JPH0626602A - Control device for pressurized fluidized bed type boiler - Google Patents

Control device for pressurized fluidized bed type boiler

Info

Publication number
JPH0626602A
JPH0626602A JP4207095A JP20709592A JPH0626602A JP H0626602 A JPH0626602 A JP H0626602A JP 4207095 A JP4207095 A JP 4207095A JP 20709592 A JP20709592 A JP 20709592A JP H0626602 A JPH0626602 A JP H0626602A
Authority
JP
Japan
Prior art keywords
air
fluidized bed
fuel
output
bed boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4207095A
Other languages
Japanese (ja)
Inventor
Hirobumi Furukoshi
博文 古越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4207095A priority Critical patent/JPH0626602A/en
Publication of JPH0626602A publication Critical patent/JPH0626602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To prevent a lack of oxygen from occurring and to enable a load to be stably increased by a method wherein a flow rate of air for combustion supplied to a fluidized bed type boiler is increased when a load instruction signal is increased. CONSTITUTION:There is provided a fuel control circuit 27 comprising a variation rate limiter 15 for giving a limitation to a variation of an output instruction 14 by inputting the output instruction 14, an adder 17 for adding a pressure correcting signal P to an output of the variation rate limiter 15 in response to a vapor pressure of a fluidized bed type boiler 2 and a function generator 19 for outputting a fuel instruction signal 20 to a fuel supplying device 8 after converting in a function of an output of the adder 17. Then, there is provided an air control circuit 31 comprising a function generator 29 for inputting the output instruction 14 and outputting an air instruction signal 28 not limiting a variation rate for use in controlling an air supplying device 11, and an adder 30 for adding an oxygen concentration correcting signal 24 to the air instruction signal 28 obtained from the function generator 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動床ボイラの制
御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a pressurized fluidized bed boiler.

【0002】[0002]

【従来の技術】加圧流動床ボイラは、図3に示すように
圧力容器1内に流動床ボイラ2を設けており、コンプレ
ッサ3によって加圧した燃焼用空気4を前記圧力容器1
に供給し、圧力容器1内の圧力が上昇することにより燃
焼用空気4が流動床ボイラ2の下部5から流動床ボイラ
2内の散気板6に供給されて流動床7が形成され、燃料
ポンプ等の燃料供給装置8から流動床7内に供給された
燃料を流動燃焼させることにより流動床ボイラに供給さ
れているボイラ水の加熱を行うようになっている。前記
加圧流動床ボイラは、圧力容器1に燃焼用空気4を供給
して圧力容器1内を加圧することにより、流動床ボイラ
2の燃焼ガスが外部に漏出するのを防止するようになっ
ている。また図示の場合、前記流動床ボイラ2の燃焼後
の排ガスをインレットガイドベーン9を介してガスター
ビン10に供給することにより、該ガスタービン10と
同軸に連結された前記コンプレッサ3の駆動を行って燃
焼用空気4の供給を行う空気供給装置11を構成してい
る。図中12は途中に切出し弁13を備えて流動床ボイ
ラ2の炉底部から灰を切出すようにした灰除去管を示
す。
2. Description of the Related Art In a pressurized fluidized bed boiler, a fluidized bed boiler 2 is provided in a pressure vessel 1 as shown in FIG. 3, and combustion air 4 pressurized by a compressor 3 is supplied to the pressure vessel 1.
The combustion air 4 is supplied from the lower part 5 of the fluidized bed boiler 2 to the diffuser plate 6 in the fluidized bed boiler 2 to form the fluidized bed 7 by supplying the combustion air 4 from the lower portion 5 of the fluidized bed boiler 2 to the fuel bed 7. The boiler water supplied to the fluidized bed boiler is heated by fluidly burning the fuel supplied from the fuel supply device 8 such as a pump into the fluidized bed 7. The pressurized fluidized bed boiler prevents combustion gas of the fluidized bed boiler 2 from leaking to the outside by supplying combustion air 4 to the pressure vessel 1 to pressurize the inside of the pressure vessel 1. There is. Further, in the illustrated case, the exhaust gas after combustion of the fluidized bed boiler 2 is supplied to the gas turbine 10 through the inlet guide vane 9 to drive the compressor 3 coaxially connected to the gas turbine 10. An air supply device 11 that supplies the combustion air 4 is configured. Reference numeral 12 in the figure denotes an ash removal pipe provided with a cutoff valve 13 in the middle thereof to cut out ash from the furnace bottom of the fluidized bed boiler 2.

【0003】上記した加圧流動床ボイラの燃料供給装置
8と空気供給装置11の制御を行う制御装置は、図3及
び図4を参照して説明すると、図4(A)に実線で示す
ように急激に変化する出力指令(MWD)14を変化率
制限器15に導入することにより、図4(A)に破線で
示すように出力指令14の変化に対して加圧流動床ボイ
ラが追従できる所要の勾配16で変化させるように制限
を与え、且つ前記変化率制限器15からの信号に流動床
ボイラ2で製造される蒸気の圧力に基づいて求めた圧力
補正信号Pを加算する加算器17を設けてボイラマスタ
信号18を得るようにしている。
A control device for controlling the fuel supply device 8 and the air supply device 11 of the above-mentioned pressurized fluidized bed boiler will be described with reference to FIGS. 3 and 4, as shown by a solid line in FIG. 4 (A). By introducing the output command (MWD) 14 that rapidly changes to the change rate limiter 15, the pressurized fluidized bed boiler can follow the change of the output command 14 as shown by the broken line in FIG. An adder 17 which gives a limit to change the gradient 16 and adds a pressure correction signal P obtained based on the pressure of steam produced in the fluidized bed boiler 2 to the signal from the change rate limiter 15. Is provided to obtain the boiler master signal 18.

【0004】該ボイラマスタ信号18は、関数発生器1
9に導くことにより図4(B)に示す燃料指令信号20
とし、該燃料指令信号20により前記燃料供給装置8の
制御を行うようにしている。又前記ボイラマスタ信号1
8から給水のための給水指令信号21を得るようにして
いる。
The boiler master signal 18 is generated by the function generator 1
9 by introducing the fuel command signal 20 shown in FIG.
The fuel supply signal 8 is controlled by the fuel command signal 20. Also, the boiler master signal 1
A water supply command signal 21 for water supply is obtained from 8.

【0005】更に、前記燃料指令信号20を関数発生器
22に導いて関数変換することにより図4(C)に示す
空気指令信号25とし、且つ流動床ボイラ2の排ガス中
の酸素濃度を検出している酸素濃度計23からの検出酸
素濃度に基づいて求めた酸素濃度補正信号24を加算器
26に導いて前記空気指令信号25に加算し、このよう
にして得た空気指令信号25により前記空気供給装置1
1のインレットガイドベーン9の制御を行うようにして
いる。
Further, the fuel command signal 20 is led to a function generator 22 and converted into a function to obtain an air command signal 25 shown in FIG. 4C, and the oxygen concentration in the exhaust gas of the fluidized bed boiler 2 is detected. The oxygen concentration correction signal 24 obtained based on the detected oxygen concentration from the oxygen concentration meter 23 is introduced to the adder 26 and added to the air command signal 25, and the air command signal 25 thus obtained causes the air to flow. Supply device 1
The inlet guide vane 9 of No. 1 is controlled.

【0006】上記従来の制御装置では、図4(A)に実
線で示すように出力指令14が増加すると、変化率制限
器15によって変化率に制限が加えられたボイラマスタ
信号18の増加(破線で示す勾配16)に基づいて、燃
料指令信号20、空気指令信号25の夫々が同時に所要
の変化率で増加されるようになっている。
In the above conventional control device, when the output command 14 increases as indicated by the solid line in FIG. 4A, the boiler master signal 18 whose rate of change is limited by the rate of change limiter 15 increases (indicated by a broken line). Based on the indicated gradient 16), each of the fuel command signal 20 and the air command signal 25 is simultaneously increased at a required rate of change.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記加圧流動
床においては、コンプレッサ3からの燃焼用空気4が一
旦圧力容器1に供給されてから流動床ボイラ2に供給さ
れるようになっているために、圧力容器1内の圧力が変
化することによって初めて流動床ボイラ2に対する空気
の供給量が変化することになり、しかも圧力容器1の容
量が大きいために、コンプレッサ3による燃焼用空気4
の供給量が増減された際に実際に流動床ボイラ2内への
燃焼用空気4の供給量が変化するまでに大きな時間遅れ
が生じることになる。
However, in the above-mentioned pressurized fluidized bed, the combustion air 4 from the compressor 3 is once supplied to the pressure vessel 1 and then to the fluidized bed boiler 2. Therefore, the supply amount of air to the fluidized bed boiler 2 is changed only when the pressure in the pressure vessel 1 is changed, and since the capacity of the pressure vessel 1 is large, the combustion air 4 by the compressor 3 is changed.
When the supply amount of is increased or decreased, a large time delay occurs until the supply amount of the combustion air 4 into the fluidized bed boiler 2 actually changes.

【0008】従って、前記従来の制御装置では、図4
(B)に示すように燃料供給装置8に導入される燃料指
令信号20が増加された時には燃料の供給量は直ちに増
加するが、インレットガイドベーン9に導入される空気
指令信号25が増加しても流動床ボイラ2に対する燃焼
用空気4の供給量が実際に増加されるまでには時間が掛
り、そのために図4(D)に示すように排ガスの酸素濃
度が目標限界値以下、即ち流動床ボイラ2内の燃焼が空
気不足の状態で行われることになり、不完全燃焼による
公害物質の発生、ダストによるガスタービンへの悪影響
の発生、燃料効率の低下、場合によっては装置全体のト
リップにつながるなどの問題を生じる。
Therefore, in the above-mentioned conventional control device, as shown in FIG.
As shown in (B), when the fuel command signal 20 introduced to the fuel supply device 8 is increased, the fuel supply amount is immediately increased, but the air command signal 25 introduced to the inlet guide vane 9 is increased. Also, it takes time until the supply amount of the combustion air 4 to the fluidized bed boiler 2 is actually increased. Therefore, as shown in FIG. 4D, the oxygen concentration of the exhaust gas is equal to or less than the target limit value, that is, the fluidized bed. Combustion in the boiler 2 is performed in an air-deficient state, resulting in pollutant generation due to incomplete combustion, adverse effect on gas turbine due to dust, reduction in fuel efficiency, and in some cases, a trip of the entire device. Causes problems such as.

【0009】このため、従来では酸素濃度計23により
排ガスの酸素濃度を監視してその検出値から前記したよ
うな不具合な事態が発生するのを察知して、燃料供給装
置8による燃料の供給量を絞り込む調節を作業員が手動
で行うようにしているが、このような作業は面倒である
と共に、調節の操作が遅れてしまって安定した酸素濃度
の調節ができずに上記問題を生じさせてしまう危険があ
り、また排ガス中の酸素濃度を確保するために燃料を絞
ってしまうと出力指令14を増加する指令があってから
実際に燃料を増加して流動床ボイラ2の出力を増加する
ことができるようになるまでに時間が掛り、出力目標値
に対して制御が大きく遅れてしまう等の問題を有してい
た。
Therefore, conventionally, the oxygen concentration of the exhaust gas is monitored by the oxygen concentration meter 23, and it is detected from the detected value that the above-mentioned inconvenience occurs, and the fuel supply amount by the fuel supply device 8 is detected. Although the worker manually adjusts to narrow down the above, this kind of work is troublesome, and the adjustment operation is delayed and stable oxygen concentration adjustment is not possible, causing the above problems. If the fuel is throttled in order to secure the oxygen concentration in the exhaust gas, there is a command to increase the output command 14 and then the fuel is actually increased to increase the output of the fluidized bed boiler 2. However, there is a problem in that it takes a long time to be able to perform the control, and the control is greatly delayed with respect to the output target value.

【0010】本発明は、上記従来の問題点に鑑みてなし
たもので、出力指令の増加時に排ガス中の酸素濃度が低
下するのを防止し、且つ出力指令の増加に対して時間遅
れを生じることなく安定して出力を増加することができ
るようにした加圧流動床ボイラの制御装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and prevents the oxygen concentration in the exhaust gas from decreasing when the output command increases and causes a time delay with respect to the increase of the output command. It is an object of the present invention to provide a control device for a pressurized fluidized bed boiler, which is capable of stably increasing the output without being required.

【0011】[0011]

【課題を解決するための手段】本発明は、圧力容器と、
該圧力容器内に設置した流動床ボイラと、該流動床ボイ
ラに燃料を供給する燃料供給装置と、前記圧力容器に燃
焼用空気を供給する空気供給装置とを備えている加圧流
動床ボイラの制御装置であって、加圧流動床ボイラの出
力指令を入力して該出力指令の変化に制限を与える変化
率制限器と、該変化率制限器の出力に流動床ボイラの蒸
気圧力に基づく圧力補正信号を加える加算器と、該加算
器の出力を関数変換して前記燃料供給装置に燃料指令信
号を出力する関数発生器とからなる燃料制御回路を設
け、且つ前記出力指令を入力して前記空気供給装置を制
御するための変化率制限しない空気指令信号を出力する
関数発生器と、該関数発生器からの空気指令信号に酸素
濃度補正信号を加算する加算器とからなる空気制御回路
を設けたことを特徴とする加圧流動床ボイラの制御装
置、に係るものである。
The present invention comprises a pressure vessel,
A pressurized fluidized bed boiler equipped with a fluidized bed boiler installed in the pressure vessel, a fuel supply device for supplying fuel to the fluidized bed boiler, and an air supply device for supplying combustion air to the pressure vessel. A controller, which is a change rate limiter for inputting an output command of the pressurized fluidized bed boiler to limit a change in the output command, and a pressure based on the steam pressure of the fluidized bed boiler for the output of the change rate limiter. A fuel control circuit comprising an adder for adding a correction signal and a function generator for converting the output of the adder into a function to output a fuel command signal to the fuel supply device, and inputting the output command, Provided is an air control circuit including a function generator for outputting an air command signal for controlling the air supply device without limiting the rate of change, and an adder for adding an oxygen concentration correction signal to the air command signal from the function generator. Characterized by Control device for a PFBC boiler to, those related to.

【0012】[0012]

【作用】出力指令が増加されると、該出力指令が変化率
制限器で増加速度に制限が加えられ、更に加算器にて圧
力補正信号が加えられてボイラマスタ信号が得られ、更
にボイラマスタ信号から関数発生器により燃料指令信号
が得られて、該燃料指令信号により燃料供給装置の制御
が行われる。
When the output command is increased, the rate of change of the output command is limited by the change rate limiter, and the pressure correction signal is further added by the adder to obtain the boiler master signal. A fuel command signal is obtained by the function generator, and the fuel supply device is controlled by the fuel command signal.

【0013】一方、前記変化率制限器に導く前の出力指
令が関数発生器に導かれることにより、変化率制限しな
い空気指令信号が得られ、該空気指令信号に加算器にて
酸素濃度補正信号を加算した信号により空気供給装置の
制御が行われる。従って空気供給装置は変化率に制限が
加えられていない空気指令信号により燃料に対して空気
が先行的に多く供給されるように制御されるので、出力
指令の増加時に圧力容器内の圧力上昇のために起こる時
間遅れに基づく空気不足の問題が確実に防止され、且つ
出力増加時の制御上の遅れも防止される。
On the other hand, the output command before being guided to the rate-of-change limiter is guided to the function generator, whereby an air command signal without rate-of-change restriction is obtained, and an oxygen concentration correction signal is added to the air command signal by the adder. The air supply device is controlled by the signal obtained by adding. Therefore, the air supply device is controlled so that a large amount of air is supplied to the fuel in advance by the air command signal whose rate of change is not limited, so that when the output command increases, the pressure rise in the pressure vessel is increased. Therefore, the problem of air shortage due to the time delay caused by the above is reliably prevented, and the control delay when the output is increased is also prevented.

【0014】[0014]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の加圧流動床ボイラの制御装
置の一実施例を示すもので、図3と同様の加圧流動床ボ
イラにおいて、加圧流動床ボイラ2の制御を行う出力指
令14を入力して該出力指令14の変化に制限を与える
変化率制限器15と、該変化率制限器15の出力に流動
床ボイラ2の蒸気圧力に基づく圧力補正信号Pを加える
加算器17と、該加算器17の出力を関数変換して燃料
供給装置8に燃料指令信号20を出力する関数発生器1
9とからなる燃料制御回路27を設ける。
FIG. 1 shows an embodiment of a control apparatus for a pressurized fluidized bed boiler according to the present invention. In a pressurized fluidized bed boiler similar to that shown in FIG. 3, an output command for controlling the pressurized fluidized bed boiler 2 is output. A rate-of-change limiter 15 that inputs 14 to limit a change in the output command 14, and an adder 17 that adds a pressure correction signal P based on the steam pressure of the fluidized-bed boiler 2 to the output of the rate-of-change limiter 15. , A function generator 1 for converting the output of the adder 17 into a function and outputting a fuel command signal 20 to the fuel supply device 8.
9 is provided.

【0016】一方、前記出力指令14を入力して前記空
気供給装置11を制御するための空気指令信号28を出
力する関数発生器29と、該関数発生器29からの空気
指令信号28に酸素濃度補正信号24を加算する加算器
30とからなる空気制御回路31を設ける。前記関数発
生器29には変化率制限器15に入る前の出力指令が導
入されているので、出力指令14が増加した場合、関数
発生器29から出力される空気指令信号28は図2
(C)に実線で示すように、出力指令14の増加に対応
して始めから大きな値となっている。
On the other hand, a function generator 29 for inputting the output command 14 and outputting an air command signal 28 for controlling the air supply device 11, and an oxygen command signal 28 from the function generator 29 have an oxygen concentration. An air control circuit 31 including an adder 30 that adds the correction signal 24 is provided. Since the output command before entering the change rate limiter 15 is introduced into the function generator 29, when the output command 14 increases, the air command signal 28 output from the function generator 29 is as shown in FIG.
As indicated by the solid line in (C), the value becomes large from the beginning in response to the increase in the output command 14.

【0017】図2(A)中実線で示すように出力指令1
4が増加されると、燃料制御回路27では、変化率制限
器15によって図2(A)中破線で示すように急激に増
加する出力指令に対して所要の勾配16で増加するよう
に制限が加えられ、更に加算器17にて圧力補正信号P
が加えられてボイラマスタ信号18が得られ、更に該ボ
イラマスタ信号18が関数発生器19により図2(B)
に示すような燃料指令信号20となって燃料供給装置8
に入力されて、燃料の制御が行われる。
As shown by the solid line in FIG. 2 (A), the output command 1
When 4 is increased, in the fuel control circuit 27, the change rate limiter 15 limits the output command that increases rapidly as shown by the broken line in FIG. And the pressure correction signal P is added by the adder 17.
Is added to obtain the boiler master signal 18, which is further generated by the function generator 19 in FIG.
The fuel command signal 20 as shown in FIG.
Is input to control the fuel.

【0018】一方、空気制御回路31では、前記変化率
制限器15に導かれる前の出力指令14が関数発生器2
9に導かれて図2(C)に実線で示すような急激な増加
を行う変化率制限されない空気指令信号28となり、該
空気指令信号28に加算器30にて酸素濃度補正信号2
4が加算された信号が空気供給装置11のインレットガ
イドベーン9に入力されて、燃焼用空気4が制御され
る。
On the other hand, in the air control circuit 31, the output command 14 before being guided to the change rate limiter 15 is used as the function generator 2
9 shows an air command signal 28 that is not limited in rate of change and is rapidly increased as shown by the solid line in FIG. 2C. The oxygen command correction signal 2 is added to the air command signal 28 by the adder 30.
The signal obtained by adding 4 is input to the inlet guide vane 9 of the air supply device 11, and the combustion air 4 is controlled.

【0019】従って前記空気供給装置11は、変化率に
制限が加えられていない始めから大きい値(増加後の空
気量)の空気指令信号28によって制御されることにな
るので、燃料に対して図2(C)に示す斜線部だけ空気
を先行的に多く供給することになる。よって出力指令1
4の増加時に圧力容器1内の圧力上昇を短時間で達成さ
せて、圧力上昇が遅れることにより起こっていた燃焼用
空気4の不足の問題が防止されて、図2(D)に示すよ
うに検出酸素濃度が目標限界値以下に低下するようなこ
とを自動的に且つ確実に防止することができる。
Therefore, the air supply device 11 is controlled by the air command signal 28 having a large value (air amount after the increase) from the beginning when the rate of change is not limited, so that the air supply device 11 can be controlled with respect to the fuel. A large amount of air is supplied in advance only in the shaded area shown in 2 (C). Therefore, output command 1
As the pressure in the pressure vessel 1 is increased in a short time at the time of increasing 4, the shortage of the combustion air 4 caused by the delay in the pressure increase is prevented, and as shown in FIG. It is possible to automatically and surely prevent the detected oxygen concentration from falling below the target limit value.

【0020】又、従来のように燃料を絞ることによって
空気不足の発生を防止する方式のように、出力指令14
の増加に対して制御上の遅れを生じるような問題も防止
でき、出力を安定して増加することができる。
In addition, as in the conventional method of preventing the occurrence of air shortage by throttling the fuel, the output command 14
It is also possible to prevent a problem that a control delay occurs with respect to the increase of the output, and the output can be stably increased.

【0021】尚、本発明は前記実施例にのみ限定される
ものではなく、空気供給装置の構成は図示のものに限定
されないこと、その他本発明の要旨を逸脱しない範囲内
に於いて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, the configuration of the air supply device is not limited to that shown in the drawings, and various modifications may be made without departing from the scope of the present invention. Of course, it can be added.

【0022】[0022]

【発明の効果】本発明の加圧流動床ボイラの制御装置に
よれば、燃料制御回路は出力指令の増加に対して変化率
制限器により燃料をある変化率で増加させるように制御
するのに対して、空気制御回路は出力指令の増加の開始
と同時に、非変化率制限の最初から大きな値をもった空
気指令信号によって空気供給装置を制御するようにして
いるので、出力指令の増加時に燃焼用空気が不足し排ガ
ス中の酸素濃度が異常に低下するような問題を容易且つ
確実に防止することができ、更に従来の出力指令の増加
時に燃料を絞る方式が持つ制御上の遅れの問題も防止し
て、出力を安定して増加することができる優れた効果を
奏し得る。
According to the control apparatus for the pressurized fluidized bed boiler of the present invention, the fuel control circuit controls the fuel to increase at a certain rate of change by the rate of change limiter in response to an increase in the output command. On the other hand, since the air control circuit controls the air supply device by the air command signal having a large value from the beginning of the non-change rate limit at the same time when the output command increases, the air control circuit burns when the output command increases. It is possible to easily and reliably prevent the problem that the oxygen concentration in the exhaust gas drops abnormally due to a shortage of air for use, and there is also the problem of the control delay that the conventional method that throttles the fuel when the output command increases. It is possible to obtain an excellent effect that the output can be prevented and the output can be stably increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】(A)(B)(C)(D)は図1の作用を示す
線図である。
2 (A), (B), (C), and (D) are diagrams showing the operation of FIG.

【図3】従来の加圧流動床ボイラの制御装置の一例を示
すブロック図である。
FIG. 3 is a block diagram showing an example of a conventional controller for a pressurized fluidized bed boiler.

【図4】(A)(B)(C)(D)は図3の作用を示す
線図である。
4 (A), (B), (C), and (D) are diagrams showing the operation of FIG.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 流動床ボイラ 4 燃焼用空気 8 燃料供給装置 11 空気供給装置 14 出力指令 15 変化率制限器 17 加算器 19 関数発生器 20 燃料指令信号 24 酸素濃度補正信号 27 燃料制御回路 28 空気指令信号 29 関数発生器 30 加算器 31 空気制御回路 P 圧力補正信号 1 Pressure Vessel 2 Fluidized Bed Boiler 4 Combustion Air 8 Fuel Supply Device 11 Air Supply Device 14 Output Command 15 Change Rate Limiter 17 Adder 19 Function Generator 20 Fuel Command Signal 24 Oxygen Concentration Correction Signal 27 Fuel Control Circuit 28 Air Command Signal 29 Function generator 30 Adder 31 Air control circuit P Pressure correction signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器と、該圧力容器内に設置した流
動床ボイラと、該流動床ボイラに燃料を供給する燃料供
給装置と、前記圧力容器に燃焼用空気を供給する空気供
給装置とを備えている加圧流動床ボイラの制御装置であ
って、加圧流動床ボイラの出力指令を入力して該出力指
令の変化に制限を与える変化率制限器と、該変化率制限
器の出力に流動床ボイラの蒸気圧力に基づく圧力補正信
号を加える加算器と、該加算器の出力を関数変換して前
記燃料供給装置に燃料指令信号を出力する関数発生器と
からなる燃料制御回路を設け、且つ前記出力指令を入力
して前記空気供給装置を制御するための変化率制限しな
い空気指令信号を出力する関数発生器と、該関数発生器
からの空気指令信号に酸素濃度補正信号を加算する加算
器とからなる空気制御回路を設けたことを特徴とする加
圧流動床ボイラの制御装置。
1. A pressure vessel, a fluidized bed boiler installed in the pressure vessel, a fuel supply device for supplying fuel to the fluidized bed boiler, and an air supply device for supplying combustion air to the pressure vessel. A control device for a pressurized fluidized bed boiler, comprising a change rate limiter for inputting an output command of the pressurized fluidized bed boiler to limit a change in the output command, and an output of the change rate limiter. A fuel control circuit is provided that includes an adder that applies a pressure correction signal based on the steam pressure of the fluidized bed boiler, and a function generator that outputs a fuel command signal to the fuel supply device by function-converting the output of the adder, And a function generator that inputs the output command and outputs an air command signal that does not limit the rate of change for controlling the air supply device; and an addition that adds an oxygen concentration correction signal to the air command signal from the function generator. Pneumatic control consisting of vessels A control device for a pressurized fluidized bed boiler, which is provided with a control circuit.
JP4207095A 1992-07-10 1992-07-10 Control device for pressurized fluidized bed type boiler Pending JPH0626602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207095A JPH0626602A (en) 1992-07-10 1992-07-10 Control device for pressurized fluidized bed type boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207095A JPH0626602A (en) 1992-07-10 1992-07-10 Control device for pressurized fluidized bed type boiler

Publications (1)

Publication Number Publication Date
JPH0626602A true JPH0626602A (en) 1994-02-04

Family

ID=16534120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207095A Pending JPH0626602A (en) 1992-07-10 1992-07-10 Control device for pressurized fluidized bed type boiler

Country Status (1)

Country Link
JP (1) JPH0626602A (en)

Similar Documents

Publication Publication Date Title
JPH0626602A (en) Control device for pressurized fluidized bed type boiler
JP4287940B2 (en) Pressurized fluidized bed boiler apparatus and control method thereof
JP4607720B2 (en) Gas turbine fuel control system
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
JPH09236201A (en) Method and device for controlling forced-draft blower for boiler
JP3755242B2 (en) Steam temperature controller for pressurized fluidized bed boiler
JPH09236023A (en) Power generating gas turbine exhaust gas control device and control method therefor
JP2000161606A (en) Steaming prevention control method nd apparatus for coal saving apparatus
JP2554491Y2 (en) Control device for pressurized fluidized bed boiler
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JP2554492Y2 (en) Control device for pressurized fluidized bed boiler
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH0611107A (en) Device for controlling boiler with pressurized fluidized bed
JPH07145928A (en) Method and apparatus for controlling fuel gas
JP4206617B2 (en) Desulfurization ventilator control method for boiler plant
JPH07198107A (en) Method and device to recirculate exhaust gas at furnace bottom part
JPH0451722B2 (en)
JPS62284108A (en) Airflow rate controller for boiler
JP3765430B2 (en) Exhaust gas fired boiler
JPH07310902A (en) Steam temperature control for once-through boiler
JP3199893B2 (en) Pressurized fluidized bed combustion plant
JPS6291608A (en) Control device for power plant
JPH10141604A (en) Parallel boiler facility
JPH066908U (en) Pressurized fluidized bed boiler
JPS63273724A (en) Cross limit circuit for low o2 combustion

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608