JPH0811171B2 - Ammonia injection amount control device - Google Patents

Ammonia injection amount control device

Info

Publication number
JPH0811171B2
JPH0811171B2 JP61185326A JP18532686A JPH0811171B2 JP H0811171 B2 JPH0811171 B2 JP H0811171B2 JP 61185326 A JP61185326 A JP 61185326A JP 18532686 A JP18532686 A JP 18532686A JP H0811171 B2 JPH0811171 B2 JP H0811171B2
Authority
JP
Japan
Prior art keywords
signal
concentration
outlet
injection amount
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61185326A
Other languages
Japanese (ja)
Other versions
JPS6342721A (en
Inventor
実 井筒
肇 古林
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP61185326A priority Critical patent/JPH0811171B2/en
Publication of JPS6342721A publication Critical patent/JPS6342721A/en
Publication of JPH0811171B2 publication Critical patent/JPH0811171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアンモニアの注入量制御装置に係り、特に、
排ガス中の窒素酸化物(NOX)を除去する乾式脱硝装置
へアンモニア(NH3)を注入するアンモニアの注入量制
御装置に関するものである。
The present invention relates to an ammonia injection amount control device, and in particular,
The present invention relates to an ammonia injection amount control device that injects ammonia (NH 3 ) into a dry denitration device that removes nitrogen oxides (NO x ) in exhaust gas.

〔従来の技術〕[Conventional technology]

近年、我が国においては重油供給量のひつ迫から石油
依存度の是正を計るために、従来の重油専焼から石炭専
焼、LNG(液化天然ガス)専焼へと燃料を変換しつつあ
り、特に事業用ボイラにおいては石炭専焼、LNG専焼の
大容量火力発電所が建設されている。
In recent years, in Japan, fuel is being converted from conventional heavy oil burning to coal burning and LNG (liquefied natural gas) burning in order to correct the dependence on petroleum due to the tight supply of heavy oil, especially for commercial boilers. Has built a large-capacity thermal power plant that exclusively burns coal and LNG.

ところが、石炭燃料は石油燃料,ガス燃料に比べて燃
料性が悪いので排ガス中に含まれるNOX及び未燃分が発
生しやすく、特にNOXの低減対策のために火炎の分割、
排ガスの再循環、二段燃焼及び炉内脱硝などを採用して
緩慢な燃焼を行なわせてNOXを低減することも行なわれ
ている。
However, since coal fuel has a poorer fuel property than petroleum fuel and gas fuel, NO X and unburned matter contained in the exhaust gas are likely to be generated, and especially flames are divided to reduce NO X.
Exhaust gas recirculation, two-stage combustion and in-furnace denitration are also used to slow combustion to reduce NO X.

そしてこの石炭専焼火力,LNG専焼火力においては,ボ
イラ負荷が常に全負荷で運転されるものは少なく、負荷
を75%負荷,50%負荷,25%負荷へと負荷を上げ、下げし
て運転したり、運転を停止するなど、いわゆる毎日起動
停止(Daily Start Stop以下単にDSSという)運転や、
週末起動停止(Weekly Start Stop以下単にWSSという)
運転を行なつて中間負荷を担う火力発電プラントへ移行
しつつある。
In this coal-only burning power and LNG burning power, the boiler load is not always operated at full load, and the load is increased to 75% load, 50% load, 25% load and lowered to operate. Or stop the operation, so-called daily start stop (hereinafter simply referred to as DSS) operation,
Weekly Start Stop (WSS)
It is in operation and is shifting to a thermal power plant that bears intermediate loads.

一方、この中間負荷火力用にはこの火力発電ボイラの
他に、起動特定のよいガスタービンと排熱回収ボイラを
組合せた、いわゆるコンバインドプラントも用いられ、
DSS運転やWSS運転を行なつて電力需要の多い昼間のみ運
転し、夜間は運転を停止するものが建設されようとして
いる。
On the other hand, for this intermediate load thermal power, in addition to this thermal power generation boiler, a so-called combined plant, which is a combination of a gas turbine and an exhaust heat recovery boiler with a good starting specification, is also used,
It is about to be constructed by operating DSS and WSS only during the daytime when there is a large demand for electricity and stopping the operation at night.

