JP4455349B2 - NOx treatment method and apparatus for waste treatment facility - Google Patents

NOx treatment method and apparatus for waste treatment facility Download PDF

Info

Publication number
JP4455349B2
JP4455349B2 JP2005009136A JP2005009136A JP4455349B2 JP 4455349 B2 JP4455349 B2 JP 4455349B2 JP 2005009136 A JP2005009136 A JP 2005009136A JP 2005009136 A JP2005009136 A JP 2005009136A JP 4455349 B2 JP4455349 B2 JP 4455349B2
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
reducing agent
concentration
waste treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005009136A
Other languages
Japanese (ja)
Other versions
JP2006192406A (en
Inventor
覚士 古田
繁樹 山中
孝 下梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005009136A priority Critical patent/JP4455349B2/en
Publication of JP2006192406A publication Critical patent/JP2006192406A/en
Application granted granted Critical
Publication of JP4455349B2 publication Critical patent/JP4455349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、例えば産業廃棄物や都市ごみ等を処理する廃棄物処理設備で発生した排ガスに過剰空気を供給し、この排ガス中に含まれるNOxを還元分解する還元剤を該排ガス中に注入することによりNOxの処理を行う方法及び装置に関するものである。   The present invention supplies excess air to exhaust gas generated in a waste treatment facility that treats, for example, industrial waste and municipal waste, and injects a reducing agent that reduces and decomposes NOx contained in the exhaust gas into the exhaust gas. The present invention relates to a method and apparatus for performing NOx processing.

従来、廃棄物処理設備で発生した排ガス中に含まれるNOxの排出量を制御する場合、その廃棄物処理設備の下流側に設けられた脱硝触媒装置のさらに下流側で排ガス中のNOx濃度(出口NOx濃度)を測定し、この測定値に応じてアンモニアの注入量をフィードバック制御することが一般的である。   Conventionally, when controlling the emission amount of NOx contained in the exhaust gas generated in the waste treatment facility, the NOx concentration (exit) in the exhaust gas further downstream of the denitration catalyst device provided on the downstream side of the waste treatment facility. In general, the NOx concentration is measured, and the amount of ammonia injected is feedback-controlled according to the measured value.

ところが、このフィードバック制御に起因する遅れがあり、しかも通常NOx濃度の測定には、排ガス中のNOxをサンプリングして分析することが必要であるので、その分析時間等に起因する遅れも生じて、出口NOx濃度を一定値以下に抑えることが困難となることがあった。   However, there is a delay due to this feedback control, and the NOx concentration is usually measured by sampling and analyzing NOx in the exhaust gas. It may be difficult to keep the outlet NOx concentration below a certain value.

そこで、例えば特許文献1では、脱硝触媒装置の出口NOx濃度の測定値と、予め設定した出口NOx濃度の設定値との偏差に基づいてアンモニアの注入量を算出し、この算出したアンモニアの注入量の範囲で、かつ、予め設定したアンモニアの注入量の上限値と下限値の範囲で、瞬時にパルス的にアンモニアの注入量を変化させて脱硝触媒装置の入口にアンモニアを注入し、これにより出口NOx濃度を一定に維持するように制御している。   Therefore, for example, in Patent Document 1, an ammonia injection amount is calculated based on a deviation between a measured value of the outlet NOx concentration of the denitration catalyst device and a preset value of the outlet NOx concentration, and the calculated ammonia injection amount. In the range of the upper limit and lower limit of the ammonia injection amount set in advance, the ammonia injection amount is instantaneously changed in a pulsed manner to inject ammonia into the inlet of the denitration catalyst device, thereby Control is performed so as to maintain the NOx concentration constant.

また特許文献2では、脱硝触媒装置の入口NOx濃度が、その脱硝触媒装置を通過する排ガス量に比例するものとみなして、この排ガス量に基づいて求めたNOxの還元分解に必要なアンモニアを吹き込んで煙突出口でのNOx濃度を制御している。
特開2002−028449号公報 特開2003−164725号公報
Further, in Patent Document 2, it is assumed that the NOx concentration at the inlet of the denitration catalyst device is proportional to the amount of exhaust gas passing through the denitration catalyst device, and ammonia necessary for the reductive decomposition of NOx determined based on this exhaust gas amount is blown in. The NOx concentration at the smoke outlet is controlled.
JP 2002-028449 A JP 2003-164725 A

しかしながら、特許文献1の技術では、脱硝触媒装置の出口NOx濃度だけを使用しているので、その分析時間等に起因する遅れは依然としてある。また、特許文献2の技術では、脱硝触媒装置の入口NOx濃度が排ガス流量に比例するものとみなしているので、この比例関係の成立する特定の形式の廃棄物処理設備にしか適用できず、他形式の廃棄物処理設備に適用すれば脱硝触媒装置の出口NOx濃度が規定値を超えることがあり、改善の必要があった。その理由は以下のように考えられる。すなわちNOxには、燃料中の窒素原子が燃焼して生成するフューエルNOxと、空気中の窒素が高温において反応して生成するサーマルNOxとがあるが、廃棄物処理設備のうち、焼却炉等では、発生する排ガスに含まれるNOxはフューエルNOxであり、その濃度は100〜120ppm程度と安定している。これに対し、高温二次燃焼を行うガス化溶融炉等では、排ガス温度が1400℃にも達し、サーマルNOxが発生しているため、その濃度は100〜400ppmの範囲で変動している。そして、上記特許文献1,2の技術は、かかるサーマルNOxの生成反応に直接起因する因子について考慮していないために、上述したように脱硝触媒装置の出口NOx濃度が規定値を超えることがあるものと考えられる。   However, since only the outlet NOx concentration of the denitration catalyst device is used in the technology of Patent Document 1, there is still a delay due to the analysis time and the like. Further, since the technique of Patent Document 2 assumes that the NOx concentration at the inlet of the denitration catalyst device is proportional to the exhaust gas flow rate, it can be applied only to a specific type of waste treatment facility in which this proportional relationship is established. When applied to a type of waste treatment facility, the NOx concentration at the outlet of the denitration catalyst device may exceed the specified value, and there is a need for improvement. The reason is considered as follows. In other words, NOx includes fuel NOx produced by combustion of nitrogen atoms in fuel and thermal NOx produced by reaction of nitrogen in air at a high temperature. NOx contained in the generated exhaust gas is fuel NOx, and its concentration is stable at about 100 to 120 ppm. On the other hand, in a gasification melting furnace or the like that performs high-temperature secondary combustion, the exhaust gas temperature reaches 1400 ° C. and thermal NOx is generated, so the concentration varies in the range of 100 to 400 ppm. And since the technique of the said patent documents 1 and 2 does not consider the factor directly resulting from the production | generation reaction of such thermal NOx, as above-mentioned, the exit NOx density | concentration of a denitration catalyst apparatus may exceed a regulation value. It is considered a thing.

