JP3653599B2 - Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment - Google Patents

Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment Download PDF

Info

Publication number
JP3653599B2
JP3653599B2 JP00158296A JP158296A JP3653599B2 JP 3653599 B2 JP3653599 B2 JP 3653599B2 JP 00158296 A JP00158296 A JP 00158296A JP 158296 A JP158296 A JP 158296A JP 3653599 B2 JP3653599 B2 JP 3653599B2
Authority
JP
Japan
Prior art keywords
ammonia
molar ratio
nox concentration
signal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00158296A
Other languages
Japanese (ja)
Other versions
JPH09187625A (en
Inventor
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP00158296A priority Critical patent/JP3653599B2/en
Publication of JPH09187625A publication Critical patent/JPH09187625A/en
Application granted granted Critical
Publication of JP3653599B2 publication Critical patent/JP3653599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速負荷変動時にアンモニア注入量制御の追従性を高めた排煙脱硝設備のアンモニア注入量制御装置及び方法に関する。
【0002】
【従来の技術】
図4は従来の排煙脱硝設備アンモニア注入量制御装置の構成を示すブロック図である。
本図に示すように排煙脱硝設備の排ガス流量計1からの排ガス流量信号33と入口NOx濃度計2からの入口NOx濃度信号34を乗算器7aで乗算して入口NOx量信号21を得る。一方出口NOx濃度設定器3からの出口NOx濃度設定信号35を引算器8aにに入力し、入口NOx濃度計2からの入口NOx濃度信号34を引算器8a及び割算器9に入力し、演算により必要脱硝率信号10を得る。この必要脱硝率信号10を関数発生器11に入力し、演算により必要モル比信号13を得る。出口NOx濃度設定器3からの出口NOx濃度設定信号35と出口NOx濃度計4からの出口NOx濃度信号36との偏差信号37を引算器8bで求め、調節計12aで信号処理してフィードバックモル比信号15を得る。このフィードバックモル比信号15は現在計測した出口NOx濃度と出口NOx濃度設定値とから求められ偏差に基づきアンモニア必要モル比を補正し、ネガティブフィードバック的に制御するものである。必要モル比信号13とフィードバックモル比信号15を加算器14aで加算して全モル比信号16を得て、乗算器7aからの入口NOx量信号21と乗算器7bで乗算して必要アンモニア流量信号22を得る。次に負荷要求信号38を微分器17及び二階微分器18でそれぞれ微分演算した負荷一階微分信号39及び負荷二階微分信号40を加算器14bに入力し、乗算器7bからの必要アンモニア流量信号22と加算してアンモニア流量要求信号19を得る。このアンモニア流量要求信号19とフィードバック値であるアンモニア流量計6からのアンモニア流量信号41との偏差信号42を引算器8cで求め、調節計12bで制御出力としての処理を行い制御信号43をアンモニア流量調節弁20へ出力する。制御信号43によりアンモニア流量調節弁20を開閉して排煙脱硝設備へのアンモニア注入量を制御し、排煙脱硝設備出口NOx濃度を所定の値に抑制している。この制御系は基本的に入口NOx量信号21に対する先行値の必要モル比信号13、出口NOx濃度信号36、出口NOx濃度設定信号35との偏差信号37によるフィードバックモル比信号15の補正及び負荷要求信号38に対する動的先行値の負荷一階微分信号39、負荷二階微分信号40によりアンモニア注入量を制御するものである。なお、動的先行値は、アンモニア注入量の変化に対する脱硝反応を通常10分程度補償するために設けられている。
【0003】
最近では火力プラントの高速負荷変化率運転に伴い脱硝負荷の変動が急激になり、排煙脱硝設備の出口NOx濃度設定値信号35に対する出口NOx濃度の追従性を向上させることが不可欠となっている。例えば、負荷上昇時には脱硝負荷の増加に対して負荷要求信号38に対する動的先行制御によりアンモニアが多量注入され、出口NOx濃度は一旦出口NOx濃度設定値に抑制できるが、脱硝負荷が一定になるとアンモニアは過剰となり脱硝率は急上昇して出口NOx濃度は極端に低下するものの排ガス中のリークアンモニアが問題になる。
【0004】
【発明が解決しようとする課題】
上記従来技術は、脱硝負荷の変動が急激に変化した場合、特に負荷上昇時の動的先行制御によりアンモニアが多量に注入された後の追従性は必ずしも満足できるものではなく、必要以上にアンモニアを注入することによる排ガス中のリークアンモニアが増加したり消費量が大きくなる問題がある。
本発明の目的は、排煙脱硝設備の高速負荷変動時にアンモニア注入量制御の追従性を高めることにある。
【0005】
【課題を解決するための手段】
上記目的は、アンモニア接触還元法による排煙脱硝設備の入口NOx濃度と出口NOx濃度設定値を入力しアンモニア必要モル比を演算するアンモニア必要モル比演算手段と、前記出口NOx濃度設定値と前記排煙脱硝設備の出口NOx濃度とアンモニア注入量を入力し、過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係を有する自己回帰モデルにより将来の排煙脱硝設備出口NOx濃度を予測し、予測した排煙脱硝設備出口NOx濃度を用いてアンモニアモル比補正信号を出力する予測制御手段と、前記アンモニア必要モル比と該アンモニアモル比補正信号を入力し先行値アンモニアモル比を出力する先行値アンモニアモル演算手段と、負荷要求信号と微粉炭ミル起動停止指令信号を入力して入口NOx濃度のピークを補償する動的先行モル比信号をファジイ演算するファジイ制御手段と、前記先行値アンモニアモル比を該動的先行モル比信号により補正しアンモニア全モル比を出力する全モル比演算手段と、該アンモニア全モル比と入口NOx量を入力し必要アンモニア量を演算する必要アンモニア量演算手段と、該必要アンモニア量と注入アンモニアフィードバック値を入力し注入アンモニア量調整弁制御量を出力する注入アンモニア量制御手段とを有することにより達成される。