ところが、この石炭専焼,LNG専焼の中間負荷用ボイ
ラ,ガスタービンにおいてもNOX排出濃度の規制強化に
伴ない、従来の燃焼改善に加えて、NH3を還元剤として
触媒の存在下で脱硝を行なう乾式接触還元脱硝装置を設
置するプラントが増加している。
However, in the coal-fired and LNG-fired intermediate load boilers and gas turbines as well, along with the tightening of regulations on NO X emission concentrations, in addition to the conventional combustion improvement, denitration was performed in the presence of a catalyst using NH 3 as a reducing agent. The number of plants that install dry catalytic reduction NOx removal equipment is increasing.

それは石炭専焼ボイラにおいては燃料の燃焼性が悪い
ので、NOX量が増加し、LNF専焼ボイラ,ガスタービンプ
ラントにおいては酸素量が多く高温燃焼を行なうため
に、石炭専焼ボイラと同様に、排ガス中には多量のNOX
を含有しているので、第3図に示す様な脱硝装置が設置
される。
Since the combustibility of the fuel is poor in the coal-fired boiler, the amount of NO X increases, and in the LNF-fired boiler and gas turbine plant, the amount of oxygen is large and high-temperature combustion is performed. A large amount of NO X
Therefore, a denitration device as shown in FIG. 3 is installed.

第3図は脱硝装置が設置されたボイラの代表的な煙風
道系統図である。
FIG. 3 is a typical flue wind system diagram of a boiler in which a denitration device is installed.

空気ダクト1内の燃焼用空気は押込通風機2にて昇圧
され、空気予熱器3にて排ガスダクト4の排ガスによつ
て加熱された後ウインドボツクス5よりボイラ6へ供給
される。
Combustion air in the air duct 1 is pressurized by the forced draft fan 2, heated in the air preheater 3 by the exhaust gas in the exhaust gas duct 4, and then supplied from the wind box 5 to the boiler 6.

一方ボイラ6内で燃焼した排ガスは、排ガスダクト4
でNH3注入管7からのNH3によつて脱硝されると共に、下
流に配置した脱硝装置8内の触媒9において脱硝を促進
し、排ガス中のNOXは除去されて空気予熱器3,集塵機10,
誘引通風機11で昇圧され大気へ放出される。
On the other hand, the exhaust gas burned in the boiler 6 is exhaust gas duct 4
Is denitrified by NH 3 from the NH 3 injection pipe 7, and the denitration is promoted by the catalyst 9 in the denitration device 8 arranged downstream, NO X in the exhaust gas is removed, and the air preheater 3 and the dust collector Ten,
The pressure is increased by the induction fan 11 and released to the atmosphere.

ところが、かかる脱硝装置8は触媒9の種類によつて
も多少反応温度範囲は異るが、最も脱硝効率の高い温度
範囲は300〜400℃の比較的高温で、温度範囲はいたつて
狭いので、中間負荷火力用のボイラやコンバインドサイ
クルの様に常にDSS運転されるものにおいては、負荷変
動によつて排ガス温度が常に変動し、触媒9の使用可能
領域をはずれてしまう欠点がある。
However, although the reaction temperature range of the denitration device 8 is somewhat different depending on the type of the catalyst 9, the temperature range with the highest denitration efficiency is a relatively high temperature of 300 to 400 ° C., and the temperature range is extremely narrow. In the case of a boiler for intermediate load thermal power generation or a combined cycle that is always operated by DSS, there is a drawback that the exhaust gas temperature constantly fluctuates due to load fluctuations, and the catalyst 9 deviates from the usable range.

この場合、触媒9の使用ガス温度が高過ぎると、触媒
9の組織が変化して触媒9としての機能がそこなわれ、
また使用ガス温度が低すぎると排ガス中に存在する無水
硫酸(SO3)と反応してやはり触媒9の機能が劣化す
る。
In this case, if the temperature of the gas used in the catalyst 9 is too high, the structure of the catalyst 9 changes and the function as the catalyst 9 is impaired.
If the temperature of the used gas is too low, the function of the catalyst 9 is deteriorated by reacting with sulfuric anhydride (SO 3 ) existing in the exhaust gas.

