WO2022118854A1 - Power generation system, control method for same, and program - Google Patents
Power generation system, control method for same, and program Download PDFInfo
- Publication number
- WO2022118854A1 WO2022118854A1 PCT/JP2021/043930 JP2021043930W WO2022118854A1 WO 2022118854 A1 WO2022118854 A1 WO 2022118854A1 JP 2021043930 W JP2021043930 W JP 2021043930W WO 2022118854 A1 WO2022118854 A1 WO 2022118854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boiler
- generator
- output
- correction value
- power generation
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012937 correction Methods 0.000 claims abstract description 92
- 238000012545 processing Methods 0.000 claims description 15
- 230000005611 electricity Effects 0.000 claims description 10
- 230000001629 suppression Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 230000006870 function Effects 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 239000000446 fuel Substances 0.000 description 8
- 238000009499 grossing Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
Definitions
- This disclosure relates to a power generation system, its control method, and a program.
- the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a power generation system capable of increasing the generator output, a control method thereof, and a program.
- the first aspect of the present disclosure includes a boiler, a steam turbine that rotates using the steam generated by the boiler, a generator that generates electricity by the rotation of the steam turbine, and a system control device that controls the boiler.
- the system control device calculates a correction value based on the deviation between the generator request output and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. It is a power generation system including a setting unit and a boiler control unit that increases the generator request output based on the correction value and generates a boiler input command that is a command for controlling the boiler.
- the second aspect of the present disclosure is a control method of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates power by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a step of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It is a control method including a step of increasing a machine request output and generating a boiler input command which is a command for controlling the boiler.
- a third aspect of the present disclosure is a control program of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates power by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a process of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It is a control program for causing a computer to execute a process of increasing a machine request output and generating a boiler input command which is a command for controlling the boiler.
- FIG. 1 is a block diagram schematically showing the overall configuration of the power generation system 1 according to the present embodiment.
- the power generation system 1 controls a boiler 10, a steam turbine 3 that rotates using steam generated in the boiler 10, a generator 5 that generates electricity by the rotation of the steam turbine 3, and a steam turbine 3. It is provided with a control device 15.
- the boiler 10 can be applied not only to CFB but also to other types of boilers such as HRSG.
- a furnace 2 for burning fuel is provided in the boiler 10.
- the steam generated in the water cooling wall 2'provided in the furnace 2 is supplied to the steam turbine 3 by the steam pipe L1.
- the steam pipe L1 is provided with a primary superheater 4a, a heater 16 and a secondary superheater 4b in series.
- FIG. 1 shows a case where one heater 16 is used, it may be further provided after the secondary superheater 4b.
- the steam pipe L1 between the boiler 10 and the steam turbine 3 is provided with a steam control valve 6 for adjusting the amount of steam supplied to the steam turbine 3.
- the steam control valve 6 may be maintained in the fully open state regardless of the generator required output (power generation required output) MWD.
- the power generation system 1 includes a water supply pump 8 that supplies water to the water cooling wall 2'provided in the furnace 2, a condenser 9 that collects steam discharged from the steam turbine 3 and returns it to water (liquid), and a condenser. It is provided with a pipe L2 or the like that guides the water generated in 9 to the water supply pump 8.
- a pressure sensor 11 for measuring the main steam pressure is provided between the secondary superheater 4b and the steam control valve 6 in the steam pipe L1.
- the measured value of the pressure sensor 11 is output to the system control device 15 and used for controlling the steam turbine 3.
- steam is generated by burning fuel in the fireplace 2 and activating the water supply pump 8 to circulate water through the water cooling wall 2'provided in the fireplace 2.
- the steam generated in the water cooling wall 2'of the furnace 2 is guided to the primary superheater 4a and superheated, then cooled in the warmer 16 and reheated in the secondary superheater 4b.
- the steam reheated by the secondary superheater 4b is introduced into the steam turbine 3 and used to drive the steam turbine 3.
- the generator 5 generates electricity by the rotation of the steam turbine 3, and the generated electric power is sent to, for example, an electric power system (not shown).
- the steam after driving the steam turbine 3 is guided to the condenser 9, and is returned to water (liquid) by the condenser 9.
- the water generated in the condenser 9 is returned to the water supply pump 8 again via various devices (not shown) provided in the pipe L2, and is reused in the boiler 10.
- the system control device 15 controls the boiler 10 and the like.
- FIG. 2 is a diagram showing an example of the hardware configuration of the system control device 15 according to the present embodiment.
- the system control device 15 is a computer system (computer system), for example, a CPU 110, a ROM (Read Only Memory) 120 for storing a program executed by the CPU 110, and execution of each program. It includes a RAM (Random Access Memory) 130 that functions as a work area at the time, a hard disk drive (HDD) 140 as a large-capacity storage device, and a communication unit 150 for connecting to a network or the like.
- a solid state drive SSD
- Each of these parts is connected via a bus 180.
- the system control device 15 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
- the storage medium for storing the program or the like executed by the CPU 110 is not limited to the ROM 120.
- it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
- a series of processing processes for realizing various functions described later is recorded in a hard disk drive 140 or the like in the form of a program, and the CPU 110 reads this program into the RAM 130 or the like to execute information processing / arithmetic processing.
- the program may be installed in a ROM 120 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied.
- the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
- FIG. 3 is a diagram showing a schematic configuration of the system control device 15.
- the system control device 15 includes a correction value setting unit 20, a main steam pressure setting unit 30, a boiler control unit 40, and a governor control unit 50.
- the correction value setting unit 20 calculates the correction value AM1 based on the deviation between the generator request output MWD and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. .. Specifically, the correction value setting unit 20 holds the subtraction unit 21, the condition determination unit 22, the signal switching unit 23, the smoothing processing unit 24, the PI control unit 25, and the change rate limiting unit 26. A unit 27 and a signal switching unit 28 are provided.
- the subtraction unit 21 calculates the deviation (difference) between the generator request output MWD and the actual output (generator output) and outputs it to the PI control unit 25.
- the deviation is referred to as ⁇ MW.
- the deviation ( ⁇ MW) is a value obtained by subtracting the actual output from the generator required output MWD.
- the condition determination unit 22 determines the condition and outputs whether the condition is satisfied or not. For example, as shown in FIG. 3, a first condition, a second condition, and a third condition are set in the condition determination unit 22 (logical product). Only the first condition and the second condition may be used, or other conditions may be added. The condition determination unit 22 outputs that the condition is satisfied when all the set conditions are satisfied, and outputs that the condition is not satisfied if even one of the conditions is not satisfied.
- the first condition is that the load state is equal to or higher than the threshold value.
- the threshold is set based on the rated load. Specifically, the threshold value is set near the rated load (for example, a value lower than the rated load by a predetermined margin). That is, the first condition determines that the load state is close to the rated load.
- the generator required output MWD can be used for the load state. That is, the first condition can be that the generator request output MWD is equal to or higher than the preset threshold value ⁇ . In this way, under the first condition, it is determined that the rated load state is (or is close to).
- the second condition is that the load change width (load change amount per predetermined time) is within a predetermined range.
- the predetermined range is preset as a range that can be regarded as a steady state with no load change. That is, ideally, it is determined that there is no load change (not under load change) under the second condition.
- the fact that the load is not changing may be determined, for example, by the absence of a load increase (change) request signal.
- the load increase request signal is the target load (generator output) remotely or manually by the operator when the required load of the power plant (generator request output MWD) is increased by the instruction from the central power supply command center. It is a signal that is input until it reaches. If there is no load increase request signal, it can be determined that there is no load change (the load change width is within a predetermined range).
- the third condition is that the opening degree of the steam control valve 6 is equal to or higher than the threshold value ⁇ . Specifically, the third condition is that the opening degree of the steam control valve 6 is fully opened. Therefore, the threshold value ⁇ is set in advance to a value at which the steam control valve 6 can be determined to be fully open. The threshold value ⁇ may be set in consideration of a predetermined margin with respect to the fully open state.
- condition determination unit 22 determines that all the conditions are satisfied with the first condition, the second condition, and the third condition as the AND condition.
- condition determination unit 22 determines that the outside air temperature is equal to or higher than a predetermined value, and the deviation between the generator required output MWD and the generator output is equal to or higher than a predetermined value. At least one of them may be determined.
- the generator output tends to be insufficient due to a decrease in the vacuum pressure of the condenser 9. That is, by determining that the outside air temperature is equal to or higher than a predetermined value, it is possible to determine the possibility of output shortage due to an increase in the outside air temperature.
- the threshold value is set in advance according to the relationship between the outside air temperature and the shortage amount of the generator output.
- the predetermined value is set based on, for example, an acceptable value of the deviation between the generator required output MWD and the generator output.
- the phenomenon that the generator output is insufficient can occur regardless of the outside air temperature, for example, due to deterioration of equipment or the like. Therefore, by determining that the deviation between the generator required output MWD and the generator output is equal to or greater than a predetermined value, it is possible to determine that the generator output is insufficient regardless of the cause.
- condition determination unit 22 determines that all the conditions are satisfied with the first condition, the second condition, the third condition, and the fourth condition as the AND condition.
- the signal switching unit 23 outputs either one of the selected port B1 and the selected port B2 to the output port C1 according to the input of the input port A1. Specifically, when a signal indicating that the condition is satisfied is input to the input port A1, the input to the selection port B1 is output to the output port C1. On the other hand, when a signal indicating that the condition is not satisfied is input to the input port A1, the input to the selection port B2 is output to the output port C1. That is, when the condition determination unit 22 determines that the condition is satisfied, ⁇ MW is output, and when the condition determination unit 22 determines that the condition is not satisfied, the signal generated by the signal generator (zero signal) is output. ..
- the smoothing processing unit 24 performs smoothing processing on the signal from the signal switching unit 23. Specifically, the annealing processing unit 24 performs a change suppression process for suppressing a time change with respect to ⁇ MW, which is a deviation between the generator required output MWD and the actual output. Specifically, the change suppression process is performed by a moving average. That is, ⁇ MW is leveled. Even when a zero signal is input from the signal switching unit 23, the smoothing process is performed, but since the zero signal does not change with time, the input is output as it is.
- the correction value setting unit 20 performs a change suppression process for suppressing the time change for ⁇ MW and calculates the correction value AM1 described later, so that a sudden time change of the calculated correction value AM1 is suppressed. To. That is, the time change of the correction value AM1 is also gradual, and the sudden generator output is suppressed.
- the PI control unit 25 performs PI control based on the signal (that is, ⁇ MW) output from the smoothing processing unit 24, and outputs a control value.
- a lower limit value and an upper limit value are set.
- the lower limit is 0 and the upper limit is a (> 0). By doing so, the control value is limited within the upper and lower limit range, and the range of the output value can be limited.
- the change rate limiting unit 26 processes the control signal output from the PI control unit 25 so as to suppress the time change. This suppresses sudden changes over time in the control signal.
- the holding unit 27 holds the value when the signal output from the rate of change limiting unit 26 reaches the actual MW target value.
- the actual MW target value is the rated output of the plant. That is, the actual MW target value is the maximum value of the output correction value AM1.
- the signal switching unit 28 outputs either one of the selected port E1 and the selected port E2 to the output port F1 according to the input of the input port D1. Specifically, when a signal indicating that the condition is satisfied is input to the input port D1, the input to the selection port E1 is output to the output port F1. On the other hand, when a signal indicating that the condition is not satisfied is input to the input port D1, the input to the selection port E2 is output to the output port F1. That is, when the condition determination unit 22 determines that the condition is satisfied, the signal input from the holding unit 27 is output, and when the condition determination unit 22 determines that the condition is not satisfied, the signal generated by the signal generator ( Zero signal) is output.