【0006】
上記目的は、アンモニア接触還元法による排煙脱硝設備の入口NOx濃度と出口NOx濃度設定値を入力してアンモニア必要モル比を演算し、前記出口NOx濃度設定値と前記排煙脱硝設備の出口NOx濃度とアンモニア注入量を入力して過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係を有する自己回帰モデルにより将来の排煙脱硝設備出口NOx濃度を予測し、予測した排煙脱硝設備出口NOx濃度を用いてアンモニアモル比補正信号を出力し、前記アンモニア必要モル比と該アンモニアモル比補正信号を入力して先行値アンモニアモル比を出力し、負荷要求信号と微粉炭ミル起動停止指令信号を入力して入口NOx濃度のピークを補償する動的先行モル比信号をファジイ演算し、前記先行値アンモニアモル比を該動的先行モル比信号により補正してアンモニア全モル比を出力し、該アンモニア全モル比と入口NOx量を入力して必要アンモニア量を演算し、該必要アンモニア量と注入アンモニアフィードバック値を入力して注入アンモニア量調整弁制御量を出力することにより達成される。
【0007】
上記構成は、従来の必要アンモニア量の負荷変化率による動的先行制御に代わり、過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係をサンプリング周期毎のデータを用いて同定した自己回帰モデルにより将来の排煙脱硝設備の出口NOx濃度を予測してアンモニア必要モル比を補正することにより、過去のデータに基づいて予測制御を行い脱硝反応の大きな遅れを補償して高速負荷変動時にもアンモニア注入量制御の追従性を高めて従来の動的先行制御によるアンモニアの大量注入を阻止し、リークアンモニア、アンモニア消費量の増加を防止することができる。予測制御により従来の出口NOx濃度と出口NOx濃度設定値とから求められアンモニアモル比の指標であるアンモニアフィードバックモル比を求めるフィードバックモル比手段によるネガティブフィードバック的なアンモニアモル比の補正は不要となる。
【0008】
また、負荷要求信号と微粉炭ミル起動停止指令信号を入力して入口NOx濃度のピークを補償するように動的先行モル比信号をファジイ演算することにより、微粉炭ミル起動停止に伴う排煙脱硝設備入口NOx濃度のステップ状の急激な変化に対してはフィードフォワードファジイにより滑らかにアンモニア注入量を先行制御し対応することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図により説明する。
図1は本発明の実施の形態の排煙脱硝設備アンモニア注入量制御装置の構成を示すブロック図である。
本図に示すアンモニア注入量制御装置は図4に示す排煙脱硝設備のアンモニア注入量制御装置の調節計12aが出力するフィードバックモル比信号15に代わり予測制御装置30が出力するアンモニアモル比補正信号31を加算器14aへ入力し、かつ加算器14bへ入力する負荷一階微分信号39、負荷二階微分信号40を出力する微分器17、二階微分器18に代わり負荷要求信号50と微粉炭ミル起動停止指令信号51を入力し入口NOx濃度のピークを補償するようにファジイ演算して動的先行モル比信号53を出力するファジイ演算器52を設けたものである。微粉炭ミル起動停止指令信号51は石炭焚ボイラの微粉炭ミルを起動・停止する指令であり、微粉炭ミルの起動は微粉炭ミルからボイラ火炉へ微粉炭が供給され微粉炭が燃焼して排ガスが排煙脱硝設備に流入し、脱硝負荷が急激に増加することを意味している。一方微粉炭ミルの停止は微粉炭の燃焼が停止して脱硝負荷が急激に減少することを意味している。このように微粉炭ミル起動停止指令信号51は脱硝負荷の極めて急激な増加または急激な減少の先行信号となる。
【0010】
予測制御装置30には出口NOx濃度設定器3からの出口NOx濃度設定信号35と出口NOx濃度計4からの出口NOx濃度信号36とアンモニア流量計6からのアンモニア流量信号41が入力され、過去のアンモニアモル比と排煙脱硝設備の出口NOx濃度との因果関係をデータを用いて同定した自己回帰モデルにより将来のサンプリング周期毎の排煙脱硝設備の出口NOx濃度が予測される。この将来の排煙脱硝設備出口NOx濃度と出口NOx濃度設定信号35との間の制御偏差の自乗積分値とアンモニアモル比のサンプリング周期毎の変化量の自乗積分値の和を最小とするようにアンモニアモル比補正信号31が定められる。
【0011】
アンモニア接触還元法のようにアンモニアの触媒表面への吸着量が脱硝性能を支配するような非線形で複雑なプロセスでは、制御用のシュミレーションモデルを構築することが困難であり、ステップ応答により求められる自己回帰モデルによる手法が有効である。
【0012】
次に予測制御装置30におけるアンモニアモル比補正信号31の演算について詳細に説明する。最初にアンモニアモル比(注入アンモニアモル数/入口NOxモル数)と排煙脱硝設備の出口NOx濃度との因果関係を(1)式の自己回帰モデルで求める。
A(z~ 1)y(k)=B(z~ 1)u(k−1)……………………(1)
【0013】
【数1】

Figure 0003653599
【0014】
【数2】
Figure 0003653599
【0015】
【数3】
Figure 0003653599
【0016】
u(k−1),・ ・ ・ ・,u(k−n)……………………………(10)
y(k),・ ・ ・ ・ ・ ・,y(k−n)……………………………(11)
次に(12)式の評価関数を考える。
【0017】
【数4】
Figure 0003653599
【0018】
ここで、
R:設定値
h:重み係数
M:予測サンプリング数
である。
【0019】
(12)式を最小にする解は(13)式で与えられる。
【0020】
【数5】
Figure 0003653599
【0021】
このようにして(13)式よりアンモニアモル比補正信号31が求められる。
次にファジイ演算器を説明する。
負荷要求信号50と微粉炭ミル起動停止指令信号51を入力し以下のファジイ演算を行う。
制御ルールの前件部としては、負荷要求信号50と微粉炭ミル起動停止指令信号51を信号処理し、負荷変化率と微粉炭ミル起動停止指令後の経過時間とする。即ち、k時刻点における負荷要求信号をx(k)、微粉炭ミル起動停止指令後の経過時間をz(k)とすると、負荷変化率信号Δx(k)は次式となる。
【0022】
Δx(k)=(x(k)−x(k−1))・Sx…………………(14)
ここでSxはスケーリングファクタである。
【0023】
同様にz(k)についてもスケーリングを行う。
【0024】