一方、常にDSS運転やWSS運転される火力発電用ボイ
ラ,コンバインドサイクルにおいては、排ガス量および
NOX濃度が変動し、これによつて脱硝性能の追従性が悪
くなる欠点がある。
On the other hand, in the thermal power generation boiler and the combined cycle that are always operated by DSS or WSS, the amount of exhaust gas and
NO X concentration is varied, the follow-up of'll go-between denitration performance in this is there is a drawback to deteriorate.

それは、触媒9上でのNOXとNH3の反応機構に起因する
排ガス量およびNOX濃度が起動時、負荷変化時のように
変動する場合には、負荷変動に合わせてNH3注入量を変
化させても脱硝性能が負荷変動に追従できないからであ
る。
This is because when the exhaust gas amount and NO X concentration due to the reaction mechanism of NO X and NH 3 on the catalyst 9 fluctuate, such as at start-up and when the load changes, the NH 3 injection amount should be adjusted according to the load change. This is because the denitration performance cannot follow the load fluctuation even if it is changed.

これらの問題を回避するために、従来のNH3の注入量
制御装置の代表的な例を第4図に示す。
In order to avoid these problems, a typical example of a conventional NH 3 injection amount control device is shown in FIG.

第4図において、入口NOX濃度検出器12で検出された
入口NOX濃度信号13と、空気流量検出器14で検出された
空気流量信号15を関数変換器16で変換、この変換した排
ガス流量信号17を乗算器18で乗算して総NOX量信号19を
算出する。一方入口NOX濃度信号13と出口NOX濃度設定器
20から出口NOX濃度設定信号21によつてモル比演算器22
で先行モル比(NOX量とNH3量の比率)信号23を算出し、
これに出口NOX濃度検出器24で検出された実測出口NOX
度信号25と、出口NOX濃度設定器20からの出口NOX濃度設
定信号21との偏差を調節計26で修正した出口NOX偏差修
正信号27と、先に説明した先行モル比信号23を加算器28
で加算し、修正モル比信号29を演算する。
In FIG. 4, the inlet NO X concentration signal 13 detected by the inlet NO X concentration detector 12 and the air flow rate signal 15 detected by the air flow rate detector 14 are converted by the function converter 16, and the converted exhaust gas flow rate The signal 17 is multiplied by the multiplier 18 to calculate the total NO X amount signal 19. On the other hand, inlet NO X concentration signal 13 and outlet NO X concentration setter
From the 20 to the outlet NO X concentration setting signal 21, the molar ratio calculator 22
Calculate the leading molar ratio (ratio of NO X amount and NH 3 amount) signal 23 with
And the measured outlet NO X concentration signal 25 which is detected by the outlet NO X concentration detector 24 to the outlet NO X concentration outlet NO X concentration setting outlet NO to the deviation corrected in adjusting meter 26 and the signal 21 from the setter 20 The X deviation correction signal 27 and the preceding molar ratio signal 23 described above are added to the adder 28.
Then, the corrected molar ratio signal 29 is calculated.

そして、この修正モル比信号29と総NOX量信号19と修
正モル比信号29を乗算器30で乗算し必要NH3流量信号31
を演算する。
Then, the corrected molar ratio signal 29, the total NO X amount signal 19 and the corrected molar ratio signal 29 are multiplied by the multiplier 30 to obtain the required NH 3 flow rate signal 31.
Is calculated.

この必要NH3流量信号31とNH3流量検出器32で検出され
た実測NH3流量信号33を調節器34で比較し偏差を比例積
分動作させ、必要弁開度の制御信号35に変換し、NH3
管36のNH3流量調節弁37の開度を開,閉してアンモニア
の注入量が制御されていた。
This necessary NH 3 flow rate signal 31 and the actually measured NH 3 flow rate signal 33 detected by the NH 3 flow rate detector 32 are compared by the controller 34, the deviation is proportionally integrated, and the control signal 35 of the required valve opening is converted. The opening amount of the NH 3 flow control valve 37 of the NH 3 pipe 36 was opened and closed to control the injection amount of ammonia.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この様に従来のNH3注入量制御装置においてはNOX濃度
が高く、ガス温度が低い起動時において第3図の脱硝装
置8を運転すると、リークNH3濃度が異常に高くなる欠
点がある。
High NO X concentration in such the conventional NH 3 injection rate control unit, when operating the denitration equipment 8 in FIG. 3 at the time of startup gas temperature is low, there is a disadvantage that the leakage NH 3 concentration becomes abnormally high.

