JP5677787B2 - Denitration control device and denitration control method - Google Patents

Denitration control device and denitration control method Download PDF

Info

Publication number
JP5677787B2
JP5677787B2 JP2010194515A JP2010194515A JP5677787B2 JP 5677787 B2 JP5677787 B2 JP 5677787B2 JP 2010194515 A JP2010194515 A JP 2010194515A JP 2010194515 A JP2010194515 A JP 2010194515A JP 5677787 B2 JP5677787 B2 JP 5677787B2
Authority
JP
Japan
Prior art keywords
amount
nox
ammonia
exhaust gas
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010194515A
Other languages
Japanese (ja)
Other versions
JP2012050912A (en
Inventor
古家 秀彦
秀彦 古家
修治 松熊
修治 松熊
徹 絹川
徹 絹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
NS Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical NS Plant Designing Corp
Priority to JP2010194515A priority Critical patent/JP5677787B2/en
Publication of JP2012050912A publication Critical patent/JP2012050912A/en
Application granted granted Critical
Publication of JP5677787B2 publication Critical patent/JP5677787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃棄物処理炉から排出される排ガス中のNOx濃度を低減するための脱硝制御装置及び脱硝制御方法に関する。 The present invention relates to a denitration control device and a denitration control method for reducing the NOx concentration in exhaust gas discharged from a waste treatment furnace.

ごみなどの廃棄物の処理を行う廃棄物処理設備には、溶融炉や焼却炉などの廃棄物処理炉から排出される排ガスに含まれる窒素酸化物(NOx)を除去してNOx濃度を規制値以下とするための排ガス処理設備が備えられている。排ガス処理設備では、排ガス中にアンモニア(NH)を注入してNOxと化学反応させることにより、NOxを窒素と水に分解してNOx濃度を低減させることが行われる。その際、過剰にアンモニアを注入すると、リークアンモニアとして外部に排出され問題となる一方、アンモニア注入量が不足すると、排ガス中のNOx濃度が規制値を超えて問題となる。 Waste treatment facilities that treat waste, such as garbage, remove nitrogen oxides (NOx) contained in the exhaust gas discharged from waste treatment furnaces such as melting furnaces and incinerators, and regulate the NOx concentration. An exhaust gas treatment facility is provided for the following. In the exhaust gas treatment facility, ammonia (NH 3 ) is injected into the exhaust gas and chemically reacted with NOx, whereby NOx is decomposed into nitrogen and water to reduce the NOx concentration. At that time, if ammonia is excessively injected, it is discharged as leaked ammonia to the outside, which causes a problem. On the other hand, if the ammonia injection amount is insufficient, the NOx concentration in the exhaust gas exceeds the regulation value.

そのため、処理すべきNOx量に見合った適正なアンモニア量を注入するための脱硝制御方法が種々提案されている。例えば、特許文献1では、脱硝触媒装置入口NOx濃度が脱硝触媒装置を通過する排ガス量に比例することから、排ガス量に基づいて求めたNOxの分解に必要な量のアンモニアを吹込んで煙突出口NOx濃度を制御する方法が開示されている。 For this reason, various denitration control methods for injecting an appropriate ammonia amount corresponding to the NOx amount to be processed have been proposed. For example, in Patent Document 1, since the NOx concentration at the inlet of the NOx removal catalyst device is proportional to the amount of exhaust gas passing through the NOx removal catalyst device, an amount of ammonia necessary for the decomposition of NOx determined based on the amount of exhaust gas is blown into the smoke outlet NOx. A method for controlling the concentration is disclosed.

また、特許文献2では、処理前のNOx流量と目標とするNOx流量との偏差量に対応した偏差NOx流量を求める工程と、処理後のNOx濃度と目標とするNOx濃度との偏差量に対応したNOx濃度補正量を求める工程と、脱硝設備での実績の脱硝率と目標とする脱硝率との偏差量に対応した脱硝率補正量を求める工程と、処理後の排ガス中のアンモニア濃度と目標とするアンモニア濃度との偏差量に対応したアンモニア濃度補正量を求める工程と、NOx濃度補正量、脱硝率補正量、アンモニア濃度補正量の内少なくとも1つの補正量に基づいて偏差NOx流量を補正した補正NO流量を求める工程と、補正NOx流量に基づいて吹込みアンモニア流量目標値を求めて処理前排ガスに注入するアンモニア流量を制御する工程とを備えた脱硝制御方法が開示されている。 In Patent Document 2, a process for obtaining a deviation NOx flow rate corresponding to a deviation amount between the NOx flow rate before processing and the target NOx flow rate, and a deviation amount between the NOx concentration after processing and the target NOx concentration are handled. Determining the NOx concentration correction amount, determining the NOx removal rate correction amount corresponding to the deviation between the actual NOx removal rate and the target NOx removal rate, and the ammonia concentration and target in the exhaust gas after treatment The deviation NOx flow rate was corrected based on the step of obtaining the ammonia concentration correction amount corresponding to the deviation amount from the ammonia concentration and the correction amount of at least one of the NOx concentration correction amount, the denitration rate correction amount, and the ammonia concentration correction amount. A step of obtaining a corrected NO X flow rate, and a step of obtaining a target ammonia flow rate value based on the corrected NOx flow rate and controlling a flow rate of ammonia injected into the pre-treatment exhaust gas. A denitration control method is disclosed.

さらにまた、特許文献3では、脱硝反応槽(脱硝触媒装置)の出側に設置したNOx分析計により得られる排ガス中のNOx濃度に基づいて、脱硝反応槽中のアンモニア量が常にアンモニア吸着能力の最大値以内に保持されるように、アンモニアの注入量をON−OFF制御する方法が開示されている。 Furthermore, in Patent Document 3, based on the NOx concentration in the exhaust gas obtained by the NOx analyzer installed on the outlet side of the denitration reaction tank (denitration catalyst device), the amount of ammonia in the denitration reaction tank always has an ammonia adsorption capacity. A method of ON / OFF control of the ammonia injection amount so as to be maintained within the maximum value is disclosed.

特開2003−164725号公報JP 2003-164725 A 特開2005−169331号公報JP 2005-169331 A 特開昭55−1858号公報Japanese Patent Laid-Open No. 55-1858

しかしながら、特許文献1の制御方法では、脱硝プロセスにおける時間遅れ(数分〜数十分)を考慮していないため、NOx濃度の急激な変動に追随できず制御精度が悪いという問題がある。
一方、特許文献2の制御方法は、脱硝プロセス内の遅れ時間を考慮するむだ時間補正部を備えているが、その効果について開示されていないうえ、制御系が複雑であるという問題がある。
また、特許文献3の制御方法は、吸着アンモニアがバッファーとなり脱硝プロセスにおける時間遅れを考慮する必要はないが、NOx濃度が設定値まで上昇した際に電磁弁を開いてアンモニアを注入し、所定時間経過後、電磁弁を閉じるようにしているため、吸着アンモニア量が低下したときにNOx濃度が急激に変動した場合、NOx濃度の急激な変動を処理できず、NOx濃度のピークが規制値を超えるおそれがある。
However, the control method of Patent Document 1 does not take into account the time delay (several minutes to several tens of minutes) in the denitration process, and therefore has a problem that the control accuracy is poor because it cannot follow the rapid fluctuation of the NOx concentration.
On the other hand, although the control method of Patent Document 2 includes a dead time correction unit that takes into account the delay time in the denitration process, there is a problem that the effect is not disclosed and the control system is complicated.
In the control method of Patent Document 3, it is not necessary to consider the time delay in the denitration process because the adsorbed ammonia serves as a buffer, but when the NOx concentration rises to the set value, the solenoid valve is opened and ammonia is injected for a predetermined time. Since the solenoid valve is closed after the lapse of time, if the NOx concentration fluctuates rapidly when the amount of adsorbed ammonia decreases, the sudden fluctuation of the NOx concentration cannot be processed, and the peak of the NOx concentration exceeds the regulation value. There is a fear.