- the correction value AM1 is calculated based on ⁇ MW.
- the correction value AM1 is based on ⁇ MW, and the larger the ⁇ MW, that is, the smaller the actual output with respect to the generator required output MWD, the larger the value.
- the calculated correction value AM1 is output to the main steam pressure setting unit 30. When the condition is not satisfied and a zero signal is output from the signal switching unit 28, the correction value AM1 is zero and does not affect the subsequent stage.
- the main steam pressure setting unit 30 sets the main steam pressure command CM2 based on the generator required output MWD and the correction value AM1. Therefore, the main steam pressure setting unit 30 includes a function unit 31 and an addition unit 32.
- the function unit 31 converts the generator request output MWD to the main steam pressure command (before correction) CM1. That is, the function unit 31 performs conversion based on the relationship between the generator required output MWD set in advance based on the specifications of the power generation system 1 and the main steam pressure command CM1.
- the addition unit 32 corrects the main steam pressure command CM1 by adding the correction value AM1 set by the correction value setting unit 20 to the main steam pressure command CM1 output from the function unit 31, and the main steam.
- the pressure command (after correction) CM2 is output. By doing so, the correction is made in the direction of increasing the main steam pressure command.
- the main steam pressure command CM2 is generated in the main steam pressure setting unit 30.
- the generated main steam pressure command CM2 is output to the boiler control unit 40.
- the boiler control unit 40 generates a boiler input command BID (Boiler Input Demand), which is a command for controlling the boiler 10.
- BID Boiler Input Demand
- the boiler control unit 40 uses the main steam pressure command CM2 reflecting the correction value AM1, a process of increasing the generator request output MWD is performed based on the correction value AM1.
- the boiler control unit 40 increases the generator required output MWD based on the deviation between the main steam pressure command CM2 and the main steam pressure, and generates the boiler input command BID.
- the boiler control unit 40 includes a subtraction unit 41, a PI control unit 42, an addition unit 43, and a function unit 44.
- the subtraction unit 41 calculates the deviation (difference) between the main steam pressure command CM2 and the main steam pressure (actual value), and outputs the deviation (difference) to the PI control unit 42.
- the deviation is the value obtained by subtracting the main steam pressure from the main steam pressure command CM2.
- the PI control unit 42 performs PI control based on the signal output from the subtraction unit 41 (that is, the deviation between the main steam pressure command CM2 and the main steam pressure), and outputs the control value.
- This control value is based on the correction value AM1 output from the correction value setting unit 20, and is the correction value AM2 for the generator request output MWD.
- the correction value AM2 for the generator required output MWD is based on the deviation between the main steam pressure command CM2 and the main steam pressure, and the smaller the main steam pressure with respect to the main steam pressure command CM2, the larger the value.
- the main steam pressure command CM2 is calculated based on the correction value AM1 generated by the correction value setting unit 20, the correction value AM2 with respect to the generator request output MWD has a larger ⁇ MW, that is, power generation. The smaller the actual output with respect to the machine required output MWD, the larger the value.
- the addition unit 43 corrects the generator request output MWD by adding the generator request output MWD to the control value (correction value AM2 for the generator request output MWD) output from the PI control unit 42. Since the correction value AM2 is added to the generator required output MWD, the generator required output MWD is corrected in an increasing direction.
- the function unit 44 converts the corrected generator request output MWD output from the addition unit 43 into a boiler input command BID and outputs it.
- the boiler input command BID is used, for example, to create a fuel flow rate command in the fireplace 2 and a water supply flow rate command in the water cooling wall 2'.
- FIG. 3 shows a case where it is used for controlling a payout conveyor. If the boiler input command BID increases, the fuel flow rate command in the furnace 2 and the water supply flow rate command to the water cooling wall 2'will also increase, and as a result, the main steam pressure will rise. That is, the generator output will increase.
- the boiler input command BID is not limited to the fuel flow command in the above-mentioned furnace 2 as long as it is a parameter that can increase the main steam pressure to increase the generator output.
- the governor control unit 50 controls the opening degree of the steam control valve (governor) 6. Specifically, the subtraction unit 51 calculates the deviation between the generator request output MWD and the generator output, and the PI control unit 52 converts the difference into a control signal. By controlling the opening degree of the steam control valve 6 by this control signal, the opening degree adjustment control of the governor is performed so that the deviation between the generator required output MWD and the generator output becomes zero.
- FIG. 4 is a flowchart showing an example of the procedure of the boiler input command output processing according to the present embodiment.
- the flow shown in FIG. 4 is repeatedly executed, for example, at a predetermined control cycle.
- a case where all of the first condition, the second condition, the third condition, and the fourth condition are used will be described, but even if the number of conditions is different, the same processing is performed.
- the correction value AM1 is calculated based on the deviation between the generator request output MWD and the generator output (S105).
- the correction value AM1 becomes zero (S106).
- the main steam pressure command CM2 is set based on the generator required output MWD and the correction value AM1 (S107).
- the main steam pressure command CM2 is set simply based on the generator required output MWD.
- the correction value AM2 for the generator required output MWD is calculated based on the deviation between the main steam pressure command CM2 and the main steam pressure (S108).
- the A pattern and the B pattern are shown with the vertical axis (left axis) as the main steam pressure, the vertical axis (right axis) as the steam control valve opening degree, and the horizontal axis as the main steam flow rate.
- the steam control valve 6 is fully opened and is constant.
- the steam control valve 6 is variable.
- the correction value is calculated and the correction is performed so as to increase the boiler input command BID as in the present embodiment.
- the turbine is controlled by the generator output (the opening degree of the steam control valve 6 is constant), and the boiler 10 is controlled by the main steam pressure (corrected by ⁇ MW).
- the load state is a high load equal to or higher than the threshold value.
- the correction value is calculated based on the generator request output and the generator output when there is no (small) load change in the state and the load change width is within a predetermined range.
- the boiler input command BID is generated by increasing the generator request output MWD according to the correction value. Therefore, the boiler input command BID can be increased in a state where the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. This makes it possible to increase the generator output.
- the load state is above the threshold value and the load change range is within the predetermined range, it is usually considered unnecessary to increase the generator output, but for some reason (for example, environmental change or equipment deterioration), the generator output is increased. Even if a shortage occurs, it is possible to cover the shortage.
- the boiler input command BID is generated based on the deviation between the main steam pressure command CM2 set by the generator required output MWD and the correction value, and the main steam pressure command CM2 while considering the correction value.
- the boiler input command BID is generated so as to suppress the difference between the main steam pressure and the main steam pressure.
- the output can be increased when the outside air temperature is equal to or higher than a predetermined value or when the deviation between the generator required output MWD and the generator output is equal to or higher than a predetermined value. For example, when the outside air temperature is high in the summer, the output tends to be insufficient due to a decrease in the vacuum pressure of the condenser 9. Therefore, the shortage is covered by increasing the output according to the correction value.
- the amount of fuel input to the furnace 2 and the amount of water supplied to the water cooling wall 2' are increased, but water is supplied rather than the responsiveness of the fuel in the furnace 2. Responsiveness is faster. Therefore, when the fuel flow rate command and the water supply flow rate command are increased at the same time, the amount of water supplied to the water cooling wall 2'first increases, and then the temperature inside the furnace 2 gradually starts to rise. Therefore, depending on the amount of water supplied to the water-cooled wall 2', the degree of superheat at the outlet of the water-cooled wall 2'may decrease.
- a part of the water supply amount is bypassed to the water cooling wall 2'and supplied to the heater 16 installed on the steam outlet side of the primary superheater 4a and sprayed as a spray. May be good.
- the amount of spray increases.
- the spray amount of each warmer 16 may be increased.
- the power generation system described in each of the above-described embodiments, the control method thereof, and the program are grasped as follows, for example.
- the power generation system (1) according to the present disclosure includes a boiler (10), a steam turbine (3) that rotates using the steam generated by the boiler, a generator that generates electricity by the rotation of the steam turbine, and the boiler.
- a system control device (15) for controlling is provided, and the system control device includes a generator required output (MWD) and power generation when the load state is equal to or higher than a threshold value and the load change width is within a predetermined range.
- MWD generator required output
- a correction value setting unit (20) that calculates a correction value based on a deviation from the machine output, and a boiler input command that is a command for increasing the generator request output based on the correction value and controlling the boiler.
- a boiler control unit (40) that generates (BID) is provided.
- the power generation system in a power generation system that generates power using a boiler or a steam turbine, there is no high load state in which the load state is equal to or higher than the threshold value, and there is no load change in which the load change range is within a predetermined range ( When the condition is small), the correction value is calculated based on the generator request output and the generator output. Then, the boiler input command is generated by increasing the generator request output according to the correction value. Therefore, the boiler input command can be increased in a state where the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. This makes it possible to increase the generator output.
- the load state is above the threshold value and the load change range is within the predetermined range, it is usually considered unnecessary to increase the generator output, but for some reason (for example, environmental change or equipment deterioration), the generator output is increased. Even if a shortage occurs, it is possible to cover the shortage.
- the power generation system includes a main steam pressure setting unit (30) for setting a main steam pressure command based on the generator request output and the correction value, and the boiler control unit includes the main steam pressure command.
- the generator required output may be increased to generate the boiler input command based on the deviation between the steam pressure and the main steam pressure.
- the correction value is taken into consideration by generating the boiler input command based on the deviation between the main steam pressure command and the main steam pressure set by the generator required output and the correction value.
- a boiler input command is generated so as to suppress the difference between the main steam pressure command and the main steam pressure.
- the power generation system includes a steam control valve (6) provided in a steam pipe connecting the boiler and the steam turbine, and the correction value setting unit has a load state equal to or higher than a threshold value and a load change.
- the correction value may be calculated when the width is within a predetermined range and the opening degree of the steam control valve is equal to or larger than the threshold value.
- the boiler input command is increased to increase the output. Is possible.
- the correction value setting unit is at least one of the cases where the outside air temperature is equal to or higher than a predetermined value and the deviation between the generator required output and the generator output is equal to or higher than a predetermined value. In the case of one, the correction value may be calculated.
- the output can be increased when the outside air temperature is equal to or higher than a predetermined value or when the deviation between the generator required output and the generator output is equal to or higher than a predetermined value.
- a predetermined value For example, when the outside air temperature is high in summer, the output tends to be insufficient due to a decrease in the vacuum pressure of the condenser (9) or the like. Therefore, the shortage is covered by increasing the output according to the correction value.
- the correction value setting unit performs a change suppression process for suppressing a time change with respect to a deviation between the generator request output and the generator output, and calculates the correction value. May be good.
- the time change of the deviation between the generator request output and the generator output is suppressed, the time change of the correction value is also gradual, and the sudden generator output is suppressed.
- the correction value setting unit may perform the change suppression process by a moving average.
- the control method is a control method of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a step of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It includes a step of increasing the machine request output and generating a boiler input command which is a command for controlling the boiler.
- the control program according to the present disclosure is a control program of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a process of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value.
- a process of increasing the machine request output and generating a boiler input command, which is a command for controlling the boiler, is performed by the computer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Turbines (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
The purpose of the present invention is to provide a power generation system capable of increasing the output of a generator, a control method for the same, and a program. The power generation system comprises a boiler, a steam turbine that rotates using steam generated by the boiler, a generator that generates power by the rotation of the steam turbine, and a system controller (15) that controls the boiler. The system controller (15) comprises a correction-value setting unit (20) that calculates a correction value on the basis of a deviation (ΔMW) between a required generator output (MWD) and a generator output when a loading status is equal to or higher than a threshold value and changes of load are within a predetermined range, and a boiler control unit (40) that increases the required generator output (MWD) on the basis of the correction value and generates a boiler input direction (BID) as a direction for controlling the boiler.