本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、サーマルNOxの発生をNOx以外の測定値から予測することにより、煙突出口でのNOx濃度を一定以下に維持できる廃棄物処理設備のNOx処理方法及び装置を提供することである。   The present invention has been made in view of the above circumstances, and its object is to predict the generation of thermal NOx from measured values other than NOx, thereby maintaining the NOx concentration at the smoke outlet at a certain level or less. It is to provide a NOx treatment method and apparatus for a waste treatment facility.

請求項1記載の発明は、廃棄物処理設備で発生した排ガスに過剰空気を供給し、この排ガス中に含まれるNOxを還元分解する還元剤を該排ガス中に注入し、この還元剤が注入される領域の下流側のNOx濃度に基づいて上記還元剤の注入量をフィードバック制御することによりNOxの処理を行う方法であって、上記過剰空気が供給される領域内の酸素濃度及び温度をそれぞれ酸素濃度計および温度計により計測し、これらの酸素濃度計および温度計による計測値に基づいて上記排ガス中に発生するサーマルNOxの濃度を予測し、少なくともこの予測値に基づいて上記還元剤の注入量をさらにフィードフォワード制御することを特徴とするものである。 According to the first aspect of the present invention, excess air is supplied to the exhaust gas generated in the waste treatment facility, a reducing agent that reduces and decomposes NOx contained in the exhaust gas is injected into the exhaust gas, and the reducing agent is injected. NOx treatment by feedback controlling the injection amount of the reducing agent based on the NOx concentration downstream of the region where the excess air is supplied, and the oxygen concentration and temperature in the region where the excess air is supplied respectively The concentration of thermal NOx generated in the exhaust gas is predicted based on the measured values of the oxygen concentration meter and the thermometer, and the amount of the reducing agent injected based on at least the predicted value. Is further feed-forward controlled.

請求項2記載の発明のように、上記還元剤が注入される領域の下流側で排ガスの流量を計測し、この計測値とサーマルNOxの濃度の予測値とに基づいて上記還元剤の注入量をフィードフォワード制御することが好ましい。   As in the second aspect of the invention, the flow rate of the exhaust gas is measured on the downstream side of the region where the reducing agent is injected, and the injection amount of the reducing agent is based on the measured value and the predicted value of the concentration of thermal NOx. Is preferably feedforward controlled.

請求項3記載の発明のように、上記還元剤が注入される領域の下流側でNOxの濃度を計測し、この計測値に基づいて上記フィードフォワード制御される還元剤の注入量を補正することが好ましい。   According to a third aspect of the invention, the concentration of NOx is measured downstream of the region where the reducing agent is injected, and the injection amount of the reducing agent subjected to the feedforward control is corrected based on the measured value. Is preferred.

請求項4記載の発明のように、上記排ガス中に発生するサーマルNOxを、還元剤としてのアンモニアを用いて触媒の存在下で還元分解することが好ましい。   As in the fourth aspect of the invention, it is preferable that thermal NOx generated in the exhaust gas is reductively decomposed in the presence of a catalyst using ammonia as a reducing agent.

或いは、請求項5記載の発明のように、上記排ガス中に発生するサーマルNOxを、還元剤としての尿素を用いて還元分解することが好ましい。   Alternatively, as in the invention described in claim 5, it is preferable that thermal NOx generated in the exhaust gas is reductively decomposed using urea as a reducing agent.

請求項6記載の発明は、廃棄物処理設備と、この廃棄物処理設備で発生した排ガスに過剰空気を供給する過剰空気供給手段と、この排ガス中に含まれるNOxを還元分解する還元剤を該排ガス中に注入する脱硝手段と、この脱硝手段の下流側のNOx濃度に基づいて上記還元剤の注入量をフィードバック制御することによりNOxの排出量を制御する第1制御手段とを備えた廃棄物処理設備のNOx処理装置であって、上記過剰空気が供給される領域内の酸素濃度及び温度をそれぞれ計測する酸素濃度計および温度計と、これらの酸素濃度計および温度計による計測値に基づいて上記排ガス中に発生するサーマルNOxの濃度を予測する予測手段と、少なくともこの予測値に基づいて上記還元剤の注入量をさらにフィードフォワード制御する第2制御手段とを備えたことを特徴とするものである。 The invention described in claim 6 includes a waste treatment facility, excess air supply means for supplying excess air to the exhaust gas generated in the waste treatment facility, and a reducing agent for reducing and decomposing NOx contained in the exhaust gas. Waste comprising: a denitration means for injecting into the exhaust gas; and a first control means for controlling the NOx emission amount by feedback controlling the injection amount of the reducing agent based on the NOx concentration downstream of the denitration means. A NOx treatment device for a treatment facility, which is based on an oxygen concentration meter and a thermometer that measure the oxygen concentration and temperature in the region to which the excess air is supplied, respectively , and the measured values by these oxygen concentration meters and thermometers Predicting means for predicting the concentration of thermal NOx generated in the exhaust gas, and feedforward control of the reducing agent injection amount based on at least the predicted value It is characterized in that a second controller.