z´(k)=z(k)・Sz…………………………………………(15)
図2は本発明の実施の形態のメンバシップ関数の例を示す図表である。
【0025】
本図においてファジイ変数を分割するファジイ集合の数は以下のような13個であり、これらの集合にそれぞれラベルを付加する。ラベルは−6から1つ刻みに+6までの整数で表す。
【0026】
{−6,・・・,−1,0,1,・・・,6}={NAL,NVL,NL,NM,NS,NVS,ZE,PVS,PS,PM,PL,PVL,PAL}……………(16)
ここで、
NAL:Negative Absolutely Large
NVL:Negative Very Large
NL :Negative Very
NM :Negative Medium
NS :Negative Small
NVS:Negative Very Small
ZE :Zero
PVS:Positive Very Small
PS :Positive Small
PM :Positive Medium
PL :Positive Large
PVL:Positive Very Large
PAL:Positive Absolutely Large
である。
【0027】
図3は本発明の実施の形態のアンモニア注入モル比を定めるルールを示す図表である。
【0028】
本図に示すように横方向の数列は負荷変化率信号Δx(k)であり、縦方向の数列は微粉炭ミル起動停止指令後の経過時間をz´(k)についてスケーリングを行ったものである。この数表からΔx(k)とz´(k)の状況により公知のMin−Max重心法を用いてアンモニア注入モル比H(k)を求める。求められたアンモニア注入モル比H(k)に制御ゲインKを乗算して制御入力u´を得る。
【0029】
u´(k)=K・H(k)…………………………………………(17)
この制御入力u´により動的先行モル比信号53が与えられる。
【0030】
予測された出口NOx濃度に基づいて定められたアンモニアモル比補正信号31により必要モル比信号13が補正され予測的にアンモニアモル比が確定する。アンモニアモル比補正信号31は加算器14aへ図4と同様に定められた必要モル比信号13と共に入力され先行値モル比信号32が出力される。先行値モル比信号32と動的先行モル比信号53が加算器14bへ入力され全モル比信号16が出力される。全モル比信号16は乗算器7bで入口NOx量信号21と乗算され、アンモニア流量要求信号19が出力される。全モル比と入口NOx量の乗算により要求されるアンモニア流量は得られる。図4に示す従来技術ではアンモニア流量を動的先行値により補正し、本実施の形態ではアンモニアモル比を動的先行モル比により補正した後に全モル比と入口NOx量からアンモニア流量を得ているが両者の間に基本的な相違は無い。本実施の形態のようにアンモニアモル比の段階で動的先行補正する方がファジイ演算ルールを定める上で容易となる。アンモニア流量要求信号19とアンモニア流量計6からのアンモニア流量信号41を引算器8cへ入力し、偏差信号42を求めて調節計12bでPID等の制御処理を行い、制御信号43をアンモニア流量調節弁20へ出力してアンモニア注入量を制御し、排煙脱硝設備出口NOx濃度を所定値に抑制する。
【0031】
このように本実施の形態の制御装置は、必要モル比信号13、アンモニアモル比補正信号31、動的先行モル比信号53を組み合わせたものであり、必要モル比信号13は制御入力のベースを与えアンモニアモル比補正信号31は出口NOx濃度設定値に対するフィードバック補正であり、動的先行モル比信号53は微粉炭ミル起動停止に伴う排煙脱硝設備入口NOx濃度のピークを補償する。
【0032】
従って現時点より1,2,・ ・ ・Mサンプリング数後の将来の排煙脱硝設備出口NOx濃度を予測してアンモニア注入量をフィードバック補正すると共に、微粉炭ミル起動停止により排煙脱硝設備入口NOx濃度のステップ状の急激な変化に対してはフィードフォワードファジイにより滑らかにアンモニア注入量を先行制御し、脱硝反応の大きな遅れを補償して高速負荷変動時にもアンモニア注入量制御の追従性を高めることができる。
【0033】
【発明の効果】
本発明によれば、過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係を同定した自己回帰モデルにより将来の排煙脱硝設備出口NOx濃度を予測してモル比を補正し、排煙脱硝設備入口NOx濃度のステップ状の急激な変化に対してはフィードフォワードファジイによりアンモニア注入量を制御することにより、脱硝反応の大きな遅れを補償して高速負荷変動時にもアンモニア注入量制御の追従性を高めて排煙脱硝設備出口NOx濃度を所定の値に抑制すると同時にリークアンモニア、アンモニア消費量の増加を防止する効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の排煙脱硝設備アンモニア注入量制御装置の構成を示すブロック図である。
【図2】本発明の実施の形態のファジイ演算器メンバシップ関数例を示す図表である。
【図3】本発明の実施の形態のアンモニア注入モル比を定めるルールを示す図表である。
【図4】従来のアンモニア注入量制御装置の構成を示すブロック図である。
【符号の説明】
1 排ガス流量計
2 入口NOx濃度計
3 出口NOx濃度設定器
4 出口NOx濃度計
6 アンモニア流量計
7 乗算器
7a 乗算器
7b 乗算器
8a 引算器
8b 引算器
8c 引算器
9 割算器
10 必要脱硝率信号
11 関数発生器
12a 調節計
12b 調節計
13 必要モル比信号
14a 加算器
14b 加算器
15 フィードバックモル比信号
16 全モル比信号
17 微分器
18 二階微分器
19 アンモニア流量要求信号
20 アンモニア流量調節弁
21 入口NOx量信号
22 必要アンモニア流量信号
30 予測制御装置
31 アンモニアモル比補正信号
32 先行値モル比信号
33 排ガス流量信号
34 入口NOx濃度信号
35 出口NOx濃度設定信号
36 出口NOx濃度信号
37 偏差信号
38 負荷要求信号
39 負荷一階微分信号
40 負荷二階微分信号
41 アンモニア流量信号
42 偏差信号
43 制御信号
50 負荷要求信号
51 微粉炭ミル起動停止指令信号
52 ファジイ演算器
53 動的先行モル比信号[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ammonia injection amount control apparatus and method for a flue gas denitration facility that improves the followability of ammonia injection amount control when a high-speed load fluctuates.
[0002]
[Prior art]
FIG. 4 is a block diagram showing a configuration of a conventional flue gas denitration facility ammonia injection amount control device.
As shown in the figure, the exhaust gas flow rate signal 33 from the exhaust gas flow meter 1 of the flue gas denitration facility and the inlet NOx concentration signal 34 from the inlet NOx concentration meter 2 are multiplied by a multiplier 7a to obtain an inlet NOx amount signal 21. On the other hand, the outlet NOx concentration setting signal 35 from the outlet NOx concentration setting device 3 is input to the subtractor 8a, and the inlet NOx concentration signal 34 from the inlet NOx concentration meter 2 is input to the subtractor 8a and the divider 9. The necessary denitration rate signal 10 is obtained by calculation. This required denitration rate signal 10 is input to the function generator 11 and a required molar ratio signal 13 is obtained by calculation. A deviation signal 37 between the outlet NOx concentration setting signal 35 from the outlet NOx concentration setting device 3 and the outlet NOx concentration signal 36 from the outlet NOx concentration meter 4 is obtained by the subtractor 8b, signal processed by the controller 12a, and fed back to the feedback mole. A ratio signal 15 is obtained. This feedback molar ratio signal 15 is obtained from the currently measured outlet NOx concentration and outlet NOx concentration set value, and corrects the required ammonia molar ratio based on the deviation, and is controlled in a negative feedback manner. The required molar ratio signal 13 and the feedback molar ratio signal 15 are added by an adder 14a to obtain a total molar ratio signal 16, which is multiplied by an inlet NOx amount signal 21 from the multiplier 7a by a multiplier 7b and required ammonia flow rate signal. Get 22. Next, the load first derivative signal 39 and the load second derivative signal 40 obtained by differentiating the load request signal 38 with the differentiator 17 and the second differentiator 18 are input to the adder 14b, and the necessary ammonia flow rate signal 22 from the multiplier 7b is input. To obtain an ammonia flow rate request signal 19. A deviation signal 42 between the ammonia flow rate request signal 19 and the ammonia flow rate signal 41 from the ammonia flow meter 6 as a feedback value is obtained by the subtractor 8c, and the control signal 43 is processed by the controller 12b as a control output. Output to the flow control valve 20. The ammonia flow control valve 20 is opened and closed by the control signal 43 to control the amount of ammonia injected into the flue gas denitration facility, and the NOx concentration at the exhaust gas denitration facility outlet is suppressed to a predetermined value. This control system basically corrects the feedback molar ratio signal 15 by the deviation signal 37 from the required molar ratio signal 13 of the preceding value with respect to the inlet NOx amount signal 21, the outlet NOx concentration signal 36, and the outlet NOx concentration setting signal 35, and the load request. The amount of ammonia injection is controlled by the first-order load differential signal 39 and second-order load differential signal 40 of the dynamic leading value with respect to the signal 38. The dynamic leading value is usually provided to compensate for the denitration reaction with respect to the change of the ammonia injection amount for about 10 minutes.
[0003]
Recently, the fluctuation of the denitration load has become abrupt with the high-speed load change rate operation of the thermal power plant, and it has become essential to improve the followability of the outlet NOx concentration with respect to the outlet NOx concentration set value signal 35 of the flue gas denitration equipment. . For example, when the load rises, a large amount of ammonia is injected by dynamic advance control with respect to the load request signal 38 in response to an increase in the denitration load, and the outlet NOx concentration can be temporarily suppressed to the outlet NOx concentration set value. However, although the NOx removal rate rapidly increases and the outlet NOx concentration decreases extremely, leaked ammonia in the exhaust gas becomes a problem.
[0004]
[Problems to be solved by the invention]
In the above prior art, when the fluctuation of the denitration load changes abruptly, the followability after a large amount of ammonia is injected by the dynamic advance control especially when the load is increased is not always satisfactory. There is a problem that leakage ammonia in the exhaust gas due to the injection increases or the consumption amount increases.
An object of the present invention is to improve the followability of the ammonia injection amount control when the flue gas denitration equipment changes at a high speed load.