Description
本開示は、発電システム、及びその制御方法並びにプログラムに関するものである。
This disclosure relates to a power generation system, its control method, and a program.
火力発電所等において、ボイラと蒸気タービンとを主な構成要素として備える発電システムが多く採用されている。この発電システムは、ボイラで発生させた蒸気を用いて蒸気タービンにより発電するものである。
In thermal power plants, etc., many power generation systems equipped with boilers and steam turbines as the main components are adopted. This power generation system uses steam generated by a boiler to generate electricity with a steam turbine.
例えば夏場では、外気温度の上昇に伴って復水器の真空圧が低下する等の現象が発生する。このような場合では発電機出力が低下し易い状態となり(例えば特許文献1)、定格負荷分の出力を得られない場合がある。その他にも、例えば機器の経年劣化によって出力が低下する可能性がある(例えば特許文献2)。このように発電機出力がショートすると、十分な発電量を得ることできず発電量不足となる可能性がある。
For example, in the summer, a phenomenon such as a decrease in the vacuum pressure of the condenser occurs as the outside air temperature rises. In such a case, the output of the generator tends to decrease (for example, Patent Document 1), and the output corresponding to the rated load may not be obtained. In addition, for example, the output may decrease due to aged deterioration of the device (for example, Patent Document 2). If the generator output is short-circuited in this way, it may not be possible to obtain a sufficient amount of power generation and the amount of power generation may be insufficient.
本開示は、このような事情に鑑みてなされたものであって、発電機出力を増加させることのできる発電システム、及びその制御方法並びにプログラムを提供することを目的とする。
The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a power generation system capable of increasing the generator output, a control method thereof, and a program.
本開示の第1態様は、ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機と、前記ボイラを制御するシステム制御装置と、を備え、前記システム制御装置は、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する補正値設定部と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成するボイラ制御部と、を備える発電システムである。
The first aspect of the present disclosure includes a boiler, a steam turbine that rotates using the steam generated by the boiler, a generator that generates electricity by the rotation of the steam turbine, and a system control device that controls the boiler. , The system control device calculates a correction value based on the deviation between the generator request output and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. It is a power generation system including a setting unit and a boiler control unit that increases the generator request output based on the correction value and generates a boiler input command that is a command for controlling the boiler.
本開示の第2態様は、ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御方法であって、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する工程と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する工程と、を有する制御方法である。
The second aspect of the present disclosure is a control method of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates power by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a step of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It is a control method including a step of increasing a machine request output and generating a boiler input command which is a command for controlling the boiler.
本開示の第3態様は、ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御プログラムであって、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する処理と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する処理と、をコンピュータに実行させるための制御プログラムである。
A third aspect of the present disclosure is a control program of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates power by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a process of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It is a control program for causing a computer to execute a process of increasing a machine request output and generating a boiler input command which is a command for controlling the boiler.
本開示によれば、発電機出力を増加させることができるという効果を奏する。
According to this disclosure, it has the effect of increasing the generator output.
以下に、本発明の一実施形態に係る発電システム及びその制御方法について、図面を参照して説明する。図1は、本実施形態に係る発電システム1の全体構成を概略的に示したブロック図である。図1において、発電システム1は、ボイラ10と、ボイラ10で発生した蒸気を用いて回転する蒸気タービン3と、蒸気タービン3の回転により発電する発電機5と、蒸気タービン3の制御を行うシステム制御装置15とを備えている。ボイラ10としては、CFBに限らず、HRSGのような他の形式のボイラにも適用することができる。
ボイラ10内には、燃料を燃焼させる火炉2が設けられている。火炉2に設けられた水冷壁2´において発生した蒸気は、蒸気配管L1によって蒸気タービン3に供給される。蒸気配管L1には、一次過熱器4a、減温器16、二次過熱器4bが直列に設けられている。図1では、減温器16が1台の場合を示しているが、二次過熱器4bの後段に更に設けられている構成としてもよい。 Hereinafter, a power generation system according to an embodiment of the present invention and a control method thereof will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing the overall configuration of thepower generation system 1 according to the present embodiment. In FIG. 1, the power generation system 1 controls a boiler 10, a steam turbine 3 that rotates using steam generated in the boiler 10, a generator 5 that generates electricity by the rotation of the steam turbine 3, and a steam turbine 3. It is provided with a control device 15. The boiler 10 can be applied not only to CFB but also to other types of boilers such as HRSG.
Afurnace 2 for burning fuel is provided in the boiler 10. The steam generated in the water cooling wall 2'provided in the furnace 2 is supplied to the steam turbine 3 by the steam pipe L1. The steam pipe L1 is provided with a primary superheater 4a, a heater 16 and a secondary superheater 4b in series. Although FIG. 1 shows a case where one heater 16 is used, it may be further provided after the secondary superheater 4b.
ボイラ10内には、燃料を燃焼させる火炉2が設けられている。火炉2に設けられた水冷壁2´において発生した蒸気は、蒸気配管L1によって蒸気タービン3に供給される。蒸気配管L1には、一次過熱器4a、減温器16、二次過熱器4bが直列に設けられている。図1では、減温器16が1台の場合を示しているが、二次過熱器4bの後段に更に設けられている構成としてもよい。 Hereinafter, a power generation system according to an embodiment of the present invention and a control method thereof will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing the overall configuration of the
A
ボイラ10と蒸気タービン3との間の蒸気配管L1には、蒸気タービン3への蒸気供給量を調整するための蒸気加減弁6が設けられている。完全変圧運転モードが採用される場合には蒸気加減弁6は発電機要求出力(発電要求出力)MWDに関係なく全開状態が維持されることとしてもよい。
The steam pipe L1 between the boiler 10 and the steam turbine 3 is provided with a steam control valve 6 for adjusting the amount of steam supplied to the steam turbine 3. When the complete transformer operation mode is adopted, the steam control valve 6 may be maintained in the fully open state regardless of the generator required output (power generation required output) MWD.
発電システム1は、火炉2に設けられた水冷壁2´に水を供給する給水ポンプ8、蒸気タービン3から排出された蒸気を回収し、水(液体)に戻す復水器9、復水器9にて発生した水を給水ポンプ8へ導く配管L2等を備えている。
The power generation system 1 includes a water supply pump 8 that supplies water to the water cooling wall 2'provided in the furnace 2, a condenser 9 that collects steam discharged from the steam turbine 3 and returns it to water (liquid), and a condenser. It is provided with a pipe L2 or the like that guides the water generated in 9 to the water supply pump 8.
蒸気配管L1における二次過熱器4bと蒸気加減弁6との間には、主蒸気圧力を計測するための圧力センサ11が設けられている。圧力センサ11の計測値は、システム制御装置15に出力され、蒸気タービン3の制御に用いられる。
A pressure sensor 11 for measuring the main steam pressure is provided between the secondary superheater 4b and the steam control valve 6 in the steam pipe L1. The measured value of the pressure sensor 11 is output to the system control device 15 and used for controlling the steam turbine 3.
このような構成を備える発電システム1においては、火炉2にて、燃料を燃焼させると共に、給水ポンプ8を起動させて火炉2に設けられた水冷壁2´に水を流通させることにより蒸気を発生させる。
火炉2の水冷壁2´にて発生した蒸気は、一次過熱器4aへ導かれて過熱された後、減温器16において減温され、二次過熱器4bにおいて再過熱される。二次過熱器4bにて再過熱された蒸気は蒸気タービン3へ導入され、蒸気タービン3を駆動するために用いられる。蒸気タービン3の回転により発電機5は発電し、この発電電力が、例えば、電力系統(図示略)などに送られる。 In thepower generation system 1 having such a configuration, steam is generated by burning fuel in the fireplace 2 and activating the water supply pump 8 to circulate water through the water cooling wall 2'provided in the fireplace 2. Let me.
The steam generated in the water cooling wall 2'of thefurnace 2 is guided to the primary superheater 4a and superheated, then cooled in the warmer 16 and reheated in the secondary superheater 4b. The steam reheated by the secondary superheater 4b is introduced into the steam turbine 3 and used to drive the steam turbine 3. The generator 5 generates electricity by the rotation of the steam turbine 3, and the generated electric power is sent to, for example, an electric power system (not shown).
火炉2の水冷壁2´にて発生した蒸気は、一次過熱器4aへ導かれて過熱された後、減温器16において減温され、二次過熱器4bにおいて再過熱される。二次過熱器4bにて再過熱された蒸気は蒸気タービン3へ導入され、蒸気タービン3を駆動するために用いられる。蒸気タービン3の回転により発電機5は発電し、この発電電力が、例えば、電力系統(図示略)などに送られる。 In the
The steam generated in the water cooling wall 2'of the
蒸気タービン3を駆動した後の蒸気は、復水器9へ導かれ、復水器9により水(液体)に戻される。復水器9にて発生した水は、配管L2に設けられている図示しない各種装置を経由して再び給水ポンプ8に戻され、ボイラ10において再び再利用される。
The steam after driving the steam turbine 3 is guided to the condenser 9, and is returned to water (liquid) by the condenser 9. The water generated in the condenser 9 is returned to the water supply pump 8 again via various devices (not shown) provided in the pipe L2, and is reused in the boiler 10.
システム制御装置15は、ボイラ10等を制御する。
The system control device 15 controls the boiler 10 and the like.
図2は、本実施形態に係るシステム制御装置15のハードウェア構成の一例を示した図である。
図2に示すように、システム制御装置15は、コンピュータシステム(計算機システム)であり、例えば、CPU110と、CPU110が実行するプログラム等を記憶するためのROM(Read Only Memory)120と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)130と、大容量記憶装置としてのハードディスクドライブ(HDD)140と、ネットワーク等に接続するための通信部150とを備えている。大容量記憶装置としては、ソリッドステートドライブ(SSD)を用いることとしてもよい。これら各部は、バス180を介して接続されている。 FIG. 2 is a diagram showing an example of the hardware configuration of thesystem control device 15 according to the present embodiment.
As shown in FIG. 2, thesystem control device 15 is a computer system (computer system), for example, a CPU 110, a ROM (Read Only Memory) 120 for storing a program executed by the CPU 110, and execution of each program. It includes a RAM (Random Access Memory) 130 that functions as a work area at the time, a hard disk drive (HDD) 140 as a large-capacity storage device, and a communication unit 150 for connecting to a network or the like. As the large-capacity storage device, a solid state drive (SSD) may be used. Each of these parts is connected via a bus 180.
図2に示すように、システム制御装置15は、コンピュータシステム(計算機システム)であり、例えば、CPU110と、CPU110が実行するプログラム等を記憶するためのROM(Read Only Memory)120と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)130と、大容量記憶装置としてのハードディスクドライブ(HDD)140と、ネットワーク等に接続するための通信部150とを備えている。大容量記憶装置としては、ソリッドステートドライブ(SSD)を用いることとしてもよい。これら各部は、バス180を介して接続されている。 FIG. 2 is a diagram showing an example of the hardware configuration of the
As shown in FIG. 2, the
システム制御装置15は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。
The system control device 15 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
CPU110が実行するプログラム等を記憶するための記憶媒体は、ROM120に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。
The storage medium for storing the program or the like executed by the CPU 110 is not limited to the ROM 120. For example, it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でハードディスクドライブ140等に記録されており、このプログラムをCPU110がRAM130等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。プログラムは、ROM120やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
A series of processing processes for realizing various functions described later is recorded in a hard disk drive 140 or the like in the form of a program, and the CPU 110 reads this program into the RAM 130 or the like to execute information processing / arithmetic processing. As a result, various functions described later are realized. The program may be installed in a ROM 120 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
図3は、システム制御装置15の概略構成を示した図である。図3に示されるように、システム制御装置15は、補正値設定部20と、主蒸気圧力設定部30と、ボイラ制御部40と、ガバナ制御部50とを備えている。
FIG. 3 is a diagram showing a schematic configuration of the system control device 15. As shown in FIG. 3, the system control device 15 includes a correction value setting unit 20, a main steam pressure setting unit 30, a boiler control unit 40, and a governor control unit 50.
