JP2011125765A - Flue gas denitration apparatus - Google Patents

Flue gas denitration apparatus Download PDF

Info

Publication number
JP2011125765A
JP2011125765A JP2009284073A JP2009284073A JP2011125765A JP 2011125765 A JP2011125765 A JP 2011125765A JP 2009284073 A JP2009284073 A JP 2009284073A JP 2009284073 A JP2009284073 A JP 2009284073A JP 2011125765 A JP2011125765 A JP 2011125765A
Authority
JP
Japan
Prior art keywords
denitration
combustor
bypass
exhaust gas
denitration reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009284073A
Other languages
Japanese (ja)
Other versions
JP5418774B2 (en
Inventor
Akinori Yukimura
明憲 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009284073A priority Critical patent/JP5418774B2/en
Publication of JP2011125765A publication Critical patent/JP2011125765A/en
Application granted granted Critical
Publication of JP5418774B2 publication Critical patent/JP5418774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flue gas denitration apparatus avoiding wasteful consumption of a denitration catalyst when treating flue gas of a boiler employing a wide range burner. <P>SOLUTION: The flue gas denitration apparatus includes: a first denitration reactor 11 connected to the boiler B and packed with the denitration catalyst; a bypass 12 formed branched from an intermediate flue 6 continued to downstream of the first denitration reactor 11; a second denitration reactor 13 set above the bypass 12 and packed with the denitration catalyst; a bypass damper 14 blocking and releasing the flow of the flue gas to the second denitration reactor 13; a switching damper 16 switching the flow direction of the flue gas having passed through the first denitration reactor 11 to any one of the intermediate flue 6 and the bypass 12; a NOx sensor 17 measuring the NOx concentration at an outlet of the boiler; and a plant control part 19 activating the bypass damper 14 and switching damper 16 based on the NOx concentration and selecting the operation with only the first denitration reactor 11 or the operation with both the first and second denitration reactors 11, 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、石炭などの化石燃料をボイラ等の燃焼器で燃焼させる際に排出される排ガス中に含まれるNO(窒素酸化物)を除去するのに用いられる排煙脱硝装置に係り、特にワイドレンジバーナを採用したボイラに適した排煙脱硝装置に関するものである。 The present invention relates to a flue gas denitration apparatus used to remove NO x (nitrogen oxide) contained in exhaust gas discharged when fossil fuel such as coal is burned in a combustor such as a boiler. The present invention relates to a flue gas denitration apparatus suitable for a boiler employing a wide range burner.

上記したような排煙脱硝装置は、例えば、石炭焚きボイラ出口の煙道に配置され、石炭焚きボイラから排出される石炭の燃焼排ガスが、この排煙脱硝装置に装備されている脱硝触媒を上流側から下流側に通過する過程において、脱硝反応器上流部で注入されたNHと排ガス中に含まれるNOとを脱硝反応させることで、このNOを除去するようになっている。 The above-described flue gas denitration device is disposed, for example, in a flue at the coal-fired boiler outlet, and the coal combustion exhaust gas discharged from the coal-fired boiler is upstream of the denitration catalyst equipped in the flue gas denitration device. in the process of passing from the side to the downstream side, and a NO X contained in the NH 3 and the exhaust gas that is injected in the denitration reactor upstream portion be to denitration reaction, so as to remove the NO X.

このような排煙脱硝装置において、ボイラ負荷が上昇するのに伴って、ボイラ出口におけるNO濃度はほぼ横ばいで推移するものの、排ガス量が増加することから、排ガス中NO量(=NO濃度×排ガス量)も増加し、ボイラ負荷が定格負荷(100%)のポイント或いはボイラ最大連続負荷(MCR)が、脱硝装置の設計点(Critical−Point)となり、この条件下における排ガスの性状をベースにして排煙脱硝装置に装備される必要触媒量が計画されている。 In such a denitrification device, as the boiler load is increased, although the NO X concentration at the boiler outlet to remain substantially unchanged, since the amount of exhaust gas increases, the exhaust gas amount of NO X (= NO X Concentration x Exhaust gas amount) also increases, and the boiler load is the rated load (100%) point or the boiler maximum continuous load (MCR) is the denitration device design point (Critical-Point). The required amount of catalyst to be installed in the flue gas denitration system is planned.

近年において、非特許文献1に記載されているように、石炭焚きボイラプラントにも、夜間の低負荷運転などのような中間負荷運用が求められており、ボイラのバーナとして幅広い負荷で燃焼効率を発揮するワイドレンジバーナ(WRB)が採用される傾向にある。   In recent years, as described in Non-Patent Document 1, a coal-fired boiler plant is also required to have an intermediate load operation such as nighttime low load operation. A wide range burner (WRB) that exhibits is apt to be adopted.