本発明はかかる事情に鑑みてなされたもので、脱硝プロセスの大きな時間遅れを考慮する必要が無く、NOx量が急激に変動しても煙突出口NOx濃度を規制値以下に抑えることが可能な脱硝制御装置及び脱硝制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is not necessary to consider a large time delay of the denitration process, and even if the NOx amount fluctuates rapidly, the NOx concentration at the smoke outlet can be suppressed to a regulation value or less. An object is to provide a control device and a denitration control method.

本発明者等は、排ガスを排出する煙突出口における窒素酸化物(NOx)濃度のピークが脱硝触媒装置内に残存する残存アンモニア量に依存することを発見した。図10(A)は従来の排ガス処理設備における脱硝触媒装置入口及び煙突出口におけるNOx濃度の時刻歴変化、図10(B)はその際のアンモニア吹込量及び脱硝触媒装置内に残存する残存アンモニア量の時刻歴変化を示したものである。ここで、脱硝触媒装置内に残存する残存アンモニア量は、(アンモニア吹込量(kg/h)−アンモニア消費量(kg/h))の積算値である。同図より、脱硝触媒装置内にアンモニアが充分残存していると、煙突出口NOx濃度が低くなりピークが発生しないという知見が得られた。 The present inventors have found that the peak of nitrogen oxide (NOx) concentration at the smoke outlet from which exhaust gas is discharged depends on the amount of residual ammonia remaining in the denitration catalyst device. FIG. 10A shows the time history change of the NOx concentration at the NOx removal catalyst device inlet and the smoke outlet in the conventional exhaust gas treatment facility, and FIG. 10B shows the ammonia injection amount at that time and the residual ammonia amount remaining in the NOx removal catalyst device. This shows the change in time history. Here, the residual ammonia amount remaining in the denitration catalyst device is an integrated value of (ammonia injection amount (kg / h) −ammonia consumption amount (kg / h)). From this figure, it was found that if ammonia remained sufficiently in the denitration catalyst device, the NOx concentration at the smoke outlet became low and no peak was generated.

本願発明は上記知見に基づくものであり、第1の発明は、廃棄物処理炉から排出される排ガスを処理する排ガス処理設備に備えられた脱硝触媒装置にアンモニアを吹込んで前記排ガス中のNOxを分解することにより、前記排ガスを排出する煙突出口における煙突出口NOx濃度を低減する脱硝制御装置において、前記脱硝触媒装置入口における排ガス中のNOx量を算出し、算出された前記NOx量に基づいて前記脱硝触媒装置に吹込むアンモニア吹込量を算出する手段と、単位時間当たりのアンモニア吹込量から単位時間当たりのアンモニア消費量を差し引いた値を積算し、その算出値を前記脱硝触媒装置内に残存する残存アンモニア量とし、前記残存アンモニア量が前記NOx量の最大変動分を窒素と水に分解できる一定範囲となるように前記アンモニア吹込量を補正する手段とを備えることを特徴としている。
ただし、前記NOx量の最大変動分は、前記排ガス処理設備の試運転時に、前記脱硝触媒装置入口に設置したNOx分析計によりNOx濃度を測定して平均値を求めておき、その値に、前記排ガス処理設備で想定される排ガス流量の変動率を掛けて求める。
The invention of the present application is based on the above knowledge, and the first invention is that ammonia is blown into a denitration catalyst device provided in an exhaust gas treatment facility for treating exhaust gas discharged from a waste treatment furnace so that NOx in the exhaust gas is reduced. In the denitration control device that reduces the NOx concentration at the smoke outlet that discharges the exhaust gas by decomposing, the NOx amount in the exhaust gas at the inlet of the denitration catalyst device is calculated, and the NOx amount is calculated based on the calculated NOx amount. The means for calculating the ammonia injection amount to be blown into the denitration catalyst device and the value obtained by subtracting the ammonia consumption amount per unit time from the ammonia injection amount per unit time are integrated, and the calculated value remains in the denitration catalyst device. the residual ammonia amount, the residual ammonia amount is constant range the maximum variation of the amount of NOx can be decomposed into nitrogen and water It is characterized in that it comprises a means for correcting the ammonia blown amount.
However, the maximum fluctuation amount of the NOx amount is determined by measuring the NOx concentration with a NOx analyzer installed at the inlet of the denitration catalyst device during a trial operation of the exhaust gas treatment facility, and obtaining the average value. Obtained by multiplying the fluctuation rate of the exhaust gas flow rate assumed in the treatment facility.

また、第2の発明は、廃棄物処理炉から排出される排ガスを処理する排ガス処理設備に備えられた脱硝触媒装置にアンモニアを吹込んで前記排ガス中のNOxを分解することにより、前記排ガスを排出する煙突出口における煙突出口NOx濃度を低減する脱硝制御方法において、前記脱硝触媒装置入口における排ガス中のNOx量を算出し、算出された前記NOx量に基づいて前記脱硝触媒装置に吹込むアンモニア吹込量を算出する工程と、単位時間当たりのアンモニア吹込量から単位時間当たりのアンモニア消費量を差し引いた値を積算し、その算出値を前記脱硝触媒装置内に残存する残存アンモニア量とし、前記残存アンモニア量が前記NOx量の最大変動分を窒素と水に分解できる一定範囲となるように前記アンモニア吹込量を補正する工程とを備えることを特徴としている。
ただし、前記NOx量の最大変動分は、前記排ガス処理設備の試運転時に、前記脱硝触媒装置入口に設置したNOx分析計によりNOx濃度を測定して平均値を求めておき、その値に、前記排ガス処理設備で想定される排ガス流量の変動率を掛けて求める。
In addition, the second invention discharges the exhaust gas by decomposing NOx in the exhaust gas by injecting ammonia into a denitration catalyst device provided in an exhaust gas treatment facility for treating the exhaust gas discharged from the waste treatment furnace. In the denitration control method for reducing the NOx concentration of the smoke outlet at the smoke outlet, the amount of ammonia blown into the denitration catalyst device is calculated based on the calculated amount of NOx by calculating the amount of NOx in the exhaust gas at the inlet of the denitration catalyst device calculating a integrates the value obtained by subtracting the ammonia consumption per unit time from the ammonia blown amount per unit time, and the residual ammonia amount remaining the calculated value in the denitration catalyst unit, the residual ammonia amount to but correcting the ammonia blown amount such that the predetermined range capable of degrading the maximum variation of the amount of NOx to nitrogen and water It is characterized in that it comprises a step.
However, the maximum fluctuation amount of the NOx amount is determined by measuring the NOx concentration with a NOx analyzer installed at the inlet of the denitration catalyst device during a trial operation of the exhaust gas treatment facility, and obtaining the average value. Obtained by multiplying the fluctuation rate of the exhaust gas flow rate assumed in the treatment facility.

第1及び第2の発明では、脱硝触媒装置内に残存する残存アンモニア量が、脱硝触媒装置入口におけるNOx量の最大変動分を窒素と水に分解できる一定範囲となるように制御することにより、NOx量の急激な変動に対して脱硝触媒装置内の残存アンモニアで処理(NOxを窒素と水に分解してNOx濃度を低減)することが可能となる。その結果、煙突出口NOx濃度のピークが抑えられ、煙突出口NOx濃度を常に規制値以下に維持することができる。 In the first and second inventions, by controlling the amount of residual ammonia remaining in the denitration catalyst device to be within a certain range in which the maximum fluctuation amount of the NOx amount at the inlet of the denitration catalyst device can be decomposed into nitrogen and water , It is possible to treat with the remaining ammonia in the denitration catalyst device against a rapid fluctuation of the NOx amount (decompose NOx into nitrogen and water to reduce the NOx concentration). As a result, the peak of the smoke outlet NOx concentration is suppressed, and the smoke outlet NOx concentration can always be kept below the regulation value.

また、第1の発明に係る脱硝制御装置では、前記煙突出口NOx濃度が設定値を超えると、前記アンモニア吹込量を一定時間強制的に増量すると共に、前記残存アンモニア量の算出値を補正する手段を備えることを好適とする。 In the denitration control device according to the first aspect of the present invention, when the NOx concentration of the smoke outlet exceeds a set value, the ammonia blowing amount is forcibly increased for a certain time and the calculated value of the residual ammonia amount is corrected. It is suitable to provide.

また、第2の発明に係る脱硝制御方法では、前記煙突出口NOx濃度が設定値を超えると、前記アンモニア吹込量を一定時間強制的に増量すると共に、前記残存アンモニア量の算出値を補正する工程を備えることを好適とする。 Further, in the denitration control method according to the second invention, when the NOx concentration at the smoke outlet exceeds a set value, the ammonia blowing amount is forcibly increased for a certain time and the calculated value of the residual ammonia amount is corrected. It is suitable to provide.

前記残存アンモニア量の算出値は、各計測器(排ガス流量計、NOx分析計、アンモニア流量計)の計器誤差及び脱硝触媒装置の経年変化による性能変化等により、実際の残存アンモニア量との間に生じる誤差が累積する懸念があるが、上記構成により、累積誤差を解消することができる。 The calculated value of the residual ammonia amount is between the actual residual ammonia amount due to instrument errors of each measuring instrument (exhaust gas flow meter, NOx analyzer, ammonia flow meter) and performance changes due to aging of the denitration catalyst device. Although there is a concern that the generated error may accumulate, the above configuration can eliminate the accumulated error.

また、第1の発明に係る脱硝制御装置では、前記煙突出口NOx濃度の測定値と前記煙突出口NOx濃度の目標値との偏差に比例する制御出力の時間平均値に基づいて脱硝触媒装置入口におけるNOx量を補正する手段を備えていてもよい。 Further, in the denitration control device according to the first aspect of the present invention, at the denitration catalyst device inlet based on the time average value of the control output proportional to the deviation between the measured value of the smoke outlet NOx concentration and the target value of the smoke outlet NOx concentration. A means for correcting the NOx amount may be provided.

また、第2の発明に係る脱硝制御方法では、前記煙突出口NOx濃度の測定値と前記煙突出口NOx濃度の目標値との偏差に比例する制御出力の時間平均値に基づいて脱硝触媒装置入口におけるNOx量を補正する工程を備えていてもよい。 Further, in the denitration control method according to the second aspect of the present invention, based on the time average value of the control output proportional to the deviation between the measured value of the smoke outlet NOx concentration and the target value of the smoke outlet NOx concentration, A step of correcting the NOx amount may be provided.

上記構成により、脱硝触媒装置入口におけるNOx量の算出値を実際のNOx量に近づけることができ、アンモニアの無駄吹き(NOx濃度が低いにもかかわらずアンモニアの吹込みを行うこと)を防止することができる。 With the above configuration, the calculated value of the NOx amount at the inlet of the denitration catalyst device can be brought close to the actual NOx amount, and wasteful blowing of ammonia (injecting ammonia even though the NOx concentration is low) is prevented. Can do.

本発明では、脱硝触媒装置内に残存する残存アンモニア量を算出し、残存アンモニア量が脱硝触媒装置入口におけるNOx量の最大変動分を窒素と水に分解できる一定範囲となるようにアンモニア吹込量を制御することにより、脱硝プロセスの大きな時間遅れを考慮すること無く、NOx量が急激に変動しても煙突出口NOx濃度を規制値以下に抑えることが可能となる。 In the present invention, the amount of residual ammonia remaining in the denitration catalyst device is calculated, and the ammonia injection amount is adjusted so that the residual ammonia amount falls within a certain range in which the maximum variation of the NOx amount at the inlet of the denitration catalyst device can be decomposed into nitrogen and water. By controlling, it is possible to suppress the NOx concentration at the smoke outlet to below the regulation value even if the NOx amount fluctuates rapidly without considering a large time delay of the denitration process.

排ガス処理設備の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of waste gas processing equipment. 本発明の一実施の形態に係る脱硝制御装置のブロック図である。1 is a block diagram of a denitration control device according to an embodiment of the present invention. 制御出力と第1補正係数との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a control output and a 1st correction coefficient. NOx量とアンモニア吹込量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between NOx amount and ammonia blowing amount. 残存アンモニア量と第2補正係数との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between residual ammonia amount and a 2nd correction coefficient. 排ガス量とアンモニア吹込量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the amount of exhaust gas, and the amount of ammonia injection. 制御出力とアンモニア吹込量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between control output and ammonia injection amount. (A)は煙突出口NOx濃度、(B)はアンモニア吹込量それぞれの時刻歴変化の一例を示したグラフである。(A) is a NOx concentration at the smoke outlet, and (B) is a graph showing an example of a time history change of each ammonia blowing amount. 排ガス中のNOx濃度の低減効果について、本発明の一実施の形態に係る脱硝制御方法と従来の脱硝制御方法とを比較した試験結果のグラフである。It is a graph of the test result which compared the denitration control method which concerns on one embodiment of this invention, and the conventional denitration control method about the reduction effect of NOx concentration in waste gas. (A)は従来の排ガス処理設備における脱硝触媒装置入口及び煙突出口におけるNOx濃度、(B)はその際のアンモニア吹込量及び脱硝触媒装置内に残存する残存アンモニア量それぞれの時刻歴変化を示した試験結果のグラフである。(A) shows the NOx concentration at the denitration catalyst device inlet and smoke outlet in the conventional exhaust gas treatment facility, and (B) shows the time history changes of the ammonia blowing amount and the remaining ammonia amount remaining in the denitration catalyst device at that time. It is a graph of a test result.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態に付き説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

図1は、廃棄物処理設備に備えられている排ガス処理設備の一例を示した模式図である。溶融炉や焼却炉などの廃棄物処理炉(図示省略)から排出された排ガスは、ボイラ11に送られて熱回収された後、排ガス温度調節器12で所定温度まで冷却され、濾過式集塵器13で除塵される。除塵された排ガスは、誘引通風機14により脱硝触媒装置15に送られ、脱硝触媒装置15において脱硝された後、煙突16から排出される。 FIG. 1 is a schematic diagram illustrating an example of an exhaust gas treatment facility provided in a waste treatment facility. Exhaust gas discharged from a waste treatment furnace (not shown) such as a melting furnace or an incinerator is sent to the boiler 11 for heat recovery, cooled to a predetermined temperature by the exhaust gas temperature controller 12, and filtered dust collection. The dust is removed by the vessel 13. The dust-removed exhaust gas is sent to the denitration catalyst device 15 by the induction fan 14, denitrated in the denitration catalyst device 15, and then discharged from the chimney 16.

脱硝触媒装置15内では、排ガスに含まれる窒素酸化物(NOx)が、装置内部に配置された触媒層に吸着したアンモニア(NH)と反応して窒素と水に分解する。
誘引通風機14と脱硝触媒装置15との間に設けられた排ガス管路17にはアンモニア管路21の終端が接続されており、アンモニア管路21の始端に備えられたアンモニア供給装置18からアンモニア管路21を介して送給されたアンモニアは、排ガス管路17内に吹込まれることにより脱硝触媒装置15内に供給される。
In the denitration catalyst device 15, nitrogen oxide (NOx) contained in the exhaust gas reacts with ammonia (NH 3 ) adsorbed on the catalyst layer disposed inside the device and decomposes into nitrogen and water.
The end of the ammonia pipe 21 is connected to the exhaust gas pipe 17 provided between the induction fan 14 and the denitration catalyst device 15, and ammonia is supplied from the ammonia supply device 18 provided at the start of the ammonia pipe 21. Ammonia fed through the pipe line 21 is supplied into the denitration catalyst device 15 by being blown into the exhaust gas pipe line 17.