補正値設定部20は、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力MWDと発電機出力との偏差に基づいて補正値AM1を算出する。具体的には、補正値設定部20は、減算部21と、条件判定部22と、信号切替部23と、なまし処理部24と、PI制御部25と、変化率制限部26と、保持部27と、信号切替部28とを備えている。
The correction value setting unit 20 calculates the correction value AM1 based on the deviation between the generator request output MWD and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. .. Specifically, the correction value setting unit 20 holds the subtraction unit 21, the condition determination unit 22, the signal switching unit 23, the smoothing processing unit 24, the PI control unit 25, and the change rate limiting unit 26. A unit 27 and a signal switching unit 28 are provided.
減算部21は、発電機要求出力MWDと実出力(発電機出力)との偏差(差分)を算出して、PI制御部25に出力する。以下の説明では、偏差をΔMWと示す。偏差(ΔMW)は、発電機要求出力MWDから実出力を差し引いた値となる。
The subtraction unit 21 calculates the deviation (difference) between the generator request output MWD and the actual output (generator output) and outputs it to the PI control unit 25. In the following description, the deviation is referred to as ΔMW. The deviation (ΔMW) is a value obtained by subtracting the actual output from the generator required output MWD.
条件判定部22は、条件判定をして条件成立か条件不成立かを出力する。例えば図3に示すように、条件判定部22には、第1条件、第2条件、及び第3条件が設定されている(論理積)。第1条件及び第2条件のみとすることとしてもよいし、他の条件を付加することとしてもよい。条件判定部22は、設定されたすべての条件が成立する場合に条件成立を出力し、一つでも条件が満たされないものがあれば条件不成立を出力する。
The condition determination unit 22 determines the condition and outputs whether the condition is satisfied or not. For example, as shown in FIG. 3, a first condition, a second condition, and a third condition are set in the condition determination unit 22 (logical product). Only the first condition and the second condition may be used, or other conditions may be added. The condition determination unit 22 outputs that the condition is satisfied when all the set conditions are satisfied, and outputs that the condition is not satisfied if even one of the conditions is not satisfied.
第1条件は、負荷状態が閾値以上であることである。閾値は定格負荷に基づいて設定される。具体的には閾値は定格負荷付近(例えば定格負荷から所定のマージン分下がった値)に設定される。すなわち、第1条件は、負荷状態が定格負荷に近いことを判定している。負荷状態については、発電機要求出力MWDを用いることができる。すなわち、第1条件は、発電機要求出力MWDが予め設定された閾値β以上であることとすることができる。このようにして、第1条件では定格負荷状態であること(または近いこと)を判定している。
The first condition is that the load state is equal to or higher than the threshold value. The threshold is set based on the rated load. Specifically, the threshold value is set near the rated load (for example, a value lower than the rated load by a predetermined margin). That is, the first condition determines that the load state is close to the rated load. For the load state, the generator required output MWD can be used. That is, the first condition can be that the generator request output MWD is equal to or higher than the preset threshold value β. In this way, under the first condition, it is determined that the rated load state is (or is close to).
第2条件は、負荷変化幅(所定時間当たりの負荷変化量)が所定範囲以内であることである。所定範囲は、負荷変化がない定常状態とみなせる範囲として予め設定されている。すなわち、理想的には、第2条件では負荷変化がないことを(負荷変化中でないこと)が判定されている。負荷変化中でないこととは、例えば、負荷上昇(変化)要求信号がないことで判定することとしてもよい。負荷上昇要求信号は、中央給電指令所からの指示により、発電所の要求負荷(発電機要求出力MWD)が上昇された場合、遠隔もしくは運転員が手動で、目標とする負荷(発電機出力)に到達するまで入力される信号である。この負荷上昇要求信号がない場合には負荷変化がない(負荷変化幅が所定範囲以内)と判定することも可能である。
The second condition is that the load change width (load change amount per predetermined time) is within a predetermined range. The predetermined range is preset as a range that can be regarded as a steady state with no load change. That is, ideally, it is determined that there is no load change (not under load change) under the second condition. The fact that the load is not changing may be determined, for example, by the absence of a load increase (change) request signal. The load increase request signal is the target load (generator output) remotely or manually by the operator when the required load of the power plant (generator request output MWD) is increased by the instruction from the central power supply command center. It is a signal that is input until it reaches. If there is no load increase request signal, it can be determined that there is no load change (the load change width is within a predetermined range).
第3条件は、蒸気加減弁6の開度が閾値α以上であることである。具体的には、第3条件は、蒸気加減弁6の開度が全開であることである。このため、閾値αは、蒸気加減弁6が全開と判定可能な値に予め設定される。閾値αは、全開状態に対して所定のマージンを加味して設定することとしてもよい。
The third condition is that the opening degree of the steam control valve 6 is equal to or higher than the threshold value α. Specifically, the third condition is that the opening degree of the steam control valve 6 is fully opened. Therefore, the threshold value α is set in advance to a value at which the steam control valve 6 can be determined to be fully open. The threshold value α may be set in consideration of a predetermined margin with respect to the fully open state.
このように、条件判定部22では、第1条件、第2条件、及び第3条件をAND条件としてすべての条件が満たされていることを判定する。
In this way, the condition determination unit 22 determines that all the conditions are satisfied with the first condition, the second condition, and the third condition as the AND condition.
そしてさらに、条件判定部22は、追加の条件(第4条件)として、外気温度が所定値以上である場合、及び発電機要求出力MWDと発電機出力との偏差が所定値以上である場合の少なくともいずれか一方を判定することとしてもよい。
Further, as an additional condition (fourth condition), the condition determination unit 22 determines that the outside air temperature is equal to or higher than a predetermined value, and the deviation between the generator required output MWD and the generator output is equal to or higher than a predetermined value. At least one of them may be determined.
例えば、夏場の外気温度が高い場合には、復水器9の真空圧低下等に起因して発電機出力が不足し易い。すなわち、外気温度が所定値以上であることを判定することによって、外気温度上昇に伴う出力不足の可能性を判定することができる。閾値は、外気温度と発電機出力の不足量との関係により予め設定される。
For example, when the outside air temperature is high in the summer, the generator output tends to be insufficient due to a decrease in the vacuum pressure of the condenser 9. That is, by determining that the outside air temperature is equal to or higher than a predetermined value, it is possible to determine the possibility of output shortage due to an increase in the outside air temperature. The threshold value is set in advance according to the relationship between the outside air temperature and the shortage amount of the generator output.
発電機要求出力MWDと発電機出力との偏差が所定値以上であることを判定することによっても、夏場の出力不足を判定することができる。所定値は、例えば発電機要求出力MWDと発電機出力との偏差の許容可能値に基づいて設定される。発電機出力が不足する現象は、外気温度に関わらず、例えば機器の劣化等によっても発生し得る。このため、発電機要求出力MWDと発電機出力との偏差が所定値以上であることを判定することによって、原因に依らず、発電機出力の不足を判定することができる。
It is also possible to determine the output shortage in the summer by determining that the deviation between the generator required output MWD and the generator output is equal to or greater than a predetermined value. The predetermined value is set based on, for example, an acceptable value of the deviation between the generator required output MWD and the generator output. The phenomenon that the generator output is insufficient can occur regardless of the outside air temperature, for example, due to deterioration of equipment or the like. Therefore, by determining that the deviation between the generator required output MWD and the generator output is equal to or greater than a predetermined value, it is possible to determine that the generator output is insufficient regardless of the cause.
すなわち、条件判定部22では、第1条件、第2条件、第3条件、及び第4条件をAND条件としてすべての条件が満たされていることを判定することがより好ましい。
That is, it is more preferable that the condition determination unit 22 determines that all the conditions are satisfied with the first condition, the second condition, the third condition, and the fourth condition as the AND condition.
信号切替部23は、入力ポートA1の入力に従って、選択ポートB1及び選択ポートB2のいずれか一方を出力ポートC1へ出力する。具体的には、入力ポートA1へ条件成立の旨の信号が入力された場合には、選択ポートB1への入力を出力ポートC1へ出力する。一方で、入力ポートA1へ条件不成立の旨の信号が入力された場合には、選択ポートB2への入力を出力ポートC1へ出力する。すなわち、条件判定部22において条件成立が判定された場合にはΔMWが出力され、条件判定部22において条件不成立が判定された場合には信号発生器が発生した信号(ゼロ信号)が出力される。
The signal switching unit 23 outputs either one of the selected port B1 and the selected port B2 to the output port C1 according to the input of the input port A1. Specifically, when a signal indicating that the condition is satisfied is input to the input port A1, the input to the selection port B1 is output to the output port C1. On the other hand, when a signal indicating that the condition is not satisfied is input to the input port A1, the input to the selection port B2 is output to the output port C1. That is, when the condition determination unit 22 determines that the condition is satisfied, ΔMW is output, and when the condition determination unit 22 determines that the condition is not satisfied, the signal generated by the signal generator (zero signal) is output. ..
なまし処理部24は、信号切替部23からの信号に対してなまし処理を行う。具体的には、なまし処理部24は、発電機要求出力MWDと実出力との偏差であるΔMWに対して時間変化を抑制する変化抑制処理を行う。変化抑制処理とは、具体的には移動平均により行われる。すなわち、ΔMWが平準化される。信号切替部23からゼロ信号が入力される場合でもなまし処理が行われるが、ゼロ信号は時間変化がないため入力がそのまま出力されることとなる。
The smoothing processing unit 24 performs smoothing processing on the signal from the signal switching unit 23. Specifically, the annealing processing unit 24 performs a change suppression process for suppressing a time change with respect to ΔMW, which is a deviation between the generator required output MWD and the actual output. Specifically, the change suppression process is performed by a moving average. That is, ΔMW is leveled. Even when a zero signal is input from the signal switching unit 23, the smoothing process is performed, but since the zero signal does not change with time, the input is output as it is.
このように、補正値設定部20では、ΔMWに対して時間変化を抑制する変化抑制処理を行い、後述する補正値AM1を算出するため、算出される補正値AM1の急な時間変化が抑制される。すなわち、補正値AM1の時間変化も緩やかとなり、急な発電機出力が抑制される。
In this way, the correction value setting unit 20 performs a change suppression process for suppressing the time change for ΔMW and calculates the correction value AM1 described later, so that a sudden time change of the calculated correction value AM1 is suppressed. To. That is, the time change of the correction value AM1 is also gradual, and the sudden generator output is suppressed.
PI制御部25は、なまし処理部24から出力された信号(すなわちΔMW)に基づいてPI制御を行い、制御値を出力する。PI制御部25では、下限値と上限値が設定されている。例えば、下限値は0であり、上限値はa(>0)である。このようにすることで、制御値が上下限範囲内で制限され、出力値の範囲を制限することができる。
The PI control unit 25 performs PI control based on the signal (that is, ΔMW) output from the smoothing processing unit 24, and outputs a control value. In the PI control unit 25, a lower limit value and an upper limit value are set. For example, the lower limit is 0 and the upper limit is a (> 0). By doing so, the control value is limited within the upper and lower limit range, and the range of the output value can be limited.
変化率制限部26は、PI制御部25から出力された制御信号に対して時間変化を抑制するように処理を行う。これによって制御信号において急な時間変化が抑制される。
The change rate limiting unit 26 processes the control signal output from the PI control unit 25 so as to suppress the time change. This suppresses sudden changes over time in the control signal.
保持部27は、変化率制限部26から出力された信号が、実MW目標値に到達した場合に値をホールドする。実MW目標値とは、プラントの定格出力である。すなわち、実MW目標値は、出力される補正値AM1の最大値となる。
The holding unit 27 holds the value when the signal output from the rate of change limiting unit 26 reaches the actual MW target value. The actual MW target value is the rated output of the plant. That is, the actual MW target value is the maximum value of the output correction value AM1.
信号切替部28は、入力ポートD1の入力に従って、選択ポートE1及び選択ポートE2のいずれか一方を出力ポートF1へ出力する。具体的には、入力ポートD1へ条件成立の旨の信号が入力された場合には、選択ポートE1への入力を出力ポートF1へ出力する。一方で、入力ポートD1へ条件不成立の旨の信号が入力された場合には、選択ポートE2への入力を出力ポートF1へ出力する。すなわち、条件判定部22において条件成立が判定された場合には保持部27から入力された信号が出力され、条件判定部22において条件不成立が判定された場合には信号発生器が発生した信号(ゼロ信号)が出力される。
The signal switching unit 28 outputs either one of the selected port E1 and the selected port E2 to the output port F1 according to the input of the input port D1. Specifically, when a signal indicating that the condition is satisfied is input to the input port D1, the input to the selection port E1 is output to the output port F1. On the other hand, when a signal indicating that the condition is not satisfied is input to the input port D1, the input to the selection port E2 is output to the output port F1. That is, when the condition determination unit 22 determines that the condition is satisfied, the signal input from the holding unit 27 is output, and when the condition determination unit 22 determines that the condition is not satisfied, the signal generated by the signal generator ( Zero signal) is output.
このようにして、ΔMWに基づいて補正値AM1が算出される。補正値AM1は、ΔMWに基づいており、ΔMWが大きいほど、すなわち、発電機要求出力MWDに対して実出力が小さいほど、値が大きくなる。算出された補正値AM1は、主蒸気圧力設定部30へ出力される。条件不成立となり信号切替部28からゼロ信号が出力される場合には、補正値AM1はゼロとなっているため後段へ影響を及ぼさない。
In this way, the correction value AM1 is calculated based on ΔMW. The correction value AM1 is based on ΔMW, and the larger the ΔMW, that is, the smaller the actual output with respect to the generator required output MWD, the larger the value. The calculated correction value AM1 is output to the main steam pressure setting unit 30. When the condition is not satisfied and a zero signal is output from the signal switching unit 28, the correction value AM1 is zero and does not affect the subsequent stage.
主蒸気圧力設定部30は、発電機要求出力MWDと補正値AM1に基づいて、主蒸気圧力指令CM2を設定する。このため、主蒸気圧力設定部30は、関数部31と、加算部32とを備えている。
The main steam pressure setting unit 30 sets the main steam pressure command CM2 based on the generator required output MWD and the correction value AM1. Therefore, the main steam pressure setting unit 30 includes a function unit 31 and an addition unit 32.
関数部31は、発電機要求出力MWDを主蒸気圧力指令(補正前)CM1へ変換する。すなわち、関数部31は、発電システム1の仕様に基づいて予め設定された発電機要求出力MWDと主蒸気圧力指令CM1との関係に基づいて変換を行う。
The function unit 31 converts the generator request output MWD to the main steam pressure command (before correction) CM1. That is, the function unit 31 performs conversion based on the relationship between the generator required output MWD set in advance based on the specifications of the power generation system 1 and the main steam pressure command CM1.
加算部32は、関数部31から出力された主蒸気圧力指令CM1に対して、補正値設定部20で設定した補正値AM1を加算することによって、主蒸気圧力指令CM1を補正して、主蒸気圧力指令(補正後)CM2を出力する。このようにすることによって、主蒸気圧力指令が増加する方向に補正が行われる。
The addition unit 32 corrects the main steam pressure command CM1 by adding the correction value AM1 set by the correction value setting unit 20 to the main steam pressure command CM1 output from the function unit 31, and the main steam. The pressure command (after correction) CM2 is output. By doing so, the correction is made in the direction of increasing the main steam pressure command.
このようにして、主蒸気圧力設定部30において、主蒸気圧力指令CM2が生成される。生成された主蒸気圧力指令CM2はボイラ制御部40へ出力される。
In this way, the main steam pressure command CM2 is generated in the main steam pressure setting unit 30. The generated main steam pressure command CM2 is output to the boiler control unit 40.
ボイラ制御部40は、ボイラ10を制御するための指令であるボイラ入力指令BID(Boiler Input Demand)を生成する。後述するようにボイラ制御部40では、補正値AM1が反映された主蒸気圧力指令CM2を用いているため、補正値AM1に基づいて発電機要求出力MWDを増加させる処理を行っている。具体的には、ボイラ制御部40は、主蒸気圧力指令CM2と主蒸気圧力との偏差に基づいて、発電機要求出力MWDを増加させ、ボイラ入力指令BIDを生成する。
The boiler control unit 40 generates a boiler input command BID (Boiler Input Demand), which is a command for controlling the boiler 10. As will be described later, since the boiler control unit 40 uses the main steam pressure command CM2 reflecting the correction value AM1, a process of increasing the generator request output MWD is performed based on the correction value AM1. Specifically, the boiler control unit 40 increases the generator required output MWD based on the deviation between the main steam pressure command CM2 and the main steam pressure, and generates the boiler input command BID.
このため、ボイラ制御部40は、減算部41と、PI制御部42と、加算部43と、関数部44とを備えている。
Therefore, the boiler control unit 40 includes a subtraction unit 41, a PI control unit 42, an addition unit 43, and a function unit 44.
減算部41は、主蒸気圧力指令CM2と主蒸気圧力(実値)との偏差(差分)を算出して、PI制御部42に出力する。偏差は、主蒸気圧力指令CM2から主蒸気圧力を差し引いた値となる。
The subtraction unit 41 calculates the deviation (difference) between the main steam pressure command CM2 and the main steam pressure (actual value), and outputs the deviation (difference) to the PI control unit 42. The deviation is the value obtained by subtracting the main steam pressure from the main steam pressure command CM2.
PI制御部42は、減算部41から出力された信号(すなわち主蒸気圧力指令CM2と主蒸気圧力との偏差)に基づいてPI制御を行い、制御値を出力する。この制御値は、補正値設定部20から出力された補正値AM1に基づいており、発電機要求出力MWDに対する補正値AM2となる。
The PI control unit 42 performs PI control based on the signal output from the subtraction unit 41 (that is, the deviation between the main steam pressure command CM2 and the main steam pressure), and outputs the control value. This control value is based on the correction value AM1 output from the correction value setting unit 20, and is the correction value AM2 for the generator request output MWD.
発電機要求出力MWDに対する補正値AM2は、主蒸気圧力指令CM2と主蒸気圧力との偏差に基づいており、主蒸気圧力指令CM2に対して主蒸気圧力が小さいほど大きな値となる。換言すると、主蒸気圧力指令CM2は補正値設定部20にて生成される補正値AM1に基づいて算出されているため、発電機要求出力MWDに対する補正値AM2は、ΔMWが大きいほど、すなわち、発電機要求出力MWDに対して実出力が小さいほど、値が大きくなる。
The correction value AM2 for the generator required output MWD is based on the deviation between the main steam pressure command CM2 and the main steam pressure, and the smaller the main steam pressure with respect to the main steam pressure command CM2, the larger the value. In other words, since the main steam pressure command CM2 is calculated based on the correction value AM1 generated by the correction value setting unit 20, the correction value AM2 with respect to the generator request output MWD has a larger ΔMW, that is, power generation. The smaller the actual output with respect to the machine required output MWD, the larger the value.
加算部43は、PI制御部42から出力された制御値(発電機要求出力MWDに対する補正値AM2)に対して、発電機要求出力MWDを加算することによって、発電機要求出力MWDを補正する。発電機要求出力MWDに対して補正値AM2が加算されるため、発電機要求出力MWDは増加する方向に補正される。
The addition unit 43 corrects the generator request output MWD by adding the generator request output MWD to the control value (correction value AM2 for the generator request output MWD) output from the PI control unit 42. Since the correction value AM2 is added to the generator required output MWD, the generator required output MWD is corrected in an increasing direction.
関数部44は、加算部43から出力された補正後の発電機要求出力MWDをボイラ入力指令BIDへ変換して出力する。ボイラ入力指令BIDは、例えば、火炉2における燃料流量指令や、水冷壁2´における給水流量指令を作成するのに用いられる。図3では払出コンベアの制御に用いられる場合を示している。ボイラ入力指令BIDが増加すれば、火炉2における燃料流量指令や、水冷壁2´への給水流量指令も増加することとなり、結果として、主蒸気圧力が上昇することとなる。すなわち、発電機出力が増加することとなる。
The function unit 44 converts the corrected generator request output MWD output from the addition unit 43 into a boiler input command BID and outputs it. The boiler input command BID is used, for example, to create a fuel flow rate command in the fireplace 2 and a water supply flow rate command in the water cooling wall 2'. FIG. 3 shows a case where it is used for controlling a payout conveyor. If the boiler input command BID increases, the fuel flow rate command in the furnace 2 and the water supply flow rate command to the water cooling wall 2'will also increase, and as a result, the main steam pressure will rise. That is, the generator output will increase.
ボイラ入力指令BIDについては、主蒸気圧力を上昇させて発電機出力を増加することが可能なパラメータであれば、上記の火炉2における燃料流量指令等に限定されない。
The boiler input command BID is not limited to the fuel flow command in the above-mentioned furnace 2 as long as it is a parameter that can increase the main steam pressure to increase the generator output.
ガバナ制御部50は、蒸気加減弁(ガバナ)6の開度制御を行う。具体的には、発電機要求出力MWDと発電機出力との偏差を減算部51で算出し、該差分をPI制御部52において制御信号へ変換する。この制御信号によって蒸気加減弁6の開度制御が行われることによって、発電機要求出力MWDと発電機出力との偏差がゼロとなるようにガバナの開度調整制御が行われる。
The governor control unit 50 controls the opening degree of the steam control valve (governor) 6. Specifically, the subtraction unit 51 calculates the deviation between the generator request output MWD and the generator output, and the PI control unit 52 converts the difference into a control signal. By controlling the opening degree of the steam control valve 6 by this control signal, the opening degree adjustment control of the governor is performed so that the deviation between the generator required output MWD and the generator output becomes zero.
次に、上述のシステム制御装置15による処理の一例について図4を参照して説明する。図4は、本実施形態に係るボイラ入力指令出力処理の手順の一例を示すフローチャートである。図4に示すフローは、例えば、所定の制御周期で繰り返し実行される。図4のフローでは、第1条件、第2条件、第3条件、及び第4条件の全てを用いる場合について説明するが、条件数が異なる場合でも同様に処理される。
Next, an example of processing by the above-mentioned system control device 15 will be described with reference to FIG. FIG. 4 is a flowchart showing an example of the procedure of the boiler input command output processing according to the present embodiment. The flow shown in FIG. 4 is repeatedly executed, for example, at a predetermined control cycle. In the flow of FIG. 4, a case where all of the first condition, the second condition, the third condition, and the fourth condition are used will be described, but even if the number of conditions is different, the same processing is performed.
