JP5320037B2 - Boiler automatic control device and boiler system - Google Patents

Boiler automatic control device and boiler system Download PDF

Info

Publication number
JP5320037B2
JP5320037B2 JP2008297471A JP2008297471A JP5320037B2 JP 5320037 B2 JP5320037 B2 JP 5320037B2 JP 2008297471 A JP2008297471 A JP 2008297471A JP 2008297471 A JP2008297471 A JP 2008297471A JP 5320037 B2 JP5320037 B2 JP 5320037B2
Authority
JP
Japan
Prior art keywords
deviation
boiler
inverter
command
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008297471A
Other languages
Japanese (ja)
Other versions
JP2010121893A (en
Inventor
悟 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008297471A priority Critical patent/JP5320037B2/en
Publication of JP2010121893A publication Critical patent/JP2010121893A/en
Application granted granted Critical
Publication of JP5320037B2 publication Critical patent/JP5320037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method of automatically controlling a boiler and a boiler system suitable for exhibiting energy saving effects by an inverter while maintaining control performance of conventional technologies, in the device of automatically controlling the boiler for controlling a flow rate or pressure of air or combustion gas within the boiler to a specified value. <P>SOLUTION: The method of automatically controlling the boiler is used for detecting physical quantity of fluid sent to inside of the boiler, preparing a physical quantity command to control the physical quantity of the fluid to a specified value, calculating a deviation between the physical quantity of the fluid and the physical quantity command, and controlling the fluid quantity based on the deviation. When the deviation is lower than a predetermined value, the physical quantity of the fluid is controlled at a higher change ratio, compared to when the deviation is higher than the predetermined value. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ボイラ自動制御装置,制御方法、及びボイラシステムに関する。   The present invention relates to a boiler automatic control device, a control method, and a boiler system.

火力発電プラントはボイラで高温高圧の蒸気を発生させ蒸気タービンを回転させる事で発電を行っている。従来はボイラシステムにおける通風機の動力として商用周波数電源が用いられ、通風機のモータ出力(回転数)は通常運転状態では一定で駆動させていた。そのためボイラの火炉内圧力等の制御は、通風機を通る流体(空気あるいは燃焼ガス)の流量を調節する流量調節操作端によって行っている。しかし従来技術では、火力発電用の大容量通風気にインバータ(周波数変換装置)を適用した場合について考慮されておらず、火炉内の圧力制御とインバータによる通風機モータ出力制御を確立できないという問題があった。   Thermal power plants generate electricity by generating high-temperature and high-pressure steam in a boiler and rotating a steam turbine. Conventionally, a commercial frequency power source is used as power for the ventilator in the boiler system, and the motor output (rotational speed) of the ventilator is driven constant in the normal operation state. Therefore, control of the boiler internal pressure and the like of the boiler is performed by a flow rate adjusting operation end that adjusts the flow rate of the fluid (air or combustion gas) passing through the ventilator. However, the conventional technology does not consider the case where an inverter (frequency converter) is applied to large-capacity ventilation for thermal power generation, and there is a problem that pressure control in the furnace and ventilator motor output control by the inverter cannot be established. there were.

上記課題を解決するために例えば特許文献1では、比例積分演算によって前記流量調節操作端を制御し、ボイラ負荷に応じたプログラムにより通風機モータのインバータ出力を制御する技術が開示されている。   In order to solve the above-mentioned problem, for example, Patent Document 1 discloses a technique for controlling the flow rate adjusting operation end by proportional-integral calculation and controlling the inverter output of the ventilator motor by a program corresponding to the boiler load.

特許第3941405号公報Japanese Patent No. 3944405

上記技術は、入口ベーンを例とする流量調節操作端により、インバータ出力が追従できないような空気流量の過渡的な変化に増方向及び減方向共に対応できるよう保障している。そのため通常運転時は、流量調節操作端の開度を常時一定開度絞っているため、その分通風機のモータ出力を高くする必要がありエネルギーを消費するという問題があった。   In the above technique, the flow rate adjusting operation end using the inlet vane as an example guarantees that it is possible to cope with a transient change in the air flow rate in which the inverter output cannot follow both the increasing direction and the decreasing direction. For this reason, during normal operation, the opening degree of the flow rate adjusting operation end is constantly reduced by a constant opening degree, so there is a problem that the motor output of the ventilator needs to be increased accordingly and energy is consumed.

本発明は上記課題に鑑み、通風気のモータ出力の抑制に好適なボイラ自動制御装置,制御方法、及びボイラシステムを提供することを目的とする。   An object of this invention is to provide the boiler automatic control apparatus suitable for suppression of the motor output of ventilation, the control method, and a boiler system in view of the said subject.

上記課題は、ボイラ内に送られる流体の物理量を検出し、前記流体の物理量を規定値に制御する物理量指令を作成し、前記流体の物理量と前記物理量指令との偏差を計算し、前記偏差に基づいて前記流体量を制御するボイラ自動制御方法であって、前記偏差が所定値より低いときの方が、前記偏差が所定値より高いときよりも高い変化率で前記流体の物理量を制御することで解決される。   The above problem is to detect a physical quantity of a fluid sent into a boiler, create a physical quantity command for controlling the physical quantity of the fluid to a specified value, calculate a deviation between the physical quantity of the fluid and the physical quantity command, and calculate the deviation. A boiler automatic control method for controlling the amount of fluid based on the method, wherein the physical quantity of the fluid is controlled at a higher rate of change when the deviation is lower than a predetermined value than when the deviation is higher than a predetermined value. Will be solved.

本発明によれば、通風器モータの回転数を低減することができるので、その分モータ動力であるインバータの出力を抑制することが可能になる。   According to the present invention, since the rotation speed of the aerator motor can be reduced, the output of the inverter, which is the motor power, can be suppressed accordingly.