平成7年11月 石川島播磨技報第35巻第6号「微粉炭専焼ボイラ用内部セパレート型ワイドレンジバーナの実用化」November 1995 Ishikawajima-Harima Technical Report Vol. 35, No. 6 “Practical application of internal separate type wide range burner for pulverized coal fired boiler”

上記したワイドレンジバーナは、ボイラ低負荷域でのボイラ出口におけるNO濃度が従来タイプのバーナと比べて大きく増大する特性を有しており、脱硝装置設計点(必要触媒量計画点)が、従来の高負荷域とは異なるボイラ低負荷域になる場合も起こり得る。 Wide-range burners described above, NO X concentration at the boiler outlet of the boiler low load range has a large increasing properties compared to conventional types of burners, NOx removal system design point (necessary catalytic planning point), It may happen that the boiler has a low load range different from the conventional high load range.

このように、ボイラ低負荷域を脱硝装置設計点とした条件で運用を行うと、すなわち、ボイラ低負荷域で増大する排ガスNO量に見あう脱硝触媒量を充填して運用を行うと、排ガスNO量が低下するボイラ高負荷時において、必要量の脱硝触媒だけでなく、高負荷時には本来必要としない余剰の脱硝触媒についても劣化が進んでしまうという問題があり、この問題を解決することがボイラにワイドレンジバーナを採用するうえでの課題となっていた。 Thus, when the operation of the boiler low load region under the condition that the NOx removal system design point, i.e., when the operation by filling a denitrating catalytic amount mutually viewed in the exhaust gas amount of NO X increases in boiler low load region, during boiler high load amount exhaust gas nO X is reduced, not only the necessary amount of the denitration catalyst, there is a problem of deterioration will also progressing surplus denitration catalyst which is not originally required at the time of high load, to solve this problem This has been a problem in adopting wide range burners in boilers.

本発明は、上記した従来の課題に着目してなされたもので、ワイドレンジバーナを採用したボイラの排ガス処理に用いた場合、ボイラの高負荷運転モードから低負荷運転モードまでの各運転モードに見合った量の脱硝触媒を使用することにより、脱硝触媒を無駄に消費するのを回避することができ、その結果、脱硝触媒の効率の良い運用が可能となる排煙脱硝装置を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and when used for exhaust gas treatment of boilers that employ a wide range burner, each operation mode from a high load operation mode to a low load operation mode of the boiler is used. By using an appropriate amount of denitration catalyst, wasteful consumption of the denitration catalyst can be avoided, and as a result, it is possible to provide a flue gas denitration apparatus that enables efficient operation of the denitration catalyst. It is aimed.

本発明者らは、ワイドレンジバーナを採用したボイラに用いる排煙脱硝装置を計画するにあたって、脱硝装置設計点近くのボイラ低負荷域をベースとしてこの領域の排ガスNO量に見あう量の脱硝触媒を用意し、ボイラ高負荷運転時(通常運転時)には上記脱硝触媒のうちの必要最低限の量の脱硝触媒を使って運用し、一方、ボイラ低負荷運転時には上記脱硝触媒のすべての脱硝触媒を使って運用することで、脱硝触媒が無駄に劣化するのを阻止できることに着目して、本発明をするに至った。 The present inventors, in order to plan the denitrification equipment used in boilers employing a wide-range burner, the amount of denitration each other seen in the exhaust gas amount of NO X in the region of the boiler low load region near denitration system design point as a base Prepare a catalyst and operate it using the minimum amount of denitration catalyst among the above denitration catalysts during boiler high load operation (normal operation), while all of the above denitration catalysts during boiler low load operation Focusing on the fact that the use of the denitration catalyst can prevent the denitration catalyst from deteriorating, the present invention has been achieved.

すなわち、本発明の請求項1に係る発明は、例えば石炭などの化石燃料をボイラなどの燃焼器で燃焼させる際に該燃焼器から排出される排ガス中に含まれる窒素酸化物を除去する排煙脱硝装置であって、前記燃焼器に接続されて脱硝触媒が充填された第1脱硝反応器と、この第1脱硝反応器の下流側に続く煙道に分岐して形成されたバイパスと、このバイパス上に配置されて脱硝触媒が充填された第2脱硝反応器と、前記バイパス上における前記第2脱硝反応器の上流側に配置されて該第2脱硝反応器への排ガスの流通を遮断開放するバイパスダンパと、前記第1脱硝反応器を通過した排ガスが流れる方向を前記煙道と前記バイパスとのいずれかに切り換える切換えダンパと、前記燃焼器の出口における窒素酸化物濃度を計測するNOセンサと、このNOセンサで計測された窒素酸化物濃度に基づいて、前記バイパスダンパ及び切換えダンパを動作させて前記第1脱硝反応器のみでの運用及び前記第1,第2脱硝反応器の双方での運用を選択するプラント制御部を備えている構成としたことを特徴としており、この排煙脱硝装置の構成を前述した従来の課題を解決するための手段としている。 That is, the invention according to claim 1 of the present invention removes nitrogen oxides contained in exhaust gas discharged from a combustor when fossil fuel such as coal is burned in a combustor such as a boiler. A denitration apparatus, a first denitration reactor connected to the combustor and filled with a denitration catalyst, a bypass formed by branching into a flue downstream of the first denitration reactor, A second denitration reactor disposed on the bypass and filled with a denitration catalyst, and disposed on the upstream side of the second denitration reactor on the bypass and shuts off the flow of exhaust gas to the second denitration reactor. A bypass damper, a switching damper for switching the flow direction of the exhaust gas that has passed through the first denitration reactor to one of the flue and the bypass, and NO X that measures the nitrogen oxide concentration at the outlet of the combustor Sen And Sa, based on the NOx concentration measured by the NO X sensor, the bypass damper and operation and the first only in the first denitration reactor switching damper is operated, the second denitration reactor It is characterized by having a plant control unit that selects operation in both, and the configuration of the flue gas denitration apparatus is used as a means for solving the above-described conventional problems.

