JP3085792B2 - Control device for pressurized fluidized bed boiler - Google Patents

Control device for pressurized fluidized bed boiler

Info

Publication number
JP3085792B2
JP3085792B2 JP04200604A JP20060492A JP3085792B2 JP 3085792 B2 JP3085792 B2 JP 3085792B2 JP 04200604 A JP04200604 A JP 04200604A JP 20060492 A JP20060492 A JP 20060492A JP 3085792 B2 JP3085792 B2 JP 3085792B2
Authority
JP
Japan
Prior art keywords
fluidized
boiler
fluidized bed
input
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04200604A
Other languages
Japanese (ja)
Other versions
JPH0618001A (en
Inventor
隆 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04200604A priority Critical patent/JP3085792B2/en
Publication of JPH0618001A publication Critical patent/JPH0618001A/en
Application granted granted Critical
Publication of JP3085792B2 publication Critical patent/JP3085792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流動床燃焼により蒸気
を生成して蒸気タービンを駆動すると共に燃焼ガスによ
ってガスタービンを駆動するタイプの加圧流動床ボイラ
における制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus for a pressurized fluidized-bed boiler of a type that generates steam by fluidized-bed combustion to drive a steam turbine and drives a gas turbine by combustion gas.

【0002】[0002]

【従来の技術】加圧流動床ボイラはコンプレッサによっ
て加圧した燃焼用空気を容量の大きな圧力容器を介して
ボイラ内に供給することで燃料及びその灰分、石灰石な
どの流動材と共に流動床を形成し、流動燃焼を行う。加
圧流動床ボイラには、流動床内で燃焼するガスと熱交換
する過熱器が設けられており、この過熱器には入口側に
蒸気温度を制御する減温器が接続され、出口側には主蒸
気管を介して蒸気タービンが接続されている。また、流
動床ボイラには、蒸気タービンの出口側に連通された再
熱器が燃焼ガスと熱交換するよう設けられている。更
に、その再熱器の蒸気温度の制御のために、流動材を移
動させて流動床の高さを上下させる流動材移動装置も流
動床ボイラに設けられている。加圧流動床ボイラはま
た、その燃焼ガスを動力源とするガスタービンに接続さ
れている。
2. Description of the Related Art A pressurized fluidized-bed boiler forms a fluidized bed together with fuel and fluidized materials such as ash and limestone by supplying combustion air pressurized by a compressor through a large-capacity pressure vessel into the boiler. And perform fluid combustion. The pressurized fluidized-bed boiler is provided with a superheater that exchanges heat with the gas combusted in the fluidized bed.This superheater is connected to a desuperheater that controls the steam temperature at the inlet side, and is connected to the outlet side. Is connected to a steam turbine via a main steam pipe. Further, the fluidized bed boiler is provided with a reheater connected to the outlet side of the steam turbine so as to exchange heat with the combustion gas. Further, in order to control the steam temperature of the reheater, a fluidized material moving device for moving the fluidized material to raise and lower the height of the fluidized bed is also provided in the fluidized bed boiler. The pressurized fluidized bed boiler is also connected to a gas turbine powered by the combustion gas.

【0003】このような加圧流動床ボイラにおいて、蒸
気タービンへ供給する蒸気の温度制御及び燃焼空気量を
制御する装置の従来の制御系を図4及び図5に示す。
In such a pressurized fluidized bed boiler, FIGS. 4 and 5 show a conventional control system of a device for controlling the temperature of steam supplied to a steam turbine and controlling the amount of combustion air.