以下、本発明の一実施形態を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明を適用する火力発電プラントのボイラと制御装置の構成を示す。火力発電プラントのボイラ及び制御装置は、燃料を燃焼させ熱交換により蒸気を発生させる火炉1と、火炉1に燃焼用の空気を送風する押込通風機2(以下「FDF」と略す。)と、FDF2の動力であるFDFモータ3と、FDF2が送風する空気量を調節するFDF入口ベーン4とFDF入口ベーン4を駆動させるFDF入口ベーンコントロールドライブ41と、煙突5と、火炉1へ送風される空気流量を検出する空気流量検出器6と、FDFモータ3の回転数を制御するインバータ装置7と、ボイラのプロセス量の総合的な制御を行うボイラ自動制御装置8から構成される。   FIG. 1 shows a configuration of a boiler and a control device of a thermal power plant to which the present invention is applied. A boiler and a control device of a thermal power plant include a furnace 1 that burns fuel and generates steam by heat exchange, a forced air blower 2 (hereinafter abbreviated as “FDF”) that blows combustion air to the furnace 1, and FDF motor 3 that is the power of FDF 2, FDF inlet vane 4 that adjusts the amount of air blown by FDF 2, FDF inlet vane control drive 41 that drives FDF inlet vane 4, chimney 5, and air blown to furnace 1 An air flow rate detector 6 that detects the flow rate, an inverter device 7 that controls the rotational speed of the FDF motor 3, and a boiler automatic control device 8 that performs comprehensive control of the process amount of the boiler.

尚、本実施形態では火力発電プラントの押込通風機にインバータを適用した場合について説明するため、ボイラの煙風道系統が1系統のみで、かつ、通風機が押込通風機のみで構成される簡単なボイラ系統で説明するが、この例の他に燃焼ガスを排出するための誘引通風機や石炭を燃料とするボイラでは微粉炭搬送用空気を送風する一次通風機を備えた構成や、煙風道系統を2系統具備した構成が考えられる。本発明による制御装置は、前記のような構成のボイラにおける各通風機の制御にも適用可能である。   In addition, in this embodiment, in order to explain the case where an inverter is applied to a forced air blower of a thermal power plant, the boiler has only one flue channel system, and the ventilator is configured by only a forced air fan. In addition to this example, an induction ventilator for exhausting combustion gas and a coal-fired boiler with a primary ventilator that blows air for conveying pulverized coal, A configuration having two road systems is conceivable. The control device according to the present invention can also be applied to control of each ventilator in the boiler configured as described above.

次に、図1に示した各要素の機能について説明する。火炉1はFDF2から送られた燃焼用空気を取り込み、燃料を燃焼させることにより高温高圧の蒸気を発生させ、図示しない蒸気タービンを回転させる。煙突5は火炉1で燃焼により発生した排ガスを排出する。空気流量検出器6は火炉1へ送風される空気流量を検出し空気流量信号11をボイラ自動制御装置8へ送る。   Next, the function of each element shown in FIG. 1 will be described. The furnace 1 takes in combustion air sent from the FDF 2 and burns fuel to generate high-temperature and high-pressure steam and rotate a steam turbine (not shown). The chimney 5 discharges exhaust gas generated by combustion in the furnace 1. The air flow rate detector 6 detects the air flow rate sent to the furnace 1 and sends an air flow rate signal 11 to the boiler automatic control device 8.

ここで火炉1内に送られる空気量は、火炉1に投入される燃料の燃焼に必要な量に、かつ排ガス中の酸素濃度が規定値となるように制御されなければならない。図示しない空気流量指令計算部は前記規定値になるように、火炉1に投入される燃料量と煙突5から排出される排ガスの酸素濃度から空気流量指令14を算出しボイラ自動制御装置8へ送る。   Here, the amount of air sent into the furnace 1 must be controlled to an amount necessary for combustion of the fuel charged into the furnace 1 and so that the oxygen concentration in the exhaust gas becomes a specified value. An air flow rate command calculation unit (not shown) calculates an air flow rate command 14 from the amount of fuel input to the furnace 1 and the oxygen concentration of the exhaust gas discharged from the chimney 5 and sends it to the boiler automatic control device 8 so that the specified value is obtained. .

ボイラ自動制御装置8は、空気流量検出器6から送られた空気流量信号11と空気流量指令計算部から送られた空気流量指令14からボイラ自動制御装置8に内蔵される制御演算回路の演算結果に基づきFDF入口ベーン開度指令18とFDF回転数指令13を演算し、それぞれFDF入口ベーンコントロールドライブ41及びインバータ装置7へ送る。尚、ボイラ自動制御装置8は、上記の他にも発電機出力や蒸気温度・圧力などの制御も行う装置であるが、ここでは本発明に関連する機能のみ説明する。   The boiler automatic control device 8 calculates the calculation result of the control arithmetic circuit built in the boiler automatic control device 8 from the air flow rate signal 11 sent from the air flow rate detector 6 and the air flow rate command 14 sent from the air flow rate command calculation unit. On the basis of the FDF inlet vane opening command 18 and the FDF rotational speed command 13, and send them to the FDF inlet vane control drive 41 and the inverter device 7, respectively. The boiler automatic control device 8 is a device that controls the generator output, steam temperature, pressure, and the like in addition to the above, but only functions related to the present invention will be described here.

FDFコントロールドライブ41は、ボイラ自動制御装置8から送られたFDF入口ベーン開度指令12に基づきFDF入口ベーン4を駆動させる。FDF入口ベーン4はFDF2から送風される空気量を調節する操作端であり、FDFコントロールドライブ41により駆動され、FDF2を通る空気量を制御する。   The FDF control drive 41 drives the FDF inlet vane 4 based on the FDF inlet vane opening degree command 12 sent from the boiler automatic control device 8. The FDF inlet vane 4 is an operation end for adjusting the amount of air blown from the FDF 2, and is driven by the FDF control drive 41 to control the amount of air passing through the FDF 2.