また、本発明の請求項2に係る発明は、ワイドレンジバーナを採用した燃焼器から排出される排ガス中に含まれる窒素酸化物を除去する排煙脱硝装置であって、前記燃焼器の出口排ガス量などから該燃焼器の状況を把握する燃焼器監視部を備え、前記第1脱硝反応器には、燃焼器高負荷運用時の脱硝に必要最低限な量の脱硝触媒が充填され、前記第2脱硝反応器には、燃焼器低負荷運用時における燃焼器出口排ガスNO量の増加時において、前記第1脱硝反応器では脱硝処理し切れない部分を補う量の脱硝触媒が充填され、前記プラント制御部は、前記燃焼器監視部及びNOセンサから取得したデータに基づいて燃焼器高負荷域運用時と判定した段階で、前記切換えダンパにより排ガスが流れる方向を煙道とすると共に前記バイパスダンパを遮断して、前記第1脱硝反応器のみでの運用を行わせ、燃焼器低負荷域運用時と判定した段階で、前記切換えダンパにより排ガスが流れる方向をバイパスとすると共に前記バイパスダンパを開放して、前記第1脱硝反応器及び第2脱硝反応器の双方での運用を行わせるべく制御する構成としている。 The invention according to claim 2 of the present invention is a flue gas denitration device for removing nitrogen oxides contained in exhaust gas discharged from a combustor employing a wide range burner, wherein the exhaust gas discharged from the combustor is exhausted. A combustor monitoring unit that grasps the state of the combustor from the amount, etc., and the first denitration reactor is filled with a denitration catalyst in a minimum amount necessary for denitration during high-load operation of the combustor, the 2 denitration reactor, during an increase in the combustor exit gas amount of nO X at the combustor low load operation, the denitration catalyst in an amount to compensate for the in the first denitration reactor not completely denitration portion is filled, the the Baipasuda with plant control unit, in the combustor monitoring unit and NO X stage where sensor based on the acquired data from the determined to the time the combustor high load operation, the flue direction of flue gas flow by the switching damper When the operation is performed only with the first denitration reactor, and when it is determined that the combustor is in a low load region operation, the direction in which the exhaust gas flows is bypassed by the switching damper, and the bypass damper is It is configured to be opened and controlled to perform operations in both the first denitration reactor and the second denitration reactor.

本発明に係る排煙脱硝装置において 第1脱硝反応器及び第2脱硝反応器に充填される脱硝触媒としては、ハニカム形状或いはプレート形状など各種形状を成すものを使用し、排ガスの流路を横断するようにして複数段設置される。   In the flue gas denitration apparatus according to the present invention, as the denitration catalyst filled in the first denitration reactor and the second denitration reactor, those having various shapes such as a honeycomb shape or a plate shape are used, and the exhaust gas flow path is crossed. In this way, multiple stages are installed.

本発明に係る排煙脱硝装置では、石炭などの化石燃料をボイラなどの燃焼器で燃焼させる際に生じる排ガスが、脱硝触媒を通過する過程において、この排煙脱硝装置の入口でNHを注入して排ガス中に含まれるNO(窒素酸化物)を窒素と水蒸気に分解させることで窒素酸化物を除去する。 In the flue gas denitration apparatus according to the present invention, NH 3 is injected at the inlet of the flue gas denitration apparatus in the process in which exhaust gas generated when fossil fuel such as coal is burned in a combustor such as a boiler passes through the denitration catalyst. NO X contained in the exhaust gas (nitrogen oxides) for removing nitrogen oxides by decomposing into nitrogen and water vapor by.

ここで、ワイドレンジバーナを採用したボイラ(燃焼器)の場合には、図2(a),(b)の設計計画図に示すように、ボイラ低負荷域でのボイラ出口におけるNO濃度が、通常タイプのバーナと比べて大きく増大する(約200ppm→約500ppm)特性を有している。 Here, in the case of a boiler employing a wide-range burner (combustor), as shown in the design plan view of FIG. 2 (a), (b), the NO X concentration at the boiler outlet of the boiler low load region In addition, it has a characteristic that it is greatly increased (about 200 ppm → about 500 ppm) as compared with a normal type burner.