【0004】図4は、加圧流動床ボイラに関連した最終
過熱器1、スプレイ水2、減温器3、主蒸気管4及びタ
ービン5から成る機械構成に対する従来の蒸気温度制御
系を示したもので、次のような制御方式をとっている。
すなわち、最終過熱器1の出口温度を検出する検出器6
の出力と、ボイラ入力信号7を入力して最終過熱器1の
設定値を出力する関数発生器8からの出力とを減算器9
で減算する。減算器9の出力信号は制御器10に入力さ
れる。制御器10はたとえば比例−積分コントローラで
あり、最終過熱器1の入口温度の設定値を出力する。こ
の設定値は最終過熱器1の入口温度を検出する検出器1
1の出力信号と減算器12で減算される。減算器12の
出力信号は制御器13に入力される。制御器13はたと
えば比例−積分コントローラであり、スプレイ弁開度指
令14を出力する。このスプレイ弁開度指令14は減温
器3へのスプレイ水2の流量制御をし、最終過熱器1の
出口温度を制御する。
FIG. 4 shows a conventional steam temperature control system for a mechanical configuration including a final superheater 1, a spray water 2, a desuperheater 3, a main steam pipe 4 and a turbine 5 related to a pressurized fluidized-bed boiler. And adopts the following control method.
That is, the detector 6 for detecting the outlet temperature of the final superheater 1
And the output from the function generator 8 which receives the boiler input signal 7 and outputs the set value of the final superheater 1 is subtracted by the subtractor 9
Subtract with. The output signal of the subtractor 9 is input to the controller 10. The controller 10 is, for example, a proportional-integral controller, and outputs a set value of the inlet temperature of the final superheater 1. This set value is the detector 1 that detects the inlet temperature of the final superheater 1.
1 is subtracted by the subtractor 12 from the output signal. The output signal of the subtractor 12 is input to the controller 13. The controller 13 is, for example, a proportional-integral controller, and outputs a spray valve opening command 14. The spray valve opening command 14 controls the flow rate of the spray water 2 to the desuperheater 3 and controls the outlet temperature of the final superheater 1.

【0005】一方、図5は加圧流動床ボイラの燃焼空気
量を制御する従来の制御系であり、排ガスのフィードバ
ック信号から燃焼空気流量の設定値信号を作り、実空気
流量との偏差に制御器を置くカスケード制御となってい
る。すなわち、ボイラ入力指令15を入力とする関数発
生器16から必要な空気流量が出力される。一方、計測
された排ガス酸素濃度17と排ガス酸素濃度設定値18
とを入力とする減算器19はこれらの偏差を出力し、制
御器20の入力信号とする。制御器20はたとえば比例
−積分コントローラであり、空気流量の補正信号を出力
する。この補正信号は関数発生器16からの必要空気流
量を表す信号と加算器21により加算され、空気流量の
設定値信号となる。加算器21の出力信号は、計測され
た全空気流量22と共に減算器23の入力信号となり、
減算器23は空気流量偏差を表す出力信号を制御器24
へ与える。制御器24はたとえば比例−積分コントロー
ラとすることができ、燃焼空気量を表すコンプレッサ可
変静翼指令25を出力する。
On the other hand, FIG. 5 shows a conventional control system for controlling the amount of combustion air in a pressurized fluidized-bed boiler, which generates a set value signal of a combustion air flow rate from a feedback signal of exhaust gas and controls the deviation from the actual air flow rate. It is a cascade control that puts vessels. That is, the required air flow rate is output from the function generator 16 which receives the boiler input command 15 as an input. On the other hand, the measured exhaust gas oxygen concentration 17 and the set exhaust gas oxygen concentration 18
The subtractor 19 having these as inputs outputs these deviations and uses them as input signals of the controller 20. The controller 20 is, for example, a proportional-integral controller and outputs a correction signal of the air flow rate. This correction signal is added by the adder 21 to a signal representing the required air flow rate from the function generator 16 and becomes a set value signal of the air flow rate. The output signal of the adder 21 becomes the input signal of the subtractor 23 together with the measured total air flow rate 22,
The subtractor 23 outputs an output signal representing the air flow deviation to the controller 24.
Give to. The controller 24 can be, for example, a proportional-integral controller, and outputs a compressor variable stator blade command 25 representing the amount of combustion air.

【0006】[0006]

【発明が解決しようとする課題】加圧流動床ボイラにお
ける従来の制御装置において、その蒸気温度制御につい
ては以下のような問題点がある。すなわち、 (1)流動床の層高を変化させるため、流動材移動装置
を作動させた場合には、必ず流動床温度及び流動材と接
触する伝熱管の面積が変化する。これにより、蒸気温度
も変化するが、このような外乱に対する補償がなされて
いない。 (2)流動床ボイラにおいては、流動床の温度は他の操
作量、たとえば石炭供給量で制御している。ところが、
流動床温度は蒸気温度に与える影響が大きく、蒸気温度
は敏感に変化するが、そのような外乱に対する補償がな
されていない。
In a conventional control device for a pressurized fluidized-bed boiler, there are the following problems in controlling the steam temperature. (1) In order to change the bed height of the fluidized bed, when the fluidized material moving device is operated, the fluidized bed temperature and the area of the heat transfer tube in contact with the fluidized material always change. This also changes the steam temperature, but does not compensate for such disturbances. (2) In a fluidized-bed boiler, the temperature of the fluidized-bed is controlled by another operation amount, for example, a coal supply amount. However,
Fluidized bed temperature has a significant effect on steam temperature, which varies sensitively, but has not been compensated for such disturbances.

【0007】また、加圧流動床ボイラは流動床燃焼炉に
燃焼用空気を流入させる前に容量の大きな圧力容器が存
在する。このため、燃焼空気量を操作するためには、ま
ず圧力容器内の空気量を操作してやることが必要となる
が、容積が大きいために、遅れが非常に大きかった。こ
のため、燃焼炉に投入する石炭流量も燃焼空気の流入量
により上限値を設定する必要があった。
[0007] A pressurized fluidized-bed boiler has a large-capacity pressure vessel before flowing combustion air into a fluidized-bed combustion furnace. Therefore, in order to control the amount of combustion air, it is first necessary to control the amount of air in the pressure vessel. However, the delay is very large due to the large volume. For this reason, it was necessary to set the upper limit of the flow rate of coal to be supplied to the combustion furnace according to the inflow amount of combustion air.

【0008】本発明は上記事情にかんがみてなされたも
ので、蒸気温度制御において蒸気温度の設定値との偏差
を小さく抑え、燃焼空気流量制御においては排ガス酸素
濃度の偏差を考慮して燃焼空気の応答性を改善した制御
装置を提供することを目的とする。
[0008] The present invention has been made in view of the above circumstances, and with minimal deviation between the set value of the steam temperature in the steam temperature control, the exhaust gas oxygen in the combustion air flow control
It is an object of the present invention to provide a control device in which the response of combustion air is improved in consideration of the concentration deviation .

【0009】[0009]

【課題を解決するための手段】上記目的に対し、本発明
によれば、流動床を形成する流動材を移動させて流動床
の高さを上下させる流動材移動装置を備え、流動床内で
燃焼するガスと熱交換する過熱器とこの過熱器への蒸気
温度を制御する減温器とが関連されている加圧流動床ボ
イラにおける制御装置において、最終過熱器前後の温度
及びボイラ入力信号を入力として前記減温器へ供給する
スプレイ水の流量制御のためのスプレイ弁開度指令を出
力する制御系に、前記流動材移動装置の駆動信号を検出
して流動材移動による蒸気温度の補償信号を加える手段
を追設したことを特徴とする加圧流動床ボイラの制御装
置が提供される。
According to the present invention, there is provided an image forming apparatus comprising:
According to the above, a fluidized material moving device for moving the fluidized material forming the fluidized bed to raise and lower the height of the fluidized bed is provided, and a superheater for exchanging heat with gas combusted in the fluidized bed and steam to the superheater A controller for a pressurized fluidized-bed boiler, which is associated with a temperature reducer for controlling the temperature, for controlling the temperature before and after the final superheater and the flow rate of spray water supplied to the temperature reducer as input to a boiler input signal. A pressurized fluidized bed characterized by further adding a means for detecting a drive signal of the fluidized material moving device and adding a compensation signal of steam temperature due to fluidized material movement to a control system for outputting a spray valve opening degree command. A control device for a boiler is provided.

【0010】[0010]

【0011】更に、本発明によれば、ボイラ入力指令、
排ガス及び全空気流量を入力として流動床内へ燃焼用空
気を流入させる容量の大きな圧力容器へ加圧空気を送気
するためのコンプレッサへコンプレッサ可変静翼指令を
出力する制御系に、前記ボイラ入力指令を微分したボイ
ラ入力加速信号を加える手段を追設したことを特徴とす
る加圧流動床ボイラの制御装置が提供される。
Further, according to the present invention, a boiler input command,
The boiler input to a control system that outputs a compressor variable stationary blade command to a compressor for sending pressurized air to a pressure vessel having a large capacity for flowing combustion air into the fluidized bed with the exhaust gas and the total air flow as inputs. A control device for a pressurized fluidized-bed boiler, characterized in that a means for adding a boiler input acceleration signal obtained by differentiating a command is additionally provided.

【0012】[0012]

【作用】上記手段によれば、流動材移動装置の駆動信号
に応答して、又は流動床の温度変化に応じて、蒸気温度
の補償信号をスプレイ弁開度指令の制御系に加えること
で、流動材の移動又は流動床の温度変化による蒸気温度
の変化が先行的に防止される。
According to the above means, the compensation signal of the steam temperature is added to the control system of the spray valve opening command in response to the drive signal of the fluidized material moving device or in response to the temperature change of the fluidized bed. Changes in steam temperature due to movement of the fluidized material or changes in the temperature of the fluidized bed are prevented in advance.

【0013】また、上記手段によれば、ボイラ入力加速
信号を燃焼空気流量制御系に付加することで、負荷変化
と同時にコンプレッサ可変静翼が作動され、圧力容器内
の空気量は迅速に変化させられることになる。
According to the above means, by adding the boiler input acceleration signal to the combustion air flow rate control system, the compressor variable vane is operated simultaneously with the load change, and the air amount in the pressure vessel is rapidly changed. Will be done.

【0014】[0014]

【実施例】図1は本発明による制御装置の一実施例を示
した制御系統図であり、図中、図4に示したものと同一
の要素については同一の符号を付して、その詳細な説明
は省略する。
FIG. 1 is a control system diagram showing an embodiment of a control device according to the present invention. In FIG. 1, the same elements as those shown in FIG. Detailed description is omitted.

【0015】図1の実施例によれば、まず、流動材移動
装置駆動信号30を制御器31に入力する。制御器31
はたとえば比例コントローラであり、その出力は遅れ要
素32に入力される。遅れ要素32は流動材移動装置が
駆動されてから最終過熱器1に影響を及ぼすまでの時間
だけ入力信号を遅らせるもので、この出力信号が流動材
移動装置の駆動による蒸気温度の補償信号となる。この
補償信号は減算器12の出力に配置した加算器に入力さ
れ、減算器12の出力信号に加えられる。
According to the embodiment of FIG. 1, first, a fluidized material moving device drive signal 30 is input to a controller 31. Controller 31
Is, for example, a proportional controller, the output of which is input to the delay element 32. The delay element 32 delays the input signal by the time from when the fluidized material moving device is driven to when it affects the final superheater 1, and this output signal becomes a compensation signal for the steam temperature by driving the fluidized material moving device. . This compensation signal is input to an adder arranged at the output of the subtractor 12, and is added to the output signal of the subtractor 12.

【0016】流動床の層高を変化させる流動材移動装置
が作動した場合には、流動材の移動方向(上下方向)及
び強弱が加味された補償信号が蒸気温度制御系に付加さ
れ、これによって流動材移動装置の作動による蒸気温度
への影響を考慮した予測制御が可能となり、蒸気温度制
御偏差幅を小さく抑えることができる。
When the fluidized bed moving device for changing the bed height of the fluidized bed is operated, a compensation signal taking into account the moving direction (vertical direction) and the strength of the fluidized bed is added to the steam temperature control system. Predictive control can be performed in consideration of the effect of the operation of the fluidized material moving device on the steam temperature, and the steam temperature control deviation width can be reduced.

【0017】図2は本発明による制御装置の別の実施例
を示した制御系統図であり、図2においても図4に示し
たものと同一の要素には同一の符号を付してその詳細な
説明は省略する。
FIG. 2 is a control system diagram showing another embodiment of the control device according to the present invention. In FIG. 2, the same elements as those shown in FIG. Detailed description is omitted.

【0018】図2の参考例によれば、流動床34内の温
度を検出する検出器35が設けられており、この検出器
35の出力はボイラ入力信号7を入力として温度設定値
を出力する関数発生器36の出力と共に減算器37に入
力される。減算器37の出力は制御器38及び遅れ要素
39を介して、減算器12の出力に設けた加算器40へ
供給される。制御器38はたとえば比例コントローラで
あり、ボイラ入力信号7に対応した温度設定値の実際値
との偏差を受けて流動床温度が変化した場合による蒸気
温度の補償信号を出力する。遅れ要素39は流動床温度
が変化してから最終過熱器1に影響を及ぼすまでの時間
的ずれを考慮するものである。
According to the reference example shown in FIG. 2, a detector 35 for detecting the temperature in the fluidized bed 34 is provided, and the output of the detector 35 outputs a temperature set value by using the boiler input signal 7 as an input. The output of the function generator 36 and the output of the function generator 36 are input to the subtractor 37. The output of the subtractor 37 is supplied via a controller 38 and a delay element 39 to an adder 40 provided at the output of the subtractor 12. The controller 38 is, for example, a proportional controller, and outputs a compensation signal of the steam temperature when the fluidized bed temperature changes in response to the deviation of the temperature set value corresponding to the boiler input signal 7 from the actual value. The delay element 39 takes into account the time lag between the change of the fluidized bed temperature and the influence on the final superheater 1.

【0019】ここで、流動床温度と蒸気温度との関係を
説明すると、流動床温度が高いと蒸気温度も高く、流動
床温度が低いと蒸気温度も低いという関係がある。流動
床温度が高い場合は、スプレイ流量は多く、低い場合は
少なくなるが、このスプレイ流量の動きは流動床温度の
影響であり、流動床温度が元に戻ると、スプレイ流量も
元に戻ることになる。したがって、流動床温度から蒸気
温度を予測できるので、流動床温度の補正信号を蒸気温
度制御系に付加することで、先行してスプレイ流量を操
作でき、蒸気温度の偏差幅を小さく抑えることが可能に
なる。
Here, the relationship between the fluidized bed temperature and the steam temperature will be described. The higher the fluidized bed temperature, the higher the steam temperature, and the lower the fluidized bed temperature, the lower the steam temperature. When the fluidized bed temperature is high, the spray flow rate is high, and when the fluidized bed temperature is low, the spray flow rate is small.However, the movement of the spray flow rate is affected by the fluidized bed temperature. become. Therefore, since the steam temperature can be predicted from the fluidized bed temperature, by adding a fluidized bed temperature correction signal to the steam temperature control system, the spray flow rate can be controlled in advance and the deviation width of the steam temperature can be reduced. become.

【0020】図3は本発明による制御装置の更に別の実
施例を示した制御系統図である。図3において、図5に
示したものと同一の要素には同一の符号を付して、その
詳細な説明は省略する。
FIG. 3 is a control system diagram showing still another embodiment of the control device according to the present invention. 3, the same elements as those shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0021】図3によれば、ボイラ入力指令15は微分
器41に入力される。微分器41の出力信号は制御器4
2に入力される。制御器42はたとえば比例コントロー
ラとすることができ、ボイラ入力指令15の微分信号を
ボイラ入力加速信号として出力する。このボイラ入力加
速信号は制御器24の出力側に設けた加算器43へ入力
され、コンプレッサ可変静翼指令25へ付加される。
Referring to FIG. 3, the boiler input command 15 is input to the differentiator 41. The output signal of the differentiator 41 is
2 is input. Controller 42 may be, for example, a proportional controller, and outputs a differential signal of boiler input command 15 as a boiler input acceleration signal. This boiler input acceleration signal is input to an adder 43 provided on the output side of the controller 24, and is added to the compressor variable stator blade command 25.

【0022】圧力容器の容積は減らせば減らすほど燃焼
空気の応答は速くなるものの、システムの構造上減少す
ることが難しい状況にあるが、ボイラ入力加速信号でコ
ンプレッサ可変静翼指令25を先行補正することで、負
荷変化と同時にコンプレッサ可変静翼を動作させ、圧力
容器内の空気量を変化させることができるようになり、
これによって燃焼空気の応答性が速くなる。
Although the response of the combustion air becomes faster as the volume of the pressure vessel decreases, it is difficult to reduce the response due to the structure of the system. However, the compressor variable stator blade command 25 is corrected in advance by the boiler input acceleration signal. As a result, the compressor variable stator vane can be operated at the same time as the load changes, and the amount of air in the pressure vessel can be changed.
This speeds up the response of the combustion air.

【0023】[0023]

【発明の効果】本発明の図1の実施例によれば、流動材
移動装置の駆動による蒸気温度の予測制御が可能とな
り、蒸気温度の偏差を小さく抑えることができる。
According to the embodiment of FIG. 1 of the present invention, it is possible to predict and control the steam temperature by driving the fluidized material moving device, and it is possible to keep the deviation of the steam temperature small.

【0024】図2の参考例によれば、流動床温度が蒸気
温度へ影響を及ぼす程度を予測し、先行してスプレイ流
量を作動させる予測制御が可能となり、蒸気温度の偏差
を小さく抑えることができる。
According to the reference example shown in FIG. 2, it is possible to predict the extent to which the fluidized bed temperature affects the steam temperature, and to perform predictive control for activating the spray flow rate in advance, thereby suppressing the steam temperature deviation to a small value. it can.

【0025】図3の実施例によれば、ボイラ入力指令の
微分値を燃焼空気流量制御信号に組み込むことで、コン
プレッサ可変静翼を先行して動作させることが可能とな
り、燃焼空気の応答性を改善することができる。
According to the embodiment of FIG. 3, by incorporating the differential value of the boiler input command into the combustion air flow control signal, the variable compressor vane can be operated in advance, and the responsiveness of the combustion air can be improved. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加圧流動床ボイラの制御装置の第
1実施例に係る蒸気温度制御の制御系統図である。
FIG. 1 is a control system diagram of steam temperature control according to a first embodiment of a control device for a pressurized fluidized-bed boiler according to the present invention.

【図2】参考例として加圧流動床ボイラの制御装置に係
る蒸気温度制御の制御系統図である。
FIG. 2 is a control system diagram of steam temperature control according to a control device of a pressurized fluidized-bed boiler as a reference example.

【図3】本発明による加圧流動床ボイラの制御装置の燃
焼空気流量制御の制御系統図である。
FIG. 3 is a control system diagram for controlling the flow rate of combustion air in a control device for a pressurized fluidized-bed boiler according to the present invention.

【図4】従来の加圧流動床ボイラの制御装置における蒸
気温度制御の制御系統図である。
FIG. 4 is a control system diagram of steam temperature control in a control device for a conventional pressurized fluidized-bed boiler.

【図5】従来の加圧流動床ボイラの制御装置における燃
焼空気流量制御の制御系統図である
FIG. 5 is a control system diagram for controlling the flow rate of combustion air in a conventional control device for a pressurized fluidized-bed boiler.

【符号の説明】[Explanation of symbols]

1…最終過熱器、2…スプレイ水、3…減温器、4…主
蒸気管、5…タービン、6,11,35…温度検出器、
7…ボイラ入力信号、8,16,36…関数発生器、
9,12,19,23…減算器、10,13,20,2
4,31,38,42…制御器、14…スプレイ弁開度
指令、15…ボイラ入力指令、17…排ガス酸素濃度
18…排ガス酸素濃度の設定値、21,23,40,4
3…加算器、22…全空気流量、25…コンプレッサ可
変静翼指令、30…流動材移動装置駆動信号、32,3
9…遅れ要素、34…流動床、41…微分器。
DESCRIPTION OF SYMBOLS 1 ... Final superheater, 2 ... Spray water, 3 ... Desuperheater, 4 ... Main steam pipe, 5 ... Turbine, 6, 11, 35 ... Temperature detector,
7 boiler input signal, 8, 16, 36 ... function generator,
9, 12, 19, 23 ... subtractor, 10, 13, 20, 2
4, 31, 38, 42: controller, 14: spray valve opening command, 15: boiler input command, 17: exhaust gas oxygen concentration ,
18: set value of exhaust gas oxygen concentration , 21, 23, 40, 4
3 ... Adder, 22 ... Total air flow, 25 ... Compressor variable stationary blade command, 30 ... Flow material moving device drive signal, 32,3
9 delay element, 34 fluidized bed, 41 differentiator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流動床を形成する流動材を移動させて流
動床の高さを上下させる流動材移動装置を備え、流動床
内で燃焼するガスと熱交換する過熱器とこの過熱器への
蒸気温度を制御する減温器とが関連されている加圧流動
床ボイラにおける制御装置において、最終過熱器前後の
温度及びボイラ入力信号を入力として前記減温器へ供給
するスプレイ水の流量制御のためのスプレイ弁開度指令
を出力する制御系に、前記流動材移動装置の駆動信号を
検出して流動材移動による蒸気温度の補償信号を加える
手段を追設したことを特徴とする加圧流動床ボイラの制
御装置。
1. A superheater for moving a fluidized material forming a fluidized bed to raise and lower the height of the fluidized bed, wherein the superheater exchanges heat with gas combusted in the fluidized bed and a superheater for the superheater. A controller for a pressurized fluidized-bed boiler, which is associated with a desuperheater for controlling steam temperature, controls the flow rate of spray water supplied to said desuperheater by inputting the temperature before and after the final superheater and a boiler input signal as input. A means for detecting a drive signal of the fluidized material moving device and adding a compensation signal for a steam temperature due to the fluidized material movement to a control system for outputting a spray valve opening command for the pressurized flow. Floor boiler control device.
【請求項2】 請求項1記載の制御装置において、ボイ
ラ入力指令、排ガス及び全空気流量を入力として流動床
内へ燃焼用空気を流入させる容量の大きな圧力容器へ加
圧空気を送気するためのコンプレッサヘコンプレッサ可
変静翼指令を出力する制御系に、前記ボイラ入力指令を
微分したボイラ入力加速信号を加える手段を追設したこ
とを特徴とする加圧流動床ボイラの制御装置。
2. The control device according to claim 1, wherein the boiler input command, the exhaust gas and the total air flow rate are input, and the pressurized air is supplied to a pressure vessel having a large capacity for flowing combustion air into the fluidized bed. A control system for a pressurized fluidized-bed boiler, characterized in that a means for adding a boiler input acceleration signal obtained by differentiating the boiler input command is added to a control system for outputting a compressor variable stationary blade command to the compressor.
JP04200604A 1992-07-03 1992-07-03 Control device for pressurized fluidized bed boiler Expired - Fee Related JP3085792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04200604A JP3085792B2 (en) 1992-07-03 1992-07-03 Control device for pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04200604A JP3085792B2 (en) 1992-07-03 1992-07-03 Control device for pressurized fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH0618001A JPH0618001A (en) 1994-01-25
JP3085792B2 true JP3085792B2 (en) 2000-09-11

Family

ID=16427132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04200604A Expired - Fee Related JP3085792B2 (en) 1992-07-03 1992-07-03 Control device for pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP3085792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461525B2 (en) * 2014-09-11 2019-01-30 株式会社東芝 Steam temperature control device, steam temperature control method, and power generation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275302U (en) * 1985-10-29 1987-05-14
JPS6365207A (en) * 1986-09-05 1988-03-23 株式会社東芝 Boiler steam temperature controller

Also Published As

Publication number Publication date
JPH0618001A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
JP5934313B2 (en) System for controlling and optimizing the chemical loop process
JP3085792B2 (en) Control device for pressurized fluidized bed boiler
JP2521670B2 (en) Boiler steam temperature controller
JP2002215205A5 (en)
JPH0442920B2 (en)
JPH06159603A (en) Control device for waste heat steam generator
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH0323806B2 (en)
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP3357335B2 (en) Fluidized bed control method and apparatus
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JP3928104B2 (en) Pressurized fluidized bed combined power generation system and control method and control apparatus therefor
JPH1054508A (en) Temperature control method and apparatus for main steam
JP2589233Y2 (en) Main steam temperature controller for black liquor recovery boiler
JPH0330044B2 (en)
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS6365207A (en) Boiler steam temperature controller
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH0229373Y2 (en)
JPH0320502A (en) Steam temperature control of reheating device
JPH10332104A (en) Method of controlling coal quantity of feed to mill of coal fired boiler
JPH0821601A (en) Controller for oxygen in exhaust gas from fluidized-bed boiler
JPH028905A (en) Combustion controller
JPH0626602A (en) Control device for pressurized fluidized bed type boiler
JPH04297701A (en) Steam temperature controller for pressurized fluidized bed boiler

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

LAPS Cancellation because of no payment of annual fees