, 43 ... First heat exchanger, 44 ... Second heat exchanger, 50 ... Exhaust denitration device for test, 51 ... Denitration catalyst for test, 52 ... reducing agent charging device (reducing agent charging means), 60 ... latent heat recovery device (latent heat recovery means), 61 ... third heat exchanger, 62 ... latent heat recovery heat exchanger, 63 ... condensed water recovery section, 64 ... membrane Separator, 71a to 71e, first analyzer (NOx concentration measuring means), T1, gas turbine.
Claims (12)
- ガスタービンから大気へ排気される排ガス中のNOxを除去する脱硝装置を備えたガスタービンコンバインドサイクル発電システムの実証評価用の評価試験装置であって、
前記排ガスと同一性状の試験用排ガスを連続的に供給する試験用排ガス供給手段と、
ハニカム構造を有し、前記脱硝装置に使用可能な脱硝触媒の一部で構成され、前記試験用排ガス供給手段から供給された前記試験用排ガスを脱硝する試験用脱硝触媒と、
前記試験用排ガス供給手段から前記試験用脱硝触媒へ供給される前記試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤を投入する還元剤投入手段と、
前記試験用排ガスの流路において前記試験用脱硝触媒の下流に配置され、前記試験用排ガスの蒸気の潜熱を回収する潜熱回収用熱交換器を有する潜熱回収手段と、
前記試験用脱硝触媒の上流の前記試験用排ガス、前記試験用脱硝触媒の下流の前記試験用排ガス、及び、大気へ排気される前記試験用排ガスにおけるNOx濃度を少なくとも測定するNOx濃度測定手段と、を備える、評価試験装置。 An evaluation test apparatus for demonstrative evaluation of a gas turbine combined cycle power generation system equipped with a denitration device that removes NOx in exhaust gas exhausted from the gas turbine to the atmosphere,
A test exhaust gas supply means for continuously supplying a test exhaust gas having the same properties as the exhaust gas;
A test denitration catalyst that has a honeycomb structure and is configured of a part of a denitration catalyst that can be used in the denitration apparatus, and denitrates the test exhaust gas supplied from the test exhaust gas supply means;
Reducing agent input means for introducing a reducing agent having an equivalent ratio of NOx of the test exhaust gas to NOx into the test exhaust gas supplied from the test exhaust gas supply means to the test denitration catalyst;
Latent heat recovery means that is disposed downstream of the test denitration catalyst in the test exhaust gas flow path and has a latent heat recovery heat exchanger that recovers the latent heat of the vapor of the test exhaust gas;
NOx concentration measuring means for measuring at least the NOx concentration in the test exhaust gas upstream of the test denitration catalyst, the test exhaust gas downstream of the test denitration catalyst, and the test exhaust gas exhausted to the atmosphere; An evaluation test apparatus. - 前記試験用排ガス供給手段は、
燃焼用空気を供給するファンと、
前記ファンで供給された前記燃焼用空気を利用して燃料を燃焼させ、前記試験用排ガスを連続的に発生させるバーナと、を有し、
前記ファンは、前記試験用排ガスの空気過剰率が前記ガスタービン出口における前記排ガスの空気過剰率と同じになるように、供給する前記燃焼用空気の空気量を制御する、請求項1に記載の評価試験装置。 The test exhaust gas supply means includes:
A fan for supplying combustion air;
A burner that burns fuel using the combustion air supplied by the fan and continuously generates the exhaust gas for testing,
The said fan controls the air quantity of the said combustion air supplied so that the excess air ratio of the said test waste gas may become the same as the excess air ratio of the said waste gas in the said gas turbine exit. Evaluation test equipment. - 前記バーナは、濃バーナ及び淡バーナを含む濃淡バーナであって、
前記濃淡バーナでは、前記試験用排ガスのNOx濃度が前記排ガスのNOx濃度と同じになるように、前記濃バーナのガス流量と前記淡バーナのガス流量との流量比率が設定されている、請求項2に記載の評価試験装置。 The burner is a dark and light burner including a dark burner and a light burner,
The flow rate ratio between the gas flow rate of the rich burner and the gas flow rate of the light burner is set so that the NOx concentration of the test exhaust gas is the same as the NOx concentration of the exhaust gas in the light and dark burner. 2. The evaluation test apparatus according to 2. - 前記試験用排ガス供給手段は、