そこで、本発明の請求項1に係る排煙脱硝装置において、ボイラ負荷が大きい領域、すなわち、通常運用時には、バイパスダンパ及び切換えダンパを動作させて第1脱硝反応器のみで脱硝処理を行い、一方、ボイラ負荷が小さい領域、すなわち、低負荷運用時のボイラ出口排ガスNO量増加時には、バイパスダンパ及び切換えダンパを動作させて第1,第2脱硝反応器の双方で脱硝処理を行うようにすれば、ボイラの運転モードに見合った量の脱硝触媒を使用することとなり、したがって、脱硝触媒を無駄に消費するのを回避し得ることとなる。 Therefore, in the flue gas denitration apparatus according to claim 1 of the present invention, the denitration process is performed only by the first denitration reactor by operating the bypass damper and the switching damper in a region where the boiler load is large, that is, in normal operation. , region boiler load is low, i.e., at the time of increasing the boiler outlet waste gas amount of NO X in the low load operation, first to operate the bypass damper and switching damper, by to perform denitration at both the second denitration reactor For example, an amount of the denitration catalyst commensurate with the operation mode of the boiler is used, and therefore it is possible to avoid wasteful consumption of the denitration catalyst.

より具体的には、本発明の請求項2に係る排煙脱硝装置のように、ボイラ高負荷域での通常運用時には、切換えダンパにより排ガスが流れる方向を煙道とすると共にバイパスダンパを閉じて、第1脱硝反応器に充填した必要最低限な量の脱硝触媒のみを使用し、一方、ボイラ低負荷域でのボイラ出口排ガスNO量運用時には、切換えダンパにより排ガスが流れる方向をバイパスとすると共にバイパスダンパを開いて、第1脱硝反応器及び第2脱硝反応器の双方に充填したすべての脱硝触媒を使うようにすれば、ボイラの高負荷運転モードから低負荷運転モードまでのそれぞれに応じた量の脱硝触媒を使用することとなって、脱硝触媒を無駄に消費しなくて済むこととなる。 More specifically, as in the flue gas denitration apparatus according to claim 2 of the present invention, during normal operation in a boiler high load region, the direction in which the exhaust gas flows by the switching damper is a flue and the bypass damper is closed. uses only minimum amount of denitration catalyst filled in the first denitration reactor, whereas, at the time of the boiler outlet waste gas amount of NO X operation in the boiler low load range, and bypasses the flow direction the exhaust gas by switching damper In addition, by opening the bypass damper and using all the denitration catalyst filled in both the first denitration reactor and the second denitration reactor, it is possible to respond to each from the high load operation mode to the low load operation mode of the boiler. As a result, a large amount of the denitration catalyst is used, so that the denitration catalyst is not consumed wastefully.

本発明の請求項1に係る排煙脱硝装置では、上記した構成としているので、ワイドレンジバーナを採用したボイラの排ガス処理に用いた場合、脱硝触媒を無駄に消費するのを回避することができ、その結果、脱硝触媒を効率良く使うことが可能となるという非常に優れた効果がもたらされる。   Since the exhaust gas denitration apparatus according to claim 1 of the present invention has the above-described configuration, it is possible to avoid wasteful consumption of the denitration catalyst when used for exhaust gas treatment of boilers that employ a wide range burner. As a result, a very excellent effect that the denitration catalyst can be used efficiently is brought about.

また、本発明の請求項2に係る排煙脱硝装置では、上記した構成としたから、ワイドレンジバーナを採用したボイラの高負荷運転モードから低負荷運転モードまでの各運転モードに見合った量の脱硝触媒を使用することで、脱硝触媒の効率の良い運用が可能であるという非常に優れた効果がもたらされる。   Moreover, in the flue gas denitration apparatus according to claim 2 of the present invention, since it has the above-described configuration, the amount corresponding to each operation mode from the high load operation mode to the low load operation mode of the boiler employing the wide range burner. By using the denitration catalyst, a very excellent effect that the denitration catalyst can be efficiently operated is brought about.

本発明の一実施例による排煙脱硝装置を含むワイドレンジバーナを採用したボイラの排ガス処理システムを示す概略構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is schematic structure explanatory drawing which shows the exhaust gas processing system of the boiler which employ | adopted the wide range burner containing the flue gas denitration apparatus by one Example of this invention. 図1における排煙脱硝装置を設計計画する際のベースになるワイドレンジバーナを採用する場合のボイラ負荷とNO,排ガス温度,排ガス量との関係を示すグラフ(a)及び通常のバーナを採用する場合のボイラ負荷とNO,排ガス温度,排ガス量との関係を示すグラフ(b)である。The graph (a) showing the relationship between the boiler load, NO x , exhaust gas temperature, and exhaust gas amount when using the wide range burner that is the base for designing and designing the flue gas denitration device in Fig. 1 and a normal burner are used. boiler load and NO X, the exhaust gas temperature in the case of a graph showing the relationship between the quantity of exhaust gas (b).

以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明の一実施例による排煙脱硝装置を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a flue gas denitration apparatus according to an embodiment of the present invention.

図1に示すように、この排煙脱硝装置10は、ワイドレンジバーナBuを採用した石炭焚きボイラ(燃焼器)Bの節炭部Baに垂直煙道1を介して接続している。この垂直煙道1には、排ガスにアンモニアを注入することでNOを還元して窒素と水蒸気に変換する図示しないアンモニア注入ノズルが配置されており、一方、この排煙脱硝装置10から煙突Pに至るまでの排ガス処理煙道2の下流側には、ガスエアヒータ3、集塵装置4、及び脱硫部5が順次配置されている。 As shown in FIG. 1, the flue gas denitration device 10 is connected via a vertical flue 1 to a coal-saving unit Ba of a coal-fired boiler (combustor) B that employs a wide range burner Bu. The vertical flue 1 is arranged ammonia injection nozzle (not shown) for converting by reducing NO X by injecting ammonia into the exhaust gas to nitrogen and water vapor, while the chimney P from the denitrification device 10 A gas air heater 3, a dust collector 4, and a desulfurization unit 5 are sequentially arranged on the downstream side of the flue gas treatment flue 2 up to the above.