[0005]
[Means for Solving the Problems]
The purpose is to input ammonia NOx concentration and outlet NOx concentration set values of the flue gas denitrification facility by the ammonia catalytic reduction method, and to calculate ammonia required molar ratio calculation means for calculating the ammonia required molar ratio, the outlet NOx concentration set value and the exhaust gas. Enter the NOx concentration at the outlet of the smoke denitrification facility and the ammonia injection amount, and predict the future NOx concentration at the outlet of the flue gas denitrification facility by an autoregressive model that has a causal relationship between the past ammonia molar ratio and the NOx concentration at the exhaust flue gas removal facility. A predictive control means for outputting an ammonia molar ratio correction signal using the predicted NOx concentration at the exhaust gas denitrification facility, and an input for inputting the ammonia required molar ratio and the ammonia molar ratio correction signal and outputting the preceding value ammonia molar ratio. Value ammonia mole calculation means, load request signal and pulverized coal mill start / stop command signal are input, and the peak of inlet NOx concentration is Fuzzy control means for fuzzy calculation of the dynamic leading molar ratio signal to be compensated, total mole ratio calculating means for correcting the leading value ammonia molar ratio by the dynamic leading molar ratio signal and outputting the ammonia total molar ratio, and the ammonia Necessary ammonia amount calculation means for calculating the required ammonia amount by inputting the total molar ratio and the inlet NOx amount, and injected ammonia amount control means for inputting the required ammonia amount and the injected ammonia feedback value and outputting an injection ammonia amount adjustment valve control amount Is achieved.
[0006]
The purpose is to calculate the required ammonia molar ratio by inputting the inlet NOx concentration and the outlet NOx concentration set value of the flue gas denitrification facility by the ammonia catalytic reduction method, and the outlet NOx concentration set value and the outlet NOx concentration of the flue gas denitration facility. Enter the concentration and ammonia injection amount, and predict the future NOx concentration at the exhaust flue gas denitrification facility using the autoregressive model that has a causal relationship between the past ammonia molar ratio and the NOx concentration at the flue gas denitrification facility. Output ammonia mole ratio correction signal using equipment outlet NOx concentration, input the required ammonia mole ratio and ammonia mole ratio correction signal, output preceding value ammonia mole ratio, load request signal and pulverized coal mill start / stop Fuzzy calculation is performed on the dynamic leading molar ratio signal that compensates for the peak of the inlet NOx concentration by inputting the command signal, and the leading ammonia phase ratio is Correct by the preceding molar ratio signal and output the total ammonia molar ratio, input the total ammonia molar ratio and the inlet NOx amount, calculate the required ammonia amount, input the required ammonia amount and the injected ammonia feedback value, and inject This is achieved by outputting an ammonia amount adjusting valve control amount.
[0007]
In the above configuration, instead of the conventional dynamic advance control based on the load change rate of the required ammonia amount, the self-identification in which the causal relationship between the past ammonia molar ratio and the NOx concentration at the flue gas denitrification facility is identified using the data for each sampling period. By predicting the outlet NOx concentration of the flue gas denitration facility in the future using the regression model and correcting the required molar ratio of ammonia, predictive control is performed based on past data to compensate for large delays in the denitration reaction and during high-speed load fluctuations. In addition, it is possible to improve the followability of the ammonia injection amount control and to block the large amount of ammonia injection by the conventional dynamic advance control, and to prevent the increase of leakage ammonia and ammonia consumption. It is not necessary to perform negative feedback correction of the ammonia molar ratio by the feedback molar ratio means for obtaining the ammonia feedback molar ratio, which is obtained from the conventional outlet NOx concentration and the outlet NOx concentration set value by predictive control and is an indicator of the ammonia molar ratio.
[0008]
Also, by inputting the load request signal and the pulverized coal mill start / stop command signal and fuzzy calculation of the dynamic leading molar ratio signal so as to compensate for the peak of the inlet NOx concentration, flue gas denitration accompanying the pulverized coal mill start / stop is performed. A sudden change in the NOx concentration at the facility inlet can be handled by controlling the ammonia injection amount smoothly by feedforward fuzzy.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a flue gas denitration facility ammonia injection amount control apparatus according to an embodiment of the present invention.
The ammonia injection amount control device shown in this figure is an ammonia molar ratio correction signal output by the prediction control device 30 in place of the feedback molar ratio signal 15 output by the controller 12a of the ammonia injection amount control device of the flue gas denitration equipment shown in FIG. 31 is input to the adder 14a and input to the adder 14b. The load request signal 50 and the pulverized coal mill are activated instead of the load first-order differential signal 39, the differentiator 17 that outputs the load second-order differential signal 40, and the second-order differentiator 18. A fuzzy calculator 52 is provided which inputs a stop command signal 51 and performs a fuzzy calculation so as to compensate for the peak of the inlet NOx concentration and outputs a dynamic leading molar ratio signal 53. The pulverized coal mill start / stop command signal 51 is a command for starting / stopping the pulverized coal mill of the coal fired boiler. The pulverized coal mill is activated by supplying pulverized coal from the pulverized coal mill to the boiler furnace and burning the pulverized coal. Flows into the flue gas denitration facility, which means that the denitration load increases rapidly. On the other hand, the stop of the pulverized coal mill means that the combustion of the pulverized coal is stopped and the denitration load is rapidly reduced. In this way, the pulverized coal mill start / stop command signal 51 is a preceding signal for an extremely rapid increase or a rapid decrease in the denitration load.
[0010]
The predictive control device 30 is inputted with an outlet NOx concentration setting signal 35 from the outlet NOx concentration setting device 3, an outlet NOx concentration signal 36 from the outlet NOx concentration meter 4, and an ammonia flow signal 41 from the ammonia flow meter 6. The auto-regression model that identifies the causal relationship between the ammonia molar ratio and the outlet NOx concentration of the flue gas denitrification facility using data predicts the outlet NOx concentration of the flue gas denitrification facility for each future sampling period. The sum of the square integral value of the control deviation between the future NOx concentration at the exhaust gas denitrification facility and the outlet NOx concentration setting signal 35 and the square integral value of the change amount for each sampling period of the ammonia molar ratio is minimized. An ammonia molar ratio correction signal 31 is determined.