また、アンモニア管路21の経路上には制御弁20が設けられており、後述する(図2に示す)脱硝制御装置10によって制御弁20の開閉度を制御することにより、アンモニアの吹込量が調節される。脱硝制御装置10は、誘引通風機14と脱硝触媒装置15との間に設置したNOx分析計22、煙突16に設置したNOx分析計23及び排ガス流量計24、並びにアンモニア管路21上に設置したアンモニア流量計19の各出力に基づいてアンモニア吹込量を算出して制御弁20の開閉度を制御することにより、煙突出口における煙突出口NOx濃度を低減している。 In addition, a control valve 20 is provided on the path of the ammonia pipe 21. By controlling the degree of opening and closing of the control valve 20 by a denitration control apparatus 10 (shown in FIG. 2) described later, the amount of ammonia injected can be controlled. Adjusted. The denitration control device 10 is installed on the NOx analyzer 22 installed between the induction ventilator 14 and the denitration catalyst device 15, the NOx analyzer 23 and exhaust gas flow meter 24 installed in the chimney 16, and the ammonia pipe 21. By calculating the amount of ammonia blown based on each output of the ammonia flow meter 19 and controlling the degree of opening and closing of the control valve 20, the smoke outlet NOx concentration at the smoke outlet is reduced.

本発明の一実施の形態に係る脱硝制御装置10のブロック図を図2に示す。本脱硝制御装置10が備える主たる機能は以下の通りである。
(1)アンモニア吹込量算出手段(工程):脱硝触媒装置15入口における排ガス中のNOx量を算出(NOx量算出部35)し、算出されたNOx量に基づいて脱硝触媒装置15に吹込むアンモニア吹込量を算出(アンモニア吹込量算出部40)する。
(2)第1の補正手段(工程):煙突出口NOx濃度の測定値と煙突出口NOx濃度の目標値との偏差に比例する制御出力(煙突出口NOx濃度調節部32)の時間平均値を算出(制御出力傾向演算部36)し、この時間平均値に基づいてNOx量の算出値を補正(第1補正係数算出部37)する。
(3)第2の補正手段(工程):脱硝触媒装置15内に残存する残存アンモニア量を算出(残存アンモニア量算出部41)し、NOx量の最大変動分を処理できる範囲で残存アンモニア量が一定となるようにアンモニア吹込量の算出値を補正(第2補正係数算出部43)する。NOx量の最大変動範囲は、廃棄物処理設備の試運転時に、脱硝触媒装置15入口に設置したNOx分析計22によりNOx濃度を測定して平均値を求めておき、その値に、廃棄物処理設備で想定される排ガス流量(脱硝触媒装置15入口におけるガス流量)の変動率を掛けて求める。
(4)アンモニア強制増量手段(工程):煙突出口NOx濃度が設定値(例えば、規制値の8割の値)を超えると、アンモニア吹込量を一定時間強制的に増量(アンモニア強制増量部45)すると共に、残存アンモニア量の算出値を補正(残存アンモニア量算出部41)する。
FIG. 2 shows a block diagram of a denitration control device 10 according to one embodiment of the present invention. The main functions of the present denitration control device 10 are as follows.
(1) Ammonia injection amount calculating means (process): Ammonia injected into the denitration catalyst device 15 based on the calculated NOx amount by calculating the NOx amount in the exhaust gas at the inlet of the denitration catalyst device 15 (NOx amount calculation unit 35) The blowing amount is calculated (ammonia blowing amount calculation unit 40).
(2) First correcting means (step): calculating a time average value of the control output (smoke outlet NOx concentration adjusting unit 32) proportional to the deviation between the measured value of the smoke outlet NOx concentration and the target value of the smoke outlet NOx concentration (Control output tendency calculating unit 36), and the calculated value of the NOx amount is corrected (first correction coefficient calculating unit 37) based on the time average value.
(3) Second correction means (step): The amount of residual ammonia remaining in the denitration catalyst device 15 is calculated (residual ammonia amount calculation unit 41), and the amount of residual ammonia is within a range where the maximum fluctuation amount of NOx can be processed. The calculated value of the ammonia injection amount is corrected so as to be constant (second correction coefficient calculation unit 43). The maximum fluctuation range of the NOx amount is determined by measuring the NOx concentration by the NOx analyzer 22 installed at the inlet of the denitration catalyst device 15 during the trial operation of the waste treatment facility, and obtaining the average value. Is obtained by multiplying the fluctuation rate of the exhaust gas flow rate (the gas flow rate at the inlet of the denitration catalyst device 15) assumed in (1).
(4) Ammonia forced increase means (process): When the smoke outlet NOx concentration exceeds a set value (for example, 80% of the regulation value), the ammonia blowing amount is forcibly increased for a certain time (ammonia forced increase portion 45). At the same time, the calculated value of the residual ammonia amount is corrected (residual ammonia amount calculation unit 41).

以下、脱硝制御装置10の構成及び動作について詳細に説明する。
脱硝触媒装置入口NOx濃度算出部31では、誘引通風機14と脱硝触媒装置15との間に設置したNOx分析計22の出力に基づいて脱硝触媒装置15入口におけるNOx濃度を算出する。また、排ガス流量算出部30では、煙突16に設置された排ガス流量計24の出力に基づいて排ガス流量を算出する。脱硝触媒装置入口NOx濃度算出部31で算出された脱硝触媒装置入口NOx濃度と排ガス流量算出部30で算出された排ガス流量は、NOx量算出部35において掛け合わされ、脱硝触媒装置15入口におけるNOx量が算出される。
Hereinafter, the configuration and operation of the denitration control device 10 will be described in detail.
The NOx concentration calculator 31 at the inlet of the NOx removal catalyst device calculates the NOx concentration at the inlet of the NOx removal catalyst device 15 based on the output of the NOx analyzer 22 installed between the induction fan 14 and the NOx removal catalyst device 15. Further, the exhaust gas flow rate calculation unit 30 calculates the exhaust gas flow rate based on the output of the exhaust gas flow meter 24 installed in the chimney 16. The NOx concentration calculated at the NOx concentration calculating unit 31 at the NOx removal catalyst device and the exhaust gas flow rate calculated at the exhaust gas flow rate calculating unit 30 are multiplied by the NOx amount calculating unit 35 to obtain the NOx amount at the inlet of the NOx removal catalyst device 15. Is calculated.

一方、煙突出口NOx濃度調節部32では、煙突16に設置したNOx分析計23の出力に基づいて制御出力(操作出力)を算出する。具体的には、NOx分析計23により得られた煙突出口における煙突出口NOx濃度の測定値と、図示しない入力装置を用いて入力された煙突出口NOx濃度の目標値との偏差に比例する制御出力を0〜100%の範囲で算出する。
そして、制御出力傾向演算部36において、制御出力の時間平均値(例えば1時間当たりの制御出力の平均値)が算出され、制御出力の時間平均値に基づいて、前述したNOx量算出部35において算出された脱硝触媒装置15入口におけるNOx量を補正するための第1補正係数が第1補正係数算出部37において算出される。第1補正係数算出部37では、図3に示すような制御出力と第1補正係数との関係に基づいて第1補正係数を算出する。即ち、制御出力がb%以上b%以下の場合は第1補正係数を1とし、制御出力がb%未満の場合は、制御出力の大きさに応じて第1補正係数を1より小さくする(例えば、制御出力0%のとき第1補正係数を0.9とする。)と共に、制御出力がb%超の場合は、制御出力の大きさに応じて第1補正係数を1より大きくする(例えば、制御出力100%のとき第1補正係数を1.1とする。)。ここで、bとしては例えば20〜30%、bとしては例えば70〜80%とすることができる。
On the other hand, the smoke outlet NOx concentration adjustment unit 32 calculates a control output (operation output) based on the output of the NOx analyzer 23 installed in the chimney 16. Specifically, the control output proportional to the deviation between the measured value of the smoke outlet NOx concentration at the smoke outlet obtained by the NOx analyzer 23 and the target value of the smoke outlet NOx concentration input using an input device (not shown). Is calculated in the range of 0 to 100%.
Then, the control output tendency calculation unit 36 calculates the time average value of the control output (for example, the average value of the control output per hour), and based on the time average value of the control output, the NOx amount calculation unit 35 described above. A first correction coefficient calculation unit 37 calculates a first correction coefficient for correcting the calculated NOx amount at the inlet of the denitration catalyst device 15. The first correction coefficient calculation unit 37 calculates the first correction coefficient based on the relationship between the control output and the first correction coefficient as shown in FIG. That is, when the control output is b 1 % or more and b 2 % or less, the first correction coefficient is set to 1, and when the control output is less than b 1 %, the first correction coefficient is set to 1 according to the magnitude of the control output. When the control output is more than b 2 %, for example, the first correction coefficient is set to 1 according to the magnitude of the control output. (For example, when the control output is 100%, the first correction coefficient is 1.1.) Here, for example, 20% to 30% as b 1, a b 2 may be a 70-80%, for example.

第1補正部38では、NOx量算出部35において算出されたNOx量に、第1補正係数算出部37において算出された第1補正係数を掛け合わせてNOx量の補正を行う。即ち、煙突出口NOx濃度が高くなるとNOx量を増量する補正が行われ、煙突出口NOx濃度が低くなるとNOx量を減量する補正が行われる。 The first correction unit 38 corrects the NOx amount by multiplying the NOx amount calculated by the NOx amount calculation unit 35 by the first correction coefficient calculated by the first correction coefficient calculation unit 37. That is, when the smoke outlet NOx concentration increases, correction for increasing the NOx amount is performed, and when the smoke outlet NOx concentration decreases, correction for decreasing the NOx amount is performed.

アンモニア吹込量算出部40では、図4に示すようなNOx量とアンモニア吹込量との関係に基づいてアンモニア吹込量を算出する。図4の例では、NOx量がc(Nm/h)以下の場合はアンモニア吹込量を一定値とし、最低アンモニア吹込量としている。一方、c(Nm/h)を超えると、NOx量の大きさに応じてアンモニア吹込量を増量するようにしている。ここで、cとしては例えば、最大NOx量を18Nm/hとすると、その1割の1.8Nm/hとすることができる。
なお、アンモニア吹込量は、NOx量にアンモニア当量比(0.7〜1.3)を掛けて算出する。この当量比は、廃棄物処理設備の試運転において、脱硝触媒装置15の入/出のNOx量及び脱硝率を測定、検証して決定する。
The ammonia blowing amount calculation unit 40 calculates the ammonia blowing amount based on the relationship between the NOx amount and the ammonia blowing amount as shown in FIG. In the example of FIG. 4, when the NOx amount is equal to or less than c (Nm 3 / h), the ammonia injection amount is set to a constant value and the minimum ammonia injection amount is set. On the other hand, when c (Nm 3 / h) is exceeded, the ammonia blowing amount is increased according to the amount of NOx. Here, the c example, when the maximum NOx amount is 18 Nm 3 / h, can be converted into their 10% of 1.8 Nm 3 / h.
The ammonia blowing amount is calculated by multiplying the NOx amount by the ammonia equivalent ratio (0.7 to 1.3). This equivalence ratio is determined by measuring and verifying the NOx amount and the NOx removal rate of the NOx removal catalyst device 15 in the trial operation of the waste treatment facility.

次に、脱硝触媒装置15内に残存する残存アンモニア量が一定となるようにアンモニア吹込量を補正する手段(工程)について説明する。
アンモニア流量算出部33では、アンモニア管路21上に設置したアンモニア流量計19の出力に基づいてアンモニア供給装置18から供給されるアンモニア流量を算出する。
残存アンモニア量算出部41では、アンモニア流量算出部33において算出されたアンモニア流量とアンモニア吹込量算出部40において算出されたアンモニア吹込量に基づいて、脱硝触媒装置15内に残存する残存アンモニア量が算出される。具体的には、単位時間当たりのアンモニア吹込量から単位時間当たりのアンモニア消費量を差し引いた値を積算し、その積算値を残存アンモニア量としている。その際、アンモニア流量算出部33において算出されたアンモニア流量を単位時間当たりのアンモニア吹込量とし、アンモニア吹込量算出部40において算出されたアンモニア吹込量を単位時間当たりのアンモニア消費量としている。
Next, means (steps) for correcting the ammonia injection amount so that the residual ammonia amount remaining in the denitration catalyst device 15 is constant will be described.
The ammonia flow rate calculation unit 33 calculates the ammonia flow rate supplied from the ammonia supply device 18 based on the output of the ammonia flow meter 19 installed on the ammonia pipe 21.
The residual ammonia amount calculation unit 41 calculates the residual ammonia amount remaining in the denitration catalyst device 15 based on the ammonia flow rate calculated by the ammonia flow rate calculation unit 33 and the ammonia injection amount calculated by the ammonia injection amount calculation unit 40. Is done. Specifically, the value obtained by subtracting the ammonia consumption amount per unit time from the ammonia blowing amount per unit time is integrated, and the integrated value is used as the residual ammonia amount. At that time, the ammonia flow rate calculated by the ammonia flow rate calculation unit 33 is used as the ammonia injection amount per unit time, and the ammonia injection amount calculated by the ammonia injection amount calculation unit 40 is used as the ammonia consumption amount per unit time.

残存アンモニア量が算出されると、想定されるNOx量の最大変動分を処理できる範囲で残存アンモニア量が一定となるようにアンモニア吹込量を補正するための第2補正係数の算出が第2補正係数算出部43において行われる。
第2補正係数算出部43では、図5に示すような残存アンモニア量と第2補正係数との関係に基づいて第2補正係数を算出する。即ち、残存アンモニア量がdkg以上dkg以下(NOx量の最大変動分を処理できる範囲)の場合は第2補正係数を1とし、残存アンモニア量がdkg未満の場合は、残存アンモニア量の減少に応じて第2補正係数を1より大きくする(例えば、残存アンモニア量が0kgのとき第2補正係数を1.1とする。)と共に、残存アンモニア量がdkg超の場合は、残存アンモニア量の増加に応じて第2補正係数を1より小さくする(例えば、残存アンモニア量dkgのとき第2補正係数を0.9とする。)。ここで、dとしては例えば−4〜−2kg、dとしては例えば5〜6kg、dとしては例えば9〜11kgとすることができる。
When the residual ammonia amount is calculated, the calculation of the second correction coefficient for correcting the ammonia injection amount so that the residual ammonia amount is constant within a range where the maximum fluctuation amount of the assumed NOx amount can be processed is the second correction. This is performed in the coefficient calculation unit 43.
The second correction coefficient calculation unit 43 calculates the second correction coefficient based on the relationship between the residual ammonia amount and the second correction coefficient as shown in FIG. That is, when the residual ammonia amount is d 1 kg or more and d 2 kg or less (the range in which the maximum fluctuation amount of the NOx amount can be processed), the second correction coefficient is set to 1, and when the residual ammonia amount is less than d 1 kg, When the second correction coefficient is made larger than 1 in accordance with the decrease in the ammonia amount (for example, the second correction coefficient is 1.1 when the residual ammonia amount is 0 kg) and the residual ammonia amount exceeds d 2 kg The second correction coefficient is made smaller than 1 as the residual ammonia amount increases (for example, the second correction coefficient is set to 0.9 when the residual ammonia amount is d 3 kg). Here, d 1 can be, for example, −4 to −2 kg, d 2 can be, for example, 5 to 6 kg, and d 3 can be, for example, 9 to 11 kg.

第2補正部42では、アンモニア吹込量算出部40において算出されたアンモニア吹込量に、第2補正係数算出部43において算出された第2補正係数を掛け合わせてアンモニア吹込量の補正を行う。即ち、残存アンモニア量が少なくなるとアンモニア吹込量を増量し、残存アンモニア量が多くなるとアンモニア吹込量を減量することにより、NOx量の最大変動分を処理できる範囲で残存アンモニア量が一定となるようにアンモニア吹込量が補正される。 The second correction unit 42 corrects the ammonia injection amount by multiplying the ammonia injection amount calculated by the ammonia injection amount calculation unit 40 by the second correction coefficient calculated by the second correction coefficient calculation unit 43. That is, when the residual ammonia amount decreases, the ammonia injection amount is increased, and when the residual ammonia amount increases, the ammonia injection amount is decreased so that the residual ammonia amount becomes constant within a range where the maximum fluctuation amount of the NOx amount can be processed. Ammonia injection amount is corrected.

また、本脱硝制御装置10では、排ガス流量算出部30において算出された排ガス流量に基づいてアンモニア吹込量の補正を行うFF補正部34と、煙突出口NOx濃度調節部32において算出された制御出力に基づいてアンモニア吹込量の補正を行うFB補正部39とを備えている。
FF補正部34では、図6に示すような排ガス量とアンモニア吹込量との関係に基づいてアンモニア吹込量の補正量を算出し、FB補正部39では、図7に示すような制御出力とアンモニア吹込量との関係に基づいてアンモニア吹込量の補正量を算出する。因みに、図6の例では、排ガス量がe(Nm/h)以下の場合はアンモニア吹込量を一定値とし、e(Nm/h)を超えると、排ガス量の大きさに応じてアンモニア吹込量を増量するようにしている。また、図7の例では、制御出力とアンモニア吹込量とが正比例の関係にあるとしている。ここで、eとしては例えば、最大排ガス流量を40000Nm/hとすると、その1割の4000Nm/hとすることができる。
Further, in the present denitration control device 10, the FF correction unit 34 that corrects the ammonia injection amount based on the exhaust gas flow rate calculated by the exhaust gas flow rate calculation unit 30, and the control output calculated by the smoke outlet NOx concentration adjustment unit 32. And an FB correction unit 39 that corrects the ammonia injection amount based on the FB correction unit 39.
The FF correction unit 34 calculates the correction amount of the ammonia injection amount based on the relationship between the exhaust gas amount and the ammonia injection amount as shown in FIG. 6, and the FB correction unit 39 controls the control output and ammonia as shown in FIG. The correction amount of the ammonia injection amount is calculated based on the relationship with the injection amount. Incidentally, in the example of FIG. 6, when the amount of exhaust gas is e (Nm 3 / h) or less, the ammonia injection amount is set to a constant value, and when it exceeds e (Nm 3 / h), the ammonia is increased according to the amount of exhaust gas. The amount of blowing is increased. In the example of FIG. 7, the control output and the ammonia injection amount are in a directly proportional relationship. Here, the e example, if the maximum exhaust gas flow rate and 40000Nm 3 / h, can be converted into their 10% of 4000 Nm 3 / h.

第2補正部42において補正されたアンモニア吹込量は、加算部44において、FF補正部34及びFB補正部39によって算出されたアンモニア吹込量の各補正量と合算され、アンモニア吹込量の目標値とされる。 The ammonia injection amount corrected in the second correction unit 42 is added together with each correction amount of the ammonia injection amount calculated by the FF correction unit 34 and the FB correction unit 39 in the addition unit 44, and the target value of the ammonia injection amount is obtained. Is done.

アンモニア流量調節部47では、アンモニア流量算出部33により得られたアンモニア吹込量(アンモニア流量)の測定値と、加算部44によって算出されたアンモニア吹込量の目標値との偏差に比例する制御信号を出力し、制御弁20の開閉度を制御する。 The ammonia flow rate adjustment unit 47 generates a control signal proportional to the deviation between the measured value of the ammonia injection amount (ammonia flow rate) obtained by the ammonia flow rate calculation unit 33 and the target value of the ammonia injection amount calculated by the addition unit 44. Output and control the degree of opening and closing of the control valve 20.

上記一連の動作が脱硝制御装置10における平時の動作であるが、算出値と測定値との間に生じる累積誤差により、煙突出口NOx濃度が設定値を超えた場合の動作であるアンモニア強制増量手段(工程)について説明する。
アンモニア強制増量部45では、煙突出口NOx濃度調節部32を介して得られる煙突出口NOx濃度が、上限値(規制値)より低い値に設定された設定値(例えば、規制値の8割の値)を超える(図8(A)のt時刻参照)と、アンモニア吹込量を強制的に増量(例えば、平均アンモニア吹込量を3.5kg/hとすると、その量の2倍の7kg/hを吹き込む。)する(図8(B)のt時刻参照)。そして、煙突出口NOx濃度が下限値(例えば、規制値の4割の値)を下回る(図8(A)のt時刻参照)と、図示しないタイマーが作動し、t時刻から所定時間(例えば5分)経過した後、アンモニア吹込量の増量を停止する(図8(B)のt時刻参照)。
また上記動作と連動して、残存アンモニア量算出部41では、煙突出口NOx濃度が下限値を下回った時点(t時刻)で残留アンモニア量をゼロにリセット(補正)し、演算値と実際の値とのズレを解消する。
The above-described series of operations is a normal operation in the denitration control apparatus 10, but the ammonia forced increase means is an operation when the smoke outlet NOx concentration exceeds the set value due to an accumulated error between the calculated value and the measured value. (Process) will be described.
In the ammonia forced increase unit 45, the smoke outlet NOx concentration obtained through the smoke outlet NOx concentration adjusting unit 32 is set to a value lower than the upper limit (regulated value) (for example, 80% of the regulated value). ) (See time t 1 in FIG. 8A), the amount of ammonia injected is forcibly increased (for example, if the average amount of ammonia injected is 3.5 kg / h, it is 7 kg / h, twice that amount). the blown.) Referring t 1 time (FIG. 8 (B)). Then, the lower limit chimney outlet NOx concentration (e.g., 40% of the value of the regulation value) below (Fig. 8 (see t 2 time A)), a timer (not shown) is operated, t 2 time from a predetermined time ( for example, 5 minutes) after the elapse of, stops the increase of the ammonia blown amount reference t 2 time (FIG. 8 (B)).
Also in conjunction with the operation, the residual ammonia amount calculating unit 41, a residual ammonia amount when the chimney outlet NOx concentration below the lower limit (t 2 time) and reset (corrected) to zero, and the actual calculated value The deviation from the value is eliminated.

なお、アンモニア流量調節部47の前段には、加算部44の出力とアンモニア強制増量部45の出力との間で切替を行う切替部46が設けられている。切替部46では、平時、加算部44の出力が選択されるが、アンモニア吹込量を強制的に増量する場合は、その間、アンモニア強制増量部45の出力が選択される。 A switching unit 46 that switches between the output of the addition unit 44 and the output of the ammonia forced increase unit 45 is provided in the preceding stage of the ammonia flow rate adjustment unit 47. In the switching unit 46, the output of the addition unit 44 is selected during normal times, but when the ammonia injection amount is forcibly increased, the output of the ammonia forced increase unit 45 is selected during that time.

図9は、排ガス中のNOx濃度の低減効果について、本発明の一実施の形態に係る脱硝制御方法と従来の脱硝制御方法とを比較した試験結果を示したものである。同図より、本実施の形態に係る脱硝制御方法によれば、煙突出口NOx濃度が目標値20ppm以下に制御され、20ppmを超えるピークが抑えられていることがわかる。また、煙突出口NOx濃度が0ppm付近となることもなくなり、無駄吹きも改善されていることがわかる。 FIG. 9 shows the test results comparing the denitration control method according to an embodiment of the present invention and the conventional denitration control method with respect to the NOx concentration reduction effect in the exhaust gas. From the figure, it can be seen that according to the denitration control method according to the present embodiment, the smoke outlet NOx concentration is controlled to the target value of 20 ppm or less, and the peak exceeding 20 ppm is suppressed. In addition, it can be seen that the smoke outlet NOx concentration does not become around 0 ppm, and the waste blowing is improved.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、誘引通風機と脱硝触媒装置との間に設置したNOx分析計を用いて脱硝触媒装置入口NOx濃度を求めているが、煙突出口NOx濃度に比例する制御出力の時間平均値に基づいてNOx量を補正するので、誘引通風機と脱硝触媒装置との間にNOx分析計を設置せず、脱硝触媒装置入口NOx濃度を固定値としてもよい。また、上記実施の形態では、煙突出口NOx濃度調節部やアンモニア流量調節部では、制御出力を偏差に比例させるP制御としているが、それに加えて偏差の積分や微分に比例するPID制御としてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above embodiment, the NOx concentration at the inlet of the denitration catalyst device is obtained using the NOx analyzer installed between the induction fan and the denitration catalyst device, but the control output time proportional to the NOx concentration at the smoke outlet is obtained. Since the NOx amount is corrected based on the average value, the NOx analyzer may not be installed between the induction fan and the denitration catalyst device, and the NOx concentration at the inlet of the denitration catalyst device may be a fixed value. In the above embodiment, the smoke outlet NOx concentration adjusting unit and the ammonia flow rate adjusting unit use P control that makes the control output proportional to the deviation, but in addition, PID control that is proportional to the integral and derivative of the deviation may be used. .

10:脱硝制御装置、11:ボイラ、12:排ガス温度調節器、13:濾過式集塵器、14:誘引通風機、15:脱硝触媒装置、16:煙突、17:排ガス管路、18:アンモニア供給装置、19:アンモニア流量計、20:制御弁、21:アンモニア管路、22、23:NOx分析計、24:排ガス流量計、30:排ガス流量算出部、31:脱硝触媒装置入口NOx濃度算出部、32:煙突出口NOx濃度調節部、33:アンモニア流量算出部、34:FF補正部、35:NOx量算出部、36:制御出力傾向演算部、37:第1補正係数算出部、38:第1補正部、39:FB補正部、40:アンモニア吹込量算出部、41:残存アンモニア量算出部、42:第2補正部、43:第2補正係数算出部、44:加算部、45:アンモニア強制増量部、46:切替部、47:アンモニア流量調節部 10: Denitration control device, 11: Boiler, 12: Exhaust gas temperature controller, 13: Filtration type dust collector, 14: Induction fan, 15: Denitration catalyst device, 16: Chimney, 17: Exhaust gas line, 18: Ammonia Supply device, 19: ammonia flow meter, 20: control valve, 21: ammonia pipe, 22, 23: NOx analyzer, 24: exhaust gas flow meter, 30: exhaust gas flow rate calculation unit, 31: NOx concentration calculation at denitration catalyst device inlet Unit: 32: smoke outlet NOx concentration adjusting unit, 33: ammonia flow rate calculating unit, 34: FF correcting unit, 35: NOx amount calculating unit, 36: control output tendency calculating unit, 37: first correction coefficient calculating unit, 38: First correction unit, 39: FB correction unit, 40: ammonia injection amount calculation unit, 41: residual ammonia amount calculation unit, 42: second correction unit, 43: second correction coefficient calculation unit, 44: addition unit, 45: Strong ammonia Bulking unit, 46: switch unit, 47: ammonia flow rate regulator

Claims (6)

廃棄物処理炉から排出される排ガスを処理する排ガス処理設備に備えられた脱硝触媒装置にアンモニアを吹込んで前記排ガス中の窒素酸化物(NOx)を分解することにより、前記排ガスを排出する煙突出口における煙突出口NOx濃度を低減する脱硝制御装置において、
前記脱硝触媒装置入口における排ガス中のNOx量を算出し、算出された前記NOx量に基づいて前記脱硝触媒装置に吹込むアンモニア吹込量を算出する手段と、単位時間当たりのアンモニア吹込量から単位時間当たりのアンモニア消費量を差し引いた値を積算し、その算出値を前記脱硝触媒装置内に残存する残存アンモニア量とし、前記残存アンモニア量が前記NOx量の最大変動分を窒素と水に分解できる一定範囲となるように前記アンモニア吹込量を補正する手段とを備えることを特徴とする脱硝制御装置。
ただし、前記NOx量の最大変動分は、前記排ガス処理設備の試運転時に、前記脱硝触媒装置入口に設置したNOx分析計によりNOx濃度を測定して平均値を求めておき、その値に、前記排ガス処理設備で想定される排ガス流量の変動率を掛けて求める。
A smoke outlet for discharging the exhaust gas by decomposing nitrogen oxide (NOx) in the exhaust gas by injecting ammonia into a denitration catalyst device provided in an exhaust gas treatment facility for treating the exhaust gas discharged from the waste treatment furnace In a denitration control device that reduces the NOx concentration at the smoke outlet in
Means for calculating the amount of NOx in the exhaust gas at the inlet of the denitration catalyst device, calculating the amount of ammonia blown into the denitration catalyst device based on the calculated amount of NOx, and unit time from the amount of ammonia blown per unit time The value obtained by subtracting the amount of ammonia consumed per unit is integrated, and the calculated value is used as the amount of residual ammonia remaining in the denitration catalyst device. The amount of residual ammonia is constant so that the maximum fluctuation of the NOx amount can be decomposed into nitrogen and water. A denitration control apparatus comprising: means for correcting the ammonia injection amount so as to be in a range .
However, the maximum fluctuation amount of the NOx amount is determined by measuring the NOx concentration with a NOx analyzer installed at the inlet of the denitration catalyst device during a trial operation of the exhaust gas treatment facility, and obtaining the average value. Obtained by multiplying the fluctuation rate of the exhaust gas flow rate assumed in the treatment facility.
請求項1記載の脱硝制御装置において、前記煙突出口NOx濃度が設定値を超えると、前記アンモニア吹込量を一定時間強制的に増量すると共に、前記残存アンモニア量の算出値を補正する手段を備えることを特徴とする脱硝制御装置。 2. The denitration control apparatus according to claim 1, further comprising means for forcibly increasing the ammonia injection amount for a predetermined time and correcting the calculated value of the residual ammonia amount when the NOx concentration at the smoke outlet exceeds a set value. A denitration control device. 請求項1又は2記載の脱硝制御装置において、前記煙突出口NOx濃度の測定値と前記煙突出口NOx濃度の目標値との偏差に比例する制御出力の時間平均値に基づいて前記NOx量を補正する手段を備えることを特徴とする脱硝制御装置。 3. The NOx removal control apparatus according to claim 1, wherein the NOx amount is corrected based on a time average value of control output proportional to a deviation between a measured value of the smoke outlet NOx concentration and a target value of the smoke outlet NOx concentration. A denitration control device comprising means. 廃棄物処理炉から排出される排ガスを処理する排ガス処理設備に備えられた脱硝触媒装置にアンモニアを吹込んで前記排ガス中の窒素酸化物(NOx)を分解することにより、前記排ガスを排出する煙突出口における煙突出口NOx濃度を低減する脱硝制御方法において、
前記脱硝触媒装置入口における排ガス中のNOx量を算出し、算出された前記NOx量に基づいて前記脱硝触媒装置に吹込むアンモニア吹込量を算出する工程と、単位時間当たりのアンモニア吹込量から単位時間当たりのアンモニア消費量を差し引いた値を積算し、その算出値を前記脱硝触媒装置内に残存する残存アンモニア量とし、前記残存アンモニア量が前記NOx量の最大変動分を窒素と水に分解できる一定範囲となるように前記アンモニア吹込量を補正する工程とを備えることを特徴とする脱硝制御方法。
ただし、前記NOx量の最大変動分は、前記排ガス処理設備の試運転時に、前記脱硝触媒装置入口に設置したNOx分析計によりNOx濃度を測定して平均値を求めておき、その値に、前記排ガス処理設備で想定される排ガス流量の変動率を掛けて求める。
A smoke outlet for discharging the exhaust gas by decomposing nitrogen oxide (NOx) in the exhaust gas by injecting ammonia into a denitration catalyst device provided in an exhaust gas treatment facility for treating the exhaust gas discharged from the waste treatment furnace In the denitration control method for reducing the NOx concentration at the smoke outlet in
Calculating the amount of NOx in exhaust gas at the inlet of the denitration catalyst device, calculating the amount of ammonia blown into the denitration catalyst device based on the calculated amount of NOx, and unit time from the amount of ammonia blown per unit time The value obtained by subtracting the amount of ammonia consumed per unit is integrated, and the calculated value is used as the amount of residual ammonia remaining in the denitration catalyst device. The amount of residual ammonia is constant so that the maximum fluctuation of the amount of NOx can be decomposed into nitrogen and water. And a step of correcting the ammonia injection amount so as to be in a range .
However, the maximum fluctuation amount of the NOx amount is determined by measuring the NOx concentration with a NOx analyzer installed at the inlet of the denitration catalyst device during a trial operation of the exhaust gas treatment facility, and obtaining the average value. Obtained by multiplying the fluctuation rate of the exhaust gas flow rate assumed in the treatment facility.
請求項4記載の脱硝制御方法において、前記煙突出口NOx濃度が設定値を超えると、前記アンモニア吹込量を一定時間強制的に増量すると共に、前記残存アンモニア量の算出値を補正する工程を備えることを特徴とする脱硝制御方法。 5. The denitration control method according to claim 4, further comprising a step of forcibly increasing the ammonia injection amount for a predetermined time and correcting the calculated value of the residual ammonia amount when the smoke outlet NOx concentration exceeds a set value. A denitration control method. 請求項4又は5記載の脱硝制御方法において、前記煙突出口NOx濃度の測定値と前記煙突出口NOx濃度の目標値との偏差に比例する制御出力の時間平均値に基づいて前記NOx量を補正する工程を備えることを特徴とする脱硝制御方法。 6. The denitration control method according to claim 4 or 5, wherein the NOx amount is corrected based on a time average value of a control output proportional to a deviation between a measured value of the smoke outlet NOx concentration and a target value of the smoke outlet NOx concentration. A denitration control method comprising a step.
JP2010194515A 2010-08-31 2010-08-31 Denitration control device and denitration control method Active JP5677787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194515A JP5677787B2 (en) 2010-08-31 2010-08-31 Denitration control device and denitration control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194515A JP5677787B2 (en) 2010-08-31 2010-08-31 Denitration control device and denitration control method