一方、FDF2から送風される空気量は、インバータ装置7によってFDFモータ3の回転数を増減させることによっても調節することができる。インバータ装置7は、ボイラ自動制御装置8から送られたFDF回転数指令13に基づきインバータ出力を調節し、FDFモータ3の回転数(周波数)がボイラ自動制御装置8からのFDF回転数指令13と同じになるように制御する。FDFモータ3はインバータ装置7の動力により駆動しFDF2のファンを駆動させFDF2から送風される空気量を制御する。   On the other hand, the amount of air blown from the FDF 2 can also be adjusted by increasing or decreasing the rotational speed of the FDF motor 3 by the inverter device 7. The inverter device 7 adjusts the inverter output based on the FDF rotational speed command 13 sent from the boiler automatic control device 8, and the rotational speed (frequency) of the FDF motor 3 is equal to the FDF rotational speed command 13 from the boiler automatic control device 8. Control to be the same. The FDF motor 3 is driven by the power of the inverter device 7 and drives the fan of the FDF 2 to control the amount of air blown from the FDF 2.

FDF2は、FDF入口ベーン4とFDFモータ3によって火炉1へ送られる空気量を規定値に調節し、火炉1に投入される燃料の燃焼に必要な量に、かつ排ガス中の酸素濃度が規定値となるように制御する。   The FDF 2 adjusts the amount of air sent to the furnace 1 by the FDF inlet vane 4 and the FDF motor 3 to a specified value, and the oxygen concentration in the exhaust gas is a specified value to an amount necessary for combustion of the fuel charged into the furnace 1. Control to be

次に、同じく図1により本発明によるボイラ自動制御装置8の詳細制御機能を説明する。減算器801は、空気流量検出器6から入力される空気流量信号11(PV)と、火炉1に投入される燃料および排ガス中の酸素濃度から算出される空気流量指令(以下、AFD)14(SV)から、空気流量偏差信号15(SV−PV)を算出する。   Next, the detailed control function of the boiler automatic control device 8 according to the present invention will be described with reference to FIG. The subtractor 801 is an air flow rate command (hereinafter referred to as AFD) 14 (hereinafter referred to as AFD) 14 calculated from the air flow rate signal 11 (PV) input from the air flow rate detector 6 and the oxygen concentration in the fuel and exhaust gas supplied to the furnace 1. The air flow rate deviation signal 15 (SV-PV) is calculated from SV).

ここで空気流量偏差信号15は2つの信号演算に用いられる。一方は比例積分演算器804に送られ、比例積分演算機804は空気量偏差信号15について比例積分演算を行ってFDF回転数制御信号17(K2×(SV−PV)+K3×∫(SV−PV)dt)を作成し変化率制限器805に送る。このとき、比例積分演算器804は積分項∫(SV−PV)dtによってボイラの制御中継続して積算を行う。   Here, the air flow rate deviation signal 15 is used for two signal calculations. One is sent to the proportional-plus-integral calculator 804, and the proportional-plus-integral calculator 804 performs a proportional-integral calculation on the air amount deviation signal 15, and the FDF rotation speed control signal 17 (K2 × (SV−PV) + K3 × ∫ (SV−PV) ) Dt) is generated and sent to the change rate limiter 805. At this time, the proportional-plus-integral calculator 804 continuously integrates during the boiler control by the integral term ∫ (SV-PV) dt.

ここでインバータ出力の変化率はインバータ装置7の特性により決まり、インバータの動作可能範囲以上の変化率でFDF回転数指令をインバータ装置に与えてもインバータ出力が追従できない。そのためインバータ装置7への指令は、インバータ装置7の動作可能範囲に制限される必要がある。変化率制限器805はそのために設けられ、比例積分演算器804から送られたFDF回転数指令17の変化率がインバータ装置7の動作可能範囲未満であれば処理をせず、FDF回転数指令17の変化率がインバータ装置7の動作可能範囲以上であればインバータ装置7の動作可能範囲以下に信号を制限し、最終的なFDF回転数指令13をインバータ装置7へ送る。   Here, the change rate of the inverter output is determined by the characteristics of the inverter device 7, and the inverter output cannot follow even if the FDF rotation speed command is given to the inverter device at a change rate exceeding the operable range of the inverter. Therefore, the command to the inverter device 7 needs to be limited to the operable range of the inverter device 7. The change rate limiter 805 is provided for this purpose, and if the change rate of the FDF rotation speed command 17 sent from the proportional-plus-integral operation unit 804 is less than the operable range of the inverter device 7, no processing is performed and the FDF rotation speed command 17 If the change rate of the inverter device 7 is greater than or equal to the operable range of the inverter device 7, the signal is limited to be less than or equal to the operable range of the inverter device 7, and the final FDF rotation speed command 13 is sent to the inverter device 7.

もう一方の信号演算に用いられる空気流量偏差信号15は、関数発生器802に送られる。関数発生器802は、関数fxに空気流量偏差信号(SV−PV)15を入力値xとして入力し、FDF入口ベーン制御信号16(f(SV−PV))を比例ゲイン乗算部803に出力する。関数発生器802が発生させる関数f(x)を下記に示す。   The air flow deviation signal 15 used for the other signal calculation is sent to the function generator 802. The function generator 802 inputs the air flow rate deviation signal (SV-PV) 15 to the function fx as the input value x, and outputs the FDF inlet vane control signal 16 (f (SV-PV)) to the proportional gain multiplier 803. . The function f (x) generated by the function generator 802 is shown below.

x<aのとき f(x)=x+b …式(1)
a≦xのとき f(x)=100 …式(2)
When x <a f (x) = x + b Equation (1)
When a ≦ x, f (x) = 100 Equation (2)