請求項1,6記載の発明によれば、廃棄物処理設備で発生した排ガスに過剰空気が供給され、この排ガス中に含まれるNOxを還元分解する還元剤が該排ガス中に注入され、この還元剤が注入される領域の下流側のNOx濃度に基づいて上記還元剤の注入量がフィードバック制御される際に、上記過剰空気が供給される領域内の酸素濃度及び温度がそれぞれ酸素濃度計および温度計により計測され、これらの酸素濃度計および温度計による計測値に基づいて上記排ガス中に発生するサーマルNOxの濃度が予測され、少なくともこの予測値に基づいて上記排ガス中への還元剤の注入量がさらにフィードフォワード制御されるので、排ガス中において、もともと含まれているフューエルNOxに加えて、サーマルNOxが大量に発生したとしても、そのサーマルNOxの発生が間接的に予測されることとなる。そして、排ガス中のNOx全体(フューエルNOx+サーマルNOx)に見合った適正量の還元剤の注入により、そのNOx全体が従来例に比べてより迅速かつ確実に還元分解されるようになる。その結果、廃棄物処理設備の形式のいかんにかかわらず、煙突出口でのNOx濃度が一定以下に維持される。 According to the first and sixth aspects of the invention, excess air is supplied to the exhaust gas generated in the waste treatment facility, and a reducing agent that reduces and decomposes NOx contained in the exhaust gas is injected into the exhaust gas. When the injection amount of the reducing agent is feedback controlled based on the NOx concentration on the downstream side of the region where the agent is injected, the oxygen concentration and temperature in the region where the excess air is supplied are the oxygen concentration meter and the temperature, respectively. measured by the meter, it is expected concentration of thermal NOx generated in the exhaust gas based on the measurement values of these oximeter and a thermometer, at least the injection amount of the reducing agent into the exhaust gas on the basis of the predicted value Is further feedforward controlled, so that in addition to the fuel NOx originally contained in the exhaust gas, a large amount of thermal NOx is generated. , So that the occurrence of the thermal NOx is indirectly predicted. Then, by introducing an appropriate amount of reducing agent commensurate with the entire NOx in the exhaust gas (fuel NOx + thermal NOx), the entire NOx is reduced and decomposed more quickly and reliably than in the conventional example. As a result, the NOx concentration at the smoke outlet is maintained below a certain level regardless of the type of waste treatment facility.

ところで、排ガス中への還元剤の注入量は、厳密にいえば、その排ガス中のNOx濃度と排ガスの流量との積算値に応じて演算される。ここで、燃焼対象の量や種類等が一定の場合には排ガスの流量は設定値(一定)であってもよいが、処理対象となる産業廃棄物や都市ごみ等の量や種類等が大きく変動する場合には、その排ガスの流量が設定値から大きく外れることがある。そこで、請求項2記載の発明のように、上記還元剤が注入される領域の下流側で排ガスの流量が計測され、この計測値と上記サーマルNOxの濃度の予測値とに基づいて上記還元剤の注入量がフィードフォワード制御されることとすれば、処理対象の量や種類等の変動にかかわらず、排ガス中のNOx全体が迅速かつ確実に還元分解され、煙突出口でのNOx濃度が一定以下に維持される。   By the way, strictly speaking, the amount of the reducing agent injected into the exhaust gas is calculated according to the integrated value of the NOx concentration in the exhaust gas and the flow rate of the exhaust gas. Here, when the amount and type of combustion target are constant, the flow rate of exhaust gas may be a set value (constant), but the amount and type of industrial waste and municipal waste to be treated are large. When it fluctuates, the flow rate of the exhaust gas may greatly deviate from the set value. Therefore, as in the second aspect of the invention, the flow rate of the exhaust gas is measured downstream of the region where the reducing agent is injected, and the reducing agent is based on the measured value and the predicted value of the thermal NOx concentration. If the injection amount of feed is controlled by feedforward control, the entire NOx in the exhaust gas is rapidly and reliably reduced and decomposed regardless of fluctuations in the amount and type of the object to be processed, and the NOx concentration at the smoke outlet is below a certain level. Maintained.

また、サーマルNOxの濃度の予測値は実測値とずれることがある。そこで、請求項3記載の発明によれば、上記還元剤が注入される領域の下流側でNOxの濃度が計測され、この計測値に基づいて上記フィードフォワード制御される還元剤の注入量が補正されるので、実測値とのずれが少なくなり、排ガス中のNOx全体が迅速かつ確実に還元分解され、煙突出口でのNOx濃度が一定以下に維持される。   Further, the predicted value of the thermal NOx concentration may deviate from the actually measured value. Therefore, according to the third aspect of the present invention, the concentration of NOx is measured downstream of the region where the reducing agent is injected, and the injection amount of the reducing agent that is feedforward controlled is corrected based on the measured value. Therefore, the deviation from the actual measurement value is reduced, the entire NOx in the exhaust gas is reduced and decomposed quickly and reliably, and the NOx concentration at the smoke outlet is maintained below a certain level.

請求項4記載の発明によれば、上記排ガス中に発生するサーマルNOxが、還元剤としてのアンモニアを用いて触媒の存在下で還元分解されるので、排ガス中のNOx全体が確実に還元分解される。   According to the invention described in claim 4, since the thermal NOx generated in the exhaust gas is reduced and decomposed in the presence of a catalyst using ammonia as a reducing agent, the entire NOx in the exhaust gas is reliably reduced and decomposed. The

或いは、請求項5記載の発明によれば、上記排ガス中に発生するサーマルNOxが、還元剤としての尿素を用いて還元分解されるので、無触媒で排ガス中のNOx全体が確実に還元分解される。   Alternatively, since the thermal NOx generated in the exhaust gas is reduced and decomposed using urea as a reducing agent, the entire NOx in the exhaust gas is reliably reduced and decomposed without a catalyst. The

図1は、本発明の廃棄物処理設備の一形式であるガス化溶融炉の全体構成を示したものであり、図2はそのNOx処理方法を適用しうる装置構成を示している。なお、図1及び図2中の白抜き矢印の向く方向に排ガスが流れるようになっている。   FIG. 1 shows an overall configuration of a gasification melting furnace which is one type of waste treatment facility of the present invention, and FIG. 2 shows an apparatus configuration to which the NOx treatment method can be applied. In addition, exhaust gas flows in the direction of the white arrow in FIGS. 1 and 2.

図1及び図2に示すように、この廃棄物処理設備は、例えばガス化炉1と、溶融炉2と、廃熱ボイラ3と、排ガス減温塔4と、集じん器5と、脱硝触媒装置6と、煙突7とからなっている。このガス炉1と溶融炉2とで廃棄物処理設備を構成している。   As shown in FIGS. 1 and 2, this waste treatment facility includes, for example, a gasification furnace 1, a melting furnace 2, a waste heat boiler 3, an exhaust gas temperature reducing tower 4, a dust collector 5, and a denitration catalyst. It consists of a device 6 and a chimney 7. The gas furnace 1 and the melting furnace 2 constitute a waste treatment facility.

処理対象である産業廃棄物や都市ごみ等のゴミは、まずガス化炉1に投入される。このガス化炉1では、炉内温度を400〜600℃に維持した低温熱分解ガス化が行われる。   Garbage such as industrial waste and municipal waste to be treated is first put into the gasifier 1. In the gasification furnace 1, low temperature pyrolysis gasification is performed with the furnace temperature maintained at 400 to 600 ° C.

ガス化炉1で発生した灰分を含む熱分解ガスは溶融炉2に導かれ、所定の空気比の条件下で燃焼される。この溶融炉2では約1300℃の高温燃焼が行われ、灰分を溶融してスラグとして分離して溶融炉下部2aから排出するとともにダイオキシン等のガス中の有害物質が分解される。また溶融炉2には、一次空気が供給されるとともに、二次空気(過剰空気)が供給される。溶融炉2の二次空気が供給される領域が二次燃焼室(その二次空気供給ノズル等が過剰空気供給手段に相当する。)2cを形成している。二次燃焼室2c内の酸素濃度は酸素濃度計O1により計測され、同二次燃焼室2c内の温度は温度計T1により計測される。   The pyrolysis gas containing ash generated in the gasification furnace 1 is guided to the melting furnace 2 and burned under the condition of a predetermined air ratio. In this melting furnace 2, high-temperature combustion at about 1300 ° C. is performed, ash is melted and separated as slag and discharged from the lower part 2 a of the melting furnace, and harmful substances in gas such as dioxin are decomposed. The melting furnace 2 is supplied with primary air and secondary air (excess air). A region of the melting furnace 2 to which secondary air is supplied forms a secondary combustion chamber (the secondary air supply nozzle or the like corresponds to excess air supply means) 2c. The oxygen concentration in the secondary combustion chamber 2c is measured by an oxygen concentration meter O1, and the temperature in the secondary combustion chamber 2c is measured by a thermometer T1.

なお、酸素濃度計O1としては、例えばジルコニア式の酸素濃度計を用いる。このジルコニア式の酸素濃度計O1は、主成分がジルコニア(酸化ジルコニウム)であるプローブを二次燃焼室2cに直接挿入することにより、そのプローブの内外における酸素濃度差に応じて発生する起電力を検出するものであり、応答性が非常によいことが知られている。温度計T1としては、例えば熱線式の温度計を用いる。これらは計測手段に相当するが、二次燃焼室2cに燃焼状態の監視用としてもともと備わっているものを兼用できる。   As the oxygen concentration meter O1, for example, a zirconia oxygen concentration meter is used. This zirconia type oxygen concentration meter O1 inserts a probe whose main component is zirconia (zirconium oxide) directly into the secondary combustion chamber 2c, thereby generating an electromotive force generated in accordance with the difference in oxygen concentration inside and outside the probe. It is known that the response is very good. For example, a hot-wire thermometer is used as the thermometer T1. Although these correspond to measuring means, the one originally provided for monitoring the combustion state in the secondary combustion chamber 2c can also be used.

この二次燃焼室2cで二次燃焼した排ガスは、廃熱ボイラ3で熱回収された後、排ガス減温塔4で温度が下げられ、集じん器5で除塵される。浄化された排ガスは、アンモニア供給装置60から制御弁6aを介してアンモニア(還元剤の一種である。)が供給され、脱硝触媒装置(脱硝手段に相当する。)6で例えば選択接触還元法を用いて脱硝された後、図示しない誘引送風機を経て、煙突7から排出される。   The exhaust gas secondary-combusted in the secondary combustion chamber 2 c is recovered by the waste heat boiler 3, then the temperature is lowered by the exhaust gas temperature-decreasing tower 4, and dust is removed by the dust collector 5. The purified exhaust gas is supplied with ammonia (a kind of reducing agent) from the ammonia supply device 60 through the control valve 6a, and the denitration catalyst device (corresponding to denitration means) 6 performs, for example, a selective catalytic reduction method. After being denitrated using, it is discharged from the chimney 7 through an induction fan (not shown).

排ガスの流量は、脱硝触媒装置6の下流側の流量計F1により計測され、その排ガス中のNOxの濃度は、NOx濃度計N1により計測される。また、煙突7から排出される排ガス中の酸素濃度は、酸素濃度計O2により計測される。流量計F1としては、例えばピトー管を用いる。NOx濃度計N1及び酸素濃度計O2としては、例えば赤外線ガス分析計を用いる。この赤外線ガス分析計は、サンプリングガスと参照ガスとの赤外線吸収差を電気信号に変換するものであるが、従来例で述べたような分析遅れがあり応答が遅い。8は演算器(予測手段に相当する)、9は制御器(第1,2制御手段に相当する。)、10は設定器であり、これらと上記酸素濃度計O1,O2、温度計T1、流量計F1,F2(後述)及びNOx濃度計N1とで本発明のNOx処理装置が構成される。   The flow rate of the exhaust gas is measured by the flow meter F1 on the downstream side of the denitration catalyst device 6, and the concentration of NOx in the exhaust gas is measured by the NOx concentration meter N1. Further, the oxygen concentration in the exhaust gas discharged from the chimney 7 is measured by an oxygen concentration meter O2. As the flow meter F1, for example, a Pitot tube is used. For example, an infrared gas analyzer is used as the NOx concentration meter N1 and the oxygen concentration meter O2. This infrared gas analyzer converts the infrared absorption difference between the sampling gas and the reference gas into an electrical signal, but there is an analysis delay as described in the conventional example and the response is slow. 8 is an arithmetic unit (corresponding to the predicting means), 9 is a controller (corresponding to the first and second control means), 10 is a setter, these and the oxygen concentration meters O1 and O2, the thermometer T1, The flow meters F1 and F2 (described later) and the NOx concentration meter N1 constitute the NOx treatment device of the present invention.

アンモニアの流量は、制御弁6aの上流側の流量計F2により計測される。流量計F2としては、例えば渦流量計を用いる。   The flow rate of ammonia is measured by the flow meter F2 upstream of the control valve 6a. For example, a vortex flow meter is used as the flow meter F2.

以下、本発明の特徴をなす演算器8及び制御器9について詳述する。   Hereinafter, the computing unit 8 and the controller 9 that characterize the present invention will be described in detail.

制御器9は、NOx濃度計N1で計測された脱硝触媒装置6出口のNOx濃度に基づいて、脱硝触媒装置6入口でのアンモニアの注入量をフィードバック制御する。具体的には、設定器10により予め設定しておいた設定値と、出口NOx濃度との偏差に応じて、制御弁6aの開度制御を行う(第1の制御手段としての機能である)。なお、設定器10は、上記設定値の他、上下限を規制する規制値をも設定することができる。   The controller 9 feedback-controls the ammonia injection amount at the inlet of the denitration catalyst device 6 based on the NOx concentration at the outlet of the denitration catalyst device 6 measured by the NOx concentration meter N1. Specifically, the opening degree of the control valve 6a is controlled according to the deviation between the set value preset by the setting device 10 and the outlet NOx concentration (this is a function as a first control means). . The setter 10 can also set a restriction value that restricts the upper and lower limits in addition to the set value.

演算器8は、酸素濃度計O1で計測された二次燃焼室2c内の酸素濃度と、温度計T1で計測された同二次燃焼室2c内の温度とに基づいて、その二次燃焼室2c内で二次空気が供給された排ガス中に発生するサーマルNOxの濃度を予測する。ここでは、応答の遅いNOx濃度計を用いて直接サーマルNOx濃度を計測するのではなく、応答の速い酸素濃度計O1と温度計T1とを用いてサーマルNOx濃度の予測を行うことにより、サーマルNOxの発生を間接的に予測している。サーマルNOx濃度の予測の基本原理は以下の通りである。すなわち、
N2+O2⇔2NO
の反応平衡式において、平衡定数をKpとすると、標準自由エネルギーの変化ΔG°は次のように表すことができる。ただし、Rは気体定数、Tは絶対温度である。
The computing unit 8 determines the secondary combustion chamber based on the oxygen concentration in the secondary combustion chamber 2c measured by the oxygen concentration meter O1 and the temperature in the secondary combustion chamber 2c measured by the thermometer T1. The concentration of thermal NOx generated in the exhaust gas supplied with secondary air in 2c is predicted. Here, instead of directly measuring the thermal NOx concentration using a slow-response NOx concentration meter, the thermal NOx concentration is predicted by using the quick-response oxygen concentration meter O1 and the thermometer T1 to thereby detect the thermal NOx concentration. Is indirectly estimated. The basic principle of predicting the thermal NOx concentration is as follows. That is,
N2 + O2⇔2NO
In the reaction equilibrium formula, where the equilibrium constant is Kp, the change in standard free energy ΔG ° can be expressed as follows. However, R is a gas constant and T is an absolute temperature.

−ΔG°=RT・ln(Kp)・・・(1)
また、ファントホッフ方程式より、標準エンタルピーの変化ΔH°を一定として上記(1)式を積分すると、
ln(Kp)=−ΔH°/(RT)+const・・・(2)
上記(1)(2)式より
cont=−Δ(G°−H°)/(RT)・・・(3)
上記(2)(3)式中の標準エンタルピーの変化ΔH°、標準自由エネルギーの変化ΔG°に既知の熱力学的データを代入することにより、絶対温度Tにおける平衡定数Kpが算出できる。
-ΔG ° = RT · ln (Kp) (1)
Further, from the Van Hof equation, when the above formula (1) is integrated with the standard enthalpy change ΔH ° constant,
ln (Kp) = − ΔH ° / (RT) + const (2)
From the above formulas (1) and (2): cont = −Δ (G ° −H °) / (RT) (3)
By substituting known thermodynamic data into the standard enthalpy change ΔH ° and the standard free energy change ΔG ° in the equations (2) and (3), the equilibrium constant Kp at the absolute temperature T can be calculated.

一方、大気圧条件下で平衡定数Kpは、窒素(N2),酸素(O2),酸化窒素(NO)の各分圧PN2、PO2、PNOで以下のように表すことができる。 On the other hand, under atmospheric pressure conditions, the equilibrium constant Kp can be expressed as follows by partial pressures P N2 , P O2 , and P NO of nitrogen (N2), oxygen (O2), and nitric oxide (NO).

Kp=PN2・PO2/PNO 2
よって、
NO=(PN2・PO2/Kp)1/2・・・(4)
実際の排ガス中には、O2,N2以外の成分もあるが、PO2=測定値(%)/100、PN2=1−PO2で近似して上記(4)式に代入することにより、PNOを算出することができる。
Kp = P N2 · P O2 / P NO 2
Therefore,
P NO = (P N2 · P O2 / Kp) 1/2 (4)
In actual exhaust gas, there are components other than O2 and N2, but by approximating P O2 = measured value (%) / 100 and P N2 = 1-P O2 and substituting it into the above equation (4), PNO can be calculated.

この算出値は、触媒入口NOxの予測値を、ここでは第2の制御手段として機能する制御器9に対するフィードフォワード制御信号として与えるものであり、上記平衡状態からのずれや近似等に起因する誤差を含むものであるが、多少の絶対値の誤差は同制御器9における上記フィードバック制御の中で補正することができる。   This calculated value gives the predicted value of the catalyst inlet NOx as a feed-forward control signal to the controller 9 functioning as the second control means here, and an error caused by deviation from the equilibrium state, approximation, or the like. However, some errors in absolute value can be corrected in the feedback control in the controller 9.

すなわち、実際のフィードフォワード制御における触媒入口NOx濃度XNO(ppm)としては、酸素濃度計O1によるO2濃度計測値を用いた次式が使用される。 That is, as the catalyst inlet NOx concentration X NO (ppm) in the actual feedforward control, the following equation using the O 2 concentration measured value by the oxygen concentration meter O1 is used.

NO(ppm)=K・PNO×106
=K・[1−O2濃度計測値]・[O2濃度計測値]/Kp×1010
ここで、Kは補正係数であり、実測値との比較により設定される。
X NO (ppm) = K · P NO × 10 6
= K · [1-O 2 concentration measurement value] · [O 2 concentration measurement value] / Kp × 10 10
Here, K is a correction coefficient, and is set by comparison with an actual measurement value.

触媒入口NOx量は、触媒入口NOx濃度XNOと排ガス流量Qとの積で算出でき、この算出値に応じた必要なアンモニア量が注入される。 The catalyst inlet NOx amount can be calculated by the product of the catalyst inlet NOx concentration XNO and the exhaust gas flow rate Q, and a necessary ammonia amount corresponding to this calculated value is injected.

図3はテスト結果を示すもので、同図中の横軸は時間経過(時分)、左縦軸は脱硝触媒装置6の出口でのNOx濃度のピーク(瞬時値;ppm)及び同トレンド(1時間での平均値;ppm)、右縦軸はアンモニア注入量(m3/h)及びアンモニア必要量(m3/h)、同図中でのそれらの変化を記号a〜dで示している。なお、出口NOx濃度の設定値は50ppm、その規制値は60ppmとしている。 FIG. 3 shows the test results. In the figure, the horizontal axis represents time (hours and minutes), and the left vertical axis represents the NOx concentration peak (instantaneous value; ppm) at the outlet of the denitration catalyst device 6 and the trend ( Average value in 1 hour; ppm), right vertical axis indicates ammonia injection amount (m 3 / h) and required ammonia amount (m 3 / h), and their changes in the figure are indicated by symbols a to d. Yes. The set value of the outlet NOx concentration is 50 ppm, and the regulation value is 60 ppm.

まず、溶融炉2の二次燃焼室2c内の酸素濃度計O1及び温度計T1によって実測した酸素濃度及び温度からNOxの平衡濃度を計算し、脱硝触媒装置6の出口のNOx濃度計N1によって実測したNOx濃度のトレンドb及びピークaと比較した。平衡濃度は、図示はしていないが、100〜300ppmの範囲で変化し、ピークの形状も出口NOx濃度の実測値aと一致していることから、この平衡濃度を用いてフィードフォワード制御できることがわかった。   First, the NOx equilibrium concentration is calculated from the oxygen concentration and temperature measured by the oxygen concentration meter O1 and the thermometer T1 in the secondary combustion chamber 2c of the melting furnace 2, and measured by the NOx concentration meter N1 at the outlet of the denitration catalyst device 6. The NOx concentration was compared with the trend b and peak a. Although the equilibrium concentration is not shown in the figure, it changes in the range of 100 to 300 ppm, and the peak shape also matches the measured value a of the outlet NOx concentration. Therefore, feedforward control can be performed using this equilibrium concentration. all right.

また図3において、アンモニア必要量dと、アンモニア注入量cのそれぞれのピークは、上記出口NOx濃度のピークaとよく一致し、アンモニア量の変化を全自動で制御できることがわかった。   Further, in FIG. 3, the peaks of the required ammonia amount d and the ammonia injection amount c are in good agreement with the peak a of the outlet NOx concentration, and it has been found that the change in the ammonia amount can be controlled fully automatically.

以上説明したように、本実施形態によれば、溶融炉2で発生した排ガスは、二次燃焼室2c内で二次空気が供給され、二次燃焼室2cの下流側に設けられた脱硝触媒装置6入口で、この排ガス中に含まれるNOxを還元分解するアンモニアが注入され、脱硝触媒装置6出口のNOx濃度に基づいて上記アンモニアの注入量がフィードバック制御される。その際、二次燃焼室2c内の酸素濃度及び温度が計測され、この計測値に基づいて上記排ガス中に発生するサーマルNOxの濃度が予測され、少なくともこの予測値に基づいてアンモニアの注入量がさらにフィードフォワード制御されるので、排ガス中において、もともと含まれているフューエルNOxに加えて、サーマルNOxが大量に発生したとしても、そのサーマルNOxの発生を間接的に予測することができる。そして、排ガス中のNOx全体(フューエルNOx+サーマルNOx)に見合った適正量の還元剤の注入により、そのNOx全体が従来例に比べてより迅速かつ確実に還元分解されるようになる。その結果、廃棄物処理設備の形式のいかんにかかわらず、煙突出口でのNOx濃度が一定以下に維持される。   As described above, according to the present embodiment, the exhaust gas generated in the melting furnace 2 is supplied with secondary air in the secondary combustion chamber 2c, and the denitration catalyst provided on the downstream side of the secondary combustion chamber 2c. Ammonia for reducing and decomposing NOx contained in the exhaust gas is injected at the inlet of the apparatus 6, and the ammonia injection amount is feedback-controlled based on the NOx concentration at the outlet of the denitration catalyst apparatus 6. At that time, the oxygen concentration and temperature in the secondary combustion chamber 2c are measured, the concentration of thermal NOx generated in the exhaust gas is predicted based on the measured value, and the amount of ammonia injected is determined based on at least the predicted value. Furthermore, since feed-forward control is performed, even if a large amount of thermal NOx is generated in the exhaust gas in addition to the fuel NOx originally contained, the generation of the thermal NOx can be indirectly estimated. Then, by introducing an appropriate amount of reducing agent commensurate with the entire NOx in the exhaust gas (fuel NOx + thermal NOx), the entire NOx is reduced and decomposed more quickly and reliably than in the conventional example. As a result, the NOx concentration at the smoke outlet is maintained below a certain level regardless of the type of waste treatment facility.

なお、上記実施形態では、脱硝触媒装置6入口のNOx濃度の計算値(予測値)の補正係数Kを実測値との比較により設定しているが、出口NOx濃度を計測して、この計測値に基づいて上記フィードフォワード制御されるアンモニアの注入量を補正することとしてもよい。その場合には、実測値とのずれがさらに少なくなり、排ガス中のNOxがより迅速にかつより確実に還元分解されるようになる。   In the above embodiment, the correction coefficient K of the calculated value (predicted value) of the NOx concentration at the inlet of the denitration catalyst device 6 is set by comparison with the actual value. However, the measured value is measured by measuring the outlet NOx concentration. The ammonia injection amount that is feedforward controlled may be corrected based on the above. In this case, the deviation from the actual measurement value is further reduced, and NOx in the exhaust gas is reduced and decomposed more quickly and more reliably.

また、上記実施形態では、還元剤としてアンモニアを用い、触媒の存在下でサーマルNOxを還元分解しているが、還元剤として尿素(H2NCONH2)を用い、無触媒でサーマルNOxを還元分解することとしてもよい。尿素の注入領域は、排ガス温度が例えば800℃〜1150℃となる廃熱ボイラ3の入口側または同ボイラ内とするのが好ましく、この場合には、脱硝触媒装置6を省略してシステムの簡単化を図ることができる。 In the above embodiment, ammonia is used as a reducing agent and thermal NOx is reduced and decomposed in the presence of a catalyst. However, urea (H 2 NCONH 2 ) is used as a reducing agent and thermal NOx is reduced and decomposed without a catalyst. It is good to do. The urea injection region is preferably on the inlet side of the waste heat boiler 3 where the exhaust gas temperature becomes, for example, 800 ° C. to 1150 ° C. or in the same boiler. In this case, the denitration catalyst device 6 is omitted and the system is simplified. Can be achieved.

また、上記実施形態では、溶融炉2の二次燃焼室2cに二次空気を供給しているが、二次燃焼室2cを設けずに溶融炉2内に直接過剰空気を供給してもよい。   Moreover, in the said embodiment, although secondary air is supplied to the secondary combustion chamber 2c of the melting furnace 2, you may supply excess air directly in the melting furnace 2 without providing the secondary combustion chamber 2c. .

また、上記実施形態では、二次燃焼室2c内の酸素濃度及び温度の各計測値に基づいてサーマルNOxの濃度を予測し、さらに脱硝触媒装置6の下流側での排ガス流量を測定して、両者を積算してサーマルNOxの発生量を算出しているが、処理対象の量や種類等の変動が少ない場合には、排ガス流量の設定値を用いてその計測を省略してもよい。その場合には、流量計をなくしてシステムの簡略化を図ることができる。   Moreover, in the said embodiment, the density | concentration of thermal NOx is estimated based on each measured value of the oxygen concentration in the secondary combustion chamber 2c, and temperature, Furthermore, the exhaust gas flow rate in the downstream of the denitration catalyst apparatus 6 is measured, The amount of thermal NOx generated is calculated by integrating both, but when there is little variation in the amount and type of the processing target, the measurement may be omitted using the set value of the exhaust gas flow rate. In that case, the flow meter can be eliminated and the system can be simplified.

また、上記実施形態では、ガス化炉1と溶融炉2とからなるガス化溶融炉について説明したが、排ガス中にサーマルNOxが発生するような、あらゆる種類の廃棄物処理設備(ボイラを含む。)に本発明を適用できるのはいうまでもない。   Moreover, in the said embodiment, although the gasification melting furnace which consists of the gasification furnace 1 and the melting furnace 2 was demonstrated, all kinds of waste processing facilities (a boiler is included) in which thermal NOx generate | occur | produces in waste gas. Needless to say, the present invention can be applied.

本発明の廃棄物処理設備の一形式であるガス化溶融炉の全体構成を示した図である。It is the figure which showed the whole structure of the gasification melting furnace which is one form of the waste disposal facility of this invention. 図1のNOx処理装置の構成を示した図である。It is the figure which showed the structure of the NOx processing apparatus of FIG. 本発明のテスト結果を示す図である。It is a figure which shows the test result of this invention.

符号の説明Explanation of symbols

1 ガス化炉(廃棄物処理設備に相当する。)
2 溶融炉(廃棄物処理設備に相当する。)
2c 二次燃焼室(その二次空気供給ノズル等が過剰空気供給手段に相当する。)
3 廃熱ボイラ
4 排ガス減温塔
5 集じん器
6 脱硝触媒装置(脱硝手段に相当する。)
6a 制御弁
60 アンモニア供給装置
7 煙突
8 演算器(予測手段に相当する。)
9 制御器(第1,2制御手段に相当する。)
O1 酸素濃度計(計測手段に相当する。)
O2 酸素濃度計
T2 温度計(計測手段に相当する。)
F1,F2 流量計
N1 NOx濃度計
1 Gasifier (corresponds to waste treatment facility)
2 Melting furnace (corresponding to waste treatment equipment)
2c Secondary combustion chamber (the secondary air supply nozzle or the like corresponds to excess air supply means)
3 Waste heat boiler 4 Exhaust gas temperature reducing tower 5 Dust collector 6 Denitration catalyst device (corresponding to denitration means)
6a Control valve 60 Ammonia supply device 7 Chimney 8 Calculator (corresponds to prediction means)
9 Controller (corresponding to first and second control means)
O1 oxygen concentration meter (corresponds to measuring means)
O2 oxygen concentration meter T2 thermometer (corresponding to measuring means)
F1, F2 flow meter N1 NOx concentration meter

Claims (6)

廃棄物処理設備で発生した排ガスに過剰空気を供給し、この排ガス中に含まれるNOxを還元分解する還元剤を該排ガス中に注入し、この還元剤が注入される領域の下流側のNOx濃度に基づいて上記還元剤の注入量をフィードバック制御することによりNOxの処理を行う方法であって、
上記過剰空気が供給される領域内の酸素濃度及び温度をそれぞれ酸素濃度計および温度計により計測し、これらの酸素濃度計および温度計による計測値に基づいて排ガス中に発生するサーマルNOxの濃度を予測し、少なくともこの予測値に基づいて上記還元剤の注入量をさらにフィードフォワード制御することを特徴とする廃棄物処理設備のNOx処理方法。
Excess air is supplied to the exhaust gas generated in the waste treatment facility, a reducing agent for reducing and decomposing NOx contained in the exhaust gas is injected into the exhaust gas, and the NOx concentration downstream of the region where the reducing agent is injected A method of performing NOx treatment by feedback control of the amount of reducing agent injected based on
The oxygen concentration and temperature in the region where the excess air is supplied are measured by an oxygen concentration meter and a thermometer, respectively , and the concentration of thermal NOx generated in the exhaust gas is measured based on the measured values by the oxygen concentration meter and the thermometer. A NOx treatment method for a waste treatment facility characterized by predicting and further feedforward controlling the injection amount of the reducing agent based on at least the predicted value.
上記還元剤が注入される領域の下流側で排ガスの流量を計測し、この計測値とサーマルNOxの濃度の予測値とに基づいて上記還元剤の注入量をフィードフォワード制御することを特徴とする請求項1記載の廃棄物処理設備のNOx処理方法。   The flow rate of the exhaust gas is measured downstream of the region where the reducing agent is injected, and the reducing agent injection amount is feedforward controlled based on the measured value and the predicted value of the thermal NOx concentration. The NOx processing method of the waste treatment facility according to claim 1. 上記還元剤が注入される領域の下流側でNOxの濃度を計測し、この計測値に基づいて上記フィードフォワード制御される還元剤の注入量を補正することを特徴とする請求項1又は2記載の廃棄物処理設備のNOx処理方法。   3. The NOx concentration is measured downstream of the region where the reducing agent is injected, and the amount of reducing agent injected under feedforward control is corrected based on the measured value. NOx treatment method for the waste treatment facility. 上記排ガス中に発生するサーマルNOxを、還元剤としてのアンモニアを用いて触媒の存在下で還元分解することを特徴とする請求項1〜3のいずれか1項に記載の廃棄物処理設備のNOx処理方法。   The NOx of the waste treatment facility according to any one of claims 1 to 3, wherein thermal NOx generated in the exhaust gas is reductively decomposed in the presence of a catalyst using ammonia as a reducing agent. Processing method. 上記排ガス中に発生するサーマルNOxを、還元剤としての尿素を用いて還元分解することを特徴とする請求項1〜3のいずれか1項に記載の廃棄物処理設備のNOx処理方法。   The NOx treatment method for a waste treatment facility according to any one of claims 1 to 3, wherein thermal NOx generated in the exhaust gas is reductively decomposed using urea as a reducing agent. 廃棄物処理設備と、この廃棄物処理設備で発生した排ガスに過剰空気を供給する過剰空気供給手段と、この排ガス中に含まれるNOxを還元分解する還元剤を該排ガス中に注入する脱硝手段と、この脱硝手段の下流側のNOx濃度に基づいて上記還元剤の注入量をフィードバック制御することによりNOxの排出量を制御する第1制御手段とを備えた廃棄物処理設備のNOx処理装置であって、
上記過剰空気が供給される領域内の酸素濃度及び温度をそれぞれ計測する酸素濃度計および温度計と、これらの酸素濃度計および温度計による計測値に基づいて上記排ガス中に発生するサーマルNOxの濃度を予測する予測手段と、少なくともこの予測値に基づいて上記還元剤の注入量をさらにフィードフォワード制御する第2制御手段とを備えたことを特徴とする廃棄物処理設備のNOx処理装置。
A waste treatment facility, excess air supply means for supplying excess air to the exhaust gas generated in the waste treatment facility, and denitration means for injecting a reducing agent for reducing and decomposing NOx contained in the exhaust gas into the exhaust gas. And a NOx treatment apparatus for a waste treatment facility comprising a first control means for controlling the NOx emission amount by feedback controlling the injection amount of the reducing agent based on the NOx concentration downstream of the denitration means. And
An oxygen concentration meter and a thermometer for measuring the oxygen concentration and temperature in the region where the excess air is supplied, respectively, and the concentration of thermal NOx generated in the exhaust gas based on the measured values by the oxygen concentration meter and the thermometer A NOx treatment apparatus for waste treatment equipment, comprising: a predicting means for predicting the amount of the reducing agent; and a second control means for further feedforward controlling the injection amount of the reducing agent based on at least the predicted value.
JP2005009136A 2005-01-17 2005-01-17 NOx treatment method and apparatus for waste treatment facility Active JP4455349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009136A JP4455349B2 (en) 2005-01-17 2005-01-17 NOx treatment method and apparatus for waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009136A JP4455349B2 (en) 2005-01-17 2005-01-17 NOx treatment method and apparatus for waste treatment facility

Publications (2)

Publication Number Publication Date
JP2006192406A JP2006192406A (en) 2006-07-27
JP4455349B2 true JP4455349B2 (en) 2010-04-21

Family

ID=36798883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009136A Active JP4455349B2 (en) 2005-01-17 2005-01-17 NOx treatment method and apparatus for waste treatment facility

Country Status (1)

Country Link
JP (1) JP4455349B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089638B2 (en) * 2009-03-31 2012-12-05 中国電力株式会社 Ammonia injection amount correction control apparatus and ammonia injection amount correction control method
JP5307058B2 (en) * 2010-03-08 2013-10-02 株式会社神鋼環境ソリューション Exhaust gas denitration method in melting furnace and exhaust gas denitration apparatus in melting furnace
JP5677787B2 (en) * 2010-08-31 2015-02-25 新日鉄住金エンジニアリング株式会社 Denitration control device and denitration control method
JP5826954B1 (en) * 2015-01-19 2015-12-02 株式会社神鋼環境ソリューション Waste treatment system and NOx treatment method in the system
JP6049809B2 (en) * 2015-06-22 2016-12-21 日立造船株式会社 Reducing agent supply method in incinerator
JP2017089928A (en) * 2015-11-05 2017-05-25 日立造船株式会社 Stoker type incinerator and incinerator
JP6673800B2 (en) * 2016-10-21 2020-03-25 株式会社神戸製鋼所 Exhaust gas control apparatus and exhaust gas control method for gasification and melting furnace plant
JP6908147B1 (en) * 2020-03-06 2021-07-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2006192406A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4455349B2 (en) NOx treatment method and apparatus for waste treatment facility
CA1318255C (en) Catalytic denitrification control process and system for combustion flue gases
JPH0342930B2 (en)
JP5089638B2 (en) Ammonia injection amount correction control apparatus and ammonia injection amount correction control method
KR940015237A (en) NOx removal control device
JP6085245B2 (en) Non-catalytic denitration apparatus and non-catalytic denitration method
JP2012050912A (en) Denitration controller and denitration control method
Liang et al. Simulation of nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal
JP3987576B2 (en) Control of heat exchanger efficiency by differential temperature.
JP6200731B2 (en) Control method of gasification power generation system
JP5826954B1 (en) Waste treatment system and NOx treatment method in the system
Ahn et al. Oxy-fuel combustion boiler for CO 2 capturing: 50 kW-class model test and numerical simulation
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
CN214233498U (en) SNCR control system of double-PID (proportion integration differentiation) circulating fluidized bed boiler
JP5710410B2 (en) Operation method of exhaust gas circulation thermal power plant
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
US20110036279A1 (en) NOx reduction control system for boilers
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JP3902454B2 (en) Combustion control method and waste treatment apparatus
Norman et al. Incineration of Ammonia Wastewater and the Effect to the Environment
JPH06218229A (en) Method and device for controlling supply of flue gas purifying agent
JP2011196554A (en) Method and device of denitrating exhaust gas in melting furnace
JP4933485B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JP5307058B2 (en) Exhaust gas denitration method in melting furnace and exhaust gas denitration apparatus in melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250