ガスエアヒータ3は、図示しない押込みファンにより導入される外部空気を排煙脱硝装置10から排出される排ガスの熱で暖めて石炭焚きボイラBに送り込むようになっている。なお、集塵装置4と脱硫部5との間にも図示しない熱交換器が配置してあり、この熱交換器では、集塵装置4通過後の排ガスと脱硫部7通過後の排ガスとの熱交換を行うようになっている。   The gas air heater 3 heats the external air introduced by a not-shown pushing fan with the heat of exhaust gas discharged from the flue gas denitration device 10 and sends it to the coal-fired boiler B. A heat exchanger (not shown) is also disposed between the dust collector 4 and the desulfurization unit 5. In this heat exchanger, the exhaust gas after passing through the dust collector 4 and the exhaust gas after passing through the desulfurization unit 7 are arranged. Heat exchange is performed.

上記排煙脱硝装置10は、垂直煙道1に接続する第1脱硝反応器11と、この第1脱硝反応器11及びガスエアヒータ3の間の中間煙道6に分岐して形成したバイパス12と、このバイパス12上に配置した第2脱硝反応器13と、バイパス12上における第2脱硝反応器13の前後に配置されてこの第2脱硝反応器13への排ガスの流通を遮断開放するバイパスダンパ14,15と、第1脱硝反応器11を通過した排ガスが流れる方向を中間煙道6とバイパス12とのいずれかに切り換える切換えダンパ16を具備している。   The flue gas denitration apparatus 10 includes a first denitration reactor 11 connected to the vertical flue 1, and a bypass 12 formed by branching to an intermediate flue 6 between the first denitration reactor 11 and the gas air heater 3. A second denitration reactor 13 disposed on the bypass 12 and a bypass damper disposed before and after the second denitration reactor 13 on the bypass 12 to cut off and open the flow of exhaust gas to the second denitration reactor 13 14 and 15 and a switching damper 16 for switching the flow direction of the exhaust gas that has passed through the first denitration reactor 11 to either the intermediate flue 6 or the bypass 12.

また、この排煙脱硝装置10は、ボイラBの出口排ガス量や燃料流量や燃焼空気流量などからボイラBの状況を把握するボイラ監視部(燃焼器監視部)17と、ボイラBの出口におけるNO濃度を計測するNOセンサ18と、ボイラ監視部17及びNOセンサ18から取得した出口排ガス量やNO濃度などのデータに基づいて上記バイパスダンパ14,15及び切換えダンパ16を開閉又は切り換え動作させるプラント制御部19を具備している。 Further, the flue gas denitration apparatus 10 includes a boiler monitoring unit (combustor monitoring unit) 17 that grasps the status of the boiler B from the exhaust gas amount at the outlet of the boiler B, the fuel flow rate, the combustion air flow rate, and the like, and the NO at the outlet of the boiler B the NO X sensor 18 for measuring the X concentration, closing or switching the bypass damper 14, 15 and the switching damper 16 based on the data such as the outlet exhaust gas amount and NO X concentration obtained from the boiler monitoring unit 17 and the NO X sensor 18 A plant control unit 19 to be operated is provided.

ここで、ワイドレンジバーナBuを採用したボイラBの場合には、図2(a),(b)の設計計画図に示すように、ボイラ低負荷域でのボイラ出口におけるNO濃度が、通常タイプのバーナと比べて高くなる。
これに対応するべく、第1脱硝反応器11には、ボイラ高負荷運用時(ボイラ出口NO濃度が一定に保たれている通常時)の脱硝に必要最低限な量の脱硝触媒を充填している。一方、第2脱硝反応器13には、ボイラ低負荷運用時(ボイラ出口NO濃度の増加時)において、第1脱硝反応器11では脱硝処理し切れない部分を補い得る量の脱硝触媒を充填している。
なお、このボイラBにおいて、ボイラ負荷が50%を超えた場合をボイラ高負荷域とし、ボイラ負荷が50%以下の場合をボイラ低負荷域としている。
Here, in the case of a boiler B that employs a wide-range burner Bu is FIG. 2 (a), the as shown in the design plan view of (b), the NO X concentration at the boiler outlet of the boiler low load region, usually Higher than the type burner.
Order to meet this, the first denitration reactor 11, and denitration filled with minimum amount of denitration catalyst at the boiler high load operation (normal to the boiler outlet NO X concentration is kept constant) ing. On the other hand, the second denitration reactor 13, a boiler at low load operation (during an increase of the boiler outlet NO X concentration), filling the volume of the denitration catalyst that may supplement the portion which can not be denitration in the first denitration reactor 11 is doing.
In this boiler B, when the boiler load exceeds 50%, the boiler high load range is set, and when the boiler load is 50% or less, the boiler low load range is set.