Publications (2)

Publication Number Publication Date
JP2012050912A JP2012050912A (en) 2012-03-15
JP5677787B2 true JP5677787B2 (en) 2015-02-25

Family

ID=45904921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194515A Active JP5677787B2 (en) 2010-08-31 2010-08-31 Denitration control device and denitration control method

Country Status (1)

Country Link
JP (1) JP5677787B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869464B2 (en) * 2012-11-28 2016-02-24 本田技研工業株式会社 Exhaust gas purification system for internal combustion engine
JP6204137B2 (en) * 2013-09-30 2017-09-27 三浦工業株式会社 Exhaust gas boiler with denitration equipment
CN108159881B (en) * 2018-01-10 2020-03-06 中国大唐集团科学技术研究院有限公司华东分公司 SCR denitration follow-up control system and method based on optimized operation
CN111582639B (en) * 2020-04-01 2023-03-24 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Denitration system running state evaluation system
CN113433980B (en) * 2021-04-27 2022-08-26 国能南京电力试验研究有限公司 Calculating denitration inlet NO under blowing working condition by system error method x Method for measuring values
CN113447614B (en) * 2021-06-21 2022-08-09 中国原子能科学研究院 Method for measuring denitration rate in radioactive waste liquid calcination process
CN115463543B (en) * 2022-07-28 2023-06-16 华电电力科学研究院有限公司 Accurate ammonia system that spouts of coal-fired unit SCR denitration

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia
JPS60257823A (en) * 1984-06-05 1985-12-19 Babcock Hitachi Kk Apparatus for controlling injection amount of ammonia
JPH0263524A (en) * 1988-08-30 1990-03-02 Sumitomo Metal Ind Ltd Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JP3248920B2 (en) * 1991-02-21 2002-01-21 住友ケミカルエンジニアリング株式会社 DeNOx method
JP3574889B2 (en) * 1998-03-25 2004-10-06 日立造船株式会社 Ammonia injection amount control method for denitration equipment
JP3857460B2 (en) * 1999-03-16 2006-12-13 バブコック日立株式会社 Denitration control device
JP3902737B2 (en) * 2001-12-03 2007-04-11 新日鉄エンジニアリング株式会社 Ammonia injection control method for denitration catalyst device of waste treatment facility
JP3951774B2 (en) * 2002-03-29 2007-08-01 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP4792696B2 (en) * 2003-12-15 2011-10-12 Jfeエンジニアリング株式会社 Denitration control method, denitration control device and program thereof
JP4455349B2 (en) * 2005-01-17 2010-04-21 株式会社神鋼環境ソリューション NOx treatment method and apparatus for waste treatment facility
JP4598843B2 (en) * 2008-06-03 2010-12-15 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine
JP2010053703A (en) * 2008-08-26 2010-03-11 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Also Published As

Publication number Publication date
JP2012050912A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5677787B2 (en) Denitration control device and denitration control method
TWI450755B (en) Method of controlling the operation of a selective catalytic reduction plant
JP5089638B2 (en) Ammonia injection amount correction control apparatus and ammonia injection amount correction control method
JP2017200668A (en) Exhaust gas desalination apparatus
TWI450754B (en) Method for treating acidic gas
CN114307627B (en) Denitration adjusting method based on theoretical ammonia consumption
JP2006192406A (en) METHOD AND APPARATUS FOR TREATING NOx OF WASTE TREATMENT FACILITY
US20170167341A1 (en) System and method for emission control in power plants
JP5838034B2 (en) Denitration control method and exhaust gas treatment facility
JP4792696B2 (en) Denitration control method, denitration control device and program thereof
JP4668852B2 (en) Denitration equipment for combustion equipment
CN106139899A (en) The SCR denitration control system of incinerator and method
CN108919845B (en) Automatic control method for nitrogen oxide concentration of denitration system
JP2008104912A (en) Ammonia gas-supplying system, ammonia gas-supplying method, and ammonia gas-supplying program
JP4786632B2 (en) Control device and control method for denitration apparatus
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JPH11333251A (en) Method and device for regulating amount of ammonia to be injected of denitration apparatus
US20110036279A1 (en) NOx reduction control system for boilers
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JP7106834B2 (en) Desulfurization equipment operating method, desulfurization control equipment
JP3568614B2 (en) Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas
JP2004355329A (en) Process value controlling method and device
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
Zhu et al. Application of cascade PID plus feedforward in automatic denitration control
JP3611026B2 (en) Smoke removal equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150105

R150 Certificate of patent or registration of utility model

Ref document number: 5677787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250