第5図は縦軸に脱硝率、横軸にガス温度を示した特性
曲線図であり、第5図に示す様にガス温度が低い起動時
には触媒の脱硝性能は低下する。
FIG. 5 is a characteristic curve diagram showing the denitration rate on the vertical axis and the gas temperature on the horizontal axis. As shown in FIG. 5, the denitration performance of the catalyst decreases at the time of starting when the gas temperature is low.

第6図は縦軸にNH3濃度,ガス温度,NOX濃度を示し、
横軸に時間を示した特性曲線図である。
Figure 6 shows the NH 3 concentration, gas temperature, and NO X concentration on the vertical axis.
It is a characteristic curve figure which showed time on the horizontal axis.

第6図において、曲線Aはガス温度曲線、曲線Bは脱
硝装置の入口NOX濃度曲線、曲線Cは脱硝装置の出口NOX
濃度曲線、曲線DはNH3注入量曲線、曲線Eは脱硝装置
の出口のNH3濃度曲線を示す。
In FIG. 6, a curve A is a gas temperature curve, a curve B is an inlet NO X concentration curve of the denitration apparatus, and a curve C is an outlet NO X of the denitration apparatus.
The concentration curve, curve D, shows the NH 3 injection amount curve, and curve E shows the NH 3 concentration curve at the outlet of the denitration device.

第6図に示す様に、ボイラ起動時はガス温度が低いた
めNH3を注入しても第5図に示す様に脱硝性能は低い値
いとなり、この様な条件下において第4図に示す従来の
NH3注入量制御装置でNH3を注入した場合、脱硝装置の出
口NOX濃度が出口NOX濃度曲線CのFで示す様に設定値迄
低下しないため注入NH3量はNH3注入量曲線DのGで示す
様に極端に増加し、脱硝装置の出口NH3濃度は出口NH3
度が曲線EのHで示す様に異常が高くなり、公害規制上
好ましくない。
As shown in Fig. 6, since the gas temperature is low at boiler startup, even if NH 3 is injected, the denitration performance becomes low as shown in Fig. 5, and under such conditions, as shown in Fig. 4. Traditional
When injected with NH 3 in NH 3 injection rate control device, injection amount of NH 3 is NH 3 injection rate curves for the outlet NO X concentration is not decreased until the set value as indicated by F of the outlet NO X concentration curve C of the denitration device extremely increased as shown by D of G, the outlet NH 3 concentrations of the denitration apparatus abnormality is high as shown outlet NH 3 concentration is H curve E, the pollution control undesirable.

従つて近年のようにDSS運転やWSS運転を頻繁に行な
い、ガス温度が低いボイラ起動時等におけるNH3注入流
量制御装置としては適していない。
Therefore, as in recent years, DSS operation and WSS operation are frequently performed, and it is not suitable as an NH 3 injection flow rate control device at the time of starting a boiler where the gas temperature is low.

本発明はかかる従来の欠点を解消しようとするもの
で、その目的とするところは、ボイラ等起動直後の排ガ
ス温度が低い場合でも脱硝装置出口のNH3濃度を抑制
し、起動・停止時のNOX濃度を抑制することができるア
ンモニアの注入量制御装置を提供するものである。
The present invention is intended to eliminate such conventional drawbacks, and its purpose is to suppress the NH 3 concentration at the outlet of the denitration device even when the exhaust gas temperature immediately after starting such as a boiler is low, and to suppress NO at the time of starting and stopping. An ammonia injection amount control device capable of suppressing the X concentration is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述の目的を達成するために、 脱硝触媒を有する反応器で処理すべきNOX量に応じて
求められる必要NH3注入量を演算する第1の演算手段
と、 出口NH3濃度に応じて求められる必要NH3注入量を演算
する第2の演算手段と、 排ガス温度が低い時には、前記第2の演算手段に基づ
いて必要NH3注入量を制御する切替手段とを備えたこと
を特徴とするものである。
In order to achieve the above-mentioned object, the present invention provides a first calculation means for calculating a necessary NH 3 injection amount determined according to the NO X amount to be treated in a reactor having a denitration catalyst, and an outlet NH 3 concentration. and second calculating means for calculating a required NH 3 injection rate to be determined in accordance with, that when the exhaust gas temperature is low, that includes a switching means for controlling the necessary NH 3 injection rate on the basis of the second calculation means It is a feature.