つまり、この排煙脱硝装置10において、ボイラ高負荷域での通常運用時には、プラント制御部19によりバイパスダンパ14,15及び切換えダンパ16を動作させて第1脱硝反応器11のみで脱硝処理を行い、一方、ボイラ負荷が小さい領域、すなわち、低負荷運用時のボイラ出口排ガスNO量増加時には、プラント制御部19によりバイパスダンパ14,15及び切換えダンパ16を動作させて第1,第2脱硝反応器11,13の双方で脱硝処理を行うようになっている。 That is, in the flue gas denitration apparatus 10, during normal operation in a boiler high load region, the plant control unit 19 operates the bypass dampers 14 and 15 and the switching damper 16 to perform the denitration process only with the first denitration reactor 11. while region boiler load is low, i.e., at the time of increasing the boiler outlet waste gas amount of NO X in the low load operation, first to operate the bypass damper 14, 15 and the switching damper 16 by the plant control unit 19, a second denitration reaction The denitration process is performed in both the vessels 11 and 13.

このような構成の排煙脱硝装置10では、石炭焚きボイラBで生じる排ガスが脱硝触媒を通過する過程において、この排煙脱硝装置10の入口で図示しないアンモニア注入ノズルからNHを噴射して、排ガス中に含まれるNOを窒素と水蒸気に分解させることで窒素酸化物を除去する。 In the flue gas denitration apparatus 10 having such a configuration, NH 3 is injected from an ammonia injection nozzle (not shown) at the inlet of the flue gas denitration apparatus 10 in the process in which the exhaust gas generated in the coal-fired boiler B passes through the denitration catalyst. Nitrogen oxides are removed by decomposing NO X contained in the exhaust gas into nitrogen and water vapor.

この際、プラント制御部19は、ボイラ監視部17及びNO18センサから取得したデータに基づいてボイラ高負荷域運用時と判定した段階において、切換えダンパ16により排ガスが流れる方向を中間煙道6とすると共にバイパスダンパ14,15をいずれも遮断して、第1脱硝反応器11に充填された必要最低限な量の脱硝触媒のみを使用するべく制御する。 At this time, the plant control unit 19 determines the direction in which the exhaust gas flows by the switching damper 16 when the boiler is in a high load range operation based on the data acquired from the boiler monitoring unit 17 and the NO X 18 sensor. In addition, both the bypass dampers 14 and 15 are shut off, and control is performed so that only the minimum necessary amount of the denitration catalyst charged in the first denitration reactor 11 is used.

一方、このプラント制御部19は、ボイラ監視部17及びNO18センサから取得したデータに基づいてボイラ低負荷域運用時と判定した段階において、切換えダンパ16により排ガスが流れる方向をバイパス12とすると共にバイパスダンパ14,15をいずれも開放して、第1脱硝反応器11及び第2脱硝反応器13の双方に充填されたすべての脱硝触媒を使用するべく制御する。 On the other hand, the plant control unit 19 sets the direction in which the exhaust gas flows by the switching damper 16 to the bypass 12 when it is determined that the boiler is in a low load region operation based on the data acquired from the boiler monitoring unit 17 and the NO X 18 sensor. At the same time, the bypass dampers 14 and 15 are both opened to control to use all the denitration catalysts filled in both the first denitration reactor 11 and the second denitration reactor 13.

したがって、この排煙脱硝装置10では、ボイラBの高負荷運転モードから低負荷運転モードまでの各運転モードに対応した量の脱硝触媒を使用することとなり、その結果、脱硝触媒を無駄に消費して劣化するのを回避し得ることとなる。   Therefore, in this flue gas denitration device 10, an amount of the denitration catalyst corresponding to each operation mode from the high load operation mode to the low load operation mode of the boiler B is used, and as a result, the denitration catalyst is consumed wastefully. It is possible to avoid deterioration.

上記した実施例では、ワイドレンジバーナBuを採用した石炭焚きボイラBの排ガス脱硝処理に本発明に係る排煙脱硝装置を用いた場合を示したが、これに限定されるものではなく、通常のバーナを採用した石炭焚きボイラの排ガス脱硝処理に用いてもよい。   In the above-described embodiment, the case where the flue gas denitration apparatus according to the present invention is used for the exhaust gas denitration treatment of the coal fired boiler B adopting the wide range burner Bu is not limited to this, You may use for the exhaust gas denitration process of the coal fired boiler which adopted the burner.

この場合には、使用する燃料の性状の違いによって、ボイラ出口におけるNOが想定した値を上回るような事態が生じた際に、第2脱硝反応器13に充填した脱硝触媒を使用することで迅速に対応し得ることとなる。 In this case, the difference in properties of the fuel used, in a situation such as exceeding a value NO X is assumed in the boiler outlet occurs, to use a denitration catalyst filled into the second denitration reactor 13 It will be possible to respond quickly.

また、本発明に係る排煙脱硝装置の構成は、上記した実施例の構成に限定されるものではない。   The configuration of the flue gas denitration apparatus according to the present invention is not limited to the configuration of the above-described embodiment.

6 中間煙道
10 排煙脱硝装置
11 第1脱硝反応器
12 バイパス
13 第2脱硝反応器
14,15 バイパスダンパ
16 切換えダンパ
17 ボイラ監視部(燃焼器監視部)
18 NOセンサ
19 プラント制御部
B 石炭焚きボイラ(燃焼器)
Bu ワイドレンジバーナ
6 intermediate flue 10 flue gas denitration device 11 first denitration reactor 12 bypass 13 second denitration reactors 14 and 15 bypass damper 16 switching damper 17 boiler monitoring unit (combustor monitoring unit)
18 NO X sensor 19 Plant control part B Coal-fired boiler (combustor)
Bu wide range burner

Claims (2)

化石燃料を燃焼器で燃焼させる際に該燃焼器から排出される排ガス中に含まれる窒素酸化物を除去する排煙脱硝装置であって、
前記燃焼器に接続されて脱硝触媒が充填された第1脱硝反応器と、
この第1脱硝反応器の下流側に続く煙道に分岐して形成されたバイパスと、
このバイパス上に配置されて脱硝触媒が充填された第2脱硝反応器と、
前記バイパス上における前記第2脱硝反応器の上流側に配置されて該第2脱硝反応器への排ガスの流通を遮断開放するバイパスダンパと、
前記第1脱硝反応器を通過した排ガスが流れる方向を前記煙道と前記バイパスとのいずれかに切り換える切換えダンパと、
前記燃焼器の出口における窒素酸化物濃度を計測するNOセンサと、
このNOセンサで計測された窒素酸化物濃度に基づいて、前記バイパスダンパ及び切換えダンパを動作させて前記第1脱硝反応器のみでの運用及び前記第1,第2脱硝反応器の双方での運用を選択するプラント制御部を備えている
ことを特徴とする排煙脱硝装置。
A flue gas denitration device for removing nitrogen oxides contained in exhaust gas discharged from a combustor when fossil fuel is combusted in the combustor,
A first denitration reactor connected to the combustor and filled with a denitration catalyst;
A bypass formed by branching into a flue downstream of the first denitration reactor;
A second denitration reactor disposed on the bypass and filled with a denitration catalyst;
A bypass damper disposed upstream of the second denitration reactor on the bypass to shut off and open the flow of exhaust gas to the second denitration reactor;
A switching damper for switching the flow direction of the exhaust gas that has passed through the first denitration reactor to either the flue or the bypass;
And NO X sensor for measuring the NOx concentration at the outlet of the combustor,
Based on the concentration of nitrogen oxides measured by the NO X sensor, the bypass damper and operation and the first only in the first denitration reactor switching damper is operated in both the second denitration reactor A flue gas denitration device comprising a plant control unit for selecting operation.
ワイドレンジバーナを採用した燃焼器から排出される排ガス中に含まれる窒素酸化物を除去する排煙脱硝装置であって、
前記燃焼器の出口排ガス量などから該燃焼器の状況を把握する燃焼器監視部を備え、
前記第1脱硝反応器には、燃焼器高負荷運用時の脱硝に必要最低限な量の脱硝触媒が充填され、前記第2脱硝反応器には、燃焼器低負荷運用時における燃焼器出口排ガスNO量の増加時において、前記第1脱硝反応器では脱硝処理し切れない部分を補う量の脱硝触媒が充填され、
前記プラント制御部は、前記燃焼器監視部及びNOセンサから取得したデータに基づいて燃焼器高負荷域運用時と判定した段階で、前記切換えダンパにより排ガスが流れる方向を煙道とすると共に前記バイパスダンパを遮断して、前記第1脱硝反応器のみでの運用を行わせ、燃焼器低負荷域運用時と判定した段階で、前記切換えダンパにより排ガスが流れる方向をバイパスとすると共に前記バイパスダンパを開放して、前記第1脱硝反応器及び第2脱硝反応器の双方での運用を行わせるべく制御する
請求項1に記載の排煙脱硝装置。
A flue gas denitration device that removes nitrogen oxides contained in exhaust gas discharged from a combustor that employs a wide range burner,
A combustor monitoring unit that grasps the state of the combustor from the amount of exhaust gas discharged from the combustor and the like,
The first denitration reactor is filled with a denitration catalyst in a minimum amount necessary for denitration during high-load operation of the combustor, and the second denitration reactor is charged with exhaust gas from the combustor outlet during low-load operation of the combustor. When the amount of NO X increases, the first denitration reactor is filled with a denitration catalyst in an amount that compensates for a portion that cannot be completely denitrated,
When the plant control unit determines that the combustor is in a high load range operation based on data acquired from the combustor monitoring unit and the NO X sensor, the direction of the exhaust gas flowing by the switching damper is defined as a flue and the The bypass damper is shut off, and only the first denitration reactor is operated. When it is determined that the combustor is in a low load region operation, the switching damper sets the direction in which the exhaust gas flows as a bypass and the bypass damper. The flue gas denitration apparatus according to claim 1, wherein control is performed so that operation is performed in both the first denitration reactor and the second denitration reactor.
JP2009284073A 2009-12-15 2009-12-15 Flue gas denitration equipment Active JP5418774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284073A JP5418774B2 (en) 2009-12-15 2009-12-15 Flue gas denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284073A JP5418774B2 (en) 2009-12-15 2009-12-15 Flue gas denitration equipment