但し、a,bは定数であり、特にaは負の値に定める。減算器801で算出された空気流量偏差信号15(SV−PV)を関数発生器802に入力値xとして入力し、関数発生器802はFDF入口ベーン制御信号16(f(SV−PV))を出力する。但し、関数発生器802の出力はFDFベーン開度全開を100%ととする百分率(%)を表わす。ここで、x<aのときの関数f(x)としてxの一次関数を用いているが、これに限らず例えば二次関数以上のものや指数関数,階段関数であってもかまわない。   However, a and b are constants, and in particular, a is set to a negative value. The air flow rate deviation signal 15 (SV-PV) calculated by the subtractor 801 is input to the function generator 802 as an input value x, and the function generator 802 receives the FDF inlet vane control signal 16 (f (SV-PV)). Output. However, the output of the function generator 802 represents a percentage (%) with the fully opened FDF vane opening being 100%. Here, a linear function of x is used as the function f (x) when x <a. However, the function is not limited to this. For example, a function higher than a quadratic function, an exponential function, or a step function may be used.

関数発生器802の空気量偏差信号15の入力値に対するFDF入口ベーン制御信号16の出力値をグラフ19(横軸:空気量偏差信号15,縦軸:FDF入口ベーン制御信号16)に示す。グラフ19に示すように空気流量偏差信号15がプラスすなわち空気不足の時は100%すなわちFDF入口ベーンを全開とするような信号を出力し、空気流量偏差信号15がマイナスすなわち空気過多の時は空気流量偏差15に応じてFDF入口ベーン開度を絞らせるような信号を出力するように設定する。   The output value of the FDF inlet vane control signal 16 with respect to the input value of the air quantity deviation signal 15 of the function generator 802 is shown in graph 19 (horizontal axis: air quantity deviation signal 15, vertical axis: FDF inlet vane control signal 16). As shown in the graph 19, when the air flow deviation signal 15 is positive, that is, when the air is insufficient, a signal that outputs 100%, that is, the FDF inlet vane is fully opened, is output. When the air flow deviation signal 15 is negative, that is, when the air is excessive, air is output. It is set to output a signal for reducing the FDF inlet vane opening according to the flow rate deviation 15.

尚、関数発生器802の出力値は空気流量偏差信号15がある程度のマイナス値a未満にならないと100%を下回らないように設定されているが、これは空気流量偏差信号15が0近辺の小さなマイナス値の場合にFDF入口ベーンとFDF回転数が両方動作して干渉し合い空気流量が不安定になることを防ぐために、このような場合はFDF入口ベーンの動作を固定してFDF回転数制御のみにより最終的に空気流量偏差信号15を0にする動作をさせることを意図したものである。   The output value of the function generator 802 is set so that it does not fall below 100% unless the air flow deviation signal 15 is less than a certain negative value a. In order to prevent both the FDF inlet vane and the FDF rotational speed from operating and interfering with each other when the value is negative, the air flow rate becomes unstable. In such a case, the operation of the FDF inlet vane is fixed to control the FDF rotational speed. This is intended only to cause the air flow deviation signal 15 to be finally set to zero.

比例ゲイン乗算部803は、関数発生器802から送られたFDF入口ベーン制御信号16に比例ゲインを乗じてFDF入口ベーン開度指令12を作成し開度指令制限器806に送る。ここで比例ゲインは、空気流量偏差15がa未満時のベーン開度の変化率を決定するものであり通常一定で運転を行うが、オンラインで変更することも可能である。   The proportional gain multiplication unit 803 multiplies the FDF inlet vane control signal 16 sent from the function generator 802 by the proportional gain to create an FDF inlet vane opening command 12 and sends it to the opening command limiter 806. Here, the proportional gain determines the rate of change of the vane opening degree when the air flow rate deviation 15 is less than a, and normally operates at a constant value, but can be changed online.

その後開度指令制限器806は、ベーンへの開度指令を上限100%に制限し最終的なFDF入口ベーン開度指令18を作成しインバータ装置7へ送る。つまり、比例ゲインを乗じることで作成されたFDF入口ベーン開度指令12が100%未満の場合は処理を行わず、100%以上の場合は開度指令制限器806によりベーンへの開度指令を100%に制限し、最終的なFDFベーン開度指令18が作成される。   Thereafter, the opening command limiter 806 limits the opening command to the vane to the upper limit of 100%, creates a final FDF inlet vane opening command 18 and sends it to the inverter device 7. That is, if the FDF inlet vane opening command 12 created by multiplying by the proportional gain is less than 100%, no processing is performed, and if it is 100% or more, the opening command limiter 806 sends an opening command to the vane. Limiting to 100%, the final FDF vane opening command 18 is created.

以上のような本発明による制御は、FDF回転数制御により空気流量の比例積分制御を行って空気流量が規定値に制御されることを保証し、FDF入口ベーンは通常は全開状態として空気過多が著しくなった場合のみ開度を絞って空気流量を規定値に速やかに戻すことを実現している。   The control according to the present invention as described above performs proportional integral control of the air flow rate by FDF rotation speed control to ensure that the air flow rate is controlled to a specified value, and the FDF inlet vane is normally in a fully opened state and has excessive air. Only when it becomes significant, the opening is reduced and the air flow rate is quickly returned to the specified value.