[0011]
In a non-linear and complex process where the amount of ammonia adsorbed on the catalyst surface dominates the denitration performance as in the ammonia catalytic reduction method, it is difficult to construct a simulation model for control, and the self-requirement required by the step response A method based on a regression model is effective.
[0012]
Next, the calculation of the ammonia molar ratio correction signal 31 in the predictive control device 30 will be described in detail. First, the causal relationship between the ammonia molar ratio (number of moles of injected ammonia / number of moles of inlet NOx) and the outlet NOx concentration of the flue gas denitration facility is determined by the autoregressive model of equation (1).
A (z ~ 1 ) y (k) = B (z ~ 1 ) u (k-1) ……………… (1)
[0013]
[Expression 1]
Figure 0003653599
[0014]
[Expression 2]
Figure 0003653599
[0015]
[Equation 3]
Figure 0003653599
[0016]
u (k-1),..., u (k-n) ... (10)
y (k), ..., y (k-n) ........................ (11)
Next, consider the evaluation function of equation (12).
[0017]
[Expression 4]
Figure 0003653599
[0018]
here,
R: Set value h: Weight coefficient M: Predicted sampling number.
[0019]
The solution that minimizes equation (12) is given by equation (13).
[0020]
[Equation 5]
Figure 0003653599
[0021]
In this way, the ammonia molar ratio correction signal 31 is obtained from the equation (13).
Next, the fuzzy computing unit will be described.
The load request signal 50 and the pulverized coal mill start / stop command signal 51 are input, and the following fuzzy calculation is performed.
As the antecedent part of the control rule, the load request signal 50 and the pulverized coal mill start / stop command signal 51 are signal-processed to obtain the load change rate and the elapsed time after the pulverized coal mill start / stop command. That is, when the load request signal at the time point k is x (k) and the elapsed time after the pulverized coal mill start / stop command is z (k), the load change rate signal Δx (k) is expressed by the following equation.
[0022]
Δx (k) = (x (k) −x (k−1)) · Sx (14)
Here, Sx is a scaling factor.
[0023]
Similarly, scaling is performed for z (k).
[0024]
z ′ (k) = z (k) · Sz ………………………………………… (15)
FIG. 2 is a chart showing an example of the membership function according to the embodiment of the present invention.
[0025]
In this figure, the number of fuzzy sets into which fuzzy variables are divided is 13 as follows, and a label is added to each of these sets. Labels are expressed as integers from -6 to +6 in increments of 1.
[0026]
{−6,..., −1, 0, 1,..., 6} = {NAL, NVL, NL, NM, NS, NVS, ZE, PVS, PS, PM, PL, PVL, PAL}… ………… (16)
here,
NAL: Negative Absolutely Large
NVL: Negative Very Large
NL: Negative Very
NM: Negative Medium
NS: Negative Small
NVS: Negative Very Small
ZE: Zero
PVS: Positive Very Small
PS: Positive Small
PM: Positive Medium
PL: Positive Large
PVL: Positive Very Large
PAL: Positive Absolutely Large
It is.
[0027]
FIG. 3 is a chart showing rules for determining the ammonia injection molar ratio according to the embodiment of the present invention.
[0028]
As shown in this figure, the horizontal sequence is the load change rate signal Δx (k), and the vertical sequence is the scaled time for z ′ (k) after the pulverized coal mill start / stop command. is there. From this numerical table, the ammonia injection molar ratio H (k) is obtained using the known Min-Max centroid method according to the situation of Δx (k) and z ′ (k). A control input u ′ is obtained by multiplying the determined ammonia injection molar ratio H (k) by the control gain K.
[0029]
u ′ (k) = KH (k) ………………………………………… (17)
This control input u ′ gives a dynamic leading molar ratio signal 53.
[0030]
The required molar ratio signal 13 is corrected by the ammonia molar ratio correction signal 31 determined based on the predicted outlet NOx concentration, and the ammonia molar ratio is determined in a predictive manner. The ammonia molar ratio correction signal 31 is input to the adder 14a together with the required molar ratio signal 13 determined in the same manner as in FIG. 4, and the preceding value molar ratio signal 32 is output. The preceding molar ratio signal 32 and the dynamic leading molar ratio signal 53 are input to the adder 14b and the total molar ratio signal 16 is output. The total molar ratio signal 16 is multiplied by the inlet NOx amount signal 21 by the multiplier 7b, and an ammonia flow rate request signal 19 is output. The required ammonia flow rate is obtained by multiplying the total molar ratio by the inlet NOx amount. In the prior art shown in FIG. 4, the ammonia flow rate is corrected by the dynamic leading value, and in this embodiment, the ammonia flow rate is obtained from the total molar ratio and the inlet NOx amount after the ammonia molar ratio is corrected by the dynamic leading mole ratio. There is no fundamental difference between the two. As in this embodiment, it is easier to perform dynamic advance correction at the ammonia molar ratio stage in order to determine fuzzy calculation rules. The ammonia flow rate request signal 19 and the ammonia flow rate signal 41 from the ammonia flow meter 6 are input to the subtractor 8c, the deviation signal 42 is obtained, the controller 12b performs control processing such as PID, and the control signal 43 is adjusted to the ammonia flow rate. Output to the valve 20 to control the ammonia injection amount, and suppress the NOx concentration at the exhaust gas denitration facility outlet to a predetermined value.
