JPH0442920B2 - - Google Patents

Info

Publication number
JPH0442920B2
JPH0442920B2 JP55099895A JP9989580A JPH0442920B2 JP H0442920 B2 JPH0442920 B2 JP H0442920B2 JP 55099895 A JP55099895 A JP 55099895A JP 9989580 A JP9989580 A JP 9989580A JP H0442920 B2 JPH0442920 B2 JP H0442920B2
Authority
JP
Japan
Prior art keywords
thermal power
power plant
load
load command
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55099895A
Other languages
Japanese (ja)
Other versions
JPS5725197A (en
Inventor
Masahide Nomura
Yoshio Sato
Tadayoshi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9989580A priority Critical patent/JPS5725197A/en
Publication of JPS5725197A publication Critical patent/JPS5725197A/en
Publication of JPH0442920B2 publication Critical patent/JPH0442920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feedback Control In General (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は火力発電プラント制御システムに係
り、特に、急速かつ大幅な負荷追述運転に使用す
るに好適な火力発電プラント制御システムに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal power plant control system, and particularly to a thermal power plant control system suitable for use in rapid and large-scale load addition operations.

第1図は従来の火力発電プラント制御システム
のブロツク図である。
FIG. 1 is a block diagram of a conventional thermal power plant control system.

中央給電指令所1からの負荷指令LDに基づい
てボイラ自動制御装置APC2により、火力発電
プラント3を制御する。APC2より先行(フイ
ード・フオワード)的に各操作量ui(i=1,2,
……r)を出力する。この操作量としてはスプレ
ー操作、タービン加減弁操作、給水ポンプ操作、
燃料制御弁操作、空気ダンパ操作等がある。これ
ら操作量uiに対する各制御量xj(j=1,2,…
…l)のフイードバツク制御(蒸気温度、蒸気圧
力等)により各操作量uiを補助的に操作する。
The thermal power plant 3 is controlled by the boiler automatic control device APC 2 based on the load command L D from the central power dispatch center 1 . Each operation amount u i (i=1, 2,
...output r). This operation amount includes spray operation, turbine control valve operation, water supply pump operation,
There are fuel control valve operations, air damper operations, etc. Each controlled variable x j (j=1, 2 ,...
...l) The respective manipulated variables u i are auxiliary controlled by the feedback control (steam temperature, steam pressure, etc.).

第2図に示すような火力発電プラントでは、タ
ービン蒸気流量、給水流量、燃料流量、空気流
量、スプレイ流量、ガス再循環流量等が負荷指令
LDに従つて制御され、各加算器出力が操作量ui
なる。また、各制御量xjは、周波数f、発電量
MW、主蒸気圧力PMS、主蒸気温度TMS、ガス酸
素量O2、再熱蒸気温度TRHの各々であり、これら
は負荷指令LDと加算され操作量となる。
In a thermal power plant as shown in Figure 2, load commands include turbine steam flow rate, feed water flow rate, fuel flow rate, air flow rate, spray flow rate, gas recirculation flow rate, etc.
It is controlled according to L D , and each adder output becomes the manipulated variable u i . In addition, each control amount x j is the frequency f, the amount of power generation
MW, main steam pressure P MS , main steam temperature T MS , gas oxygen amount O 2 , and reheat steam temperature T RH , and these are added to the load command L D to become the manipulated variable.

ところで、各操作量uiは目標値の変化に対して
応答遅れを有している。すなわち、駆動部の動作
遅れ及び(例えば石炭火力発電では、石炭の粉砕
遅れ、微粉炭の搬送遅れ、および熱伝達の遅れ
等)があり、このため急速かつ大幅な負過指令の
変化に対して負荷の追従性が悪く、しかも制御量
xjの変動が大きくなるという問題がある。
By the way, each manipulated variable u i has a response delay with respect to a change in the target value. In other words, there is a delay in the operation of the drive unit (for example, in coal-fired power generation, there is a delay in the crushing of coal, a delay in transporting pulverized coal, a delay in heat transfer, etc.), and therefore, it is difficult to respond to rapid and large changes in load command. Poor load followability and control amount
There is a problem that the fluctuation of x j increases.

本発明の目的は、操作量の応答遅れを補償して
正確な負荷追従制御が可能で制御量の変動が小さ
い火力発電プラント予測制御システムを提供する
ことである。
An object of the present invention is to provide a predictive control system for a thermal power plant that can perform accurate load following control by compensating for response delays in manipulated variables and has small fluctuations in controlled variables.