本発明は入口ベーンを基本的には全開運用としその分FDFの回転数を下げることで消費電力を低減して省エネ効果が向上する効果があるが、この制御方式が成立する背景について基本的な考え方を説明する。火力プラントの運転パターンとしては大きく分けて、通常の負荷運用である起動,停止,負荷上昇,負荷降下と、緊急時の負荷運用であるランバック(例えばファンやポンプ等のプラント構成機器が故障等で運転できなくなり、残った健全な機器のみで運転できる最大負荷まで急速に負荷降下させる運転),FCB(系統事故等で発電所を系統から切り離した際プラントを停止させず、復旧後の系統への再並列を速やかに実施できるように発電所内負荷まで急速に負荷降下させ運転を継続すること)等がある。   In the present invention, the inlet vane is basically fully opened, and the number of rotations of the FDF is reduced accordingly, thereby reducing the power consumption and improving the energy saving effect. However, the background behind the establishment of this control method is fundamental. Explain the idea. The operation patterns of thermal power plants can be broadly divided into normal load operations such as start, stop, load increase and load drop, and runback operations such as emergency load operations (for example, failure of plant components such as fans and pumps) , Operation that causes the load to drop rapidly to the maximum load that can be operated with only the remaining healthy equipment), FCB (when the power plant is disconnected from the system due to a system fault, etc., the plant is not stopped and the system is restored. To reduce the load to the load in the power plant so that the re-parallel operation can be performed quickly).

このうち、通常の負荷運用では最大でも5%/分程度の負荷変化速度である。一方、緊急時の負荷運用では100%/分程度の負荷変化速度で出力を絞り込む。いずれの場合にも、空気流量は発電所の負荷変化速度に合わせて増減させる必要があるが、インバータ出力の動作可能速度は入口ベーンの動作可能速度よりも遅い。そのため従来技術では、入口ベーンを例とする流量調節操作端を常時一定開度絞ることにより、インバータ出力が追従できないような空気流量の過渡的な変化に増方向及び減方向共に対応できるよう保障している。   Of these, the load change rate is about 5% / min at the maximum in normal load operation. On the other hand, in emergency load operation, the output is narrowed down at a load change rate of about 100% / min. In any case, the air flow rate needs to be increased or decreased in accordance with the load change speed of the power plant, but the operable speed of the inverter output is slower than the operable speed of the inlet vane. For this reason, in the conventional technology, the flow control operation end such as an inlet vane is always throttled to a certain degree to ensure that it can cope with a transient change in the air flow rate that the inverter output cannot follow in both the increasing and decreasing directions. ing.

しかしながら、インバータ出力の増方向の動作可能速度は、プラント負荷運用で考えられる最大速度の5%/分よりも充分速いことが普通である。但し、減方向はプラント負荷運用で考えられる最大速度の100%/分よりもはるかに遅く、また入口ベーンの動作可能速度よりも数倍以上遅いため、空気流量を急速に絞り込む際には入口ベーンによる制御が不可欠となる。以上のことから、入口ベーンは増側には常時制御代を確保しておく必要はなく、必要な際に減側に動作させれば良いということが言え、これが本発明の考え方の基本である。   However, the operable speed in the increasing direction of the inverter output is usually sufficiently faster than 5% / min of the maximum speed considered in plant load operation. However, the decreasing direction is much slower than 100% / min of the maximum speed considered for plant load operation and more than several times slower than the operable speed of the inlet vane. Control by is essential. From the above, it can be said that the inlet vane need not always have a control allowance on the increased side, but can be operated on the decreased side when necessary, which is the basis of the idea of the present invention. .

次に図2で火力プラントの代表的な運転パターンを示しながら本発明による制御の効果を参考例による制御と比較して説明する。但し参考例のFDF回転数指令は空気流量指令に基づきプログラムされており、最終的に変化率制限器によりインバータの動作可能速度に制限され作成されるものとする。また参考例のFDF入口ベーン開度指令は、減算器により算出された空気量偏差信号から比例積分演算を行いFDF入口ベーン開度指令が作成されることとする。   Next, the effect of the control according to the present invention will be described in comparison with the control according to the reference example while showing a typical operation pattern of the thermal power plant in FIG. However, the FDF rotational speed command of the reference example is programmed based on the air flow rate command, and is finally created by being limited to the operable speed of the inverter by the change rate limiter. In addition, the FDF inlet vane opening degree command of the reference example is generated by performing a proportional integral calculation from the air amount deviation signal calculated by the subtractor.

図2では、通常の負荷運用例として負荷上昇の際の空気流量制御の挙動と、緊急時の負荷運用例としてFCBの際の空気流量制御の挙動を、上図に参考例、下図に本発明として示す。但し横軸は時間を表わし、t1からt2で通常の負荷上昇運転を行い、t2からt3で負荷一定運転後、t3でFCBが発生したとする。また、t1からt2及びt2からt3での運用時は、空気流量偏差信号15(SV−PV)の値は式(1),式(2)で示すa以上であるとし、t3でFCBが発生し空気流量偏差信号15(SV−PV)の値は式(1),式(2)で示すa未満になったとする。   In FIG. 2, the behavior of air flow control during load increase as an example of normal load operation, and the behavior of air flow control during FCB as an example of load operation in an emergency, the upper diagram shows a reference example, and the lower diagram shows the present invention. As shown. However, the horizontal axis represents time, and it is assumed that a normal load increasing operation is performed from t1 to t2, an FCB is generated at t3 after a constant load operation from t2 to t3. Also, during operation from t1 to t2 and from t2 to t3, the value of the air flow rate deviation signal 15 (SV-PV) is assumed to be greater than or equal to a shown in equations (1) and (2), and FCB is generated at t3. It is assumed that the value of the air flow deviation signal 15 (SV-PV) is less than a shown by the expressions (1) and (2).

空気流量指令は基本的にプラントの負荷指令と同様の動作となる。この空気流量指令に追従するようにFDF入口ベーンとFDF回転数を制御する。   The air flow rate command basically operates in the same manner as the plant load command. The FDF inlet vane and the FDF rotational speed are controlled so as to follow this air flow rate command.