Publications (2)

Publication Number Publication Date
JP2011125765A true JP2011125765A (en) 2011-06-30
JP5418774B2 JP5418774B2 (en) 2014-02-19

Family

ID=44288954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284073A Active JP5418774B2 (en) 2009-12-15 2009-12-15 Flue gas denitration equipment

Country Status (1)

Country Link
JP (1) JP5418774B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325384A (en) * 2018-04-12 2018-07-27 山东联盛环保科技有限公司 A kind of full load equipment for denitrifying flue gas
CN109569294A (en) * 2019-01-31 2019-04-05 福建鑫泽环保设备工程有限公司 Magnesite shaft furnace flue gas NO_x Reduction by Effective equipment and its technique
CN111603925A (en) * 2019-02-26 2020-09-01 南京定环新能源科技有限公司 Integrated denitration reactor
CN113623659A (en) * 2021-06-22 2021-11-09 江苏中圣高科技产业有限公司 Submerged combustion type gasifier system for deep denitration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420955A (en) * 1977-07-18 1979-02-16 Babcock Hitachi Kk Nox removing equipment
JPS62186926A (en) * 1986-02-12 1987-08-15 Babcock Hitachi Kk Denitration device
JPH0281622U (en) * 1988-12-02 1990-06-25
JPH07112120A (en) * 1993-10-18 1995-05-02 Babcock Hitachi Kk Denitrification device
JP2000110553A (en) * 1998-10-06 2000-04-18 Denso Corp Exhaust gas emission control device of internal combustion engine
JP2009191647A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Exhaust control system
JP2010168986A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011099655A (en) * 2009-11-09 2011-05-19 Mitsubishi Heavy Ind Ltd Boiler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420955A (en) * 1977-07-18 1979-02-16 Babcock Hitachi Kk Nox removing equipment
JPS62186926A (en) * 1986-02-12 1987-08-15 Babcock Hitachi Kk Denitration device
JPH0281622U (en) * 1988-12-02 1990-06-25
JPH07112120A (en) * 1993-10-18 1995-05-02 Babcock Hitachi Kk Denitrification device
JP2000110553A (en) * 1998-10-06 2000-04-18 Denso Corp Exhaust gas emission control device of internal combustion engine
JP2009191647A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Exhaust control system
JP2010168986A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011099655A (en) * 2009-11-09 2011-05-19 Mitsubishi Heavy Ind Ltd Boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325384A (en) * 2018-04-12 2018-07-27 山东联盛环保科技有限公司 A kind of full load equipment for denitrifying flue gas
CN109569294A (en) * 2019-01-31 2019-04-05 福建鑫泽环保设备工程有限公司 Magnesite shaft furnace flue gas NO_x Reduction by Effective equipment and its technique
CN111603925A (en) * 2019-02-26 2020-09-01 南京定环新能源科技有限公司 Integrated denitration reactor
CN113623659A (en) * 2021-06-22 2021-11-09 江苏中圣高科技产业有限公司 Submerged combustion type gasifier system for deep denitration

Also Published As

Publication number Publication date
JP5418774B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US8211391B2 (en) Biomass boiler SCR NOx and CO reduction system
JP5702959B2 (en) Model-based tuning of ammonia distribution and control for reduced operating costs of selective catalytic reduction
KR101057342B1 (en) The de-nox efficiency improvement at low temperature and yellow plume reduction system by fast scr
EP3043112B1 (en) Boiler system and electric power generation plant provided with same
RU2543096C1 (en) METHOD AND DEVICE FOR SELECTIVE CATALYTIC REDUCTION OF NOx IN POWER BOILER
CN203829919U (en) Device for SCR (Selective Catalytic Reduction) denitration system of coal-fired power plant boiler
JP2011522987A (en) Emission reduction device used with heat recovery steam generator
US20050118084A1 (en) Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury
GB2082085A (en) Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
JP7221262B2 (en) Exhaust system for power plant
JP5418774B2 (en) Flue gas denitration equipment
JP2012097739A (en) Apparatus for reducing emissions and method of assembly
CN106178946A (en) Method for realizing integral embedded type smelting flue gas denitration system
JP2014211249A (en) Flue gas denitration apparatus and flue gas denitration method
JP6467424B2 (en) Arrangement and method for bypassing flue gas flow during selective catalytic reduction
JP2013189883A (en) Thermal power generation plant
JP2011125766A (en) Exhaust gas treatment apparatus
JP3831804B2 (en) Exhaust gas denitration equipment
US10731846B2 (en) Boiler facility and operating method thereof
JP2016050679A (en) Incineration facility
KR102347814B1 (en) Vaporizer for selective catalytic reduction denitrification system for power generation
KR102624232B1 (en) Combined SCR System
Liu et al. Transformation of the Flue Gas Side for fully Loaded SCR Denitration in the Coal-fired Power Plant
Buzanowski et al. Integrated Exhaust System for Simple Cycle Power Plants
Ellery et al. Biomass boiler SCR NO x and CO reduction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R151 Written notification of patent or utility model registration

Ref document number: 5418774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250