本発明は、上記目的を達成するために、中央給
電指令所からの負荷指令に基づいて火力発電プラ
ントの応答遅れに関係する各操作量を先行的に演
算して火力発電プラントに出力しフイードフオワ
ード制御するとともに火力発電プラントの制御量
の一部をフイードバツク量として取り込み前記各
操作量を補助的にフイードバツク制御する演算制
御手段を備えた火力発電プラント予測制御システ
ムにおいて、現時点までの過去の前記負荷指令に
基づいて前記応答遅れに対応した時間後の負過指
令を予測しその予測負荷指令を現時点の負荷指令
として前記演算制御手段に出力する負荷予測手段
を中央給電指令所と演算制御手段との間に設けた
火力発電プラント予測制御システムを提案するも
のである。
In order to achieve the above object, the present invention preliminarily calculates each manipulated variable related to response delay of a thermal power plant based on a load command from a central power dispatch center, outputs it to a thermal power plant, and provides a feed. In a thermal power plant predictive control system that is equipped with an arithmetic control means that performs forward control and also takes in a part of the control amount of the thermal power plant as a feedback amount and performs supplementary feedback control of each of the manipulated variables, A load prediction means for predicting a load command after a time corresponding to the response delay based on the load command and outputting the predicted load command to the calculation control means as a current load command is connected to the central power dispatch center and the calculation control means. This paper proposes a predictive control system for thermal power plants installed between

各操作量の無駄時間は一般に異なるので、負荷
予測手段は、各操作量のそれぞれの応答遅れに対
応した時間後の負荷指令を各操作量について予測
しそれぞれの予測負荷指令を現時点の負荷指令と
して演算制御手段に出力する負荷予測手段とする
と、より正確な予測制御が可能となる。
Since the dead time of each manipulated variable is generally different, the load prediction means predicts the load command for each manipulated variable after a time corresponding to the response delay of each manipulated variable, and uses each predicted load command as the current load command. If the load prediction means outputs to the arithmetic control means, more accurate predictive control becomes possible.

本発明においては、各操作量の無駄時間を考慮
した予測負荷手段指令を現時点の負荷指令として
演算制御手段に入力し各操作量を演算し火力発電
プラントを制御するので、各操作量の応答遅れを
補償でき、火力発電プラントの負荷追従性が向上
し、制御量の変動が小さくなる。
In the present invention, a predicted load means command that takes into account the dead time of each manipulated variable is input to the calculation control means as the current load command, and each manipulated variable is calculated to control the thermal power plant, so there is a delay in the response of each manipulated variable. can be compensated for, improving the load followability of thermal power plants and reducing fluctuations in controlled variables.

第3図は本発明の実施例を示すブロツク図であ
る。
FIG. 3 is a block diagram showing an embodiment of the present invention.

中央給電指令所1から負荷指令LDに時系列信
号に基づいて、負荷予測システム4は近い将来の
負荷指令L^Dを予測演算し、この予測負荷指令L^D
に基づいてAPC2は先行的に火力発電プラント
3の各操作量uiを操作すると共に、各制御量xj
フイードバツク制御により、各操作量uiを補助的
に操作する。
Based on the time-series signal from the central power dispatch center 1 to the load command L D , the load prediction system 4 predicts and calculates the load command L^ D in the near future, and calculates this predicted load command L^ D
Based on this, the APC 2 preliminarily manipulates each manipulated variable u i of the thermal power plant 3, and additionally manipulates each manipulated variable u i by feedback control of each controlled variable x j .

負荷予測システム4の機能について以下、詳述
する。
The functions of the load prediction system 4 will be described in detail below.

負荷指令の予測には、自己回帰移動平均モデル
を用いる。すなわち、サンプリング周期(ΔT)
毎に取込んだ過去M時点の間の負荷指令の値LD
(k),LD(k−1),……,LD(k−M+1)と予測
誤差EL(k),EL(k−1),……,EL(k−M+1)
の線形結合により次式のように1サンプリング後
の負荷指令L^D(k−1)を予測する。
An autoregressive moving average model is used to predict load commands. That is, the sampling period (ΔT)
The load command value L D for the past M time points captured every time
(k), L D (k-1), ..., L D (k-M+1) and prediction error E L (k), E L (k-1), ..., E L (k-M+1)
The load command L^ D (k-1) after one sampling is predicted by the following equation using a linear combination of .