参考例では、t1からt2及びt2からt3での運用時、FDF入口ベーンが空気流量偏差を0にするように常時制御しており制御代を確保するためにFDF入口ベーン開度指令を開度80%程度に保っている。この時、FDF回転数指令は空気流量指令に基づきプログラムされており空気流量指令に合わせて動く。しかし、t3でFCBが発生すると、急速な空気流量指令の絞り込みにインバータが追従できないため、変化率制限器により動作可能範囲に制限されにFDF回転数指令が作成される。従って、一時的は確実に空気流量過多となるためFDF入口ベーンが大きく絞り込んで空気流量を制御する。   In the reference example, during operation from t1 to t2 and from t2 to t3, the FDF inlet vane is always controlled so that the air flow rate deviation is zero, and the FDF inlet vane opening command is opened to secure the control allowance. It is kept at about 80%. At this time, the FDF rotation speed command is programmed based on the air flow rate command and moves in accordance with the air flow rate command. However, when FCB occurs at t3, the inverter cannot follow the rapid narrowing of the air flow rate command, so the FDF rotation speed command is created while being limited to the operable range by the change rate limiter. Therefore, since the air flow rate is excessively ensured temporarily, the FDF inlet vane is greatly narrowed to control the air flow rate.

一方下図で示す本発明では、t1からt2での通常の負荷上昇運転時、空気量偏差信号15(SV−PV)は式(2)でしめすa以上であるため、式(2)よりFDF入口ベーン開度指令は100%、つまり全開に保たれる。前述したように通常の負荷運用時は、FDF回転数制御のみによる制御で十分追従可能な範囲であるため、インバータによるFDF回転数制御のみにより空気流量偏差信号15を0にするよう制御している。   On the other hand, in the present invention shown in the figure below, the air amount deviation signal 15 (SV-PV) is greater than or equal to a shown in equation (2) during normal load increasing operation from t1 to t2, and therefore the FDF inlet from equation (2). The vane opening command is kept at 100%, that is, fully open. As described above, during normal load operation, since the range can be sufficiently followed only by the control by the FDF rotation speed control, the air flow rate deviation signal 15 is controlled to be 0 only by the FDF rotation speed control by the inverter. .

またt2からt3の負荷一定運用時も同様に、空気量偏差信号15(SV−PV)は式(2)でしめすa以上であるため、式(2)よりFDF入口ベーン開度指令12は100%に保たれ、FDF回転数制御のみにより空気流量偏差信号15を0になるよう制御している。   Similarly, during the constant load operation from t2 to t3, the air amount deviation signal 15 (SV-PV) is equal to or greater than a indicated by the equation (2), and therefore the FDF inlet vane opening degree command 12 is 100 from the equation (2). %, And the air flow rate deviation signal 15 is controlled to be 0 only by the FDF rotation speed control.

ここでt1からt2及びt2からt3での運用時における本発明と参考例でのFDF入口ベーン開度指令及びFDF回転数指令の比較を行う。図2下図に点線で示す参考例でのFDF入口ベーン開度指令及びFDF回転数指令と比べ本発明では、通常の負荷上昇運用時及び負荷一定運用時においてFDF入口ベーン開度指令は100%に保たれているため、その分FDF回転数指令13を低く抑える事が可能となっている。   Here, the FDF inlet vane opening degree command and the FDF rotational speed command in the present invention and the reference example at the time of operation from t1 to t2 and from t2 to t3 are compared. Compared to the FDF inlet vane opening command and the FDF rotational speed command in the reference example shown by the dotted line in the lower diagram of FIG. 2, in the present invention, the FDF inlet vane opening command is set to 100% during normal load increase operation and constant load operation. Therefore, the FDF rotation speed command 13 can be kept low accordingly.

通常の負荷運用後t3でFCBが発生すると、急速な負荷降下によりインバータの追従可能範囲を超えるため、FDF回転数指令13は変化率制限器805により動作可能範囲に制限される。この時、空気流量偏差信号15(SV−PV)の値は式(1)で示すa未満となるため、式(1)より空気流量偏差信号15(SV−PV)に基づいてFDF入口ベーン開度指令12を100%以下に絞り込む。   When an FCB occurs at t3 after normal load operation, the FDF rotation speed command 13 is limited to the operable range by the change rate limiter 805 because it exceeds the followable range of the inverter due to a rapid load drop. At this time, since the value of the air flow rate deviation signal 15 (SV-PV) is less than a shown in the equation (1), the FDF inlet vane opening is based on the air flow rate deviation signal 15 (SV-PV) from the equation (1). The degree command 12 is narrowed down to 100% or less.

その後、空気流量偏差信号15(SV−PV)が式(1)及び(2)で示すa以上の値となりFDF回転数のみによる制御で十分追従可能な範囲になると、FDF入口ベーン開度指令12を再び100%に保つ。   After that, when the air flow rate deviation signal 15 (SV-PV) becomes a value equal to or larger than a shown in the equations (1) and (2) and is in a range that can be sufficiently followed by control only by the FDF rotation speed, the FDF inlet vane opening degree command 12 Is again kept at 100%.

t3以降でも同様に本発明と参考例でのFDF入口ベーン開度指令及びFDF回転数指令を比較すると、本発明ではFDF入口ベーン開度指令が100%から絞り込みを始めているためFDF回転数指令をその分低く抑える事が可能となっている。   Similarly after t3, when comparing the FDF inlet vane opening command and the FDF rotational speed command in the present invention and the reference example, in the present invention, since the FDF inlet vane opening command starts to narrow down from 100%, the FDF rotational speed command is It is possible to keep it low.

このように本発明によって、図2で示す全ての時間領域においてFDF回転数を低く抑えることができ、その分FDF消費電力を低減することが可能となる。   Thus, according to the present invention, the FDF rotation speed can be kept low in all the time regions shown in FIG. 2, and the FDF power consumption can be reduced correspondingly.

以上述べたように本実施形態では、ボイラに流体を送る通風機と、前記通風機を通る流体量を調節する流量調節操作端と、前記通風機のモータの動力となるインバータと、前記流体の物理量を検出する検出部と、前記流体の物理量と、前記ボイラへ供給される燃料量から算出した物理量指令との偏差を計算する減算部と、前記物理量指令に基づいて前記インバータへの制御指令を算出するインバータ指令演算部と、前記偏差に基づいて前記流量調節操作端への制御指令を作成する流量調節操作端指令演算部を有し、前記流量調節操作端指令演算部は、前記偏差が所定値よりも高いときと、前記偏差が所定値よりも低いときとでは、前記偏差が所定値よりも低いときの方が、前記偏差に対し高い変化率で制御することによって、FDF回転数を低く抑えることができるのでインバータによる省エネ効果が最大限に発揮できる。また、インバータによるFDF回転数制御では追従できないような急速な流量の絞り込みの必要がある場合には流量調節操作端が適切に絞り込むため、従来技術と同様の流量制御性能を維持することが可能である。   As described above, in the present embodiment, the ventilator that sends fluid to the boiler, the flow rate adjusting operation end that adjusts the amount of fluid passing through the ventilator, the inverter that is the power of the motor of the ventilator, and the fluid A detection unit that detects a physical quantity; a subtraction unit that calculates a deviation between the physical quantity of the fluid and a physical quantity command calculated from the amount of fuel supplied to the boiler; and a control command to the inverter based on the physical quantity command. An inverter command calculation unit for calculating, and a flow rate adjustment operation end command calculation unit for creating a control command to the flow rate adjustment operation end based on the deviation, wherein the deviation is predetermined When the deviation is lower than the predetermined value, when the deviation is lower than the predetermined value, the FDF rotation speed is controlled by controlling the deviation at a higher rate with respect to the deviation. Energy-saving effect by the inverter can be suppressed clause can be exhibited to the maximum. In addition, when there is a need to rapidly reduce the flow rate that cannot be followed by FDF rotation speed control by an inverter, the flow rate adjustment operation end is appropriately narrowed down, so that the same flow rate control performance as the conventional technology can be maintained. is there.

本発明の一実施形態における火力発電プラントのボイラと制御装置の構成図である。It is a block diagram of the boiler and control apparatus of the thermal power plant in one Embodiment of this invention. 本発明と参考例における制御の比較図である。It is a comparison figure of control in the present invention and a reference example.

符号の説明Explanation of symbols

1 火炉
2 押込通風機(FDF)
3 FDFモータ
4 FDF入口ベーン
5 煙突
6 空気流量検出器
7 インバータ装置
8 ボイラ自動制御装置
11 空気流量信号
12 FDF入口ベーン開度指令
13 FDF回転数指令
14 空気流量指令(AFD)
41 FDF入口ベーンコントロールドライブ
1 Furnace 2 Intruder (FDF)
3 FDF motor 4 FDF inlet vane 5 Chimney 6 Air flow detector 7 Inverter device 8 Boiler automatic controller 11 Air flow signal 12 FDF inlet vane opening command 13 FDF rotational speed command 14 Air flow command (AFD)
41 FDF inlet vane control drive

Claims (8)

ボイラに流体を送る通風機と、
前記通風機を通る流体量を調節する流量調節操作端と、
前記通風機のモータの動力となるインバータと、
前記流体の物理量を検出する検出部と、
前記流体の物理量と、前記ボイラへ供給される燃料量から算出した物理量指令との偏差
を計算する減算部と、
前記物理量指令に基づいて前記インバータへの制御指令を算出するインバータ指令演算
部と、
前記偏差に基づいて前記流量調節操作端への制御指令を作成する流量調節操作端指令演
算部を有し、
前記偏差が所定値よりも高いときは、前記インバータによって前記通風機を制御し、
前記偏差が所定値よりも低いときは、前記インバータと前記流量調節操作端によって前
記通風機を制御することを特徴とするボイラ自動制御装置。
A ventilator that sends fluid to the boiler;
A flow rate adjusting operation end for adjusting the amount of fluid passing through the ventilator;
An inverter serving as a power for the motor of the ventilator;
A detection unit for detecting a physical quantity of the fluid;
A subtractor that calculates a deviation between the physical quantity of the fluid and a physical quantity command calculated from the amount of fuel supplied to the boiler;
An inverter command calculation unit that calculates a control command to the inverter based on the physical quantity command;
A flow adjustment operation end command calculation unit for creating a control command to the flow adjustment operation end based on the deviation;
When the deviation is higher than a predetermined value, the inverter is controlled by the inverter,
When the deviation is lower than a predetermined value, the inverter and the flow rate adjusting operation end
A boiler automatic control device characterized by controlling a recording fan .
請求項1において、前記偏差が所定値よりも高いときと、前記偏差が所定値よりも低いときとでは、前記偏差が所定値よりも低いときの方が、前記偏差に対し高い変化率で制御することを特徴とするボイラ自動制御装置。2. The control according to claim 1, wherein when the deviation is higher than a predetermined value and when the deviation is lower than the predetermined value, the deviation is lower than the predetermined value at a higher rate of change with respect to the deviation. A boiler automatic control device characterized by: 請求項1において、前記インバータへの制御指令は前記偏差の比例積分演算により作成
されることを特徴とするボイラ自動制御装置。
2. The boiler automatic control device according to claim 1, wherein the control command to the inverter is created by a proportional-integral calculation of the deviation.
請求項1において、前記流量調節操作端への制御指令は前記流量調節操作端指令演算部
が発する関数に比例ゲインを乗じて作成されることを特徴とするボイラ自動制御装置。
2. The boiler automatic control device according to claim 1, wherein the control command to the flow rate adjusting operation end is generated by multiplying a function generated by the flow rate adjusting operation end command calculating unit by a proportional gain.
請求項1記載のボイラ自動制御装置において、さらに前記インバータの変化率を制限す
る変化率制限器を有する事を特徴とするボイラ自動制御装置。
2. The boiler automatic control device according to claim 1, further comprising a change rate limiter for limiting a change rate of the inverter.
請求項1において、前記流量調節操作端指令演算部は前記偏差が前記設定値より大きい
ときは前記流量調節操作端を全開にすることを特徴とするボイラ自動制御装置。
2. The boiler automatic control device according to claim 1, wherein when the deviation is larger than the set value, the flow rate adjusting operation end command calculation unit fully opens the flow rate adjusting operation end.
請求項1または請求項において、前記設定値は負の値に定める事を特徴とするボイラ
自動制御装置。
According to claim 1 or claim 6, wherein the set value boiler automatic control system, characterized in that provided for in a negative value.
ボイラと、
ボイラに燃焼ガスまたは空気を送る通風機と、
前記通風機を通る燃焼ガス量または空気量を調節する流量調節操作端と、
前記通風機を駆動するモータと、
前記モータの動力となるインバータと、
前記燃焼ガスまたは空気の物理量を検出する検出部と、
前記燃焼ガスまたは空気の物理量と、前記ボイラへ供給される燃料量から算出した物理
量指令との偏差を計算する減算部と、
前記物理量指令に基づいて前記インバータへの制御指令を算出するインバータ指令演算
部と、
前記偏差に基づいて前記流量調節操作端への制御指令を作成する流量調節操作端指令演
算部を有し、
前記偏差が所定値よりも高いときは、前記インバータによって前記通風機を制御し、
前記偏差が所定値よりも低いときは、前記インバータと前記流量調節操作端によって前
記通風機を制御することを特徴とするボイラシステム。
With a boiler,
A ventilator that sends combustion gas or air to the boiler;
A flow rate adjusting operation end for adjusting the amount of combustion gas or air passing through the ventilator;
A motor for driving the ventilator;
An inverter serving as the power of the motor;
A detection unit for detecting a physical quantity of the combustion gas or air;
A subtractor for calculating a deviation between the physical quantity of the combustion gas or air and the physical quantity command calculated from the amount of fuel supplied to the boiler;
An inverter command calculation unit that calculates a control command to the inverter based on the physical quantity command;
A flow adjustment operation end command calculation unit for creating a control command to the flow adjustment operation end based on the deviation;
When the deviation is higher than a predetermined value, the inverter is controlled by the inverter,
When the deviation is lower than a predetermined value, the ventilator is controlled by the inverter and the flow rate adjusting operation end.
JP2008297471A 2008-11-21 2008-11-21 Boiler automatic control device and boiler system Active JP5320037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297471A JP5320037B2 (en) 2008-11-21 2008-11-21 Boiler automatic control device and boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297471A JP5320037B2 (en) 2008-11-21 2008-11-21 Boiler automatic control device and boiler system