まず、第1条件が満たされているか否かを判定する(S101)。第1条件が満たされていない場合(S101のNO判定)には、S106へ進む。
First, it is determined whether or not the first condition is satisfied (S101). If the first condition is not satisfied (NO determination in S101), the process proceeds to S106.
第1条件が満たされている場合(S101のYES判定)には、第2条件が満たされているか否かを判定する(S102)。第2条件が満たされていない場合(S102のNO判定)には、S106へ進む。
When the first condition is satisfied (YES determination in S101), it is determined whether or not the second condition is satisfied (S102). If the second condition is not satisfied (NO determination in S102), the process proceeds to S106.
第2条件が満たされている場合(S102のYES判定)には、第3条件が満たされているか否かを判定する(S103)。第3条件が満たされていない場合(S103のNO判定)には、S106へ進む。
When the second condition is satisfied (YES determination in S102), it is determined whether or not the third condition is satisfied (S103). If the third condition is not satisfied (NO determination in S103), the process proceeds to S106.
第3条件が満たされている場合(S103のYES判定)には、第4条件が満たされているか否かを判定する(S104)。第4条件が満たされていない場合(S104のNO判定)には、S106へ進む。
When the third condition is satisfied (YES determination in S103), it is determined whether or not the fourth condition is satisfied (S104). If the fourth condition is not satisfied (NO determination in S104), the process proceeds to S106.
第4条件が満たされている場合(S104のYES判定)には、発電機要求出力MWDと発電機出力との偏差に基づいて補正値AM1を算出する(S105)。
When the fourth condition is satisfied (YES determination in S104), the correction value AM1 is calculated based on the deviation between the generator request output MWD and the generator output (S105).
一方で、第1条件、第2条件、第3条件、及び第4条件の少なくともいずれか1つが満たされていない場合には、補正値AM1はゼロとなる(S106)。
On the other hand, if at least one of the first condition, the second condition, the third condition, and the fourth condition is not satisfied, the correction value AM1 becomes zero (S106).
次に、発電機要求出力MWDと補正値AM1に基づいて、主蒸気圧力指令CM2が設定される(S107)。補正値AM1がゼロである場合には、単に発電機要求出力MWDに基づいて主蒸気圧力指令CM2が設定される。
Next, the main steam pressure command CM2 is set based on the generator required output MWD and the correction value AM1 (S107). When the correction value AM1 is zero, the main steam pressure command CM2 is set simply based on the generator required output MWD.
次に、主蒸気圧力指令CM2と主蒸気圧力との偏差に基づいて、発電機要求出力MWDに対する補正値AM2を算出する(S108)。
Next, the correction value AM2 for the generator required output MWD is calculated based on the deviation between the main steam pressure command CM2 and the main steam pressure (S108).
次に、発電機要求出力MWDを補正値AM2により補正して、ボイラ入力指令BIDを出力する(S109)。
Next, the generator request output MWD is corrected by the correction value AM2, and the boiler input command BID is output (S109).
このようにして、特に負荷状態が定格負荷に近い状態であり、負荷変動がない場合(蒸気加減弁6の開度は全開)に、発電機出力が不足している場合には補正値によってボイラ入力指令BIDが増加する方向に補正されるため出力不足分を補うように出力を増加させることができる。
In this way, especially when the load state is close to the rated load and there is no load fluctuation (the opening of the steam control valve 6 is fully open), and when the generator output is insufficient, the boiler is adjusted according to the correction value. Since the input command BID is corrected in the increasing direction, the output can be increased so as to make up for the output shortage.
次に、上述のシステム制御装置15による処理の効果について図5を参照して説明する。図5は、縦軸(左軸)を主蒸気圧力、縦軸(右軸)を蒸気加減弁開度、横軸を主蒸気流量として、AパターンとBパターンとをそれぞれ示している。Aパターンは、蒸気加減弁6を全開として一定としている。Bパターンは、蒸気加減弁6を可変としている。
Next, the effect of the processing by the system control device 15 described above will be described with reference to FIG. In FIG. 5, the A pattern and the B pattern are shown with the vertical axis (left axis) as the main steam pressure, the vertical axis (right axis) as the steam control valve opening degree, and the horizontal axis as the main steam flow rate. In the A pattern, the steam control valve 6 is fully opened and is constant. In the B pattern, the steam control valve 6 is variable.
発電機要求出力MWDが高くなり、Mの点へ達した場合、蒸気加減弁6は全開となっているため発電機出力を増加させることが困難となる。このため、Mの点以上の領域では、変圧運転領域として、本実施形態のように、補正値を算出してボイラ入力指令BIDを増加させるように補正を行う。このようにすることで、主蒸気圧力を増加させることができ、発電機出力を増加することが可能となる。この変圧運転領域では、タービンは発電機出力制御(蒸気加減弁6の開度は一定)であり、ボイラ10は主蒸気圧力制御(ΔMWにより補正)となる。
When the generator required output MWD becomes high and reaches the point M, it becomes difficult to increase the generator output because the steam control valve 6 is fully open. Therefore, in the region above the point M, as the transformer operation region, the correction value is calculated and the correction is performed so as to increase the boiler input command BID as in the present embodiment. By doing so, the main steam pressure can be increased and the generator output can be increased. In this transformer operation region, the turbine is controlled by the generator output (the opening degree of the steam control valve 6 is constant), and the boiler 10 is controlled by the main steam pressure (corrected by ΔMW).
このようにして、ΔMWに基づいてボイラ入力指令BIDを増加するように補正し、発電機出力を増加させることが可能となる。
In this way, it is possible to correct the boiler input command BID to increase based on ΔMW and increase the generator output.
以上説明したように、本実施形態に係る発電システム、及びその制御方法並びにプログラムによれば、ボイラ10や蒸気タービン3を用いて発電を行う発電システム1において、負荷状態が閾値以上である高負荷状態、及び負荷変化幅が所定範囲内である負荷変化がない(少ない)状態である場合に発電機要求出力と発電機出力に基づいて補正値が算出される。そして、補正値により発電機要求出力MWDを増加させてボイラ入力指令BIDが生成される。このため、負荷状態が閾値以上であり、負荷変化幅が所定範囲内である状態においてボイラ入力指令BIDを増大させることができる。これにより、発電機出力を増加させることが可能となる。
As described above, according to the power generation system according to the present embodiment, the control method thereof, and the program, in the power generation system 1 that generates power using the boiler 10 and the steam turbine 3, the load state is a high load equal to or higher than the threshold value. The correction value is calculated based on the generator request output and the generator output when there is no (small) load change in the state and the load change width is within a predetermined range. Then, the boiler input command BID is generated by increasing the generator request output MWD according to the correction value. Therefore, the boiler input command BID can be increased in a state where the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. This makes it possible to increase the generator output.
特に、負荷状態が閾値以上であり、負荷変化幅が所定範囲内である状態では通常発電機出力の増加は不要と考えられるが、何らかの原因(例えば環境変化や機器劣化等)で発電機出力に不足が発生してしまう場合であっても、不足分をカバーすることが可能となる。
In particular, when the load state is above the threshold value and the load change range is within the predetermined range, it is usually considered unnecessary to increase the generator output, but for some reason (for example, environmental change or equipment deterioration), the generator output is increased. Even if a shortage occurs, it is possible to cover the shortage.
発電機要求出力と発電機出力に基づいて補正値されることによって、発電機要求出力と発電機出力との差を低減することができる。発電機要求出力MWDと補正値とにより設定した主蒸気圧力指令CM2と主蒸気圧力との偏差に基づいてボイラ入力指令BIDが生成されることによって、補正値を考慮しつつ、主蒸気圧力指令CM2と主蒸気圧力との差を抑制するようにボイラ入力指令BIDが生成される。
By correcting the value based on the generator required output and the generator output, the difference between the generator required output and the generator output can be reduced. The boiler input command BID is generated based on the deviation between the main steam pressure command CM2 set by the generator required output MWD and the correction value, and the main steam pressure command CM2 while considering the correction value. The boiler input command BID is generated so as to suppress the difference between the main steam pressure and the main steam pressure.
外気温度が所定値以上である場合や、発電機要求出力MWDと発電機出力との偏差が所定値以上である場合において、出力を増加させることができる。例えば、夏場の外気温度が高い場合には、復水器9の真空圧低下等に起因して出力が不足し易い。このため、補正値によって出力が増加されることによって不足分がカバーされる。
The output can be increased when the outside air temperature is equal to or higher than a predetermined value or when the deviation between the generator required output MWD and the generator output is equal to or higher than a predetermined value. For example, when the outside air temperature is high in the summer, the output tends to be insufficient due to a decrease in the vacuum pressure of the condenser 9. Therefore, the shortage is covered by increasing the output according to the correction value.
本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。
The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention.
例えば、上記実施形態では、負荷上昇の要求が入力された場合に、火炉2への燃料投入量と水冷壁2´への給水量とを増加させるが、火炉2における燃料の応答性よりも給水の応答性の方が早い。従って、燃料流量指令と給水流量指令とが同時に増加されると、まずは、水冷壁2´に供給される水の量が増え、その後、火炉2内の温度が徐々に上がり始めることとなる。このため、水冷壁2´に供給される給水量によっては、水冷壁2´の出口過熱度が低下するおそれがある。このような事態を回避するために、給水量の一部を水冷壁2´をバイパスして一次過熱器4aの蒸気出口側に設置された減温器16に供給し、スプレとして噴霧することとしてもよい。この場合、減温器16においては、スプレ量が増加することとなる。
このように、水冷壁2´に供給する水の一部を減温器16にバイパスさせることで、上述のような水冷壁2´の出口過熱度の低下を防止することが可能となる。
二次過熱器4bの蒸気出口側に減温器16が更に設けられている場合には、各減温器16のスプレ量を増加させることとしてもよい。 For example, in the above embodiment, when a request for load increase is input, the amount of fuel input to thefurnace 2 and the amount of water supplied to the water cooling wall 2'are increased, but water is supplied rather than the responsiveness of the fuel in the furnace 2. Responsiveness is faster. Therefore, when the fuel flow rate command and the water supply flow rate command are increased at the same time, the amount of water supplied to the water cooling wall 2'first increases, and then the temperature inside the furnace 2 gradually starts to rise. Therefore, depending on the amount of water supplied to the water-cooled wall 2', the degree of superheat at the outlet of the water-cooled wall 2'may decrease. In order to avoid such a situation, a part of the water supply amount is bypassed to the water cooling wall 2'and supplied to the heater 16 installed on the steam outlet side of the primary superheater 4a and sprayed as a spray. May be good. In this case, in the warmer 16, the amount of spray increases.
By bypassing a part of the water supplied to the water-cooled wall 2'to theheater 16 in this way, it is possible to prevent the above-mentioned decrease in the outlet superheat degree of the water-cooled wall 2'.
When a warmer 16 is further provided on the steam outlet side of thesecondary superheater 4b, the spray amount of each warmer 16 may be increased.