L^D(k+1)=a1LD(k)+a2LD(k−1)+……+
aMLD(k−M+1) +b1EL(k)+b2EL(k−1)+……bMEL(k−M
+1) ……(1) ここで、EL(k−i)=LD(k−i)−L^D(k−
i) (i=0,1,2,……、M−1) L^D(k−i):(k−i−1)時点における1
サンプリング後の負荷指令の予測値 また、2サンプリング後の負荷指令の予測値
LD(k+2)は、(2)式により計算する。
L^ D (k+1)=a 1 L D (k)+a 2 L D (k-1)+...+
a M L D (k-M+1) +b 1 E L (k)+b 2 E L (k-1)+...b M E L (k-M
+1) ...(1) Here, E L (k-i) = L D (k-i) - L^ D (k-
i) (i=0,1,2,...,M-1) L^ D (k-i): 1 at time (k-i-1)
Predicted value of load command after sampling Also, predicted value of load command after 2 samplings
L D (k+2) is calculated using equation (2).

L^D(k+2)=a1L^D(k+1)+a2LD(k)+……+aM
LD(k−M+2) +b2EL(k)+b3EL(k−1)+……+bMEL(k−
M+2) ……(2) 同様にして、Nサンプリング後の負荷指令の予
測値L^D(k+N)は、(3)式により計算する。
L^ D (k+2)=a 1 L^ D (k+1)+a 2 L D (k)+……+a M
L D (k-M+2) +b 2 E L (k)+b 3 E L (k-1)+...+b M E L (k-
M+2) ...(2) Similarly, the predicted value L^ D (k+N) of the load command after N sampling is calculated using equation (3).

L^D(K+N)=a1L^D(K+N−1)+a2L^D(K+N

2)+…… +aN-1L^D(k−1) +aNLD(k)+aN+1(k+1)+…… +aMLD(k−M+N) +bNEL(k)+bN+1EL(k−1)+…… +bMEL(k−M+N) =N-1i=1 aiL^D(k+N−i)+Mi=N a(一)LD(k+N
−i) +Mi=N b1EL(k+N−i) ……(3) このようにしてNサンプリング後迄の負荷指令
の予測値L^D(k+1),L^D(k+2),……,L^D

+N)が求められる。なお、係数ai,bi(i=1,
2,……,M)は、過去の負荷指令を用いて最小
2乗法で求める。次に、予測時間決定方法につい
て述べる。
L^ D (K+N)=a 1 L^ D (K+N-1)+a 2 L^ D (K+N

2) +... +a N-1 L^ D (k-1) +a N L D (k)+a N+1 (k+1)+... +a M L D (k-M+N) +b N E L (k) +b N+1 E L (k-1)+... +b M EL (k-M+N) = N-1i=1 a i L^ D (k+N-i)+ Mi=N a(one) L D (k+N
-i) + Mi=N b 1 E L (k+N-i) ...(3) In this way, the predicted value of the load command after N samplings L^ D (k+1), L^ D (k+2) ,...,L^ D (
k
+N) is required. Note that the coefficients a i , b i (i=1,
2,...,M) are determined by the least squares method using past load commands. Next, a method for determining the predicted time will be described.

負荷指令LDの変化に対する負荷Lの応答は、
次式で近似できる。
The response of load L to changes in load command L D is:
It can be approximated by the following formula.

L(S)=1/1+T・Se-L L(S)=1/1+T・Se -L

Claims (1)

【特許請求の範囲】 1 中央給電指令所からの負荷指令に基づいて火
力発電プラントの応答遅れに関係する各操作量を
先行的に演算して前記火力発電プラントに出力し
フイードフオワード制御するとともに前記火力発
電プラントの制御量の一部をフイードバツク量と
して取り込み前記各操作量を補助的にフイードバ
ツク制御する演算制御手段を備えた火力発電プラ
ント予測制御システムにおいて、現時点までの過
去の前記負荷指令に基づいて前記応答遅れに対応
した時間後の負荷指令を予測し、該予測負荷指令
を現時点の負荷指令として前記演算制御手段に出
力する負荷予測手段を前記中央給電指令所と前記
演算制御手段との間に設けたことを特徴とする火
力発電プラント予測制御システム。 2 特許請求の範囲第1項において、 前記負荷予測手段が、前記各操作量のそれぞれ
の応答遅れに対応した時間後の前記負荷指令を各
操作量について予測しそれぞれの予測負荷指令を
現時点の負荷指令として前記演算制御手段に出力
する負荷予測手段であることを特徴とする火力発
電プラント予測制御システム。
[Scope of Claims] 1. Based on a load command from a central power dispatch center, each manipulated variable related to response delay of a thermal power plant is calculated in advance and outputted to the thermal power plant for feed forward control. In the thermal power plant predictive control system, the thermal power plant predictive control system includes an arithmetic control means that takes in a part of the control amount of the thermal power plant as a feedback amount and performs auxiliary feedback control on each of the manipulated variables. The central power dispatch center and the arithmetic control means include a load prediction means that predicts a load command after a time corresponding to the response delay based on the response delay and outputs the predicted load command to the arithmetic and control means as a current load command. A thermal power plant predictive control system characterized by being installed between. 2. In claim 1, the load prediction means predicts the load command for each manipulated variable after a time corresponding to the response delay of each manipulated variable, and sets each predicted load command to the current load. A thermal power plant predictive control system, characterized in that it is a load prediction means that outputs a command to the arithmetic and control means.
JP9989580A 1980-07-23 1980-07-23 Forecast follow-up controlling system for thermal power plant Granted JPS5725197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9989580A JPS5725197A (en) 1980-07-23 1980-07-23 Forecast follow-up controlling system for thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9989580A JPS5725197A (en) 1980-07-23 1980-07-23 Forecast follow-up controlling system for thermal power plant

Publications (2)

Publication Number Publication Date
JPS5725197A JPS5725197A (en) 1982-02-09
JPH0442920B2 true JPH0442920B2 (en) 1992-07-14

Family

ID=14259500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9989580A Granted JPS5725197A (en) 1980-07-23 1980-07-23 Forecast follow-up controlling system for thermal power plant

Country Status (1)

Country Link
JP (1) JPS5725197A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140809A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Optimum control system adaptable to power plant
JPS58140806A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Estimated optimum control system of power plant
JPS58144203A (en) * 1982-02-22 1983-08-27 Hitachi Ltd Plant controlling system
JPS63173101A (en) * 1987-01-12 1988-07-16 Mitsubishi Heavy Ind Ltd Optimum controller for compensating dead time
DE3721504C2 (en) * 1987-06-30 1997-01-23 Bosch Gmbh Robert Control system
JP5730833B2 (en) * 2012-09-21 2015-06-10 株式会社日立製作所 Turbine control device, turbine control method, and turbine control program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618797A (en) * 1979-07-24 1981-02-21 Tokyo Shibaura Electric Co Power control device of atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618797A (en) * 1979-07-24 1981-02-21 Tokyo Shibaura Electric Co Power control device of atomic power plant

Also Published As

Publication number Publication date
JPS5725197A (en) 1982-02-09

Similar Documents

Publication Publication Date Title
CN103225799B (en) Method for controlling main steam temperature in thermal power plant
CN102374518B (en) Steam temperature control using dynamic matrix control
CN108227488B (en) Sliding mode prediction control-based ultra-supercritical thermal power generating unit coordination control method
CN104699064B (en) A kind of ature of coal self-tuning model method of fired power generating unit coordinated control system
JPH0442920B2 (en)
CN107102550B (en) Predictive control method for controlling separator temperature of ultra-supercritical thermal power generating unit
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
Spinelli et al. An optimal control of start-up for nonlinear fire-tube boilers with thermal stress constraints
JPH06288262A (en) Operation control method of coal gasification compound generator system
JP2825230B2 (en) Process control equipment
JP3234055B2 (en) Series load control system for combined cycle power plant
JPH0561644B2 (en)
JP3061289B2 (en) Process predictive control method and predictive control system
JPS6350608A (en) Control process for non-interference flow inside turbine
JPS63100237A (en) Load control method of coal gasification power plant
JPS59115406A (en) Load controller of composite cycle power generating plant
JPH10318503A (en) Method and system for controlling fluidized bed incinerator
JPS5770321A (en) Controlling method of boiler
JPH0674401A (en) Pressurized fluidized bed boiler composite generating plant, load control method and device thereof
JP3085792B2 (en) Control device for pressurized fluidized bed boiler
JPH0339165B2 (en)
JP2507426B2 (en) Coal gasification combined cycle controller
JPH04254165A (en) Forecasting control device for boiler
CN113238479A (en) 660MW thermal power generating unit multi-model predictive control method based on nearby principle weighting
JPH11338506A (en) Method and device for predictive control over process