なお、前記第1の演算手段によって演算される必要NH
3注入量とは、具体的には例えば入口NOX濃度検出信号と
出口NOX濃度設定信号と出口NOX濃度検出信号とから求ま
るNH3モル比信号と、入口NOX濃度検出信号とから演算さ
れる必要NH3注入量である。
In addition, the required NH calculated by the first calculating means
3 The injection amount is specifically calculated from, for example, the NH 3 molar ratio signal obtained from the inlet NO X concentration detection signal, the outlet NO X concentration setting signal and the outlet NO X concentration detection signal, and the inlet NO X concentration detection signal. This is the required NH 3 injection amount.

また、前記第2の演算手段によって演算される必要NH
3注入量とは、具体的には例えば出口NH3濃度設定信号と
出口NH3濃度検出信号とから演算される必要NH3注入量で
ある。
Also, the required NH calculated by the second calculating means
The 3 injection amount is specifically a necessary NH 3 injection amount calculated from, for example, the outlet NH 3 concentration setting signal and the outlet NH 3 concentration detection signal.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に用いて説明する。第1
図は本発明の実施例に係るアンモニアの注入量制御装置
の制御系統図、第2図は第1図の制御系統図における特
性曲線図である。
Embodiments of the present invention will be described below with reference to the drawings. First
FIG. 1 is a control system diagram of an ammonia injection amount control device according to an embodiment of the present invention, and FIG. 2 is a characteristic curve diagram in the control system diagram of FIG.

第1図において、符号1から37は第4図のものと同一
のものを示す。
In FIG. 1, reference numerals 1 to 37 denote the same as those in FIG.

38は加算器28と乗算器30の間に設けた切替器、39は本
発明になる起動時演算装置、40は出口NH3濃度検出器、4
1は出口NH3濃度信号、42は出口NH3濃度設定器、43は出
口NH3濃度設定信号、44はモル比補正信号、45は調節
計、46は先行モル比信号、47は先行モル比演算器、48は
修正モル比信号、49はモル比加算器、50はモニターリレ
ーである。
38 is a switching device provided between the adder 28 and the multiplier 30, 39 is a startup arithmetic unit according to the present invention, 40 is an outlet NH 3 concentration detector, 4
1 is an outlet NH 3 concentration signal, 42 is an outlet NH 3 concentration setter, 43 is an outlet NH 3 concentration setting signal, 44 is a molar ratio correction signal, 45 is a controller, 46 is a preceding molar ratio signal, 47 is a preceding molar ratio An arithmetic unit, 48 is a modified molar ratio signal, 49 is a molar ratio adder, and 50 is a monitor relay.

この様な構成において、起動時演算装置39は、出口NH
3濃度検出器40、出口NH3濃度信号41、出口NH3設定器4
2、出口NH3濃度設定信号43、モル比補正信号44、調節計
45、先行モル比信号46、先行モル比演算器47、修正モル
比信号48およびモル比加算器49によつて構成され、この
起動時演算装置39はDSS運転やWSS運転時のように排ガス
温度が低い場合に切替器38の接点b,cを接続してNH3注入
量が制御され、出口NOX濃度設定信号21と実測出口NOX
度信号25の偏差が零になると切替器38の接点a,cが接続
され、接点b,cは切断されてNH3の注入量が制御される。
In such a configuration, the startup arithmetic unit 39 is
3 Concentration detector 40, outlet NH 3 concentration signal 41, outlet NH 3 setter 4
2, outlet NH 3 concentration setting signal 43, molar ratio correction signal 44, controller
45, the preceding molar ratio signal 46, the preceding molar ratio calculator 47, the modified molar ratio signal 48, and the molar ratio adder 49.The start-up calculating device 39 is the exhaust gas temperature as in the DSS operation and the WSS operation. When the output is low, the contacts b and c of the switch 38 are connected to control the NH 3 injection amount, and when the deviation between the outlet NO X concentration setting signal 21 and the measured outlet NO X concentration signal 25 becomes zero, the contact of the switch 38 The a and c are connected, the contacts b and c are disconnected, and the injection amount of NH 3 is controlled.