Publications (2)

Publication Number Publication Date
JP2010121893A JP2010121893A (en) 2010-06-03
JP5320037B2 true JP5320037B2 (en) 2013-10-23

Family

ID=42323381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297471A Active JP5320037B2 (en) 2008-11-21 2008-11-21 Boiler automatic control device and boiler system

Country Status (1)

Country Link
JP (1) JP5320037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102631417B (en) * 2011-02-12 2014-03-19 南京农业大学 Traditional Chinese medicine extract for haemostasis and preparation method thereof
US8734868B1 (en) 1999-04-19 2014-05-27 Pom Wonderful, Llc Methods of using pomegranate extracts for treating diabetes related atherosclerotic complications in humans

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557591B1 (en) 2014-09-23 2015-10-05 두산중공업 주식회사 Method and apparatus for controlling flow rate of fuel in drum boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118520A (en) * 1986-11-07 1988-05-23 Hitachi Ltd Automatic control device of boiler
JPH03129207A (en) * 1989-10-16 1991-06-03 Ishikawajima Harima Heavy Ind Co Ltd Air flow rate control device for boiler
JPH07286723A (en) * 1994-04-15 1995-10-31 Nippon Steel Corp Controlling method for induced draught fan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734868B1 (en) 1999-04-19 2014-05-27 Pom Wonderful, Llc Methods of using pomegranate extracts for treating diabetes related atherosclerotic complications in humans
CN102631417B (en) * 2011-02-12 2014-03-19 南京农业大学 Traditional Chinese medicine extract for haemostasis and preparation method thereof

Also Published As

Publication number Publication date
JP2010121893A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US7422414B2 (en) Inlet guide vane control device of gas turbine
JP2012057585A (en) Start controller for combined cycle power plant and method of controlling start thereof
JP5320037B2 (en) Boiler automatic control device and boiler system
JP6297417B2 (en) Waste treatment facility and waste treatment method
JP3179432U (en) Exhaust gas recirculation device
CN113027802A (en) Power frequency switching method for fault state of frequency converter of centrifugal fan of power station
JP5517870B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
JP2002327915A (en) Mill primary air flow rate control device for pulverized coal burning boiler equipment
JP5147766B2 (en) Gas turbine rotation control device
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JP2006329624A (en) Automatic boiler controller
JP3941405B2 (en) Boiler automatic control apparatus and method
JP3777471B2 (en) Control method and apparatus for boiler forced draft fan
JP3932375B2 (en) Frequency control apparatus and method for thermal power plant
JP4539351B2 (en) Boiler automatic control device and control method
JP5039398B2 (en) Boiler automatic controller
JP2007139235A (en) Control method for condenser
JP2004232917A (en) Method and device for controlling boiler
JP2006183608A (en) Excessive speed avoidance device of regenerative type gas turbine
CN113653607B (en) Intelligent power station fan stall early warning diagnosis method based on system efficiency model
JP2018091224A (en) Control system, steam turbine, power-generating plant and control method
JP3986485B2 (en) Boiler control device and boiler control method
WO2022118854A1 (en) Power generation system, control method for same, and program
JP2724941B2 (en) Exhaust gas reburning combined plant and operation control method of the plant
JP4981509B2 (en) Combined power plant steam turbine operation control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R151 Written notification of patent or utility model registration

Ref document number: 5320037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250