このように、水冷壁2´に供給する水の一部を減温器16にバイパスさせることで、上述のような水冷壁2´の出口過熱度の低下を防止することが可能となる。
二次過熱器4bの蒸気出口側に減温器16が更に設けられている場合には、各減温器16のスプレ量を増加させることとしてもよい。 For example, in the above embodiment, when a request for load increase is input, the amount of fuel input to the
By bypassing a part of the water supplied to the water-cooled wall 2'to the
When a warmer 16 is further provided on the steam outlet side of the
以上説明した各実施形態に記載の発電システム、及びその制御方法並びにプログラムは例えば以下のように把握される。
本開示に係る発電システム(1)は、ボイラ(10)と、前記ボイラで発生した蒸気を用いて回転する蒸気タービン(3)と、前記蒸気タービンの回転により発電する発電機と、前記ボイラを制御するシステム制御装置(15)と、を備え、前記システム制御装置は、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力(MWD)と発電機出力との偏差に基づいて補正値を算出する補正値設定部(20)と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令(BID)を生成するボイラ制御部(40)と、を備える。 The power generation system described in each of the above-described embodiments, the control method thereof, and the program are grasped as follows, for example.
The power generation system (1) according to the present disclosure includes a boiler (10), a steam turbine (3) that rotates using the steam generated by the boiler, a generator that generates electricity by the rotation of the steam turbine, and the boiler. A system control device (15) for controlling is provided, and the system control device includes a generator required output (MWD) and power generation when the load state is equal to or higher than a threshold value and the load change width is within a predetermined range. A correction value setting unit (20) that calculates a correction value based on a deviation from the machine output, and a boiler input command that is a command for increasing the generator request output based on the correction value and controlling the boiler. A boiler control unit (40) that generates (BID) is provided.
本開示に係る発電システム(1)は、ボイラ(10)と、前記ボイラで発生した蒸気を用いて回転する蒸気タービン(3)と、前記蒸気タービンの回転により発電する発電機と、前記ボイラを制御するシステム制御装置(15)と、を備え、前記システム制御装置は、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力(MWD)と発電機出力との偏差に基づいて補正値を算出する補正値設定部(20)と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令(BID)を生成するボイラ制御部(40)と、を備える。 The power generation system described in each of the above-described embodiments, the control method thereof, and the program are grasped as follows, for example.
The power generation system (1) according to the present disclosure includes a boiler (10), a steam turbine (3) that rotates using the steam generated by the boiler, a generator that generates electricity by the rotation of the steam turbine, and the boiler. A system control device (15) for controlling is provided, and the system control device includes a generator required output (MWD) and power generation when the load state is equal to or higher than a threshold value and the load change width is within a predetermined range. A correction value setting unit (20) that calculates a correction value based on a deviation from the machine output, and a boiler input command that is a command for increasing the generator request output based on the correction value and controlling the boiler. A boiler control unit (40) that generates (BID) is provided.
本開示に係る発電システムによれば、ボイラや蒸気タービンを用いて発電を行う発電システムにおいて、負荷状態が閾値以上である高負荷状態、及び負荷変化幅が所定範囲内である負荷変化がない(少ない)状態である場合に発電機要求出力と発電機出力に基づいて補正値が算出される。そして、補正値により発電機要求出力を増加させてボイラ入力指令が生成される。このため、負荷状態が閾値以上であり、負荷変化幅が所定範囲内である状態においてボイラ入力指令を増大させることができる。これにより、発電機出力を増加させることが可能となる。
According to the power generation system according to the present disclosure, in a power generation system that generates power using a boiler or a steam turbine, there is no high load state in which the load state is equal to or higher than the threshold value, and there is no load change in which the load change range is within a predetermined range ( When the condition is small), the correction value is calculated based on the generator request output and the generator output. Then, the boiler input command is generated by increasing the generator request output according to the correction value. Therefore, the boiler input command can be increased in a state where the load state is equal to or higher than the threshold value and the load change width is within a predetermined range. This makes it possible to increase the generator output.
特に、負荷状態が閾値以上であり、負荷変化幅が所定範囲内である状態では通常発電機出力の増加は不要と考えられるが、何らかの原因(例えば環境変化や機器劣化等)で発電機出力に不足が発生してしまう場合であっても、不足分をカバーすることが可能となる。
In particular, when the load state is above the threshold value and the load change range is within the predetermined range, it is usually considered unnecessary to increase the generator output, but for some reason (for example, environmental change or equipment deterioration), the generator output is increased. Even if a shortage occurs, it is possible to cover the shortage.
発電機要求出力と発電機出力に基づいて補正値されることによって、発電機要求出力と発電機出力との差を低減することができる。
By correcting the value based on the generator required output and the generator output, the difference between the generator required output and the generator output can be reduced.
本開示に係る発電システムは、前記発電機要求出力と前記補正値に基づいて、主蒸気圧力指令を設定する主蒸気圧力設定部(30)を備え、前記ボイラ制御部は、前記主蒸気圧力指令と主蒸気圧力との偏差に基づいて、前記発電機要求出力を増加させ、前記ボイラ入力指令を生成することとしてもよい。
The power generation system according to the present disclosure includes a main steam pressure setting unit (30) for setting a main steam pressure command based on the generator request output and the correction value, and the boiler control unit includes the main steam pressure command. The generator required output may be increased to generate the boiler input command based on the deviation between the steam pressure and the main steam pressure.
本開示に係る発電システムによれば、発電機要求出力と補正値とにより設定した主蒸気圧力指令と主蒸気圧力との偏差に基づいてボイラ入力指令が生成されることによって、補正値を考慮しつつ、主蒸気圧力指令と主蒸気圧力との差を抑制するようにボイラ入力指令が生成される。
According to the power generation system according to the present disclosure, the correction value is taken into consideration by generating the boiler input command based on the deviation between the main steam pressure command and the main steam pressure set by the generator required output and the correction value. At the same time, a boiler input command is generated so as to suppress the difference between the main steam pressure command and the main steam pressure.
本開示に係る発電システムは、前記ボイラと前記蒸気タービンとを接続する蒸気配管に設けられた蒸気加減弁(6)を備え、前記補正値設定部は、負荷状態が閾値以上であり、負荷変化幅が所定範囲以内であり、かつ、前記蒸気加減弁の開度が閾値以上である場合に、前記補正値を算出することとしてもよい。
The power generation system according to the present disclosure includes a steam control valve (6) provided in a steam pipe connecting the boiler and the steam turbine, and the correction value setting unit has a load state equal to or higher than a threshold value and a load change. The correction value may be calculated when the width is within a predetermined range and the opening degree of the steam control valve is equal to or larger than the threshold value.
本開示に係る発電システムによれば、蒸気加減弁の開度が閾値以上であり、蒸気加減弁によって出力増加調整が困難な場合であっても、ボイラ入力指令を増大させて出力を増加させることが可能となる。
According to the power generation system according to the present disclosure, even when the opening degree of the steam control valve is equal to or larger than the threshold value and it is difficult to adjust the output increase by the steam control valve, the boiler input command is increased to increase the output. Is possible.
本開示に係る発電システムは、前記補正値設定部は、外気温度が所定値以上である場合、及び前記発電機要求出力と前記発電機出力との偏差が所定値以上である場合の少なくともいずれか1方の場合に、前記補正値を算出することとしてもよい。
In the power generation system according to the present disclosure, the correction value setting unit is at least one of the cases where the outside air temperature is equal to or higher than a predetermined value and the deviation between the generator required output and the generator output is equal to or higher than a predetermined value. In the case of one, the correction value may be calculated.
本開示に係る発電システムによれば、外気温度が所定値以上である場合や、発電機要求出力と発電機出力との偏差が所定値以上である場合において、出力を増加させることができる。例えば、夏場の外気温度が高い場合には、復水器(9)の真空圧低下等に起因して出力が不足し易い。このため、補正値によって出力が増加されることによって不足分がカバーされる。
According to the power generation system according to the present disclosure, the output can be increased when the outside air temperature is equal to or higher than a predetermined value or when the deviation between the generator required output and the generator output is equal to or higher than a predetermined value. For example, when the outside air temperature is high in summer, the output tends to be insufficient due to a decrease in the vacuum pressure of the condenser (9) or the like. Therefore, the shortage is covered by increasing the output according to the correction value.
本開示に係る発電システムは、前記補正値設定部は、前記発電機要求出力と前記発電機出力との偏差に対して時間変化を抑制する変化抑制処理を行い、前記補正値を算出することとしてもよい。
In the power generation system according to the present disclosure, the correction value setting unit performs a change suppression process for suppressing a time change with respect to a deviation between the generator request output and the generator output, and calculates the correction value. May be good.
本開示に係る発電システムによれば、発電機要求出力と発電機出力との偏差の時間変化が抑制されるため、補正値の時間変化も緩やかとなり、急な発電機出力が抑制される。
According to the power generation system according to the present disclosure, since the time change of the deviation between the generator request output and the generator output is suppressed, the time change of the correction value is also gradual, and the sudden generator output is suppressed.
本開示に係る発電システムは、前記補正値設定部は、移動平均により前記変化抑制処理を行うこととしてもよい。
In the power generation system according to the present disclosure, the correction value setting unit may perform the change suppression process by a moving average.
本開示に係る発電システムによれば、移動平均により効果的に時間変化抑制を行うことができる。
According to the power generation system according to the present disclosure, it is possible to effectively suppress the time change by the moving average.
本開示に係る制御方法は、ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御方法であって、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する工程と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する工程と、を備える。
The control method according to the present disclosure is a control method of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a step of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. It includes a step of increasing the machine request output and generating a boiler input command which is a command for controlling the boiler.
本開示に係る制御プログラムは、ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御プログラムであって、負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する処理と、前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する処理と、をコンピュータに実行させる。
The control program according to the present disclosure is a control program of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine, and is a load state. Is equal to or greater than the threshold value and the load change width is within a predetermined range, a process of calculating a correction value based on the deviation between the generator request output and the generator output, and the power generation based on the correction value. A process of increasing the machine request output and generating a boiler input command, which is a command for controlling the boiler, is performed by the computer.
1 :発電システム
2 :火炉
2´ :水冷壁
3 :蒸気タービン
4a :一次過熱器
4b :二次過熱器
5 :発電機
6 :蒸気加減弁
8 :給水ポンプ
9 :復水器
10 :ボイラ
11 :圧力センサ
15 :システム制御装置
16 :減温器
20 :補正値設定部
21 :減算部
22 :条件判定部
23 :信号切替部
24 :なまし処理部
25 :PI制御部
26 :変化率制限部
27 :保持部
28 :信号切替部
30 :主蒸気圧力設定部
31 :関数部
32 :加算部
40 :ボイラ制御部
41 :減算部
42 :PI制御部
43 :加算部
44 :関数部
50 :ガバナ制御部
51 :減算部
52 :PI制御部
110 :CPU
120 :ROM
130 :RAM
140 :ハードディスクドライブ
150 :通信部
180 :バス
A1 :入力ポート
AM1 :補正値
AM2 :補正値
B1 :選択ポート
B2 :選択ポート
BID :ボイラ入力指令
C1 :出力ポート
CM1 :主蒸気圧力指令
CM2 :主蒸気圧力指令
D1 :入力ポート
E1 :選択ポート
E2 :選択ポート
F1 :出力ポート
L1 :蒸気配管
L2 :配管
MWD :発電機要求出力
1: Power generation system 2: Fire furnace 2': Water cooling wall 3:Steam turbine 4a: Primary superheater 4b: Secondary superheater 5: Generator 6: Steam control valve 8: Water supply pump 9: Water recovery device 10: Boiler 11: Pressure sensor 15: System control device 16: Boiler 20: Correction value setting unit 21: Subtraction unit 22: Condition determination unit 23: Signal switching unit 24: Smoothing processing unit 25: PI control unit 26: Change rate limiting unit 27 : Holding unit 28: Signal switching unit 30: Main steam pressure setting unit 31: Function unit 32: Addition unit 40: Boiler control unit 41: Subtraction unit 42: PI control unit 43: Addition unit 44: Function unit 50: Governor control unit 51: Subtraction unit 52: PI control unit 110: CPU
120: ROM
130: RAM
140: Hard disk drive 150: Communication unit 180: Bus A1: Input port AM1: Correction value AM2: Correction value B1: Selection port B2: Selection port BID: Boiler input command C1: Output port CM1: Main steam pressure command CM2: Main steam Pressure command D1: Input port E1: Selection port E2: Selection port F1: Output port L1: Steam piping L2: Piping MWD: Generator request output
2 :火炉
2´ :水冷壁
3 :蒸気タービン
4a :一次過熱器
4b :二次過熱器
5 :発電機
6 :蒸気加減弁
8 :給水ポンプ
9 :復水器
10 :ボイラ
11 :圧力センサ
15 :システム制御装置
16 :減温器
20 :補正値設定部
21 :減算部
22 :条件判定部
23 :信号切替部
24 :なまし処理部
25 :PI制御部
26 :変化率制限部
27 :保持部
28 :信号切替部
30 :主蒸気圧力設定部
31 :関数部
32 :加算部
40 :ボイラ制御部
41 :減算部
42 :PI制御部
43 :加算部
44 :関数部
50 :ガバナ制御部
51 :減算部
52 :PI制御部
110 :CPU
120 :ROM
130 :RAM
140 :ハードディスクドライブ
150 :通信部
180 :バス
A1 :入力ポート
AM1 :補正値
AM2 :補正値
B1 :選択ポート
B2 :選択ポート
BID :ボイラ入力指令
C1 :出力ポート
CM1 :主蒸気圧力指令
CM2 :主蒸気圧力指令
D1 :入力ポート
E1 :選択ポート
E2 :選択ポート
F1 :出力ポート
L1 :蒸気配管
L2 :配管
MWD :発電機要求出力
1: Power generation system 2: Fire furnace 2': Water cooling wall 3:
120: ROM
130: RAM
140: Hard disk drive 150: Communication unit 180: Bus A1: Input port AM1: Correction value AM2: Correction value B1: Selection port B2: Selection port BID: Boiler input command C1: Output port CM1: Main steam pressure command CM2: Main steam Pressure command D1: Input port E1: Selection port E2: Selection port F1: Output port L1: Steam piping L2: Piping MWD: Generator request output
Claims (8)
- ボイラと、
前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、
前記蒸気タービンの回転により発電する発電機と、
前記ボイラを制御するシステム制御装置と、
を備え、
前記システム制御装置は、
負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する補正値設定部と、
前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成するボイラ制御部と、
を備える発電システム。 With a boiler,
A steam turbine that rotates using the steam generated by the boiler,
A generator that generates electricity by rotating the steam turbine,
The system control device that controls the boiler and
Equipped with
The system control device is
A correction value setting unit that calculates a correction value based on the deviation between the generator request output and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range.
A boiler control unit that increases the generator request output based on the correction value and generates a boiler input command that is a command for controlling the boiler.
Power generation system equipped with. - 前記発電機要求出力と前記補正値に基づいて、主蒸気圧力指令を設定する主蒸気圧力設定部を備え、
前記ボイラ制御部は、前記主蒸気圧力指令と主蒸気圧力との偏差に基づいて、前記発電機要求出力を増加させ、前記ボイラ入力指令を生成する請求項1に記載の発電システム。 A main steam pressure setting unit for setting a main steam pressure command based on the generator request output and the correction value is provided.
The power generation system according to claim 1, wherein the boiler control unit increases the generator required output based on the deviation between the main steam pressure command and the main steam pressure, and generates the boiler input command. - 前記ボイラと前記蒸気タービンとを接続する蒸気配管に設けられた蒸気加減弁を備え、
前記補正値設定部は、負荷状態が閾値以上であり、負荷変化幅が所定範囲以内であり、かつ、前記蒸気加減弁の開度が閾値以上である場合に、前記補正値を算出する請求項1または2に記載の発電システム。 A steam control valve provided in a steam pipe connecting the boiler and the steam turbine is provided.
The correction value setting unit calculates the correction value when the load state is equal to or more than the threshold value, the load change width is within a predetermined range, and the opening degree of the steam control valve is equal to or more than the threshold value. The power generation system according to 1 or 2. - 前記補正値設定部は、外気温度が所定値以上である場合、及び前記発電機要求出力と前記発電機出力との偏差が所定値以上である場合の少なくともいずれか1方の場合に、前記補正値を算出する請求項1から3のいずれか1項に記載の発電システム。 The correction value setting unit performs the correction when the outside air temperature is at least a predetermined value or when the deviation between the generator request output and the generator output is at least one of the predetermined values. The power generation system according to any one of claims 1 to 3 for calculating a value.
- 前記補正値設定部は、前記発電機要求出力と前記発電機出力との偏差に対して時間変化を抑制する変化抑制処理を行い、前記補正値を算出する請求項1から4のいずれか1項に記載の発電システム。 The correction value setting unit performs change suppression processing for suppressing a time change with respect to a deviation between the generator request output and the generator output, and calculates the correction value according to any one of claims 1 to 4. The power generation system described in.
- 前記補正値設定部は、移動平均により前記変化抑制処理を行う請求項5に記載の発電システム。 The power generation system according to claim 5, wherein the correction value setting unit performs the change suppression process by a moving average.
- ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御方法であって、
負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する工程と、
前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する工程と、
を有する制御方法。 It is a control method of a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine.
A process of calculating a correction value based on the deviation between the generator request output and the generator output when the load state is equal to or higher than the threshold value and the load change width is within a predetermined range.
A step of increasing the generator request output based on the correction value and generating a boiler input command which is a command for controlling the boiler, and a step of generating the boiler input command.
Control method having. - ボイラと、前記ボイラで発生した蒸気を用いて回転する蒸気タービンと、前記蒸気タービンの回転により発電する発電機とを備える発電システムの制御プログラムであって、
負荷状態が閾値以上であり、かつ、負荷変化幅が所定範囲以内である場合に、発電機要求出力と発電機出力との偏差に基づいて補正値を算出する処理と、
前記補正値に基づいて前記発電機要求出力を増加させ、前記ボイラを制御するための指令であるボイラ入力指令を生成する処理と、
をコンピュータに実行させるための制御プログラム。
A control program for a power generation system including a boiler, a steam turbine that rotates using the steam generated by the boiler, and a generator that generates electricity by the rotation of the steam turbine.
When the load state is equal to or greater than the threshold value and the load change width is within a predetermined range, the process of calculating the correction value based on the deviation between the generator request output and the generator output, and
A process of increasing the generator request output based on the correction value and generating a boiler input command which is a command for controlling the boiler.
A control program that allows a computer to execute.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-201637 | 2020-12-04 | ||
JP2020201637A JP2022089316A (en) | 2020-12-04 | 2020-12-04 | Power generation system and control method therefor as well as program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022118854A1 true WO2022118854A1 (en) | 2022-06-09 |
Family
ID=81853189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/043930 WO2022118854A1 (en) | 2020-12-04 | 2021-11-30 | Power generation system, control method for same, and program |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022089316A (en) |
TW (1) | TWI813086B (en) |
WO (1) | WO2022118854A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202601A (en) * | 1989-12-28 | 1991-09-04 | Ishikawajima Harima Heavy Ind Co Ltd | Governor valve controlling device of boiler |
JP2001082701A (en) * | 1999-09-16 | 2001-03-30 | Mitsubishi Heavy Ind Ltd | Boiler/turbine generator control system |
JP2001221010A (en) * | 2000-02-09 | 2001-08-17 | Hitachi Ltd | Load control method and apparatus of electric power plant |
CN202048569U (en) * | 2010-06-01 | 2011-11-23 | 广东电网公司电力科学研究院 | Coordination control device of large-scale CFB (circulating fluidized bed) unit based on intensified combustion |
JP2013181436A (en) * | 2012-02-29 | 2013-09-12 | Mitsubishi Heavy Ind Ltd | Power generation system, and control method of the same |
JP2014227915A (en) * | 2013-05-22 | 2014-12-08 | 株式会社日立製作所 | Turbine control device and turbine control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9791852B2 (en) * | 2014-08-21 | 2017-10-17 | General Electric Technology Gmbh | Apparatus and method for controlling at least one operational parameter of a plant |
-
2020
- 2020-12-04 JP JP2020201637A patent/JP2022089316A/en active Pending
-
2021
- 2021-11-30 WO PCT/JP2021/043930 patent/WO2022118854A1/en active Application Filing
- 2021-12-02 TW TW110145006A patent/TWI813086B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202601A (en) * | 1989-12-28 | 1991-09-04 | Ishikawajima Harima Heavy Ind Co Ltd | Governor valve controlling device of boiler |
JP2001082701A (en) * | 1999-09-16 | 2001-03-30 | Mitsubishi Heavy Ind Ltd | Boiler/turbine generator control system |
JP2001221010A (en) * | 2000-02-09 | 2001-08-17 | Hitachi Ltd | Load control method and apparatus of electric power plant |
CN202048569U (en) * | 2010-06-01 | 2011-11-23 | 广东电网公司电力科学研究院 | Coordination control device of large-scale CFB (circulating fluidized bed) unit based on intensified combustion |
JP2013181436A (en) * | 2012-02-29 | 2013-09-12 | Mitsubishi Heavy Ind Ltd | Power generation system, and control method of the same |
JP2014227915A (en) * | 2013-05-22 | 2014-12-08 | 株式会社日立製作所 | Turbine control device and turbine control method |
Also Published As
Publication number | Publication date |
---|---|
TWI813086B (en) | 2023-08-21 |
JP2022089316A (en) | 2022-06-16 |
TW202242243A (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102654751B (en) | Coordination control method based on nonlinear control and fuzzy control | |
US20110270451A1 (en) | Control device for exhaust heat recovery system | |
JP5108644B2 (en) | Boiler control device and boiler control method | |
JP5361568B2 (en) | Primary control of gas / steam turbine equipment | |
JP2010007665A5 (en) | ||
JP7143094B2 (en) | Systems and methods for operating a combined cycle power plant | |
JP5840032B2 (en) | Power generation system and steam temperature control method thereof | |
KR20110047641A (en) | Controlling method for fast and linear load control by using compensating models and optimization for turbine and boiler response delays in power plants | |
WO2022118854A1 (en) | Power generation system, control method for same, and program | |
JP6684453B2 (en) | Extraction control method and control device for steam turbine generator | |
JP2017227393A (en) | Steam temperature control device, steam temperature control method, and power generating system | |
US5279263A (en) | Cascaded steam temperature control applied to a universal pressure boiler | |
JP6036376B2 (en) | Boiler system | |
CN115751279A (en) | Main steam temperature optimization control method and device for peak-shaving frequency-modulation thermal generator set | |
JP5881470B2 (en) | Power generation system and control method thereof | |
JP5320037B2 (en) | Boiler automatic control device and boiler system | |
JP2001295607A (en) | Method and device for controlling load of thermal power plant | |
JP6775070B1 (en) | Power plant control device, power plant, and power plant control method | |
JP5781915B2 (en) | Combined plant and its control method | |
JP7426312B2 (en) | Control device, control method and program | |
JP2022156440A (en) | boiler system | |
JPH1122904A (en) | Method and device for controlling fluidized-bed boiler in thermal power generation | |
JP2002286202A (en) | Boiler vapor temperature control device | |
JPH01234099A (en) | Method and device for automatic control of power plant | |
JP2019174085A (en) | Exhaust heat recovery boiler, control device, and combined cycle plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21900607 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21900607 Country of ref document: EP Kind code of ref document: A1 |