第1図において、ガス温度が低いボイラ等起動時には
出口NH3設定器42により設定された出口NH3濃度設定信号
43から先行モル比演算器47により先行モル比信号46に変
換する。一方出口NH3濃度検出器40により検出された出
口NH3濃度信号41と先の出口NH3濃度設定信号43から調節
計45によりモル比補正信号44に変換し、モル比加算器49
により先の先行モル比信号46を補正し修正モル比信号48
に変換する。この修正モル比信号48と総NOX量信号19と
を乗算器30で乗算して起動時の必要NH3流量信号31と
し、この必要NH3流量信号31と実測NH3流量信号33の偏差
を制御信号35としてNH3注入流量を制御する。
In Fig. 1, the outlet NH 3 concentration setting signal set by the outlet NH 3 setting device 42 at the time of starting a boiler with a low gas temperature.
43 is converted into a preceding molar ratio signal 46 by a preceding molar ratio calculator 47. On the other hand, the outlet NH 3 concentration signal 41 detected by the outlet NH 3 concentration detector 40 and the previous outlet NH 3 concentration setting signal 43 are converted into a mole ratio correction signal 44 by a controller 45, and a mole ratio adder 49
The preceding molar ratio signal 46 is corrected by
Convert to. The corrected mole ratio signal 48 and the total NO X amount signal 19 are multiplied by the multiplier 30 to obtain the required NH 3 flow rate signal 31 at the time of startup, and the deviation between the required NH 3 flow rate signal 31 and the actually measured NH 3 flow rate signal 33 is calculated. As the control signal 35, the NH 3 injection flow rate is controlled.

ガス温度の上昇に伴ない脱硝性能も上昇し脱硝装置の
出口NOX濃度も低下して来る。ここで、出口NOX濃度検出
器24で検出された実測出口NOX濃度信号25と出口NOX濃度
設定器20で設立された出口NOX濃度信号21の偏差が零の
場合モニターリレー50で切替器38の接点をb,cからa,cに
切替え第4図で説明した制御と同一にNH3注入量が制御
される。
Outlet concentration of NO X accompanied not denitration performance increased denitration apparatus to an increase in the gas temperature coming lowered. Here, if the deviation between the measured outlet NO X concentration signal 25 detected by the outlet NO X concentration detector 24 and the outlet NO X concentration signal 21 established by the outlet NO X concentration setting device 20 is zero, switching is performed by the monitor relay 50. The contact point of the device 38 is switched from b, c to a, c, and the NH 3 injection amount is controlled in the same manner as the control described in FIG.

この様に排ガス温度が低い起動時においては、第1図
の起動時演算装置39によつて必要NH3流量信号31が従来
のものよりも小さくなるので、第2図に示す如くNH3
入量曲線D−Iで示す如く増加量は少なくなり、ガス温
度曲線A、入口NOX濃度曲線B、出口NOX濃度曲線Cが従
来のものと同様に急増しても、出口NH3濃度曲線Eは平
坦になり、リークNH3の量も少なく二次公害も防止でき
る。
During startup such as exhaust gas temperature is low, the need NH 3 flow rate signal 31 Te startup operation device 39 Niyotsu of Figure 1 is smaller than the conventional, NH 3 injection rate as shown in Figure 2 amount increasing as indicated by the curve D-I is reduced, the gas temperature curve a, the inlet NO X concentration curve B, the outlet NO X concentration curve C is also increasing rapidly as with conventional, the outlet NH 3 concentration curve E It becomes flat, the amount of leaked NH 3 is small, and secondary pollution can be prevented.

本発明の実施例によれば、脱硝装置の出口NH3量を設
定し、実際の出口NH3量が設定値内に納まる様NH3量が注
入されるので、ガス温度が低く所定の脱硝性能が得られ
ないボイラ起動時であつても、出口リークNH3量が少な
くなる。
According to the embodiment of the present invention, the outlet NH 3 amount of the denitration device is set, and the NH 3 amount is injected so that the actual outlet NH 3 amount falls within the set value, so that the gas temperature is low and the predetermined denitration performance is achieved. Even when the boiler is not activated, the amount of NH 3 at the outlet leak decreases.