前記試験用排ガスの温度を調整する第1熱交換器と、
前記第1熱交換器で温度が調整された前記試験用排ガスの温度を更に調整する第2熱交換器と、を有し、
前記第1熱交換器は、前記試験用排ガスの温度を、前記ガスタービン出口における前記排ガスの温度と同じになるように調整し、
前記第2熱交換器は、前記試験用排ガスの温度を、前記試験用脱硝触媒の活性温度となるように調整する、請求項1~3の何れか一項に記載の評価試験装置。 The test exhaust gas supply means includes:
A first heat exchanger for adjusting the temperature of the test exhaust gas;
A second heat exchanger that further adjusts the temperature of the test exhaust gas, the temperature of which is adjusted by the first heat exchanger,
The first heat exchanger adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas at the gas turbine outlet,
The evaluation test apparatus according to any one of claims 1 to 3, wherein the second heat exchanger adjusts the temperature of the test exhaust gas so as to be an activation temperature of the test denitration catalyst. - 前記試験用排ガス供給手段では、前記第2熱交換器を通過した熱媒体を前記第1熱交換器へ流通させる、請求項4に記載の評価試験装置。 5. The evaluation test apparatus according to claim 4, wherein the test exhaust gas supply means distributes the heat medium that has passed through the second heat exchanger to the first heat exchanger.
- 前記試験用脱硝触媒は、前記試験用排ガスにおけるNOxを99%以上除去可能である、請求項1~5の何れか一項に記載の評価試験装置。 6. The evaluation test apparatus according to claim 1, wherein the test denitration catalyst is capable of removing 99% or more of NOx in the test exhaust gas.
- 前記潜熱回収手段は、
前記試験用排ガスの流路において前記潜熱回収用熱交換器の上流に配置され、前記試験用排ガスの温度を大気へ排気される前記排ガスの温度と同じになるように調整する第3熱交換器を有する、請求項1~6の何れか一項に記載の評価試験装置。 The latent heat recovery means includes
A third heat exchanger that is disposed upstream of the latent heat recovery heat exchanger in the test exhaust gas flow path and adjusts the temperature of the test exhaust gas to be the same as the temperature of the exhaust gas exhausted to the atmosphere. The evaluation test apparatus according to any one of claims 1 to 6, comprising: - 前記潜熱回収手段では、前記潜熱回収用熱交換器を通過した熱媒体を前記第3熱交換器へ流通させる、請求項7に記載の評価試験装置。 The evaluation test apparatus according to claim 7, wherein the latent heat recovery means distributes the heat medium that has passed through the latent heat recovery heat exchanger to the third heat exchanger.
- 前記潜熱回収手段は、
前記試験用排ガスの流路において前記第3熱交換器と前記潜熱回収用熱交換器との間に配置され、前記試験用排ガス中の水蒸気を分離回収する膜及び前記試験用排ガス中の二酸化炭素を分離回収する膜の少なくとも何れかを含む膜分離装置を有する、請求項7又は8に記載の評価試験装置。 The latent heat recovery means includes
A membrane for separating and recovering water vapor in the test exhaust gas and carbon dioxide in the test exhaust gas, which is disposed between the third heat exchanger and the latent heat recovery heat exchanger in the flow path of the test exhaust gas The evaluation test apparatus according to claim 7 or 8, further comprising a membrane separation device including at least one of membranes for separating and recovering the gas. - 前記潜熱回収手段は、
前記潜熱回収用熱交換器による潜熱の回収により発生した凝縮水を回収して溜める凝縮水回収部を有する、請求項1~9の何れか一項に記載の評価試験装置。 The latent heat recovery means includes
The evaluation test apparatus according to any one of claims 1 to 9, further comprising a condensate recovery unit that recovers and accumulates condensate generated by recovering latent heat by the latent heat recovery heat exchanger. - 前記試験用排ガス供給手段及び前記潜熱回収手段の少なくとも一方は、ガス給湯器により構成されている、請求項1~10の何れか一項に記載の評価試験装置。 The evaluation test apparatus according to any one of claims 1 to 10, wherein at least one of the test exhaust gas supply means and the latent heat recovery means is configured by a gas water heater.
- ガスタービンから大気へ排気される排ガス中のNOxを除去する脱硝装置を備えたガスタービンコンバインドサイクル発電システムの実証評価用の評価試験システムであって、
前記排ガスと同一性状の試験用排ガスを連続的に供給する試験用排ガス供給手段と、
ハニカム構造を有し、前記脱硝装置に使用可能な脱硝触媒の一部で構成され、前記試験用排ガス供給手段から供給された前記試験用排ガスを脱硝する試験用脱硝触媒と、
前記試験用排ガス供給手段から前記試験用脱硝触媒へ供給される前記試験用排ガス中に、当該試験用排ガスのNOxに対する当量比が1.0以上の還元剤を投入する還元剤投入手段と、
前記試験用排ガスの流路において前記試験用脱硝触媒の下流に配置され、前記試験用排ガスの蒸気の潜熱を回収する潜熱回収用熱交換器を有する潜熱回収手段と、
前記試験用脱硝触媒の上流の前記試験用排ガス、前記試験用脱硝触媒の下流の前記試験用排ガス、及び、大気へ排気される前記試験用排ガスにおけるNOx濃度を少なくとも測定するNOx濃度測定手段と、
前記NOx濃度測定手段で測定したNOx濃度に関するデータを少なくとも格納するデータ記憶部と、を備え、
前記試験用排ガス供給手段は、
燃焼用空気を供給するファンと、
前記ファンで供給された前記燃焼用空気を利用して燃料を燃焼させ、前記試験用排ガスを連続的に発生させるバーナと、
前記試験用排ガスの温度を調整する第1熱交換器と、
前記第1熱交換器で温度が調整された前記試験用排ガスの温度を更に調整する第2熱交換器と、を有し、
前記潜熱回収手段は、
前記試験用排ガスの流路において前記潜熱回収用熱交換器の上流に配置され、前記試験用排ガスの温度を大気へ排気される前記排ガスの温度と同じになるように調整する第3熱交換器と、
前記潜熱回収用熱交換器による潜熱の回収により発生した凝縮水を回収して溜める凝縮水回収部と、を有し、
前記ファンは、前記試験用排ガスの空気過剰率が前記ガスタービン出口における前記排ガスの空気過剰率と同じになるように、供給する前記燃焼用空気の空気量を制御し、
前記バーナは、濃バーナ及び淡バーナを含む濃淡バーナであり、
前記濃淡バーナでは、前記試験用排ガスのNOx濃度が前記排ガスのNOx濃度と同じになるように、前記濃バーナのガス流量と前記淡バーナのガス流量との流量比率が設定され、
前記第1熱交換器は、前記試験用排ガスの温度を、前記ガスタービン出口における前記排ガスの温度と同じになるように調整し、
前記第2熱交換器は、前記試験用排ガスの温度を、前記試験用脱硝触媒の活性温度となるように調整する、評価試験システム。 An evaluation test system for demonstrative evaluation of a gas turbine combined cycle power generation system equipped with a denitration device for removing NOx in exhaust gas exhausted from the gas turbine to the atmosphere,
A test exhaust gas supply means for continuously supplying a test exhaust gas having the same properties as the exhaust gas;
A test denitration catalyst that has a honeycomb structure and is configured of a part of a denitration catalyst that can be used in the denitration apparatus, and denitrates the test exhaust gas supplied from the test exhaust gas supply means;
Reducing agent input means for introducing a reducing agent having an equivalent ratio of NOx of the test exhaust gas to NOx into the test exhaust gas supplied from the test exhaust gas supply means to the test denitration catalyst;
Latent heat recovery means that is disposed downstream of the test denitration catalyst in the test exhaust gas flow path and has a latent heat recovery heat exchanger that recovers the latent heat of the vapor of the test exhaust gas;
NOx concentration measuring means for measuring at least the NOx concentration in the test exhaust gas upstream of the test denitration catalyst, the test exhaust gas downstream of the test denitration catalyst, and the test exhaust gas exhausted to the atmosphere;
A data storage unit for storing at least data relating to the NOx concentration measured by the NOx concentration measuring means,
The test exhaust gas supply means includes:
A fan for supplying combustion air;
A burner that burns fuel using the combustion air supplied by the fan and continuously generates the exhaust gas for testing;
A first heat exchanger for adjusting the temperature of the test exhaust gas;
A second heat exchanger that further adjusts the temperature of the test exhaust gas, the temperature of which is adjusted by the first heat exchanger,
The latent heat recovery means includes
A third heat exchanger that is disposed upstream of the latent heat recovery heat exchanger in the test exhaust gas flow path and adjusts the temperature of the test exhaust gas to be the same as the temperature of the exhaust gas exhausted to the atmosphere. When,
A condensed water recovery unit that recovers and accumulates condensed water generated by the recovery of latent heat by the latent heat recovery heat exchanger, and
The fan controls the air amount of the combustion air to be supplied so that the excess air ratio of the exhaust gas for test becomes the same as the excess air ratio of the exhaust gas at the gas turbine outlet,
The burner is a light and dark burner including a dark burner and a light burner,
In the concentration burner, the flow rate ratio between the gas flow rate of the concentration burner and the gas flow rate of the light burner is set so that the NOx concentration of the exhaust gas for test becomes the same as the NOx concentration of the exhaust gas,
The first heat exchanger adjusts the temperature of the test exhaust gas so as to be the same as the temperature of the exhaust gas at the gas turbine outlet,
The second heat exchanger is an evaluation test system in which the temperature of the test exhaust gas is adjusted to be the activation temperature of the test denitration catalyst.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018531003A JP6446160B2 (en) | 2016-08-01 | 2016-08-01 | Evaluation test apparatus and evaluation test system |
PCT/JP2016/072558 WO2018025315A1 (en) | 2016-08-01 | 2016-08-01 | Evaluation testing apparatus and evaluation testing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/072558 WO2018025315A1 (en) | 2016-08-01 | 2016-08-01 | Evaluation testing apparatus and evaluation testing system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025315A1 true WO2018025315A1 (en) | 2018-02-08 |
Family
ID=61073934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072558 WO2018025315A1 (en) | 2016-08-01 | 2016-08-01 | Evaluation testing apparatus and evaluation testing system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6446160B2 (en) |
WO (1) | WO2018025315A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109060704A (en) * | 2018-08-13 | 2018-12-21 | 中国华能集团有限公司 | A kind of SNCR denitration engineering test platform |
CN109966884A (en) * | 2019-04-03 | 2019-07-05 | 南京泷逸环保科技有限公司 | A kind of multistage combined chimney oxynitrides reforming unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281230A (en) * | 2021-05-19 | 2021-08-20 | 北京化工大学 | Heating stove pollutant emission and thermal efficiency evaluation test system and method for detecting pollutant emission factor and thermal efficiency |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342721A (en) * | 1986-08-08 | 1988-02-23 | Babcock Hitachi Kk | Controlling device for injection amount of ammonia |
JPH07204461A (en) * | 1994-01-27 | 1995-08-08 | Mitsubishi Heavy Ind Ltd | Denitration of exhaust gas |
JP2011194290A (en) * | 2010-03-17 | 2011-10-06 | Chugoku Electric Power Co Inc:The | Denitration catalyst performance testing apparatus |
JP2013117752A (en) * | 2011-12-01 | 2013-06-13 | Mitsubishi Heavy Ind Ltd | Simulation system, simulation execution method, and program |
WO2015064193A1 (en) * | 2013-10-29 | 2015-05-07 | 株式会社エコ・サポート | Gas turbine combined cycle power generation system |
-
2016
- 2016-08-01 JP JP2018531003A patent/JP6446160B2/en active Active
- 2016-08-01 WO PCT/JP2016/072558 patent/WO2018025315A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342721A (en) * | 1986-08-08 | 1988-02-23 | Babcock Hitachi Kk | Controlling device for injection amount of ammonia |
JPH07204461A (en) * | 1994-01-27 | 1995-08-08 | Mitsubishi Heavy Ind Ltd | Denitration of exhaust gas |
JP2011194290A (en) * | 2010-03-17 | 2011-10-06 | Chugoku Electric Power Co Inc:The | Denitration catalyst performance testing apparatus |
JP2013117752A (en) * | 2011-12-01 | 2013-06-13 | Mitsubishi Heavy Ind Ltd | Simulation system, simulation execution method, and program |
WO2015064193A1 (en) * | 2013-10-29 | 2015-05-07 | 株式会社エコ・サポート | Gas turbine combined cycle power generation system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109060704A (en) * | 2018-08-13 | 2018-12-21 | 中国华能集团有限公司 | A kind of SNCR denitration engineering test platform |
CN109966884A (en) * | 2019-04-03 | 2019-07-05 | 南京泷逸环保科技有限公司 | A kind of multistage combined chimney oxynitrides reforming unit |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018025315A1 (en) | 2019-02-14 |
JP6446160B2 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Campanari et al. | Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells | |
Luo et al. | Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns | |
JP6446160B2 (en) | Evaluation test apparatus and evaluation test system | |
Zhang et al. | Experimental study of flue gas condensing heat recovery synergized with low NOx emission system | |
Mirolli | The Kalina cycle for cement kiln waste heat recovery power plants | |
Han et al. | Collaborative optimization of energy conversion and NOx removal in boiler cold-end of coal-fired power plants based on waste heat recovery of flue gas and sensible heat utilization of extraction steam | |
Ziółkowski et al. | Power augmentation of PGE Gorzow’s gas turbine by steam injection-thermodynamic overview | |
JP6702547B2 (en) | Denitration system and denitration method | |
Petrakopoulou et al. | Exergoeconomic analysis of an advanced zero emission plant | |
Pavlas et al. | Efficient waste-to-energy system as a contribution to clean technologies | |
Tugov | Municipal Solid Wastes-to-Energy Conversion: Global and Domestic Experience | |
CN112717690B (en) | SCR denitration commissioning method under deep peak regulation working condition of coal-fired unit | |
JP5418774B2 (en) | Flue gas denitration equipment | |
Sipöcz et al. | Combined cycles with CO 2 capture: two alternatives for system integration | |
JP6064498B2 (en) | Denitration system | |
Wu et al. | Performance analysis of a novel water/electricity cogeneration system based on plasma waste gasification and a small modular reactor | |
Kumar et al. | Exergy analysis of modified-supercritical power plant with solar assisted feedwater heating and CO2 capture | |
Yoon et al. | Implementation of 100CMM Thermal Storage Combustion Oxidizer for VOCs Reduction | |
JP2013205003A (en) | Non-catalytic denitration method and device | |
Branchini et al. | Environmental assessment of renewable fuel energy systems with cross-media effects approach | |
Kumar et al. | Techno-economic analysis of a 500 MWe supercritical coal-based thermal power plant with solar assisted MEA-based CO2 capture | |
Pritchard | Biomass fuelled indirect fired micro turbine | |
JP2004225995A (en) | Industrial furnace | |
Shi et al. | Life-Cycle Environmental and Economic Assessments of the Oxy-coal Combustion System Combined with a Pressurized Circulating Fluidized Bed and the Supercritical CO2 Brayton Cycle | |
Su | Thermal integration of waste to energy plants with post-combustion CO₂ capture technologies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018531003 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16911576 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16911576 Country of ref document: EP Kind code of ref document: A1 |