[0031]
As described above, the control device of the present embodiment is a combination of the required molar ratio signal 13, the ammonia molar ratio correction signal 31, and the dynamic preceding molar ratio signal 53. The required molar ratio signal 13 is the base of the control input. The given ammonia molar ratio correction signal 31 is a feedback correction for the outlet NOx concentration set value, and the dynamic leading molar ratio signal 53 compensates for the peak of the NOx concentration at the inlet of the flue gas denitrification facility accompanying the start and stop of the pulverized coal mill.
[0032]
Therefore, the NOx concentration at the exhaust gas denitration facility outlet is predicted by predicting the future NOx concentration at the exhaust gas denitrification facility after the number of samplings 1, 2,... In order to prevent sudden changes in the step, the ammonia injection amount can be controlled smoothly by feed-forward fuzzy to compensate for large delays in the denitration reaction, and the follow-up of ammonia injection amount control can be improved even during high-speed load fluctuations. it can.
[0033]
【The invention's effect】
According to the present invention, the NOx concentration in the future flue gas denitrification equipment is predicted by the autoregressive model that identifies the causal relationship between the past ammonia molar ratio and the flue gas denitrification equipment exit NOx concentration, and the molar ratio is corrected. By controlling the ammonia injection amount by feed-forward fuzzy for the stepwise rapid change in NOx concentration at the inlet of the smoke denitrification facility, the ammonia injection amount is controlled by feedforward fuzzy to compensate for a large delay in the denitration reaction and follow the ammonia injection amount control even during high-speed load fluctuations. As a result, the NOx concentration at the outlet of the flue gas denitration facility is suppressed to a predetermined value, and at the same time, an effect of preventing an increase in leakage ammonia and ammonia consumption is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a flue gas denitration facility ammonia injection amount control apparatus according to an embodiment of the present invention.
FIG. 2 is a chart showing an example of a fuzzy computing unit membership function according to the embodiment of the present invention.
FIG. 3 is a chart showing rules for determining an ammonia injection molar ratio according to the embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a conventional ammonia injection amount control device.
[Explanation of symbols]
1 Exhaust gas flow meter 2 Inlet NOx concentration meter 3 Outlet NOx concentration setter 4 Outlet NOx concentration meter 6 Ammonia flow meter 7 Multiplier 7a Multiplier 7b Multiplier 8a Subtractor 8b Subtractor 8c Subtractor 9 Divider 10 Required denitration rate signal 11 Function generator 12a Controller 12b Controller 13 Required molar ratio signal 14a Adder 14b Adder 15 Feedback molar ratio signal 16 Total molar ratio signal 17 Differentiator 18 Second-order differentiator 19 Ammonia flow rate request signal 20 Ammonia flow rate Control valve 21 Inlet NOx amount signal 22 Required ammonia flow rate signal 30 Predictive control device 31 Ammonia molar ratio correction signal 32 Advancing value molar ratio signal 33 Exhaust gas flow rate signal 34 Inlet NOx concentration signal 35 Outlet NOx concentration setting signal 36 Outlet NOx concentration signal 37 Deviation Signal 38 Load request signal 39 Load first derivative signal 40 Load second derivative signal 4 Ammonia flow rate signal 42 error signal 43 the control signal 50 the load demand signal 51 pulverized coal mill start stop command signal 52 fuzzy arithmetic unit 53 dynamically preceding molar ratio signal

Claims (2)

アンモニア接触還元法による排煙脱硝設備の入口NOx濃度と出口NOx濃度設定値を入力しアンモニア必要モル比を演算するアンモニア必要モル比演算手段と、
前記出口NOx濃度設定値と前記排煙脱硝設備の出口NOx濃度とアンモニア注入量を入力し、過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係を有する自己回帰モデルにより将来の排煙脱硝設備出口NOx濃度を予測し、予測した排煙脱硝設備出口NOx濃度を用いてアンモニアモル比補正信号を出力する予測制御手段と、
前記アンモニア必要モル比と該アンモニアモル比補正信号を入力し先行値アンモニアモル比を出力する先行値アンモニアモル演算手段と、
負荷要求信号と微粉炭ミル起動停止指令信号を入力して入口NOx濃度のピークを補償する動的先行モル比信号をファジイ演算するファジイ制御手段と、
前記先行値アンモニアモル比を該動的先行モル比信号により補正しアンモニア全モル比を出力する全モル比演算手段と、
該アンモニア全モル比と入口NOx量を入力し必要アンモニア量を演算する必要アンモニア量演算手段と、
該必要アンモニア量と注入アンモニアフィードバック値を入力し注入アンモニア量調整弁制御量を出力する注入アンモニア量制御手段とを有することを特徴とする排煙脱硝設備のアンモニア注入量制御装置。
A required ammonia molar ratio calculating means for inputting the inlet NOx concentration and the outlet NOx concentration set value of the flue gas denitrification facility by the ammonia catalytic reduction method and calculating the required ammonia molar ratio;
By inputting the outlet NOx concentration set value, the outlet NOx concentration of the flue gas denitrification facility, and the ammonia injection amount, a future exhaust gas is calculated by an autoregressive model having a causal relationship between the past ammonia molar ratio and the flue gas denitrification facility outlet NOx concentration. A predictive control means for predicting the NOx concentration at the outlet of the smoke denitrification facility and outputting an ammonia molar ratio correction signal using the predicted NOx concentration at the exit of the flue gas denitrification facility;
A preceding value ammonia mole calculating means for inputting the ammonia required mole ratio and the ammonia mole ratio correction signal and outputting the preceding ammonia mole ratio;
A fuzzy control means for fuzzy calculation of a dynamic leading molar ratio signal that compensates for the peak of the inlet NOx concentration by inputting a load request signal and a pulverized coal mill start / stop command signal;
A total molar ratio calculating means for correcting the preceding ammonia molar ratio by the dynamic leading molar ratio signal and outputting an ammonia total molar ratio;
Necessary ammonia amount calculating means for inputting the total ammonia molar ratio and the inlet NOx amount and calculating the required ammonia amount;
An ammonia injection amount control device for flue gas denitrification equipment, comprising: an injection ammonia amount control means for inputting the required ammonia amount and an injection ammonia feedback value and outputting an injection ammonia amount adjustment valve control amount.