更に排ガス温度が上昇し所定の脱硝性能が得られ実際
の出口NOX値が設定されたNOX値と等しくなつた時点では
従来のアンモニア注入量の制御装置切替えて運転される
ので切替時のNOX変動もなくスムーズに運転できる。
Furthermore, when the exhaust gas temperature rises and a predetermined denitration performance is obtained, and the actual outlet NO X value becomes equal to the set NO X value, the conventional ammonia injection amount control device is switched and the operation is performed. X You can drive smoothly without fluctuation.

また、ガス温度が低いボイラ起動直後から安定した脱
硝装置の運転が可能となり、ボイラ等起動時のNOX量も
抑制することができる。
Further, the denitration device can be stably operated immediately after starting the boiler with a low gas temperature, and the NO X amount at the time of starting the boiler can be suppressed.

〔発明の効果〕〔The invention's effect〕

本発明によればDSS運転やWSS運転を行なつて起動・停
止直後の排ガス温度が低くても、リークNH3量が少なく
なり、起動・停止直後のNOX濃度を抑制することができ
る。
According to the present invention, even if the exhaust gas temperature immediately after starting / stopping by performing DSS operation or WSS operation is low, the amount of leak NH 3 is small, and the NO X concentration immediately after starting / stopping can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係るNH3の注入量制御装置の
制御系統図、第2図は第1図の特性曲線図、第3図は脱
硝装置が設置されたボイラの代表的な煙風道系統図、第
4図は従来のNH3の注入量制御装置の制御系統図、第5
図は脱硝性能の温度特性曲線図、第6図は第4図の特性
曲線図である。 12……入口NOX濃度検出器、13……入口NOX濃度信号、14
……空気流量検出器、15……空気流量信号、16……関数
発生器、17……排ガス流量信号、18……乗算器、19……
総NOX量信号、20……出口NOX濃度設定器、21……出口NO
X濃度設定信号、22……モル比演算器、23……先行モル
比信号、24……出口NOX濃度検出器、25……実測出口NOX
濃度信号、26……調節計、27……出口NOX偏差修正信
号、28……加算器、29……修正モル比信号、30……乗算
器、31……必要NH3流量信号、32……NH3流量検出器、33
……実測NH3流量信号、37……NH3流量調節弁、38……切
替器、39……起動時演算装置、40……出口NH3濃度検出
器、41……出口NH3濃度信号、42……出口NH3設定器、43
……出口NH3濃度設定信号、44……モル比補正信号、45
……調節計、46……先行モル比信号、47……先行モル比
演算器、48……修正モル比信号、49……モル比加算器。
FIG. 1 is a control system diagram of an NH 3 injection amount control device according to an embodiment of the present invention, FIG. 2 is a characteristic curve diagram of FIG. 1, and FIG. 3 is a typical boiler equipped with a denitration device. Smoke passage system diagram, Fig. 4 is the control system diagram of the conventional NH 3 injection amount control device, Fig. 5
FIG. 6 is a temperature characteristic curve diagram of denitration performance, and FIG. 6 is a characteristic curve diagram of FIG. 12 …… Inlet NO X concentration detector, 13 …… Inlet NO X concentration signal, 14
…… Air flow rate detector, 15 …… Air flow rate signal, 16 …… Function generator, 17 …… Exhaust gas flow rate signal, 18 …… Multiplier, 19 ……
Total NO X amount signal, 20 …… Exit NO X concentration setting device, 21 …… Exit NO
X concentration setting signal, 22 …… Molar ratio calculator, 23 …… Preceding molar ratio signal, 24 …… Out NO X concentration detector, 25 …… Measured outlet NO X
Concentration signal, 26 …… Controller, 27 …… Exit NO X deviation correction signal, 28 …… Adder, 29 …… Corrected mole ratio signal, 30 …… Multiplier, 31 …… Necessary NH 3 flow rate signal, 32… … NH 3 flow detector, 33
…… Measured NH 3 flow rate signal, 37 …… NH 3 flow rate control valve, 38 …… Switcher, 39 …… Start-up operation device, 40 …… Outlet NH 3 concentration detector, 41 …… Outlet NH 3 concentration signal, 42 …… Exit NH 3 setting device, 43
...... Outlet NH 3 concentration setting signal, 44 …… Molar ratio correction signal, 45
...... Controller, 46 …… Leading mole ratio signal, 47 …… Leading mole ratio calculator, 48 …… Modified mole ratio signal, 49 …… Mol ratio adder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/74 B01D 53/34 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01D 53/74 B01D 53/34 ZAB

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】脱硝触媒を有する反応器で処理すべきNOX
量に応じて求められる必要NH3注入量を演算する第1の
演算手段と、 出口NH3濃度に応じて求められる必要NH3注入量を演算す
る第2の演算手段と、 排ガス温度が低い時には、前記第2の演算手段に基づい
て必要NH3注入量を制御する切替手段とを備えたことを
特徴とするアンモニアの注入量制御装置。
1. NO X to be treated in a reactor having a denitration catalyst.
First calculating means for calculating a required NH 3 injection rate to be determined depending on the amount, the second calculating means for calculating a required NH 3 injection rate to be determined depending on the outlet NH 3 concentrations, when the exhaust gas temperature is low And a switching means for controlling the required NH 3 injection amount based on the second calculation means, and an ammonia injection amount control device.
JP61185326A 1986-08-08 1986-08-08 Ammonia injection amount control device Expired - Fee Related JPH0811171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185326A JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185326A JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Publications (2)

Publication Number Publication Date
JPS6342721A JPS6342721A (en) 1988-02-23
JPH0811171B2 true JPH0811171B2 (en) 1996-02-07

Family

ID=16168868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185326A Expired - Fee Related JPH0811171B2 (en) 1986-08-08 1986-08-08 Ammonia injection amount control device

Country Status (1)

Country Link
JP (1) JPH0811171B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198310A (en) * 1989-01-27 1990-08-06 Fuji Electric Co Ltd Object checking apparatus
JP5244550B2 (en) * 2008-11-14 2013-07-24 バブコック日立株式会社 Exhaust gas treatment equipment
WO2018025315A1 (en) * 2016-08-01 2018-02-08 株式会社エコ・サポート Evaluation testing apparatus and evaluation testing system
JP6761368B2 (en) * 2017-03-27 2020-09-23 株式会社東芝 Denitration control device and denitration control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153124A (en) * 1984-12-26 1986-07-11 Toyota Motor Corp Method for controlling injection of ammonia in noncatalytic denitrating process

Also Published As

Publication number Publication date
JPS6342721A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
US5078973A (en) Apparatus for treating flue gas
US5423272A (en) Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
JPS609201B2 (en) Exhaust heat recovery boiler equipment
JPS6157927B2 (en)
GB2082084A (en) Apparatus for recovering heat energy and removing nox in combined cycle plants
JPH0429923B2 (en)
US4811555A (en) Low NOX cogeneration process
EP0521949B1 (en) IMPROVED LOW NOx COGENERATION PROCESS AND SYSTEM
JPH0773661B2 (en) Injection type non-catalytic nitrogen oxide removal process control system
CN102537915A (en) Apparatus for reducing emissions and method of assembly
JPH0926105A (en) Boiler
JPH0811171B2 (en) Ammonia injection amount control device
EP0189917A2 (en) Apparatus for treating flue gas
CN210473607U (en) Full-load SCR denitration system of coal-fired boiler
JPH03286906A (en) Boiler
JP3831804B2 (en) Exhaust gas denitration equipment
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
KR20210131562A (en) A method of increasing the heating rate by controlling the oxidant concentration and thermal energy in the circulating fluidized bed reactor and circulating fluidized bed combustion system using the same
CN206593090U (en) Combustion system
Sakai et al. Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler
CN217952255U (en) Wide load deNOx systems of unit
Hunt et al. Integrating low‐NOx burners, overfire air, and selective non‐catalytic reduction on a utility coal‐fired boiler
JP2612284B2 (en) Combustion equipment
CN214914829U (en) Denitration system and boiler equipment
JPH0582246B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees