JP2018091224A - Control system, steam turbine, power-generating plant and control method - Google Patents

Control system, steam turbine, power-generating plant and control method Download PDF

Info

Publication number
JP2018091224A
JP2018091224A JP2016235202A JP2016235202A JP2018091224A JP 2018091224 A JP2018091224 A JP 2018091224A JP 2016235202 A JP2016235202 A JP 2016235202A JP 2016235202 A JP2016235202 A JP 2016235202A JP 2018091224 A JP2018091224 A JP 2018091224A
Authority
JP
Japan
Prior art keywords
valve opening
valve
control
steam
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016235202A
Other languages
Japanese (ja)
Other versions
JP6781613B2 (en
Inventor
圭介 山本
Keisuke Yamamoto
圭介 山本
二橋 謙介
Kensuke Futahashi
謙介 二橋
恵 鶴田
Megumi Tsuruta
恵 鶴田
脇 勇一朗
Yuichiro Waki
勇一朗 脇
雄久 ▲浜▼田
雄久 ▲浜▼田
Takehisa Hamada
聡 島川
Satoshi Shimakawa
聡 島川
文之 鈴木
Fumiyuki Suzuki
文之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2016235202A priority Critical patent/JP6781613B2/en
Publication of JP2018091224A publication Critical patent/JP2018091224A/en
Application granted granted Critical
Publication of JP6781613B2 publication Critical patent/JP6781613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device for reducing a peak value of a thrust force after blockage of load at a steam turbine.SOLUTION: A control system comprises a load blockage signal acquisition part for acquiring a load blockage signal during operation of a steam turbine; a revolution speed valve opening calculation part for calculating a valve opening of a steam regulating valve for adjusting inflow amount of steam into the steam turbine on the basis of the deviation between a target rotation speed and an actual rotation speed of the steam turbine; a thrust force valve opening calculation part for calculating a valve opening degree of the steam adjusting valve corresponding to the thrust force added to a rotor of the steam turbine; and a valve opening degree control part for controlling a valve opening degree of the steam adjusting valve on the basis of the valve opening degree calculated by the revolution speed valve opening calculation part and the valve opening degree calculated by the thrust force valve opening degree calculation part upon acquisition of the load blockage signal by the load blockage signal acquisition part.SELECTED DRAWING: Figure 2

Description

本発明は、制御システム、蒸気タービン、発電プラント及び制御方法に関する。   The present invention relates to a control system, a steam turbine, a power plant, and a control method.

蒸気タービンを用いて発電を行う汽力発電プラントやコンバインドサイクル発電プラントでは、負荷運転中に非常事態が生じた場合、負荷を切り離して運転を継続する負荷遮断と呼ばれる運用を行うことがある。負荷遮断時には蒸気タービンの回転数は増加するが、蒸気タービンは、回転数が所定の閾値(例えば定格回転数の110%)以上となると異常と判定し自動停止する機能を備えている。そこで、回転数の増加による自動停止を防ぐため、負荷遮断直後に蒸気加減弁を急速に閉止し、その後、回転数が所定の回転数の近傍で整定するように実回転数をフィードバックして、目標回転数との偏差に応じて加減弁開度を調整する制御を行うことがある。   In a steam power plant or a combined cycle power plant that generates power using a steam turbine, when an emergency occurs during a load operation, there is a case where an operation called load interruption is performed to disconnect the load and continue the operation. When the load is shut off, the rotational speed of the steam turbine increases. However, the steam turbine has a function of automatically determining that the rotational speed exceeds a predetermined threshold (for example, 110% of the rated rotational speed) and automatically stopping it. Therefore, in order to prevent an automatic stop due to an increase in the rotational speed, the steam control valve is quickly closed immediately after the load is shut off, and then the actual rotational speed is fed back so that the rotational speed is settled in the vicinity of the predetermined rotational speed. There is a case where control is performed to adjust the valve opening degree according to the deviation from the target rotational speed.

なお、負荷遮断時の制御に関して、例えば特許文献1には、コンバインドプラントにおける負荷遮断時に、蒸気タービンの蒸気加減弁が閉じてから、ガスタービンの燃料止め弁を閉じる制御方法が記載されている。   Regarding control at the time of load interruption, for example, Patent Document 1 describes a control method of closing a fuel stop valve of a gas turbine after a steam control valve of a steam turbine is closed at the time of load interruption in a combined plant.

特開昭56−98510号公報JP 56-98510 A

ところで、負荷遮断時に蒸気加減弁を急速に閉止すると、蒸気圧力のバランスが崩れてロータに大きなスラスト力が発生する可能性がある。大きなスラスト力の発生は、ロータや軸受に損傷を与え、それらの部品の寿命を低減させる原因となる。負荷遮断時に回転数を所定の閾値未満に抑えつつ、スラスト力のピーク値を低減する制御方法が求められていた。   By the way, if the steam control valve is closed rapidly when the load is shut off, the balance of the steam pressure may be lost and a large thrust force may be generated in the rotor. Generation | occurrence | production of a big thrust force damages a rotor and a bearing, and causes the lifetime of those components to be reduced. There has been a demand for a control method that reduces the peak value of the thrust force while keeping the rotational speed below a predetermined threshold when the load is interrupted.

そこでこの発明は、上述の課題を解決することのできる制御システム、蒸気タービン、発電プラント及び制御方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a control system, a steam turbine, a power plant, and a control method that can solve the above-described problems.

本発明の第1の態様によれば、制御システムは、蒸気タービンの運転中に負荷遮断信号を取得する負荷遮断信号取得部と、前記蒸気タービンの目標回転数と実回転数との偏差に基づいて、蒸気タービンへの蒸気の流入量を調節する蒸気加減弁の弁開度を算出する回転数弁開度算出部と、前記蒸気タービンのロータに加わるスラスト力に応じた前記蒸気加減弁の弁開度を算出するスラスト力弁開度算出部と、前記負荷遮断信号取得部が負荷遮断信号を取得すると、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度とに基づいて前記蒸気加減弁の弁開度を制御する弁開度制御部と、を備える。   According to the first aspect of the present invention, the control system is based on a load cutoff signal acquisition unit that acquires a load cutoff signal during operation of the steam turbine, and a deviation between the target rotational speed and the actual rotational speed of the steam turbine. A rotation speed valve opening degree calculation unit for calculating a valve opening degree of a steam control valve that adjusts the amount of steam flowing into the steam turbine, and a valve of the steam control valve according to a thrust force applied to the rotor of the steam turbine When the thrust force valve opening calculation unit for calculating the opening and the load cutoff signal acquisition unit acquire the load cutoff signal, the valve opening calculated by the rotation speed valve opening calculation unit and the thrust force valve opening calculation A valve opening control unit that controls the valve opening of the steam control valve based on the valve opening calculated by the unit.

また、本発明の第2の態様によれば、前記スラスト力弁開度算出部は、前記ロータに加わるスラスト力に応じた弁開度の時間関数と、前記負荷遮断信号取得部が負荷遮断信号を取得してからの経過時間とに基づいて弁開度を算出し、前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度のうち大きな値を選択し、選択した値によって前記蒸気加減弁の弁開度を制御する。   Further, according to the second aspect of the present invention, the thrust force valve opening calculation unit includes a time function of the valve opening according to the thrust force applied to the rotor, and the load cutoff signal acquisition unit includes a load cutoff signal. The valve opening degree calculation unit calculates the valve opening degree based on the elapsed time since the acquisition of the valve, and the valve opening degree control unit calculates the valve opening degree calculated by the rotational speed valve opening degree calculation unit and the thrust force valve opening degree calculation unit. Is selected from among the calculated valve openings, and the opening of the steam control valve is controlled by the selected value.

また、本発明の第3の態様によれば、前記スラスト力弁開度算出部は、前記ロータに加わるスラスト力の目標値と前記ロータに加わるスラスト力の計測値との偏差に基づく弁開度を算出し、前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度のうち大きな値を選択し、選択した値によって前記蒸気加減弁の弁開度を制御する。   Further, according to the third aspect of the present invention, the thrust force valve opening calculation unit is configured to determine a valve opening based on a deviation between a target value of the thrust force applied to the rotor and a measured value of the thrust force applied to the rotor. The valve opening control unit selects a larger value from the valve opening calculated by the rotational speed valve opening calculating unit and the valve opening calculated by the thrust force valve opening calculating unit, and selects The valve opening degree of the steam control valve is controlled according to the obtained value.

また、本発明の第4の態様によれば、前記制御システムは、前記ロータの回転数が所定の制限値を超過したか否かを判定する回転数判定部、をさらに備え、スラスト力弁開度算出部は、前記回転数判定部が前記回転数が所定の制限値を超過したと判定すると、前記算出した弁開度に0を設定する。   According to a fourth aspect of the present invention, the control system further includes a rotation speed determination unit that determines whether or not the rotation speed of the rotor has exceeded a predetermined limit value. When the rotational speed determination unit determines that the rotational speed exceeds a predetermined limit value, the degree calculation unit sets 0 to the calculated valve opening.

また、本発明の第5の態様によれば、前記制御システムは、前記蒸気タービンの出力値に応じた前記弁開度の先行補正値を算出する先行補正値算出部、をさらに備え、前記スラスト力弁開度算出部は、前記算出した弁開度に前記先行補正値算出部が算出した先行補正値を加算する。   According to a fifth aspect of the present invention, the control system further includes a preceding correction value calculation unit that calculates a preceding correction value of the valve opening degree according to the output value of the steam turbine, and the thrust The force valve opening calculation unit adds the preceding correction value calculated by the preceding correction value calculation unit to the calculated valve opening.

また、本発明の第6の態様によれば、前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度との重み付け平均を算出し、算出した重み付け平均を前記蒸気加減弁の弁開度とする。   According to the sixth aspect of the present invention, the valve opening degree control unit is configured such that the valve opening degree calculated by the rotational speed valve opening degree calculating unit and the valve opening degree calculated by the thrust force valve opening degree calculating unit are calculated. And the calculated weighted average is used as the valve opening degree of the steam control valve.

また、本発明の第7の態様によれば、蒸気タービンは、上記の制御システムを備える。   Moreover, according to the 7th aspect of this invention, a steam turbine is provided with said control system.

また、本発明の第8の態様によれば、発電プラントは、上記の制御システムを備える。   Moreover, according to the 8th aspect of this invention, a power plant is equipped with said control system.

また、本発明の第9の態様によれば、蒸気タービンの運転中に負荷遮断信号を取得し、前記蒸気タービンの目標回転数と実回転数との偏差に基づいて、蒸気タービンへの蒸気の流入量を調節する蒸気加減弁の回転数に基づく弁開度を算出し、前記蒸気タービンのロータに加わるスラスト力に応じた前記蒸気加減弁の弁開度を算出し、前記負荷遮断信号を取得すると、前記回転数に基づく弁開度と前記スラスト力に応じた弁開度とに基づく値によって、前記蒸気加減弁の弁開度を制御する、制御方法である。   According to the ninth aspect of the present invention, a load cutoff signal is acquired during operation of the steam turbine, and the steam flow to the steam turbine is determined based on the deviation between the target rotational speed and the actual rotational speed of the steam turbine. Calculates the valve opening based on the number of rotations of the steam control valve that adjusts the inflow amount, calculates the valve opening of the steam control valve according to the thrust force applied to the rotor of the steam turbine, and obtains the load cutoff signal Then, the valve opening degree of the steam control valve is controlled by a value based on the valve opening degree based on the rotational speed and the valve opening degree corresponding to the thrust force.

本発明によれば、負荷遮断時に蒸気タービンのロータや軸受け等に加わるスラスト力のピーク値を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the peak value of the thrust force added to a rotor, a bearing, etc. of a steam turbine at the time of load interruption can be reduced.

本発明に係る第一実施形態におけるガスタービンコンバインドサイクルプラントの系統図である。It is a systematic diagram of the gas turbine combined cycle plant in a first embodiment concerning the present invention. 本発明に係る第一実施形態における制御装置のブロック図である。It is a block diagram of the control device in the first embodiment according to the present invention. 本発明に係る第一実施形態における蒸気加減弁の制御方法を説明する図である。It is a figure explaining the control method of the steam control valve in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。It is a flowchart of the valve opening degree control process of the steam control valve in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における弁開度制御処理の結果を示す図である。It is a figure which shows the result of the valve opening degree control process in 1st embodiment which concerns on this invention. 本発明に係る第二実施形態における制御装置の第1のブロック図である。It is a 1st block diagram of the control apparatus in 2nd embodiment which concerns on this invention. 本発明に係る第二実施形態における蒸気加減弁の制御方法を説明する図である。It is a figure explaining the control method of the steam control valve in 2nd embodiment which concerns on this invention. 本発明に係る第二実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。It is a flowchart of the valve opening degree control process of the steam control valve in 2nd embodiment which concerns on this invention. 本発明に係る第二実施形態における弁開度制御処理の結果を示す図である。It is a figure which shows the result of the valve opening degree control process in 2nd embodiment which concerns on this invention. 本発明に係る第二実施形態における制御装置の第2のブロック図である。It is a 2nd block diagram of the control apparatus in 2nd embodiment which concerns on this invention. 本発明に係る第三実施形態における制御装置の第1のブロック図である。It is a 1st block diagram of the control apparatus in 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態における蒸気加減弁の制御方法を説明する図である。It is a figure explaining the control method of the steam control valve in 3rd embodiment concerning the present invention. 本発明に係る第三実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。It is a flowchart of the valve opening degree control process of the steam control valve in 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態における弁開度制御処理の結果を示す図である。It is a figure which shows the result of the valve opening degree control process in 3rd embodiment which concerns on this invention. 本発明に係る第三実施形態における制御装置の第2のブロック図である。It is a 2nd block diagram of the control apparatus in 3rd embodiment which concerns on this invention. 従来の負荷遮断時の制御方法を説明する図である。It is a figure explaining the control method at the time of the conventional load interruption | blocking.

<第一実施形態>
以下、本発明の第一実施形態による蒸気タービンの負荷遮断時の制御方法について図1〜図5を参照して説明する。
図1は、本発明に係る第一実施形態におけるガスタービンコンバインドサイクルプラントの系統図である。
本実施形態のガスタービンコンバインドサイクルプラント(GTCC)は、図1に示すように、ガスタービン10と、ガスタービン10から排気される排ガスの熱で蒸気を発生する排熱回収ボイラー20と、排熱回収ボイラー20からの蒸気で駆動される蒸気タービン30(高圧蒸気タービン31、中圧蒸気タービン32及び低圧蒸気タービン33)と、各タービン10,31,32,33の駆動で発電する発電機34と、低圧蒸気タービン33から排気された蒸気を水に戻す復水器35と、これら各機器を制御する制御装置100と、を備えている。
<First embodiment>
Hereinafter, the control method at the time of load interruption of the steam turbine according to the first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a system diagram of a gas turbine combined cycle plant according to a first embodiment of the present invention.
As shown in FIG. 1, the gas turbine combined cycle plant (GTCC) of the present embodiment includes a gas turbine 10, an exhaust heat recovery boiler 20 that generates steam by the heat of exhaust gas exhausted from the gas turbine 10, and exhaust heat. A steam turbine 30 (high-pressure steam turbine 31, intermediate-pressure steam turbine 32, and low-pressure steam turbine 33) driven by steam from the recovery boiler 20, and a generator 34 that generates electric power by driving each turbine 10, 31, 32, 33; , A condenser 35 that returns the steam exhausted from the low-pressure steam turbine 33 to water, and a control device 100 that controls these devices.

ガスタービン10は、外気を圧縮して圧縮空気を生成する圧縮機11と、燃料ガスに圧縮空気を混合して燃焼させ高温の燃焼ガスを生成する燃焼器12と、燃焼ガスにより駆動されるタービン13と、燃焼器12に供給する燃料流量を調節する燃料流量調節弁14と、を備えている。燃焼器12には、燃料供給源からの燃料を燃焼器12に供給する燃料ラインが接続されている。この燃料ラインには、燃料流量調節弁14が設けられている。タービン13の排気口は排熱回収ボイラー20と接続されている。   The gas turbine 10 includes a compressor 11 that compresses outside air to generate compressed air, a combustor 12 that mixes and burns compressed air with fuel gas to generate high-temperature combustion gas, and a turbine driven by the combustion gas. 13 and a fuel flow rate adjusting valve 14 for adjusting the flow rate of fuel supplied to the combustor 12. A fuel line for supplying fuel from a fuel supply source to the combustor 12 is connected to the combustor 12. A fuel flow rate control valve 14 is provided in this fuel line. The exhaust port of the turbine 13 is connected to the exhaust heat recovery boiler 20.

排熱回収ボイラー20は、高圧蒸気タービン31に供給する高圧蒸気を発生する高圧蒸気発生部21と、中圧蒸気タービン32に供給する中圧蒸気を発生する中圧蒸気発生部22と、低圧蒸気タービン33に供給する低圧蒸気を発生する低圧蒸気発生部24と、高圧蒸気タービン31から排気された蒸気を加熱する再加熱部23と、を備えている。   The exhaust heat recovery boiler 20 includes a high-pressure steam generator 21 that generates high-pressure steam supplied to the high-pressure steam turbine 31, an intermediate-pressure steam generator 22 that generates intermediate-pressure steam supplied to the intermediate-pressure steam turbine 32, and low-pressure steam. A low-pressure steam generating unit 24 that generates low-pressure steam to be supplied to the turbine 33 and a reheating unit 23 that heats the steam exhausted from the high-pressure steam turbine 31 are provided.

排熱回収ボイラー20の高圧蒸気発生部21と高圧蒸気タービン31の蒸気入口とは、高圧蒸気を高圧蒸気タービン31に導く高圧主蒸気ライン41で接続され、高圧蒸気タービン31の蒸気出口と中圧蒸気タービン32の蒸気入口とは、高圧蒸気タービン31から排気された蒸気を排熱回収ボイラー20の再加熱部23を経て中圧蒸気タービン32の蒸気入口に導く中圧蒸気ライン44で接続され、排熱回収ボイラー20の低圧蒸気発生部24と低圧蒸気タービン33の蒸気入口とは、低圧蒸気を低圧蒸気タービン33に導く低圧主蒸気ライン51で接続されている。   The high-pressure steam generator 21 of the exhaust heat recovery boiler 20 and the steam inlet of the high-pressure steam turbine 31 are connected by a high-pressure main steam line 41 that guides the high-pressure steam to the high-pressure steam turbine 31, and the steam outlet of the high-pressure steam turbine 31 and the medium pressure The steam inlet of the steam turbine 32 is connected by an intermediate pressure steam line 44 that guides the steam exhausted from the high pressure steam turbine 31 to the steam inlet of the intermediate pressure steam turbine 32 via the reheating unit 23 of the exhaust heat recovery boiler 20. The low pressure steam generator 24 of the exhaust heat recovery boiler 20 and the steam inlet of the low pressure steam turbine 33 are connected by a low pressure main steam line 51 that guides the low pressure steam to the low pressure steam turbine 33.

中圧蒸気タービン32の蒸気出口と低圧蒸気タービン33の蒸気入口とは、中圧タービン排気ライン54で接続されている。低圧蒸気タービン33の蒸気出口には、復水器35が接続されている。この復水器35には、復水を排熱回収ボイラー20に導く給水ライン55が接続されている。
排熱回収ボイラー20の中圧蒸気発生部22と中圧蒸気ライン44の再加熱部23より上流側部分とは、中圧主蒸気ライン61で接続されている。
The steam outlet of the intermediate pressure steam turbine 32 and the steam inlet of the low pressure steam turbine 33 are connected by an intermediate pressure turbine exhaust line 54. A condenser 35 is connected to the steam outlet of the low-pressure steam turbine 33. The condenser 35 is connected to a water supply line 55 that guides the condensate to the exhaust heat recovery boiler 20.
An intermediate pressure main steam line 61 connects the intermediate pressure steam generation unit 22 of the exhaust heat recovery boiler 20 and the upstream side portion of the intermediate pressure steam line 44 from the reheating unit 23.

高圧主蒸気ライン41には、高圧蒸気止め弁42、高圧蒸気タービン31への蒸気の流入量を調整する高圧主蒸気加減弁43が設けられている。中圧蒸気ライン44には、中圧蒸気止め弁45、中圧蒸気タービン32への蒸気の流入量を調整する中圧蒸気加減弁46が設けられている。低圧主蒸気ライン51には、低圧蒸気止め弁52、低圧蒸気タービン33への蒸気の流入量を調整する低圧主蒸気加減弁53が設けられている。   The high-pressure main steam line 41 is provided with a high-pressure steam stop valve 42 and a high-pressure main steam control valve 43 that adjusts the amount of steam flowing into the high-pressure steam turbine 31. The intermediate pressure steam line 44 is provided with an intermediate pressure steam stop valve 45 and an intermediate pressure steam control valve 46 that adjusts the amount of steam flowing into the intermediate pressure steam turbine 32. The low-pressure main steam line 51 is provided with a low-pressure steam stop valve 52 and a low-pressure main steam control valve 53 that adjusts the amount of steam flowing into the low-pressure steam turbine 33.

制御装置100は、各種の運転データや指示データ等を受け付け、ガスタービン10の出力の制御、高圧蒸気止め弁42の開閉の制御、高圧主蒸気加減弁43の弁開度の制御、中圧蒸気止め弁45の開閉の制御、中圧蒸気加減弁46の弁開度の制御、低圧蒸気止め弁52の開閉の制御、低圧主蒸気加減弁53の弁開度の制御等による蒸気タービン30の出力制御等によって発電機34による発電を行う。また、何らかの異常等によって負荷遮断が発生した場合、制御装置100は、負荷遮断時の各種制御を行う。   The control device 100 receives various operation data, instruction data, etc., controls the output of the gas turbine 10, controls the opening and closing of the high-pressure steam stop valve 42, controls the valve opening of the high-pressure main steam control valve 43, and medium-pressure steam. The output of the steam turbine 30 by controlling the opening / closing of the stop valve 45, controlling the valve opening of the intermediate pressure steam control valve 46, controlling the opening / closing of the low pressure steam stop valve 52, controlling the valve opening of the low pressure main steam control valve 53, etc. Power is generated by the generator 34 by control or the like. Moreover, when load interruption | blocking generate | occur | produces by some abnormality etc., the control apparatus 100 performs various control at the time of load interruption | blocking.

次に図16を用いて、従来の負荷遮断時の蒸気タービン30の蒸気加減弁(43、46、53)に対する制御について説明する。なお、説明の便宜のため、以下の説明では中圧蒸気加減弁46の弁開度制御について説明する。
図16は、従来の負荷遮断時の制御方法を説明する図である。
図16の上図は、中圧蒸気加減弁46の弁開度の時間変化を示すグラフである。図16上図の縦軸は弁開度、横軸は時間の経過を示している。従来の制御では、制御装置は、負荷遮断指示信号を受信すると中圧蒸気加減弁46の弁開度を全閉とする制御を行う。図16の上図は、時刻T1に負荷遮断指示信号を受信し、その直後に中圧蒸気加減弁46の弁開度が0に制御された様子を示している。
図16の中図は、スラスト力の時間変化を示すグラフである。図16中図の縦軸は蒸気タービン30のロータや軸受に加わるスラスト力の計測値、横軸は時間の経過を示している。このグラフは、負荷遮断時に中圧蒸気加減弁46の弁開度が急激に0となった際に、ロータ等には大きなスラスト力(ピーク値の大きさ:N1)が加わることを示している。
図16の下図は、蒸気タービン30の回転数の時間変化を示すグラフである。図16下図の縦軸は蒸気タービン30の1分間あたりの回転数、横軸は時間の経過を示している。このグラフは、負荷遮断時に中圧蒸気加減弁46の弁開度が急激に0となった際に、回転数がR1に上昇し、その後定格の回転数に戻っていく様子を示している。なお、破線で示したのが回転数の閾値RXである。蒸気タービン30の回転数が閾値RXを超えると、蒸気タービン30(およびGTCCプラント全体)は自動停止してしまう。従来の制御により、負荷遮断後の回転数は、この閾値RX未満に余裕をもって抑えられている。
Next, the control with respect to the steam control valve (43, 46, 53) of the steam turbine 30 at the time of load interruption will be described with reference to FIG. For convenience of explanation, in the following explanation, valve opening control of the intermediate pressure steam control valve 46 will be explained.
FIG. 16 is a diagram for explaining a conventional control method at the time of load shedding.
The upper part of FIG. 16 is a graph showing the change over time of the valve opening degree of the intermediate pressure steam control valve 46. In FIG. 16, the vertical axis indicates the valve opening, and the horizontal axis indicates the passage of time. In the conventional control, the control device performs control to fully close the valve opening degree of the intermediate pressure steam control valve 46 when receiving the load cutoff instruction signal. The upper part of FIG. 16 shows a state in which the valve opening degree of the intermediate pressure steam control valve 46 is controlled to 0 immediately after receiving the load cutoff instruction signal at time T1.
The middle diagram of FIG. 16 is a graph showing the time change of the thrust force. In FIG. 16, the vertical axis represents the measured value of the thrust force applied to the rotor and bearing of the steam turbine 30, and the horizontal axis represents the passage of time. This graph shows that a large thrust force (peak value magnitude: N1) is applied to the rotor and the like when the valve opening degree of the intermediate pressure steam control valve 46 suddenly becomes zero at the time of load interruption. .
The lower diagram of FIG. 16 is a graph showing the change over time of the rotational speed of the steam turbine 30. In FIG. 16, the vertical axis indicates the number of rotations per minute of the steam turbine 30, and the horizontal axis indicates the passage of time. This graph shows how the rotational speed increases to R1 and then returns to the rated rotational speed when the opening degree of the intermediate pressure steam control valve 46 suddenly becomes 0 at the time of load interruption. A broken line indicates a rotation speed threshold value RX. When the rotation speed of the steam turbine 30 exceeds the threshold value RX, the steam turbine 30 (and the entire GTCC plant) automatically stops. By the conventional control, the rotation speed after the load is interrupted is suppressed with a margin below the threshold value RX.

従来の制御では、負荷遮断時に中圧蒸気加減弁46の弁開度を急速閉止し、その後、蒸気タービン30の回転数が定格近傍で整定するように、実回転数をフィードバックして目標回転数との偏差に応じて中圧蒸気加減弁46の弁開度を調整する。このように従来の制御では、蒸気タービン30の回転数のみを監視・制御対象とし、スラスト力の監視を行っていない。すると、上記の中図が示すように負荷遮断時に大きなスラスト力(N1)が発生することになり、ロータや軸受けの故障、寿命の低下、その結果としてメンテナンスコストの増大などを招く結果となっていた。そこで、本実施形態では、負荷遮断時に蒸気加減弁の弁開度を調整することにより、蒸気タービン30の回転数の上昇を抑えつつ、さらにスラスト力も低減する制御方法を提供する。   In the conventional control, when the load is shut off, the valve opening degree of the intermediate pressure steam control valve 46 is rapidly closed, and thereafter, the actual rotational speed is fed back so that the rotational speed of the steam turbine 30 is set near the rated value, so that the target rotational speed is obtained. The valve opening degree of the intermediate pressure steam control valve 46 is adjusted according to the deviation. Thus, in the conventional control, only the rotation speed of the steam turbine 30 is monitored and controlled, and the thrust force is not monitored. Then, as shown in the above middle diagram, a large thrust force (N1) is generated when the load is interrupted, resulting in a failure of the rotor and the bearing, a decrease in the service life, and an increase in maintenance costs as a result. It was. Therefore, in the present embodiment, a control method is provided in which the thrust force is further reduced while the increase in the rotational speed of the steam turbine 30 is suppressed by adjusting the valve opening degree of the steam control valve when the load is shut off.

図2は、本発明に係る第一実施形態における制御装置のブロック図である。
図示するように制御装置100は、負荷遮断信号取得部101と、第1弁開度算出部102と、第2弁開度算出部103と、弁開度制御部104と、記憶部105を備えている。制御装置100は、コンピュータによって構成される。
負荷遮断信号取得部101は、GTCCの運転中に負荷を切り離す負荷遮断信号を取得する。
第1弁開度算出部102は、蒸気タービン30の目標回転数(例えば定格の回転数)と実回転数とを取得し、それら2つの値の偏差に基づいて、中圧蒸気加減弁46の弁開度(第1弁開度)を算出する。
FIG. 2 is a block diagram of the control device according to the first embodiment of the present invention.
As illustrated, the control device 100 includes a load cutoff signal acquisition unit 101, a first valve opening calculation unit 102, a second valve opening calculation unit 103, a valve opening control unit 104, and a storage unit 105. ing. The control device 100 is configured by a computer.
The load cutoff signal acquisition unit 101 acquires a load cutoff signal for disconnecting the load during operation of the GTCC.
The first valve opening calculation unit 102 acquires a target rotational speed (for example, a rated rotational speed) of the steam turbine 30 and an actual rotational speed, and based on a deviation between these two values, the intermediate pressure steam control valve 46. The valve opening (first valve opening) is calculated.

第2弁開度算出部103は、負荷遮断信号取得部101が負荷遮断信号を取得したときを開始時点として、その後の経過時間に応じた中圧蒸気加減弁46の弁開度(第2弁開度)を算出する。
弁開度制御部104は、第1弁開度と第2弁開度とを取得してそれら2つの値のうち、より大きな弁開度を選択して、選択した弁開度に対応する弁開度指令値を中圧蒸気加減弁46に出力する。
記憶部105は、負荷遮断後の経過時間と弁開度の対応テーブルなど種々の情報を記憶する。
なお、制御装置100は、GTCCの制御に関する他の様々な機能を備えているが、本実施形態に関係のない機能についての説明は省略する。
The second valve opening calculation unit 103 starts the time when the load cutoff signal acquisition unit 101 acquires the load cutoff signal, and starts the valve opening (second valve) of the intermediate pressure steam control valve 46 according to the elapsed time thereafter. Opening degree) is calculated.
The valve opening degree control unit 104 acquires the first valve opening degree and the second valve opening degree, selects a larger valve opening degree from these two values, and selects the valve corresponding to the selected valve opening degree. The opening command value is output to the intermediate pressure steam control valve 46.
The memory | storage part 105 memorize | stores various information, such as the correspondence table of the elapsed time after valve | bulb interruption | blocking, and valve opening degree.
Note that the control device 100 has various other functions related to GTCC control, but descriptions of functions not related to the present embodiment are omitted.

次に図3を用いて第1弁開度算出部102、第2弁開度算出部103、弁開度制御部104による負荷遮断時の中圧蒸気加減弁46の弁開度制御の一例について説明する。
図3は、本発明に係る第一実施形態における蒸気加減弁の制御方法を説明する図である。
第1弁開度算出部102は、減算器102a、制御器102bを備えている。減算器102aは、目標回転数から実回転数を減じて両者の偏差を算出する。なお、目標回転数は、例えば、予め記憶部105に記録されている。また、実回転数は、例えば、制御装置100が蒸気タービン30に設けられた回転数計測用センサから取得する。減算器102aは、算出した偏差を制御器102bに出力する。制御器102bは、減算器102aから取得した偏差の値が0となるような弁開度指令値(第1弁開度)をフィードバック制御等の手法を用いて算出する。制御器102bは、算出した第1弁開度を弁開度制御部104へ出力する。
なお、図16で説明した従来の負荷遮断時における制御方法では、その第1弁開度算出部102が算出した弁開度で中圧蒸気加減弁46の開度を制御している。
Next, with reference to FIG. 3, an example of valve opening control of the intermediate pressure steam control valve 46 at the time of load interruption by the first valve opening calculation unit 102, the second valve opening calculation unit 103, and the valve opening control unit 104 explain.
FIG. 3 is a diagram for explaining a control method of the steam control valve in the first embodiment according to the present invention.
The first valve opening calculation unit 102 includes a subtractor 102a and a controller 102b. The subtractor 102a subtracts the actual rotational speed from the target rotational speed to calculate the deviation between them. The target rotation speed is recorded in advance in the storage unit 105, for example. Further, the actual rotational speed is acquired from, for example, a rotational speed measurement sensor provided in the steam turbine 30 by the control device 100. The subtractor 102a outputs the calculated deviation to the controller 102b. The controller 102b calculates a valve opening command value (first valve opening) such that the deviation value acquired from the subtractor 102a becomes 0 using a technique such as feedback control. The controller 102b outputs the calculated first valve opening degree to the valve opening degree control unit 104.
In the control method at the time of load interruption described with reference to FIG. 16, the opening degree of the intermediate pressure steam control valve 46 is controlled by the valve opening degree calculated by the first valve opening degree calculation unit 102.

一方、第2弁開度算出部103は、タイマー103a、弁開度の時間関数103bを備えている。負荷遮断信号取得部101が負荷遮断信号を取得すると、第2弁開度算出部103は、タイマー103aをスタートさせ、負荷遮断信号取得後の経過時間を測定する。時間関数103bは、タイマー103aから経過時間の情報を所定の時間毎に取得し、経過時間に対応する弁開度(第2弁開度)を算出する。なお、弁開度の算出には関数を用いてもよいし、経過時間と弁開度とを対応づけたテーブルを用いてもよい。例えば、テーブルには、経過時間が0.5秒なら弁開度X1、経過時間が1秒なら弁開度X2、・・・など経過時間と弁開度の対応関係が予め定められており、時間関数103bは、経過時間に応じてテーブルに登録された値を線形補間し弁開度を算出してもよい。弁開度の時間関数103bは、算出した第2弁開度を弁開度制御部104へ出力する。なお、時間関数103bが用いる関数やテーブルには、蒸気タービン30のロータに加わるスラスト力を考慮して、負荷遮断後に大きなスラスト力が加わらないような(例えば、急速閉止のように急激な蒸気圧力の変化が生じないような)弁開度が負荷遮断後の経過時間に対応付けて設定されている。   On the other hand, the second valve opening calculation unit 103 includes a timer 103a and a time function 103b of the valve opening. When the load cutoff signal acquisition unit 101 acquires the load cutoff signal, the second valve opening degree calculation unit 103 starts the timer 103a and measures the elapsed time after acquiring the load cutoff signal. The time function 103b acquires elapsed time information from the timer 103a every predetermined time, and calculates a valve opening (second valve opening) corresponding to the elapsed time. A function may be used to calculate the valve opening, or a table in which elapsed time and valve opening are associated with each other may be used. For example, in the table, the correspondence between the elapsed time and the valve opening is determined in advance, such as the valve opening X1 if the elapsed time is 0.5 seconds, the valve opening X2 if the elapsed time is 1 second,. The time function 103b may calculate the valve opening degree by linearly interpolating the values registered in the table according to the elapsed time. The valve opening time function 103 b outputs the calculated second valve opening to the valve opening controller 104. Note that the function or table used by the time function 103b takes into account the thrust force applied to the rotor of the steam turbine 30 so that a large thrust force is not applied after the load is interrupted (for example, a rapid steam pressure such as rapid closing). The valve opening is set in association with the elapsed time after the load is interrupted.

弁開度制御部104は、第1弁開度と第2弁開度のうち大きな値を選択して、中圧蒸気加減弁46の開度が選択した値となるように制御する。
なお、弁開度制御部104は、第1弁開度と第2弁開度のうち、第2弁開度により大きな重みを与えた第1弁開度と第2弁開度の重み付け平均を算出し、算出した重み付け平均値で中圧蒸気加減弁46の弁開度を制御するようにしてもよい。
The valve opening degree control unit 104 selects a large value from the first valve opening degree and the second valve opening degree, and performs control so that the opening degree of the intermediate pressure steam control valve 46 becomes the selected value.
The valve opening degree control unit 104 calculates a weighted average of the first valve opening degree and the second valve opening degree among the first valve opening degree and the second valve opening degree. The valve opening degree of the intermediate pressure steam control valve 46 may be controlled by the calculated weighted average value.

図4は、本発明に係る第一実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。
まず、GTCCの運転中に負荷遮断が生じたものとする。すると、負荷遮断信号取得部101が負荷遮断信号を取得する(ステップS11)。負荷遮断信号取得部101は、第1弁開度算出部102および第2弁開度算出部103に負荷遮断の発生を通知する。すると第1弁開度算出部102は、蒸気タービンの回転数の目標値と実測値の偏差から第1弁開度を算出する(ステップS12)。第1弁開度を算出方法については、図3で説明したとおりである。第1弁開度算出部102は、負荷遮断の直後から、例えば数秒〜十数秒の間、第1弁開度として「0」を算出する。第1弁開度算出部102は、算出した弁開度を弁開度制御部104へ出力する。
FIG. 4 is a flowchart of the valve opening degree control process of the steam control valve in the first embodiment according to the present invention.
First, it is assumed that load interruption occurs during operation of GTCC. Then, the load cutoff signal acquisition unit 101 acquires a load cutoff signal (step S11). The load cutoff signal acquisition unit 101 notifies the first valve opening degree calculation unit 102 and the second valve opening degree calculation unit 103 of the occurrence of load cutoff. Then, the first valve opening calculation unit 102 calculates the first valve opening from the deviation between the target value of the rotation speed of the steam turbine and the actual measurement value (step S12). The method for calculating the first valve opening is as described in FIG. The first valve opening calculation unit 102 calculates “0” as the first valve opening, for example, for several seconds to several tens of seconds immediately after the load is interrupted. The first valve opening calculation unit 102 outputs the calculated valve opening to the valve opening control unit 104.

一方、負荷遮断発生の通知を受けた第2弁開度算出部103は、負荷遮断信号を取得後の経過時間に応じた第2弁開度を算出する(ステップS13)。第2弁開度を算出方法については、図3で説明したとおりである。第2弁開度算出部103は、例えば、負荷遮断の直後から例えば数秒〜十数秒の間、第2弁開度として中圧蒸気加減弁46を微開させる開度を算出する。第2弁開度算出部103は、算出した開度を弁開度制御部104へ出力する。   On the other hand, the second valve opening calculation unit 103 that has received the notification of occurrence of load interruption calculates the second valve opening according to the elapsed time after acquiring the load interruption signal (step S13). The method for calculating the second valve opening is as described in FIG. For example, the second valve opening calculation unit 103 calculates an opening for slightly opening the intermediate pressure steam control valve 46 as the second valve opening, for example, for several seconds to several tens of seconds immediately after the load is interrupted. Second valve opening calculation unit 103 outputs the calculated opening to valve opening control unit 104.

次に弁開度制御部104は、第1弁開度と第2弁開度に基づいて弁開度を算出する(ステップS14)。例えば、弁開度制御部104は、第1弁開度と第2弁開度とのうち大きな弁開度を選択する。あるいは、弁開度制御部104は、第1弁開度と第2弁開度との重み付き平均を算出する。次に弁開度制御部104は、選択した(算出した)弁開度に対応する弁開度指令値を中圧蒸気加減弁46へ指示する(ステップS15)。
制御装置100は、負荷遮断後、数分(1〜3分程度)の間、ステップS11〜ステップS15の処理を継続的に行う。
Next, the valve opening degree control unit 104 calculates the valve opening degree based on the first valve opening degree and the second valve opening degree (step S14). For example, the valve opening degree control unit 104 selects a larger valve opening degree from the first valve opening degree and the second valve opening degree. Alternatively, the valve opening control unit 104 calculates a weighted average of the first valve opening and the second valve opening. Next, the valve opening control unit 104 instructs the intermediate pressure steam control valve 46 to provide a valve opening command value corresponding to the selected (calculated) valve opening (step S15).
The control device 100 continuously performs the processing from step S11 to step S15 for several minutes (about 1 to 3 minutes) after the load is interrupted.

図5は、本発明に係る第一実施形態における弁開度制御処理の結果を示す図である。
図5の上図、中図、下図が表す内容については図16と同様である。つまり、図5の上図のグラフは、第一実施形態の弁開度制御を適用したときの中圧蒸気加減弁46の弁開度の時間変化を示し、中図のグラフは第一実施形態適用後のスラスト力の時間変化を示し、下図のグラフは第一実施形態適用後の回転数の時間変化を示す。
図5の上図をみると、負荷遮断が発生した時刻T1からその後の時刻T2の間、中圧蒸気加減弁46の弁開度は微開の状態で制御されていることが分かる。なお、時刻T1〜T2は数秒間である。
FIG. 5 is a diagram showing a result of the valve opening degree control process in the first embodiment according to the present invention.
The contents represented by the upper, middle, and lower diagrams in FIG. 5 are the same as those in FIG. That is, the upper graph of FIG. 5 shows the time change of the valve opening of the intermediate pressure steam control valve 46 when the valve opening control of the first embodiment is applied, and the middle graph shows the first embodiment. The time change of the thrust force after application is shown, and the graph in the lower diagram shows the time change of the rotational speed after application of the first embodiment.
From the upper diagram of FIG. 5, it can be seen that the valve opening degree of the intermediate pressure steam control valve 46 is controlled in a slightly opened state from time T1 when load interruption occurs to time T2 thereafter. Time T1 to T2 is several seconds.

次に図5の中図をみると、負荷遮断後のスラスト力のピーク値の大きさは、従来の制御によるピーク値N1よりもかなり小さい値であるN2に低減していることが分かる。これは、負荷遮断直後に中圧蒸気加減弁46の弁開度を「0」(第1弁開度)とせず、微開(第2弁開度)としたため、蒸気圧力のバランスの変化が従来の制御の場合ほど急激ではなくなったためであると考えられる。   Next, referring to the middle diagram of FIG. 5, it can be seen that the peak value of the thrust force after the load is interrupted is reduced to N2, which is considerably smaller than the peak value N1 by the conventional control. This is because the valve opening of the intermediate pressure steam control valve 46 is not set to “0” (first valve opening) immediately after the load is cut off, but is slightly opened (second valve opening). This is considered to be because it is not as rapid as in the case of conventional control.

次に図5の下図をみると、蒸気タービン30の回転数は、従来の制御時のR1よりも大きな値であるR2に上昇している。これは、中圧蒸気加減弁46を微開としたために蒸気供給量が増加したためと考えられる。図5の結果によれは、本実施形態適用後の回転数R2は、定格回転数から閾値RXの間の半分程度にまで上昇している。本実施形態によれば、第1弁開度と第2弁開度とのうち大きい弁開度を選択することによる蒸気供給量の増加により、最大回転数が増加することが分かる。本実施形態を適用した場合、最大回転数が増加し閾値RX以上(過速トリップ)となる可能性が、従来の制御に比べ高くなる。   Next, referring to the lower diagram of FIG. 5, the rotational speed of the steam turbine 30 is increased to R2, which is a larger value than R1 during conventional control. This is considered to be because the steam supply amount increased because the intermediate pressure steam control valve 46 was slightly opened. According to the result of FIG. 5, the rotational speed R2 after application of the present embodiment increases from the rated rotational speed to about half of the threshold RX. According to the present embodiment, it can be seen that the maximum rotational speed increases due to an increase in the amount of steam supplied by selecting a larger valve opening between the first valve opening and the second valve opening. When this embodiment is applied, the possibility that the maximum rotational speed increases and becomes equal to or higher than the threshold RX (overspeed trip) is higher than that in the conventional control.

本実施形態によれば、第1弁開度と第2弁開度のうち大きな値を考慮した弁開度によって、負荷遮断時に蒸気加減弁の開度制御を行うため、中圧蒸気加減弁46の弁開度を微開とすることができ、負荷遮断時に蒸気圧力バランスが変動することによって生じるスラスト力のピーク値を低減することができる。これにより、ロータやロータの軸受の損傷を低減し、寿命を延伸することができる。   According to this embodiment, since the opening degree control of the steam control valve is performed at the time of load interruption by the valve opening considering a large value among the first valve opening and the second valve opening, the intermediate pressure steam control valve 46 is controlled. The valve opening degree can be slightly opened, and the peak value of the thrust force generated by the fluctuation of the steam pressure balance when the load is interrupted can be reduced. Thereby, damage to the rotor and the bearing of the rotor can be reduced, and the life can be extended.

<第二実施形態>
以下、本発明の第二実施形態による蒸気タービンの負荷遮断時の制御方法について図6〜図10を参照して説明する。
以下、第二実施形態に係る制御装置100Aについて説明を行う。制御装置100Aは、第一実施形態と異なる方法で中圧蒸気加減弁46の制御を行う。第一実施形態では、第2弁開度算出部103が時間関数によって第2弁開度を算出した。この第二実施形態では、第3弁開度算出部106が、中圧蒸気加減弁46の弁開度(第3弁開度)をロータ等に加わるスラスト力に応じて決定する。
<Second embodiment>
Hereinafter, the control method at the time of load interruption of the steam turbine according to the second embodiment of the present invention will be described with reference to FIGS.
Hereinafter, the control device 100A according to the second embodiment will be described. The control device 100A controls the intermediate pressure steam control valve 46 by a method different from the first embodiment. In the first embodiment, the second valve opening calculation unit 103 calculates the second valve opening using a time function. In the second embodiment, the third valve opening calculation unit 106 determines the valve opening (third valve opening) of the intermediate pressure steam control valve 46 according to the thrust force applied to the rotor or the like.

図6は、本発明に係る第二実施形態における制御装置の第1のブロック図である。
本発明の第二実施形態に係る構成のうち、第一実施形態に係る制御装置100を構成する機能部と同じものには同じ符号を付し、それぞれの説明を省略する。図示するように制御装置100Aは、負荷遮断信号取得部101と、第1弁開度算出部102と、第3弁開度算出部106と、弁開度制御部104Aと、記憶部105を備えている。また、第3弁開度算出部106は、先行補正値算出部107を備えている。
FIG. 6 is a first block diagram of a control device according to the second embodiment of the present invention.
Among the configurations according to the second embodiment of the present invention, the same components as those constituting the control device 100 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. As illustrated, the control device 100A includes a load cutoff signal acquisition unit 101, a first valve opening calculation unit 102, a third valve opening calculation unit 106, a valve opening control unit 104A, and a storage unit 105. ing. In addition, the third valve opening calculation unit 106 includes a preceding correction value calculation unit 107.

第3弁開度算出部106は、蒸気タービン30のロータに加わるスラスト力の目標値とスラスト力の計測値とを取得し、それら2つの値の偏差に基づいて、中圧蒸気加減弁46の弁開度(第3´弁開度)を算出する。また、第3弁開度算出部106は、算出した弁開度に先行補正値算出部107が算出した補正値を加算して中圧蒸気加減弁46の弁開度(第3弁開度)を算出する。
先行補正値算出部107は、蒸気タービンの出力値を取得し、出力値見合いの先行補正値を算出する。
弁開度制御部104Aは、第1弁開度と第3弁開度とを取得しそれら2つの弁開度に基づいて、中圧蒸気加減弁46の弁開度を制御する。例えば、弁開度制御部104Aは、第1弁開度と第3弁開度のうち、より大きな弁開度を選択して、選択した弁開度に対応する弁開度指令値を中圧蒸気加減弁46に出力する。
The third valve opening calculation unit 106 acquires the target value of the thrust force applied to the rotor of the steam turbine 30 and the measured value of the thrust force, and based on the deviation between these two values, the intermediate pressure steam control valve 46 The valve opening (third 3 ′ valve opening) is calculated. Further, the third valve opening calculation unit 106 adds the correction value calculated by the preceding correction value calculation unit 107 to the calculated valve opening, thereby opening the valve opening of the intermediate pressure steam control valve 46 (third valve opening). Is calculated.
The advance correction value calculation unit 107 acquires the output value of the steam turbine and calculates the advance correction value for the output value match.
The valve opening degree control unit 104A acquires the first valve opening degree and the third valve opening degree, and controls the valve opening degree of the intermediate pressure steam control valve 46 based on the two valve opening degrees. For example, the valve opening degree control unit 104A selects a larger valve opening degree from the first valve opening degree and the third valve opening degree, and sets the valve opening degree command value corresponding to the selected valve opening degree to the medium pressure. Output to the steam control valve 46.

次に図7を用いて第二実施形態における負荷遮断時の中圧蒸気加減弁46の弁開度制御の一例について説明する。
図7は、本発明に係る第二実施形態における蒸気加減弁の制御方法を説明する図である。
第1弁開度算出部102は、減算器102a、制御器102bを備えている。減算器102aは、目標回転数から実回転数を減じて両者の偏差を算出する。減算器102aは、算出した偏差を制御器102bに出力する。制御器102bは、減算器102aから取得した偏差の値が0となるような弁開度指令値(第1弁開度)をフィードバック制御等の手法を用いて算出する。制御器102bは、算出した第1弁開度を弁開度制御部104Aへ出力する。
Next, an example of the valve opening degree control of the intermediate pressure steam control valve 46 at the time of load interruption in the second embodiment will be described with reference to FIG.
FIG. 7 is a view for explaining a control method of the steam control valve in the second embodiment according to the present invention.
The first valve opening calculation unit 102 includes a subtractor 102a and a controller 102b. The subtractor 102a subtracts the actual rotational speed from the target rotational speed to calculate the deviation between them. The subtractor 102a outputs the calculated deviation to the controller 102b. The controller 102b calculates a valve opening command value (first valve opening) such that the deviation value acquired from the subtractor 102a becomes 0 using a technique such as feedback control. The controller 102b outputs the calculated first valve opening degree to the valve opening degree control unit 104A.

一方、第3弁開度算出部106は、制御器106aを備えている。負荷遮断信号取得部101が負荷遮断信号を取得すると、制御器106aが目標スラスト力からスラスト力計測値を減じて両者の偏差を算出する。なお、目標スラスト力は、例えば、予め記憶部105に記録されている。また、スラスト力計測値は、例えば、制御装置100が軸受などに設けられたスラスト力計測用センサから取得する。制御器106aは、算出した偏差が0となるような弁開度指令値(第3´弁開度)をフィードバック制御等の手法を用いて算出する。また、制御器106aは、補正値算出器107a(先行補正値算出部107)を備えている。補正値算出器107aは、例えば負荷遮断直前の蒸気タービン30の出力値(図中「ST出力」)を取得し、この出力値見合いの中圧蒸気加減弁46の弁開度の補正値を算出する。例えば、記憶部105が、出力値と弁開度補正値の対応関係を定めたテーブル、関数等を記憶しており、補正値算出器107aはこのテーブルに基づいて補正値を算出する。なお、負荷遮断直前の蒸気タービン30の出力値は例えば記憶部105に記録されている。制御器106aは、補正値算出器107aが算出した補正値を第3´弁開度に加算して第3弁開度を算出する。制御器106aは、算出した第3弁開度を弁開度制御部104Aへ出力する。蒸気タービン30の出力値に応じた補正値を第3´弁開度に加算することで、スラスト力に基づくフィードバック制御による応答遅れを先行的に補償できる。   On the other hand, the third valve opening calculation unit 106 includes a controller 106a. When the load cutoff signal acquisition unit 101 acquires the load cutoff signal, the controller 106a calculates a deviation between the two by subtracting the measured thrust force value from the target thrust force. Note that the target thrust force is recorded in the storage unit 105 in advance, for example. Further, the thrust force measurement value is acquired from, for example, a thrust force measurement sensor provided on the bearing or the like by the control device 100. The controller 106a calculates a valve opening command value (third 'valve opening) such that the calculated deviation becomes 0 using a technique such as feedback control. The controller 106a includes a correction value calculator 107a (preceding correction value calculator 107). The correction value calculator 107a acquires, for example, the output value (“ST output” in the figure) of the steam turbine 30 immediately before the load is cut off, and calculates the correction value of the valve opening degree of the intermediate pressure steam control valve 46 corresponding to this output value. To do. For example, the storage unit 105 stores a table, function, and the like that define the correspondence between the output value and the valve opening correction value, and the correction value calculator 107a calculates a correction value based on this table. Note that the output value of the steam turbine 30 immediately before the load is interrupted is recorded in the storage unit 105, for example. The controller 106a calculates the third valve opening by adding the correction value calculated by the correction value calculator 107a to the third 'valve opening. The controller 106a outputs the calculated third valve opening degree to the valve opening degree control unit 104A. By adding a correction value corresponding to the output value of the steam turbine 30 to the 3 ′ valve opening, it is possible to compensate in advance for a response delay due to feedback control based on the thrust force.

弁開度制御部104Aは、第1弁開度と第3弁開度のうち大きな値を選択して、中圧蒸気加減弁46の開度が選択した値となるように制御する。
なお、弁開度制御部104Aは、第1弁開度と第2弁開度のうち、第3弁開度により大きな重みを与えた第1弁開度と第3弁開度の重み付け平均を算出し、算出した値で中圧蒸気加減弁46の開度を制御するようにしてもよい。
The valve opening degree control unit 104A selects a large value from the first valve opening degree and the third valve opening degree, and performs control so that the opening degree of the intermediate pressure steam control valve 46 becomes the selected value.
The valve opening degree control unit 104A calculates a weighted average of the first valve opening degree and the third valve opening degree among the first valve opening degree and the second valve opening degree. The opening degree of the intermediate pressure steam control valve 46 may be controlled by the calculated value.

図8は、本発明に係る第二実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。
まず、GTCCの運転中に負荷遮断が生じたものとする。すると、負荷遮断信号取得部101が負荷遮断信号を取得する(ステップS21)。負荷遮断信号取得部101は、第1弁開度算出部102および第3弁開度算出部106に負荷遮断の発生を通知する。すると第1弁開度算出部102は、蒸気タービンの回転数の目標値と実測値の偏差から第1弁開度を算出する(ステップS22)。第1弁開度を算出方法については、第一実施形態と同様である。第1弁開度算出部102は、例えば、負荷遮断の直後から数十秒の間、第1弁開度として「0」を算出する。第1弁開度算出部102は、算出した弁開度を弁開度制御部104へ出力する。
FIG. 8 is a flowchart of the valve opening degree control process of the steam control valve in the second embodiment according to the present invention.
First, it is assumed that load interruption occurs during operation of GTCC. Then, the load cutoff signal acquisition unit 101 acquires a load cutoff signal (step S21). The load cutoff signal acquisition unit 101 notifies the first valve opening degree calculation unit 102 and the third valve opening degree calculation unit 106 that a load cutoff has occurred. Then, the first valve opening calculation unit 102 calculates the first valve opening from the deviation between the target value of the rotation speed of the steam turbine and the actual measurement value (step S22). The method for calculating the first valve opening is the same as in the first embodiment. For example, the first valve opening calculation unit 102 calculates “0” as the first valve opening for several tens of seconds immediately after the load is interrupted. The first valve opening calculation unit 102 outputs the calculated valve opening to the valve opening control unit 104.

一方、負荷遮断発生の通知を受けた第3弁開度算出部106は、スラスト力の目標値と実測値の偏差から第3´弁開度を算出する(ステップS23)。第3´弁開度を算出方法については、図7で説明したとおりである。また、第3弁開度算出部106が備える先行補正値算出部107が、蒸気タービン30の出力値に応じた弁開度の先行補正値を算出する。そして、第3弁開度算出部106は、第3´弁開度に先行補正値を加算した第3弁開度を算出する(ステップS24)。第3弁開度算出部106は、例えば、負荷遮断の直後から数秒の間、第3弁開度として中圧蒸気加減弁46を微開させる開度を算出する。第3弁開度算出部106は、算出した第3弁開度を弁開度制御部104Aへ出力する。   On the other hand, the third valve opening calculation unit 106 that has received the notification of the occurrence of load interruption calculates the third 'valve opening from the deviation between the target value of the thrust force and the measured value (step S23). The method for calculating the third 'valve opening is as described in FIG. In addition, a preceding correction value calculation unit 107 included in the third valve opening calculation unit 106 calculates a preceding correction value of the valve opening corresponding to the output value of the steam turbine 30. Then, the third valve opening degree calculation unit 106 calculates a third valve opening degree obtained by adding the preceding correction value to the 3 ′ valve opening degree (step S24). The third valve opening calculation unit 106 calculates, for example, an opening for slightly opening the intermediate pressure steam control valve 46 as the third valve opening for a few seconds immediately after the load interruption. The third valve opening calculation unit 106 outputs the calculated third valve opening to the valve opening control unit 104A.

次に弁開度制御部104Aは、第1弁開度と第3弁開度に基づいて弁開度を算出する(ステップS25)。例えば、弁開度制御部104Aは、第1弁開度と第3弁開度とのうち大きな値を選択する。あるいは、弁開度制御部104Aは、第1弁開度と第3弁開度との重み付き平均を算出する。次に弁開度制御部104Aは、算出した弁開度に対応する弁開度指令値を中圧蒸気加減弁46へ指示する(ステップS26)。
制御装置100は、負荷遮断後、数分(1〜3分程度)の間、ステップS21〜ステップS26の処理を継続的に行う。
Next, the valve opening degree control unit 104A calculates the valve opening degree based on the first valve opening degree and the third valve opening degree (step S25). For example, the valve opening degree control unit 104A selects a large value from the first valve opening degree and the third valve opening degree. Alternatively, the valve opening degree control unit 104A calculates a weighted average of the first valve opening degree and the third valve opening degree. Next, the valve opening degree control unit 104A instructs the intermediate pressure steam control valve 46 to provide a valve opening degree command value corresponding to the calculated valve opening degree (step S26).
The control device 100 continuously performs the processing from step S21 to step S26 for several minutes (about 1 to 3 minutes) after the load is interrupted.

図9は、本発明に係る第二実施形態における弁開度制御処理の結果を示す図である。
図9の上図のグラフは、第二実施形態の弁開度制御を適用したときの中圧蒸気加減弁46の開度の時間変化を示し、中図のグラフは第二実施形態適用後のスラスト力の時間変化を示し、下図のグラフは第二実施形態適用後の回転数の時間変化を示す。
図9の上図をみると、負荷遮断が発生した時刻T1からその後の時刻T3の間、中圧蒸気加減弁46の開度はスラスト力を指標として微開の状態で制御されていたことが分かる。なお、時刻T1〜T3は数秒間である。
FIG. 9 is a diagram showing a result of the valve opening degree control process in the second embodiment according to the present invention.
The upper graph of FIG. 9 shows the time change of the opening degree of the intermediate pressure steam control valve 46 when the valve opening degree control of the second embodiment is applied, and the middle graph shows the state after the second embodiment is applied. The time change of thrust force is shown, and the graph of the following figure shows the time change of the rotation speed after 2nd embodiment application.
As shown in the upper diagram of FIG. 9, from the time T1 when load interruption occurs to the subsequent time T3, the opening degree of the intermediate pressure steam control valve 46 was controlled in a slightly opened state using the thrust force as an index. I understand. The times T1 to T3 are several seconds.

次に図9の中図をみると、負荷遮断後のスラスト力のピーク値の大きさは、従来の制御によるピーク値N1よりもかなり小さい値であるN3に低減していることが分かる。これは、負荷遮断直後に中圧蒸気加減弁46の開度を「0」(第1弁開度)とせず、微開(第2弁開度)としたため、蒸気圧力のバランスの変化が従来制御の場合ほど急激ではなくなったためであると考えられる。また、第一実施形態と比較してスラスト力が「0」に整定するまでの時間が短い。これは、第二実施形態ではスラスト力を監視し、目標スラスト力とスラスト力計測値の偏差に基づくフィードバック制御によって算出した第3弁開度を考慮しているためであると考えられる。   Next, referring to the middle diagram of FIG. 9, it can be seen that the peak value of the thrust force after the load is interrupted is reduced to N3 which is considerably smaller than the peak value N1 by the conventional control. This is because the opening of the intermediate pressure steam control valve 46 is not set to “0” (first valve opening) immediately after the load is cut off, but is slightly opened (second valve opening). This is thought to be because it is no longer as rapid as in the case of control. Further, the time until the thrust force is set to “0” is shorter than that in the first embodiment. This is probably because the second embodiment monitors the thrust force and considers the third valve opening calculated by feedback control based on the deviation between the target thrust force and the measured thrust force value.

次に図9の下図をみると、蒸気タービン30の回転数は、従来制御時のR1よりも大きな値であるR3に上昇している。これは、中圧蒸気加減弁46を微開としたために蒸気供給量が増加したためと考えられる。図9の結果によれは、本実施形態適用後の回転数R3は、定格回転数から閾値RXの間の半分を超える回転数にまで上昇している。これは第1弁開度と第3弁開度とのうち大きい弁開度を選択するにあたり、スラスト力の大きさに応じて算出した第3弁開度が選択されたことによる蒸気供給量の増加が原因であると考えられる。第一実施形態と同様、過速トリップとなる可能性が、従来の制御に比べ高くなる。   Next, referring to the lower diagram of FIG. 9, the rotational speed of the steam turbine 30 is increased to R3, which is a value larger than R1 during conventional control. This is considered to be because the steam supply amount increased because the intermediate pressure steam control valve 46 was slightly opened. According to the result of FIG. 9, the rotational speed R3 after application of the present embodiment has increased from the rated rotational speed to a rotational speed exceeding half of the threshold RX. This is because when the larger valve opening degree is selected from the first valve opening degree and the third valve opening degree, the steam supply amount of the third valve opening degree calculated according to the thrust force is selected. The increase is thought to be the cause. Similar to the first embodiment, the possibility of an overspeed trip is higher than in the conventional control.

本実施形態によれば、第1弁開度と第3弁開度のうち大きな値を考慮した弁開度によって制御を行うため、蒸気加減弁の開度を微開とすることができ、負荷遮断時の蒸気圧力バランスの変動による生じるスラスト力のピーク値を低減することができる。これにより、ロータやロータの軸受の損傷を低減し、寿命を延伸することができる。また、フィードバック制御により、スラスト力計測値を目標スラスト力(0kN)に近づけるので、負荷遮断中のスラスト力を(第一実施形態と比べて)確実に0に近づけることができるので、軸受等の寿命を更に延伸できる。
また、スラスト力の大きさに応じて自動的に弁開度を調整するため、都度、時間関数などの設計の必要がない。
According to this embodiment, since the control is performed with the valve opening considering a large value among the first valve opening and the third valve opening, the opening of the steam control valve can be slightly opened, and the load It is possible to reduce the peak value of the thrust force caused by the fluctuation of the steam pressure balance at the time of shutoff. Thereby, damage to the rotor and the bearing of the rotor can be reduced, and the life can be extended. Further, since the thrust force measurement value is brought close to the target thrust force (0 kN) by feedback control, the thrust force during load interruption can be reliably brought close to 0 (compared to the first embodiment). The life can be further extended.
Further, since the valve opening is automatically adjusted according to the magnitude of the thrust force, it is not necessary to design a time function each time.

図10は、本発明に係る第二実施形態における制御装置の第2のブロック図である。
図示するように制御装置100A´は、第3弁開度算出部106に代えて第3弁開度算出部106Aを備えている。第3弁開度算出部106Aは、先行補正値算出部107を備えていない。第二実施形態は、図10に示すように先行補正値算出部107を除いた構成とすることも可能である。図10に示す制御装置100A´による負荷遮断時の制御について簡単に説明する。
まず、負荷遮断信号取得部101が負荷遮断信号を取得する(ステップS21)。次に第1弁開度算出部102が第1弁開度を算出する(ステップS22)。一方、第3弁開度算出部106は、スラスト力の目標値と実測値の偏差から第3´弁開度を算出する(ステップS23)。第3弁開度算出部106は、算出した第3´弁開度を弁開度制御部104へ出力する。次に弁開度制御部104は、第1弁開度と第3´弁開度に基づいて弁開度を算出し(ステップS25)、その弁開度を中圧蒸気加減弁46へ指示する(ステップS26)。
FIG. 10 is a second block diagram of the control device according to the second embodiment of the present invention.
As shown in the figure, the control device 100A ′ includes a third valve opening degree calculation unit 106A instead of the third valve opening degree calculation unit 106. The third valve opening calculation unit 106A does not include the preceding correction value calculation unit 107. In the second embodiment, as shown in FIG. 10, a configuration in which the advance correction value calculation unit 107 is excluded may be employed. Control at the time of load interruption by the control device 100A ′ shown in FIG. 10 will be briefly described.
First, the load cutoff signal acquisition unit 101 acquires a load cutoff signal (step S21). Next, the first valve opening calculation unit 102 calculates the first valve opening (step S22). On the other hand, the third valve opening calculation unit 106 calculates the third valve opening from the deviation between the target value of thrust force and the actual measurement value (step S23). The third valve opening calculation unit 106 outputs the calculated 3 ′ valve opening to the valve opening control unit 104. Next, the valve opening degree control unit 104 calculates the valve opening degree based on the first valve opening degree and the third 'valve opening degree (step S25), and instructs the intermediate pressure steam control valve 46 about the valve opening degree. (Step S26).

制御装置100A´によっても、第3´弁開度に応答遅れが含まれるものの、上記の制御装置100Aと同様の効果を得ることができる。   Even with the control device 100A ′, although the response delay is included in the third valve opening, the same effect as the control device 100A can be obtained.

<第三実施形態>
以下、本発明の第三実施形態による蒸気タービンの負荷遮断時の制御方法について図11〜図15を参照して説明する。
以下、第三実施形態に係る制御装置100Bについて説明を行う。第二実施形態では、最大回転数が上昇して過速トリップに陥る可能性があった。そこで第三実施形態に係る制御装置100Bでは、過速トリップを防ぐ構成を追加する。
<Third embodiment>
Hereinafter, the control method at the time of load interruption of the steam turbine according to the third embodiment of the present invention will be described with reference to FIGS.
Hereinafter, the control device 100B according to the third embodiment will be described. In the second embodiment, there is a possibility that the maximum rotational speed increases and an overspeed trip occurs. Therefore, in the control device 100B according to the third embodiment, a configuration for preventing an overspeed trip is added.

図11は、本発明に係る第三実施形態における制御装置の第1のブロック図である。
本発明の第三実施形態に係る構成のうち、第二実施形態に係る制御装置100を構成する機能部と同じものには同じ符号を付し、それぞれの説明を省略する。図示するように制御装置100Bは、負荷遮断信号取得部101と、第1弁開度算出部102と、第3弁開度算出部106Bと、弁開度制御部104と、記憶部105を備えている。また、第3弁開度算出部106Bは、先行補正値算出部107と、回転数判定部108とを備えている。
FIG. 11 is a first block diagram of a control device according to the third embodiment of the present invention.
Among the configurations according to the third embodiment of the present invention, the same components as those constituting the control device 100 according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted. As illustrated, the control device 100B includes a load cutoff signal acquisition unit 101, a first valve opening calculation unit 102, a third valve opening calculation unit 106B, a valve opening control unit 104, and a storage unit 105. ing. The third valve opening calculation unit 106B includes a preceding correction value calculation unit 107 and a rotation speed determination unit 108.

第3弁開度算出部106Bは、スラスト力の目標値とスラスト力の計測値との偏差に基づいて弁開度(第3´弁開度)を算出する。また、第3弁開度算出部106は、算出した弁開度に先行補正値算出部107が算出した補正値を加算して中圧蒸気加減弁46の弁開度(第3弁開度)を算出する。また、第3弁開度算出部106Bは、回転数判定部108が蒸気タービン30の回転数が所定の制限値を超過したと判定すると、第3弁開度に「0」を設定する。
先行補正値算出部107は、第二実施形態と同様に蒸気タービンの出力値見合いの補正値を算出する。
回転数判定部108は、蒸気タービン30のロータの実回転数を取得し、実回転数が所定の制限値を超過したか否かを判定する。
弁開度制御部104Aは、例えば、第1弁開度と第3弁開度とのうち、より大きな弁開度を選択して、選択した弁開度に対応する弁開度指令値を中圧蒸気加減弁46に出力する。
The third valve opening calculation unit 106B calculates the valve opening (third ′ valve opening) based on the deviation between the target value of the thrust force and the measured value of the thrust force. Further, the third valve opening calculation unit 106 adds the correction value calculated by the preceding correction value calculation unit 107 to the calculated valve opening, thereby opening the valve opening of the intermediate pressure steam control valve 46 (third valve opening). Is calculated. In addition, when the rotation speed determination unit 108 determines that the rotation speed of the steam turbine 30 has exceeded a predetermined limit value, the third valve opening calculation unit 106B sets “0” to the third valve opening.
The advance correction value calculation unit 107 calculates a correction value for the output value of the steam turbine as in the second embodiment.
The rotation speed determination unit 108 acquires the actual rotation speed of the rotor of the steam turbine 30 and determines whether or not the actual rotation speed exceeds a predetermined limit value.
For example, the valve opening control unit 104A selects a larger valve opening from the first valve opening and the third valve opening, and sets the valve opening command value corresponding to the selected valve opening to the middle. It outputs to the pressure steam control valve 46.

次に図12を用いて第三実施形態における負荷遮断時の中圧蒸気加減弁46の弁開度制御の一例について説明する。
図12は、本発明に係る第三実施形態における蒸気加減弁の制御方法を説明する図である。
第1弁開度算出部102については第一、二実施形態と同様である。つまり減算器102aが目標回転数と実回転数との偏差を算出し、制御器102bがフィードバック制御等の手法により、偏差が0となるような第1弁開度を算出する。制御器102bは、算出した第1弁開度を弁開度制御部104Aへ出力する。
Next, an example of the valve opening degree control of the intermediate pressure steam control valve 46 at the time of load interruption in the third embodiment will be described with reference to FIG.
FIG. 12 is a diagram for explaining a method of controlling the steam control valve in the third embodiment according to the present invention.
The first valve opening calculation unit 102 is the same as in the first and second embodiments. That is, the subtractor 102a calculates the deviation between the target rotational speed and the actual rotational speed, and the controller 102b calculates the first valve opening degree such that the deviation becomes 0 by a technique such as feedback control. The controller 102b outputs the calculated first valve opening degree to the valve opening degree control unit 104A.

一方、第3弁開度算出部106Bは、制御器106bを備えている。負荷遮断信号取得部101が負荷遮断信号を取得すると、制御器106bが目標スラスト力とスラスト力計測値との偏差を算出する。制御器106bは、フィードバック制御等の手法を用いて偏差が0となるような第3´弁開度を算出する。また、制御器106bは、補正値算出器107aが算出した蒸気タービン30の出力値見合いの弁開度の先行補正値を第3´弁開度に加算して第3弁開度を算出する。制御器106bは、算出した第3弁開度を弁開度制御部104Aへ出力する。以上の処理は、第二実施形態と同様である。
第三実施形態の制御器106bは、目標スラスト力、スラスト力計測値、蒸気タービン30の出力値に加え、センサが検出したロータの実回転数を取得し、回転数を監視する。制御器106bは、ロータの回転数が所定の制限値を超過すると、第3弁開度に0を設定して弁開度制御部104Aへ出力する。ここで、所定の制限値とは、定格の回転数から閾値RXの間に設定された過速トリップを確実に防ぐための値である。例えば、閾値RXが定格回転数の110%に設定されていれば、この制限値は105%に設定する。そして、制御器106bは、実回転数が定格回転数の105%の値を超過すると、第3弁開度に「0」を設定する。
On the other hand, the third valve opening calculation unit 106B includes a controller 106b. When the load cutoff signal acquisition unit 101 acquires the load cutoff signal, the controller 106b calculates a deviation between the target thrust force and the measured thrust force value. The controller 106b calculates the third 'valve opening so that the deviation becomes zero using a method such as feedback control. Further, the controller 106b calculates the third valve opening by adding the preceding correction value of the valve opening corresponding to the output value of the steam turbine 30 calculated by the correction value calculator 107a to the third 'valve opening. The controller 106b outputs the calculated third valve opening degree to the valve opening degree control unit 104A. The above processing is the same as in the second embodiment.
In addition to the target thrust force, the thrust force measurement value, and the output value of the steam turbine 30, the controller 106b according to the third embodiment acquires the actual rotational speed of the rotor detected by the sensor and monitors the rotational speed. When the number of rotations of the rotor exceeds a predetermined limit value, the controller 106b sets the third valve opening to 0 and outputs it to the valve opening controller 104A. Here, the predetermined limit value is a value for reliably preventing an overspeed trip set between the rated rotational speed and the threshold value RX. For example, if the threshold value RX is set to 110% of the rated speed, this limit value is set to 105%. When the actual rotational speed exceeds 105% of the rated rotational speed, the controller 106b sets “0” to the third valve opening degree.

弁開度制御部104Aは、第1弁開度と第3弁開度のうち大きな値を選択して、中圧蒸気加減弁46の開度が選択した値となるように制御する。ここで、従来の制御によれば、ロータの回転数に応じて設定される第1弁開度は負荷遮断後しばらくの間は「0」に設定される(図16)。従って、この間に第3弁開度として「0」が出力された場合、弁開度制御部104Aは、中圧蒸気加減弁46を全閉とする制御を行う(第1弁開度と第3弁開度が共に「0」)。中圧蒸気加減弁46が全閉されると蒸気供給量が0になり、回転数の上昇は抑制される。この制御により、過速トリップを防ぐことができる。
なお、本実施形態においても弁開度制御部104Aは、第1弁開度と第2弁開度のうち、第3弁開度により大きな重みを与えた第1弁開度と第3弁開度の重み付け平均を算出し、算出した値で中圧蒸気加減弁46の弁開度を制御するようにしてもよい。
The valve opening degree control unit 104A selects a large value from the first valve opening degree and the third valve opening degree, and performs control so that the opening degree of the intermediate pressure steam control valve 46 becomes the selected value. Here, according to the conventional control, the first valve opening set according to the rotational speed of the rotor is set to “0” for a while after the load is cut off (FIG. 16). Therefore, when “0” is output as the third valve opening during this time, the valve opening control unit 104A performs control to fully close the intermediate pressure steam control valve 46 (the first valve opening and the third valve opening). Both valve openings are “0”). When the intermediate pressure steam control valve 46 is fully closed, the steam supply amount becomes 0, and the increase in the rotational speed is suppressed. This control can prevent an overspeed trip.
In the present embodiment, the valve opening degree control unit 104A also includes the first valve opening degree and the third valve opening degree that give a greater weight to the third valve opening degree among the first valve opening degree and the second valve opening degree. A weighted average of the degrees may be calculated, and the valve opening degree of the intermediate pressure steam control valve 46 may be controlled by the calculated value.

図13は、本発明に係る第三実施形態における蒸気加減弁の弁開度制御処理のフローチャートである。
図9で説明した第二実施形態と同様の処理については簡単に説明する。
まず、負荷遮断信号取得部101が負荷遮断信号を取得する(ステップS21)。負荷遮断信号取得部101は、第1弁開度算出部102および第3弁開度算出部106Bに負荷遮断の発生を通知する。すると第1弁開度算出部102は、蒸気タービンの回転数の目標値と実測値の偏差から第1弁開度を算出する(ステップS22)。第1弁開度算出部102は、算出した開度を弁開度制御部104Aへ出力する。
FIG. 13 is a flowchart of the valve opening degree control process of the steam control valve in the third embodiment according to the present invention.
Processing similar to that of the second embodiment described in FIG. 9 will be briefly described.
First, the load cutoff signal acquisition unit 101 acquires a load cutoff signal (step S21). The load cutoff signal acquisition unit 101 notifies the first valve opening degree calculation unit 102 and the third valve opening degree calculation unit 106B that a load cutoff has occurred. Then, the first valve opening calculation unit 102 calculates the first valve opening from the deviation between the target value of the rotation speed of the steam turbine and the actual measurement value (step S22). The first valve opening calculation unit 102 outputs the calculated opening to the valve opening control unit 104A.

一方、負荷遮断発生の通知を受けた第3弁開度算出部106Bは、スラスト力の目標値と実測値の偏差から第3´弁開度を算出する(ステップS23)。また、第3弁開度算出部106Bが備える先行補正値算出部107が、蒸気タービン30の出力値に応じた弁開度の先行補正値を算出する。第3弁開度算出部106Bは、第3´弁開度に先行補正値を加算した第3弁開度を算出する(ステップS24)。   On the other hand, the third valve opening calculation unit 106B that has received the notification of the occurrence of load interruption calculates the third 'valve opening from the deviation between the target value of the thrust force and the actual measurement value (step S23). In addition, the preceding correction value calculation unit 107 included in the third valve opening calculation unit 106B calculates the preceding correction value of the valve opening corresponding to the output value of the steam turbine 30. The third valve opening degree calculation unit 106B calculates a third valve opening degree obtained by adding the preceding correction value to the 3 ′ valve opening degree (step S24).

次に第3弁開度算出部106Bが備える回転数判定部108が、蒸気タービン回転数の計測値(実回転数)を取得し、記憶部105に記録された制限値と比較を行って、実回転数が制限値を超過したかどうかを判定する(ステップS241)。回転数判定部108は、判定結果を第3弁開度算出部106Bへ出力する。実回転数が制限値を超過している場合(ステップS241;Yes)、第3弁開度算出部106Bは第3弁開度に0を設定する(ステップS242)。第3弁開度算出部106Bは、第3弁開度(「0」)を弁開度制御部104Aへ出力する。実回転数が制限値以下の場合(ステップS241;No)、第3弁開度算出部106Bは、ステップS24で算出した第3弁開度を弁開度制御部104Aへ出力する。   Next, the rotation speed determination unit 108 included in the third valve opening calculation unit 106B acquires the measured value (actual rotation speed) of the steam turbine rotation speed, compares it with the limit value recorded in the storage unit 105, It is determined whether or not the actual rotational speed exceeds the limit value (step S241). The rotation speed determination unit 108 outputs the determination result to the third valve opening calculation unit 106B. When the actual rotational speed exceeds the limit value (step S241; Yes), the third valve opening calculation unit 106B sets 0 to the third valve opening (step S242). The third valve opening calculation unit 106B outputs the third valve opening (“0”) to the valve opening control unit 104A. When the actual rotational speed is equal to or less than the limit value (step S241; No), the third valve opening calculation unit 106B outputs the third valve opening calculated in step S24 to the valve opening control unit 104A.

次に弁開度制御部104Aは、第1弁開度と第3弁開度に基づいて弁開度を算出する(ステップS25)。弁開度制御部104Aは、算出した弁開度に対応する弁開度指令値を中圧蒸気加減弁46へ指示する(ステップS26)。制御装置100は、負荷遮断後、数分(1〜3分程度)の間、ステップS21〜ステップS26の処理を継続的に行う。   Next, the valve opening degree control unit 104A calculates the valve opening degree based on the first valve opening degree and the third valve opening degree (step S25). The valve opening control unit 104A instructs the valve opening command value corresponding to the calculated valve opening to the intermediate pressure steam control valve 46 (step S26). The control device 100 continuously performs the processing from step S21 to step S26 for several minutes (about 1 to 3 minutes) after the load is interrupted.

なお、変形例として、弁開度制御部104Aは、第3弁開度として値「0」を取得した場合、第1弁開度の大きさに関わらず、無条件に全閉とする弁開度指令値を中圧蒸気加減弁46へ指示するように構成してもよい。   As a modification, when the valve opening control unit 104A acquires the value “0” as the third valve opening, the valve opening that is unconditionally fully closed regardless of the size of the first valve opening. The degree command value may be instructed to the intermediate pressure steam control valve 46.

図14は、本発明に係る第三実施形態における弁開度制御処理の結果を示す図である。
図14の上図のグラフは、第三実施形態の弁開度制御を適用したときの中圧蒸気加減弁46の弁開度の時間変化を示し、中図のグラフは第三実施形態適用後のスラスト力の時間変化を示し、下図のグラフは第三実施形態適用後の回転数の時間変化を示す。
図14の上図をみると、負荷遮断が発生した時刻T1からその後の時刻T4の間、中圧蒸気加減弁46の弁開度はスラスト力を指標として微開の状態で制御されていることが分かる。また、時刻T4に弁開度が0となっているのは、この時刻に回転数判定部108によって回転数が制限値を超過したと判定され、第3弁開度算出部106Bが第3弁開度に0を設定したことによる。
FIG. 14 is a diagram showing a result of the valve opening degree control process in the third embodiment according to the present invention.
The upper graph of FIG. 14 shows the time change of the valve opening of the intermediate pressure steam control valve 46 when the valve opening control of the third embodiment is applied, and the middle graph is after the third embodiment is applied. The graph shows the time variation of the rotational speed after application of the third embodiment.
As shown in the upper diagram of FIG. 14, the valve opening degree of the intermediate pressure steam control valve 46 is controlled in a slightly opened state using the thrust force as an index from time T1 when load interruption occurs to time T4 thereafter. I understand. The reason why the valve opening is 0 at time T4 is that the rotation speed determination unit 108 determines that the rotation speed exceeds the limit value at this time, and the third valve opening calculation unit 106B This is because the opening degree is set to 0.

次に図14の中図をみると、負荷遮断後のスラスト力のピーク値の大きさは、第二実施形態と同様に従来の制御によるピーク値N1よりもかなり小さい値であるN4に低減しており、整定までの時間も短い。そしてその後、時刻T4にて大きさN4´のスラスト力が発生している。これは、時刻T4に中圧蒸気加減弁46を全閉としたことによる。しかし、元々、微開の状態から全閉に変更したことによって生じるスラスト力N4´は、図16で例示したN1などと比較すると十分に小さい値であって、軸受等に与える力は比較的小さく抑えることができる。   Next, looking at the middle diagram of FIG. 14, the magnitude of the peak value of the thrust force after the load is interrupted is reduced to N4, which is considerably smaller than the peak value N1 by the conventional control, as in the second embodiment. The time to settling is short. After that, a thrust force having a magnitude N4 ′ is generated at time T4. This is because the intermediate pressure steam control valve 46 was fully closed at time T4. However, the thrust force N4 ′ generated by changing from the slightly open state to the fully closed state is sufficiently smaller than N1 illustrated in FIG. 16 and the force applied to the bearings is relatively small. Can be suppressed.

次に図14の下図をみると、蒸気タービン30の回転数は、従来の制御時のR1よりも大きな値であるR4に上昇しているが、第二実施形態のR3に比べれば低い値に抑えることができている。これは、回転数が制限値を超過したときに、それ以上回転数が上昇しないように中圧蒸気加減弁46が全閉とされたためである。これにより、過速トリップとなることを防ぐことができる。   Next, referring to the lower diagram of FIG. 14, the rotational speed of the steam turbine 30 increases to R4, which is a larger value than R1 in the conventional control, but is lower than R3 of the second embodiment. It can be suppressed. This is because when the rotational speed exceeds the limit value, the intermediate pressure steam control valve 46 is fully closed so that the rotational speed does not increase any further. This can prevent an overspeed trip.

本実施形態によれば、第2実施形態の効果に加え、過速トリップとなるリスクを低減することができる。   According to the present embodiment, in addition to the effects of the second embodiment, the risk of an overspeed trip can be reduced.

図15は、本発明に係る第三実施形態における制御装置の第3のブロック図である。
図示するように制御装置100B´は、第3弁開度算出部106Bに代えて第3弁開度算出部106B´を備えている。第3弁開度算出部106B´は、先行補正値算出部107を備えていない。第三実施形態は、図15に示すように先行補正値算出部107を除いた構成とすることも可能である。図15に示す制御装置100B´による負荷遮断時の制御について簡単に説明する。
まず、負荷遮断信号取得部101が負荷遮断信号を取得する(ステップS21)。次に第1弁開度算出部102が第1弁開度を算出する(ステップS22)。一方、第3弁開度算出部106は、スラスト力の目標値と実測値の偏差から第3´弁開度を算出する(ステップS23)。
FIG. 15 is a third block diagram of the control device according to the third embodiment of the present invention.
As illustrated, the control device 100B ′ includes a third valve opening calculation unit 106B ′ instead of the third valve opening calculation unit 106B. The third valve opening calculation unit 106B ′ does not include the preceding correction value calculation unit 107. The third embodiment may be configured without the advance correction value calculation unit 107 as shown in FIG. Control at the time of load interruption by the control device 100B ′ shown in FIG. 15 will be briefly described.
First, the load cutoff signal acquisition unit 101 acquires a load cutoff signal (step S21). Next, the first valve opening calculation unit 102 calculates the first valve opening (step S22). On the other hand, the third valve opening calculation unit 106 calculates the third valve opening from the deviation between the target value of thrust force and the actual measurement value (step S23).

次に回転数判定部108が、実回転数が所定の制限値を超過したかどうかを判定する(ステップS241)。実回転数が制限値を超過している場合(ステップS241;Yes)、第3弁開度算出部106Bは第3弁開度に「0」を設定し(ステップS242)、その値を弁開度制御部104Aへ出力する。実回転数が制限値以下の場合(ステップS241;No)、第3弁開度算出部106Bは、ステップS24で算出した第3弁開度を弁開度制御部104Aへ出力する。次に弁開度制御部104Aは、第1弁開度と第3´弁開度に基づいて弁開度を算出し(ステップS25)、その弁開度を中圧蒸気加減弁46へ指示する(ステップS26)。   Next, the rotational speed determination unit 108 determines whether or not the actual rotational speed has exceeded a predetermined limit value (step S241). If the actual rotational speed exceeds the limit value (step S241; Yes), the third valve opening degree calculation unit 106B sets “0” to the third valve opening degree (step S242), and opens that value. Output to the degree control unit 104A. When the actual rotational speed is equal to or less than the limit value (step S241; No), the third valve opening calculation unit 106B outputs the third valve opening calculated in step S24 to the valve opening control unit 104A. Next, the valve opening degree control unit 104A calculates the valve opening degree based on the first valve opening degree and the third 'valve opening degree (step S25), and instructs the intermediate pressure steam control valve 46 about the valve opening degree. (Step S26).

制御装置100B´によっても、第3´弁開度に応答遅れが含まれるものの、上記の制御装置100Bと同様の効果を得ることができる。   Even with the control device 100B ′, although the response delay is included in the third valve opening, the same effect as the control device 100B can be obtained.

上記した第一実施形態、第二実施形態、第三実施形態の説明では、制御装置100等が負荷遮断時に中圧蒸気加減弁46の弁開度を制御する場合を例に説明を行った。しかし、制御対象は中圧蒸気加減弁46に限定されない。制御装置100等は、同様の制御方法で高圧主蒸気加減弁43、中圧蒸気加減弁46、低圧主蒸気加減弁53のうち1つ又は複数の弁開度を制御してもよい。   In the description of the first embodiment, the second embodiment, and the third embodiment described above, the case where the control device 100 or the like controls the valve opening degree of the intermediate pressure steam control valve 46 when the load is shut off has been described as an example. However, the control target is not limited to the intermediate pressure steam control valve 46. The control device 100 or the like may control one or a plurality of valve openings of the high-pressure main steam control valve 43, the medium-pressure steam control valve 46, and the low-pressure main steam control valve 53 by a similar control method.

制御装置100、100A、100A´、100B、100B´は、制御システムの一例である。負荷遮断信号取得部101、第1弁開度算出部102、第2弁開度算出部103、第3弁開度算出部106、106A、106B、106B´、弁開度制御部104、先行補正値算出部107、回転数判定部108、の少なくとも一部は、制御装置100等の備えるプロセッサがハードディスクなどの記憶部105からプログラムを読み出し実行することで備わる機能である。また、負荷遮断信号取得部101、第1弁開度算出部102、第2弁開度算出部103、第3弁開度算出部106、106A、106B、106B´、弁開度制御部104、先行補正値算出部107、回転数判定部108、の全て又は一部は、マイコン、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)等のハードウェアを用いて実現されてもよい。   The control devices 100, 100A, 100A ′, 100B, and 100B ′ are examples of the control system. Load cutoff signal acquisition unit 101, first valve opening calculation unit 102, second valve opening calculation unit 103, third valve opening calculation unit 106, 106A, 106B, 106B ', valve opening control unit 104, advance correction At least a part of the value calculation unit 107 and the rotation speed determination unit 108 is a function provided by a processor included in the control device 100 or the like reading out and executing a program from the storage unit 105 such as a hard disk. Further, the load cutoff signal acquisition unit 101, the first valve opening calculation unit 102, the second valve opening calculation unit 103, the third valve opening calculation units 106, 106A, 106B, 106B ′, the valve opening control unit 104, The advance correction value calculation unit 107 and the rotation speed determination unit 108 are all or part of a microcomputer, an LSI (Large Scale Integration), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field-Programmable Gate). Array) or the like may be used.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
なお。第2弁開度算出部103、第3弁開度算出部106、106A、106Bはスラスト力弁開度算出部の一例、第1弁開度算出部は回転数弁開度算出部の一例である。図1に示すガスタービンコンバインドサイクルプラントは発電プラントの一例である。また、ロータに加わるスラスト力には当該ロータの軸受に加わるスラスト力を含む。
In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
Note that. The second valve opening calculator 103, the third valve opening calculators 106, 106A, and 106B are examples of thrust force valve opening calculators, and the first valve opening calculator is an example of a rotation speed valve opening calculator. is there. The gas turbine combined cycle plant shown in FIG. 1 is an example of a power plant. The thrust force applied to the rotor includes the thrust force applied to the bearing of the rotor.

10・・・ガスタービン
11・・・圧縮機
12・・・燃焼器
13・・・タービン
14・・・燃料流量調節弁
20・・・排熱回収ボイラー
21・・・高圧蒸気発生部
22・・・中圧蒸気発生部
23・・・再加熱部
24・・・低圧蒸気発生部
30・・・蒸気タービン
31・・・高圧蒸気タービン
32・・・中圧蒸気タービン
33・・・低圧蒸気タービン
34・・・発電機
35・・・復水器
41・・・高圧主蒸気ライン
42・・・高圧蒸気止め弁
43・・・高圧主蒸気加減弁
44・・・中圧蒸気ライン
45・・・中圧蒸気止め弁
46・・・中圧蒸気加減弁
51・・・低圧主蒸気ライン
52・・・低圧蒸気止め弁
53・・・低圧主蒸気加減弁
54・・・中圧タービン排気ライン
55・・・給水ライン
61・・・中圧主蒸気ライン
100、100A、100B・・・制御装置
101・・・負荷遮断信号取得部
102・・・第1弁開度算出部
102a・・・減算器
102b・・・制御器
103・・・第2弁開度算出部
103a・・・タイマー
103b・・・時間関数
104、104A・・・弁開度制御部
105・・・記憶部
106、106A、106B・・・第3弁開度算出部
106a・・・制御器
107・・・先行補正値算出部
107a・・・補正値算出器
108・・・回転数判定部
DESCRIPTION OF SYMBOLS 10 ... Gas turbine 11 ... Compressor 12 ... Combustor 13 ... Turbine 14 ... Fuel flow control valve 20 ... Waste heat recovery boiler 21 ... High pressure steam generation part 22 ... Intermediate pressure steam generator 23 ... Reheating unit 24 ... Low pressure steam generator 30 ... Steam turbine 31 ... High pressure steam turbine 32 ... Medium pressure steam turbine 33 ... Low pressure steam turbine 34 ... Generator 35 ... Condenser 41 ... High pressure main steam line 42 ... High pressure steam stop valve 43 ... High pressure main steam control valve 44 ... Medium pressure steam line 45 ... Medium Pressure steam stop valve 46 ... Intermediate pressure steam control valve 51 ... Low pressure main steam line 52 ... Low pressure steam stop valve 53 ... Low pressure main steam control valve 54 ... Medium pressure turbine exhaust line 55 ...・ Water supply line 61: medium pressure main steam line 100, 100A, 1 0B ... Control device 101 ... Load cutoff signal acquisition unit 102 ... First valve opening calculation unit 102a ... Subtractor 102b ... Controller 103 ... Second valve opening calculation unit 103a ... Timer 103b ... Time functions 104, 104A ... Valve opening control unit 105 ... Storage units 106, 106A, 106B ... Third valve opening calculation unit 106a ... Controller 107 ..Previous correction value calculation unit 107a ... Correction value calculator 108 ... Number of revolutions determination unit

Claims (9)

蒸気タービンの運転中に負荷遮断信号を取得する負荷遮断信号取得部と、
前記蒸気タービンの目標回転数と実回転数との偏差に基づいて、蒸気タービンへの蒸気の流入量を調節する蒸気加減弁の弁開度を算出する回転数弁開度算出部と、
前記蒸気タービンのロータに加わるスラスト力に応じた前記蒸気加減弁の弁開度を算出するスラスト力弁開度算出部と、
前記負荷遮断信号取得部が負荷遮断信号を取得すると、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度とに基づいて、前記蒸気加減弁の弁開度を制御する弁開度制御部と、
を備えた制御システム。
A load cutoff signal acquisition unit for acquiring a load cutoff signal during operation of the steam turbine;
Based on the deviation between the target rotational speed of the steam turbine and the actual rotational speed, a rotational speed valve opening degree calculation unit that calculates the valve opening degree of the steam control valve that adjusts the amount of steam flowing into the steam turbine;
A thrust force valve opening calculation unit for calculating the valve opening of the steam control valve according to the thrust force applied to the rotor of the steam turbine;
When the load cutoff signal acquisition unit acquires the load cutoff signal, the steam is calculated based on the valve opening calculated by the rotational speed valve opening calculation unit and the valve opening calculated by the thrust force valve opening calculation unit. A valve opening degree control unit for controlling the valve opening degree of the adjusting valve;
Control system with.
前記スラスト力弁開度算出部は、前記ロータに加わるスラスト力に応じた弁開度の時間関数と、前記負荷遮断信号取得部が負荷遮断信号を取得してからの経過時間とに基づいて弁開度を算出し、
前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度のうち大きな値を選択し、選択した値によって前記蒸気加減弁の弁開度を制御する、
請求項1に記載の制御システム。
The thrust force valve opening calculation unit is a valve based on a time function of the valve opening according to the thrust force applied to the rotor and an elapsed time after the load cutoff signal acquisition unit acquires the load cutoff signal. Calculate the opening,
The valve opening control unit selects a larger value from the valve opening calculated by the rotational speed valve opening calculating unit and the valve opening calculated by the thrust force valve opening calculating unit, and the value is selected according to the selected value. Control the valve opening of the steam control valve,
The control system according to claim 1.
前記スラスト力弁開度算出部は、前記ロータに加わるスラスト力の目標値と前記ロータに加わるスラスト力の計測値との偏差に基づく弁開度を算出し、
前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度のうち大きな値を選択し、選択した値によって前記蒸気加減弁の弁開度を制御する、
請求項1に記載の制御システム。
The thrust force valve opening calculation unit calculates a valve opening based on a deviation between a target value of thrust force applied to the rotor and a measured value of thrust force applied to the rotor,
The valve opening control unit selects a larger value from the valve opening calculated by the rotational speed valve opening calculating unit and the valve opening calculated by the thrust force valve opening calculating unit, and the value is selected according to the selected value. Control the valve opening of the steam control valve,
The control system according to claim 1.
前記ロータの回転数が所定の制限値を超過したか否かを判定する回転数判定部、
をさらに備え、
スラスト力弁開度算出部は、前記回転数判定部が前記回転数が所定の制限値を超過したと判定すると、前記算出した弁開度に0を設定する、
請求項3に記載の制御システム。
A rotation speed determination unit that determines whether the rotation speed of the rotor exceeds a predetermined limit value;
Further comprising
The thrust force valve opening degree calculation unit sets the calculated valve opening degree to 0 when the rotation number determination unit determines that the rotation number exceeds a predetermined limit value.
The control system according to claim 3.
前記蒸気タービンの出力値に応じた前記弁開度の先行補正値を算出する先行補正値算出部、
をさらに備え、
前記スラスト力弁開度算出部は、前記算出した弁開度に前記先行補正値算出部が算出した先行補正値を加算する、
請求項3または請求項4に記載の制御システム。
A preceding correction value calculating unit that calculates a preceding correction value of the valve opening according to the output value of the steam turbine;
Further comprising
The thrust force valve opening calculation unit adds the preceding correction value calculated by the preceding correction value calculation unit to the calculated valve opening,
The control system according to claim 3 or claim 4.
前記弁開度制御部は、前記回転数弁開度算出部が算出した弁開度と前記スラスト力弁開度算出部が算出した弁開度との重み付け平均を算出し、算出した重み付け平均を前記蒸気加減弁の弁開度とする、
請求項2から請求項5の何れか1項に記載の制御システム。
The valve opening control unit calculates a weighted average of the valve opening calculated by the rotational speed valve opening calculating unit and the valve opening calculated by the thrust force valve opening calculating unit, and calculates the calculated weighted average. The valve opening of the steam control valve,
The control system according to any one of claims 2 to 5.
請求項1から請求項5の何れか1項に記載の制御システム、を備えた蒸気タービン。   A steam turbine comprising the control system according to any one of claims 1 to 5. 請求項1から請求項5の何れか1項に記載の制御システム、を備えた発電プラント。   A power plant comprising the control system according to any one of claims 1 to 5. 蒸気タービンの運転中に負荷遮断信号を取得し、
前記蒸気タービンの目標回転数と実回転数との偏差に基づいて、蒸気タービンへの蒸気の流入量を調節する蒸気加減弁の回転数に基づく弁開度を算出し、
前記蒸気タービンのロータに加わるスラスト力に応じた前記蒸気加減弁の弁開度を算出し、
前記負荷遮断信号を取得すると、前記回転数に基づく弁開度と前記スラスト力に応じた弁開度とに基づく値によって、前記蒸気加減弁の弁開度を制御する、
制御方法。
Obtain a load shedding signal during steam turbine operation,
Based on the deviation between the target rotational speed of the steam turbine and the actual rotational speed, calculate the valve opening based on the rotational speed of the steam control valve that adjusts the amount of steam flowing into the steam turbine;
Calculate the valve opening degree of the steam control valve according to the thrust force applied to the rotor of the steam turbine,
When the load cutoff signal is acquired, the valve opening degree of the steam control valve is controlled by a value based on the valve opening degree based on the rotational speed and the valve opening degree corresponding to the thrust force.
Control method.
JP2016235202A 2016-12-02 2016-12-02 Control systems, steam turbines, power plants and control methods Active JP6781613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235202A JP6781613B2 (en) 2016-12-02 2016-12-02 Control systems, steam turbines, power plants and control methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235202A JP6781613B2 (en) 2016-12-02 2016-12-02 Control systems, steam turbines, power plants and control methods

Publications (2)

Publication Number Publication Date
JP2018091224A true JP2018091224A (en) 2018-06-14
JP6781613B2 JP6781613B2 (en) 2020-11-04

Family

ID=62564422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235202A Active JP6781613B2 (en) 2016-12-02 2016-12-02 Control systems, steam turbines, power plants and control methods

Country Status (1)

Country Link
JP (1) JP6781613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100457A1 (en) * 2021-11-30 2023-06-08 三菱重工業株式会社 Control device, control method, and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196101A (en) * 1989-01-25 1990-08-02 Fuji Electric Co Ltd Thrust reducing device for steam turbine
JP2008008291A (en) * 2006-06-29 2008-01-17 General Electric Co <Ge> System and method for detecting undesirable operation of turbine
JP2008075580A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Low-pressure steam turbine system and method of controlling it
JP2012090422A (en) * 2010-10-19 2012-05-10 Toshiba Corp Power-generating plant and method of operating the same
US20150125257A1 (en) * 2013-11-05 2015-05-07 General Electric Company Systems and Methods for Boundary Control During Steam Turbine Acceleration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196101A (en) * 1989-01-25 1990-08-02 Fuji Electric Co Ltd Thrust reducing device for steam turbine
JP2008008291A (en) * 2006-06-29 2008-01-17 General Electric Co <Ge> System and method for detecting undesirable operation of turbine
JP2008075580A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Low-pressure steam turbine system and method of controlling it
JP2012090422A (en) * 2010-10-19 2012-05-10 Toshiba Corp Power-generating plant and method of operating the same
US20150125257A1 (en) * 2013-11-05 2015-05-07 General Electric Company Systems and Methods for Boundary Control During Steam Turbine Acceleration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100457A1 (en) * 2021-11-30 2023-06-08 三菱重工業株式会社 Control device, control method, and system

Also Published As

Publication number Publication date
JP6781613B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP5916043B2 (en) Method and apparatus for controlling a moisture separator reheater
US8689565B2 (en) Method of providing asymmetric joint control for primary frequency regulation in combined-cycle power plants
JP6223847B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
JP2008095691A (en) Method and device for stabilizing power network frequency
JP2011132951A (en) Method of starting steam turbine
US10526923B2 (en) Combined cycle plant, control method of same, and control device of same
JP6730116B2 (en) PLANT CONTROL DEVICE, PLANT CONTROL METHOD, AND POWER PLANT
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP2007309194A (en) Steam turbine plant
JP5781312B2 (en) Gas turbine reliability evaluation test method
WO2014073059A1 (en) Gas turbine power generation equipment
JP6781613B2 (en) Control systems, steam turbines, power plants and control methods
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP2013148347A (en) Water supply control device, and water supply control method
JP5832080B2 (en) Power generation system control device, power generation system, and power generation system control method
US11936189B2 (en) Combined cycle frequency control system and method
JP2005036685A (en) Automatic stopping method of combined plant, automatic stopping control device and combined plant equipped with this automatic stopping control device
JP5320037B2 (en) Boiler automatic control device and boiler system
JP6704517B2 (en) How to operate a turbine generator
JP6678561B2 (en) Turbine control device and geothermal turbine power generation equipment
JP4560481B2 (en) Steam turbine plant
WO2023100457A1 (en) Control device, control method, and system
JP5889386B2 (en) Reliability evaluation test method and apparatus for gas turbine
JP5781915B2 (en) Combined plant and its control method
JP5627409B2 (en) Combined cycle power plant and control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6781613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150