アンモニア接触還元法による排煙脱硝設備の入口NOx濃度と出口NOx濃度設定値を入力してアンモニア必要モル比を演算し、
前記出口NOx濃度設定値と前記排煙脱硝設備の出口NOx濃度とアンモニア注入量を入力して過去のアンモニアモル比と排煙脱硝設備出口NOx濃度との因果関係を有する自己回帰モデルにより将来の排煙脱硝設備出口NOx濃度を予測し、予測した排煙脱硝設備出口NOx濃度を用いてアンモニアモル比補正信号を出力し、
前記アンモニア必要モル比と該アンモニアモル比補正信号を入力して先行値アンモニアモル比を出力し、
負荷要求信号と微粉炭ミル起動停止指令信号を入力して入口NOx濃度のピークを補償する動的先行モル比信号をファジイ演算し、
前記先行値アンモニアモル比を該動的先行モル比信号により補正してアンモニア全モル比を出力し、
該アンモニア全モル比と入口NOx量を入力して必要アンモニア量を演算し、
該必要アンモニア量と注入アンモニアフィードバック値を入力して注入アンモニア量調整弁制御量を出力することを特徴とする排煙脱硝設備のアンモニア注入量制御方法。
Calculate the required ammonia molar ratio by inputting the inlet NOx concentration and outlet NOx concentration set value of the flue gas denitrification equipment by the ammonia catalytic reduction method,
By inputting the outlet NOx concentration set value, the outlet NOx concentration of the flue gas denitrification facility, and the ammonia injection amount, the future exhaust gas is calculated by an autoregressive model having a causal relationship between the past ammonia molar ratio and the flue gas denitrification facility outlet NOx concentration. Predict the NOx concentration at the outlet of the smoke denitrification facility, and output the ammonia molar ratio correction signal using the predicted NOx concentration at the exit of the exhaust smoke denitrification facility,
Input the required ammonia molar ratio and the ammonia molar ratio correction signal to output the preceding ammonia molar ratio,
Fuzzy calculation of the dynamic leading molar ratio signal that compensates for the peak of the inlet NOx concentration by inputting the load request signal and the pulverized coal mill start / stop command signal,
Correcting the preceding ammonia molar ratio by the dynamic preceding molar ratio signal to output the total ammonia molar ratio;
Calculate the required ammonia amount by inputting the total ammonia molar ratio and the amount of inlet NOx,
An ammonia injection amount control method for a flue gas denitrification facility, wherein the required ammonia amount and an injection ammonia feedback value are input and an injection ammonia amount adjustment valve control amount is output.
JP00158296A 1996-01-09 1996-01-09 Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment Expired - Fee Related JP3653599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00158296A JP3653599B2 (en) 1996-01-09 1996-01-09 Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00158296A JP3653599B2 (en) 1996-01-09 1996-01-09 Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment

Publications (2)

Publication Number Publication Date
JPH09187625A JPH09187625A (en) 1997-07-22
JP3653599B2 true JP3653599B2 (en) 2005-05-25

Family

ID=11505521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00158296A Expired - Fee Related JP3653599B2 (en) 1996-01-09 1996-01-09 Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment

Country Status (1)

Country Link
JP (1) JP3653599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792696B2 (en) * 2003-12-15 2011-10-12 Jfeエンジニアリング株式会社 Denitration control method, denitration control device and program thereof
EP2299338B1 (en) * 2008-07-07 2013-05-29 Honda Motor Co., Ltd. Controller
JP5452906B2 (en) * 2008-11-25 2014-03-26 株式会社タクマ Combustion control system for combustion furnace and combustion control method thereof
CN105561785B (en) * 2015-12-16 2017-11-21 中国船舶重工集团公司第七一一研究所 Denitrating system urea liquid ejection control method based on double MAPs
CN113578007A (en) * 2021-08-10 2021-11-02 浙江浩普智能科技有限公司 Coal-fired flue gas SCR denitration regulation and control system and method based on partitioned ammonia injection

Also Published As

Publication number Publication date
JPH09187625A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US5584172A (en) Nitrogen oxide removal control apparatus
JPH0127337B2 (en)
CN110618706B (en) Multistage intelligent denitration on-line optimization control system based on data driving
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
CN114307627B (en) Denitration adjusting method based on theoretical ammonia consumption
JP4792696B2 (en) Denitration control method, denitration control device and program thereof
JP2006075758A (en) Desalination controlling apparatus and desalination controlling method
CN114326387A (en) Denitration control device and method for thermal power generating unit
JP4032205B2 (en) Ammonia injection amount control method for denitration equipment
JP5314946B2 (en) Heating furnace controller
JPH08309140A (en) Controller for gas adsorption process
JP2000056805A (en) Predictive control unit
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
JP3546319B2 (en) Apparatus and method for controlling flue gas denitration
Matsumura et al. Improvement of de-NOx device control performance using a software sensor
JP5320037B2 (en) Boiler automatic control device and boiler system
JPH0428971B2 (en)
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP3568614B2 (en) Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas
JPH0442920B2 (en)
JP2000257824A (en) Method and device for controlling combustion facility
JP3409929B2 (en) Reducing agent injection amount control device and injection amount control method for denitration device
JP2004154693A (en) Method and apparatus for treating exhaust gas
JPH08326508A (en) Denitration control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees