JPH09236023A - Power generating gas turbine exhaust gas control device and control method therefor - Google Patents

Power generating gas turbine exhaust gas control device and control method therefor

Info

Publication number
JPH09236023A
JPH09236023A JP4091796A JP4091796A JPH09236023A JP H09236023 A JPH09236023 A JP H09236023A JP 4091796 A JP4091796 A JP 4091796A JP 4091796 A JP4091796 A JP 4091796A JP H09236023 A JPH09236023 A JP H09236023A
Authority
JP
Japan
Prior art keywords
exhaust gas
steam
boiler
gas turbine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091796A
Other languages
Japanese (ja)
Inventor
Yoshio Mishima
宣雄 三島
Hideki Nakamura
秀樹 中村
Yutaka Ito
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Toyota Motor Corp
Original Assignee
Hitachi Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Toyota Motor Corp filed Critical Hitachi Ltd
Priority to JP4091796A priority Critical patent/JPH09236023A/en
Publication of JPH09236023A publication Critical patent/JPH09236023A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To regulate an exhaust gas rate according to load fluctuation of steam by forming a space formed between an exhaust gas valve guide arranged on the flow outlet side of a bypass duct and the flow outlet side of an exhaust gas boiler and the valve element of three way switching damper, and enlarging the space in compliance with the opening of a valve. SOLUTION: In a three way switching damper, a valve body 11 rotated by a motor is arranged on the square part formed between the flow outlet of a bypass duct and the flow outlet of an exhaust gas boiler. A valve seat 12 is arranged on the flow outlet of exhaust gas of the bypass duct, and a valve seat 13 is arranged on the flow outlet of the exhaust gas boiler. The valve body 11 is rotated between the valve seat 12 and the valve seat 13. A space Δ1 is formed between the exhaust gas valve guide 15 and the valve body 11 of the valve seat 12 side, and a space Δ1 is formed between the exhaust gas valve guide 14 and the valve body 11 of the valve seat 13 side. Since the space Δ1 is enlarged in compliance with the opening of a valve, it is possible to make proportional characteristics of a relation between a damper opening degree and an exhaust gas flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発電用ガスタービ
ン排ガス制御装置及び制御方法に係わり、特に発電用ガ
スタービンの排ガスを排ガスボイラに供給し工場のプロ
セス蒸気として利用するコジェネシステムの発電用ガス
タービン排ガス制御装置及び制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation gas turbine exhaust gas control apparatus and control method, and more particularly to a power generation gas for a cogeneration system that supplies exhaust gas from a power generation gas turbine to an exhaust gas boiler and uses it as process steam in a factory. The present invention relates to a turbine exhaust gas control device and control method.

【0002】[0002]

【従来の技術】従来のガスタービンを用いたコジェネシ
ステムの排ガスボイラは、例えば図4に示すように、架
台の上に設置されガスタービン1からからの排ガスの流
入口と、バイパスダクト9への排ガスの流出口と排ガス
ボイラ5への排ガスの流出口を備え、バイパスダクト9
への流出口と排ガスボイラ5への流出口との間の角部に
はモータ3によって回転される弁体11が設けられてい
るものであった。
2. Description of the Related Art As shown in FIG. 4, a conventional exhaust gas boiler for a cogeneration system using a gas turbine is installed on a pedestal and has an inlet for exhaust gas from the gas turbine 1 and a bypass duct 9. The bypass duct 9 is provided with an exhaust gas outlet and an exhaust gas outlet to the exhaust gas boiler 5.
The valve element 11 rotated by the motor 3 was provided at the corner between the outlet to the exhaust gas boiler and the outlet to the exhaust gas boiler 5.

【0003】ダンパー装置としては、例えば、特開昭57
−166940号公報,特開昭55−3557号公報,特開昭59−63
441 号公報に記載のものがある。
As a damper device, for example, Japanese Patent Laid-Open No.
-166940, JP-A-55-3557, JP-A-59-63
Some are described in Japanese Patent No. 441.

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術は、ダ
ンパー開度とバイパス流量とは弁体の開き始め及び全開
となる部分で通風特性が大きく変化していたため、図6
に示すようにダンパー開度0〜10%及び90〜100
%間で排ガス量が大きく変化して圧力を設定値に制御で
きないものであった。このように、蒸気の負荷変動に対
して排ガス量の調整ができないため、排ガス三方切替弁
を設置しても排ガスを全量バイパスさせるか、又は余剰
蒸気を放出しなければならず、不経済なものであった。
According to the above-mentioned conventional technique, the damper opening and the bypass flow rate largely change the ventilation characteristics at the opening and the fully opening of the valve body.
As shown in, the damper opening is 0 to 10% and 90 to 100.
%, The amount of exhaust gas changed so much that the pressure could not be controlled to the set value. In this way, the amount of exhaust gas cannot be adjusted with respect to steam load fluctuations, so even if an exhaust gas three-way switching valve is installed, either exhaust gas must be bypassed or excess steam must be discharged, which is uneconomical. Met.

【0005】本発明の目的は、蒸気の負荷変動に対して
排ガス量を調整できるようにした発電用ガスタービン排
ガス制御装置及び制御方法を提供することにある。
An object of the present invention is to provide a power generation gas turbine exhaust gas control device and control method capable of adjusting the amount of exhaust gas in response to steam load fluctuations.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の発電用ガスタービン排ガス制御装置は、ガ
スタービンと、該ガスタービンからの排ガスを導きバイ
パスダクトへの流路と排ガスボイラへの流路のダンパー
開度を切替えるための三方切替ダンパーと、前記排ガス
ボイラで発生した蒸気を流入する蒸気ヘッダと、該蒸気
ヘッダの蒸気の圧力を検出するための蒸気圧力センサ
と、該蒸気圧力センサの出力を入力する蒸気制御装置
と、該制御装置からの出力により前記三方切替ダンパー
のダンパー開度を変化させるモータとを備え、前記三方
切替ダンパーが前記ガスタービンからの流入口とバイパ
スダクトへの流出口と排ガスボイラへの流出口を有する
とともに、前記バイパスダクトへの流出口側と排ガスボ
イラへの流出口側に排ガス弁ガイドが設けられたもので
あって、前記蒸気制御装置により前記モータで前記三方
切替ダンパーの弁体の回転角を制御して前記バイパスダ
クトと排ガスボイラとのダンパー開度を制御することを
特徴とするものである。
In order to achieve the above object, a gas turbine exhaust gas control apparatus for power generation of the present invention comprises a gas turbine, a flow path for introducing exhaust gas from the gas turbine to a bypass duct, and an exhaust gas boiler. Three-way switching damper for switching the damper opening of the flow path to the, a steam header into which the steam generated in the exhaust gas boiler flows, a steam pressure sensor for detecting the pressure of the steam in the steam header, and the steam A steam control device for inputting the output of the pressure sensor, and a motor for changing the damper opening of the three-way switching damper according to the output from the control device, the three-way switching damper being an inlet from the gas turbine and a bypass duct. Has an outlet to the exhaust gas boiler and an outlet to the exhaust gas boiler, and is discharged to the outlet side to the bypass duct and the outlet side to the exhaust gas boiler. In order to control the damper opening degree of the bypass duct and the exhaust gas boiler by controlling the rotation angle of the valve body of the three-way switching damper by the motor by the steam control device. It is a feature.

【0007】又、発電用ガスタービン排ガス制御方法
は、ガスタービンと、該ガスタービンからの流入口とバ
イパスダクトへの流出口と排ガスボイラへの流出口を有
するとともに前記バイパスダクトへの流出口側と排ガス
ボイラへの流出口側に排ガス弁ガイドが設けられ、前記
バイパスダクトと排ガスボイラとのダンパー開度を切替
えるための三方切替ダンパーと、前記排ガスボイラで発
生した蒸気を流入する蒸気ヘッダと、該蒸気ヘッダの蒸
気の圧力を検出するための蒸気圧力センサと、該蒸気圧
力センサの出力を入力する蒸気制御装置と、該制御装置
からの出力により前記三方切替ダンパーのダンパー開度
を変化させるモータとを備え、前記蒸気圧力センサの出
力を前記入力し、蒸気制御装置により前記モータを制御
し、前記三方切替ダンパーの弁体の回転角を制御して前
記バイパスダクトと排ガスボイラとのダンパー開度を制
御し、前記排ガスボイラへの排ガス流量を制御し、前記
蒸気ヘッダの蒸気圧力を設定値となるように制御するこ
とを特徴とするものである。
Further, a gas turbine exhaust gas control method for power generation has a gas turbine, an inlet from the gas turbine, an outlet to a bypass duct, and an outlet to an exhaust gas boiler, and the outlet side to the bypass duct. And an exhaust gas valve guide is provided on the outlet side to the exhaust gas boiler, a three-way switching damper for switching the damper opening degree of the bypass duct and the exhaust gas boiler, and a steam header into which steam generated in the exhaust gas boiler flows in, A steam pressure sensor for detecting the pressure of steam in the steam header, a steam control device for inputting the output of the steam pressure sensor, and a motor for changing the damper opening of the three-way switching damper by the output from the control device. And the input of the output of the steam pressure sensor, the steam controller controls the motor, Control the rotation angle of the valve element of the Par to control the damper opening of the bypass duct and the exhaust gas boiler, to control the exhaust gas flow rate to the exhaust gas boiler, so that the steam pressure of the steam header becomes a set value. It is characterized by controlling.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施例を図1か
ら図4により説明する。図1は本実施例のコジェネシス
テムの構成図、図2は本実施例の三方切替ダンパーの縦
断面図、図3,図4は三方切替ダンパーのダンパー開度
と排ガス流量の関係を示す図である。図1に示すよう
に、本実施例のコジェネは、ジェネレータが接続された
ガスタービン1,ガスタービン1からの排ガスを導入
し、バイパスダクト9への流路と排ガスボイラ5への流
路を切替えるための三方弁切替ダンパー2,三方切替ダ
ンパー2を駆動するためのモータ3,排ガスボイラ5で
脱硝された排ガスを大気中に放出するための煙突8,排
ガスボイラ5で排熱回収されて発生した蒸気を導き、プ
ロセス用蒸気をつくりだすための蒸気ヘッダ7,蒸気ヘ
ッダ7に設置され蒸気圧力を検出するための蒸気圧力セ
ンサ6,蒸気圧力センサ6の出力を入力し、蒸気圧力を
制御するための蒸気制御装置4で主として構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a cogeneration system of this embodiment, FIG. 2 is a vertical cross-sectional view of a three-way switching damper of this embodiment, and FIGS. 3 and 4 are diagrams showing a relationship between a damper opening of the three-way switching damper and an exhaust gas flow rate. is there. As shown in FIG. 1, the cogeneration system of this embodiment introduces the exhaust gas from the gas turbine 1 and the gas turbine 1 to which the generator is connected, and switches the flow path to the bypass duct 9 and the flow path to the exhaust gas boiler 5. Three-way valve switching damper 2, a motor 3 for driving the three-way switching damper 2, a chimney 8 for discharging the exhaust gas denitrated by the exhaust gas boiler 5 into the atmosphere, and exhaust heat recovered by the exhaust gas boiler 5 A steam header 7 for guiding steam and producing process steam, a steam pressure sensor 6 installed in the steam header 7 for detecting the steam pressure, inputting the outputs of the steam pressure sensor 6, and controlling the steam pressure The steam controller 4 is mainly configured.

【0009】三方切替ダンパー2は、図2に示すよう
に、架台の上に設置されガスタービン1からからの排ガ
スの流入口と、バイパスダクト9への排ガスの流出口と
排ガスボイラ5への排ガスの流出口を備えている。バイ
パスダクト9への流出口と排ガスボイラ5への流出口と
の間の角部にはモータ3によって回転される弁体11が
設けられている。また、バイパスダクト9への排ガスの
流出口には弁座12が、排ガスボイラ5への流出口には
弁座13が設けられている。弁体11は、モータ3によ
って回転され、弁座12と弁座13との間を回転するよ
うになっている。弁座12側の排ガス弁ガイド15と弁
体11との間にはすきまΔlが形成されるようになって
おり、弁座13側の排ガス弁ガイド14と弁体11との
間にもすきまΔlが形成されるようになっている。ここ
で、ダンパー開度とは、弁座13に弁体11が着座した
ときを0%,弁座12に弁体11が着座したときを10
0%と便宜上定義する。
As shown in FIG. 2, the three-way switching damper 2 is installed on a pedestal, and has an exhaust gas inlet from the gas turbine 1, an exhaust gas outlet to the bypass duct 9, and an exhaust gas to the exhaust gas boiler 5. Equipped with an outlet. A valve body 11 rotated by the motor 3 is provided at a corner between the outlet to the bypass duct 9 and the outlet to the exhaust gas boiler 5. Further, a valve seat 12 is provided at the outlet of the exhaust gas to the bypass duct 9, and a valve seat 13 is provided at the outlet of the exhaust gas boiler 5. The valve body 11 is rotated by the motor 3 so as to rotate between the valve seat 12 and the valve seat 13. A clearance Δl is formed between the exhaust gas valve guide 15 on the valve seat 12 side and the valve body 11, and a clearance Δl is also formed between the exhaust gas valve guide 14 on the valve seat 13 side and the valve body 11. Are formed. Here, the damper opening is 0% when the valve body 11 is seated on the valve seat 13, and is 10% when the valve body 11 is seated on the valve seat 12.
It is defined as 0% for convenience.

【0010】又、図3に示す側では、弁座12側の排ガ
ス弁ガイド15をガスタービンからの流入口に突出する
ように構成している。ボイラからの流入口をバイパス側
弁ガイドが上から塞ぐため、排ガスは一旦下側に寄せら
れる。次に、排ガスはボイラ側弁ガイドの傾斜にそって
排ガスダンパーの中心に向かって上昇する。このよう
に、排ガスが、水平線に対して上昇の角度をもつため
に、特にダンパーの開度0%および100%付近での急
激な風量の変化を抑えることが出来る。
Further, on the side shown in FIG. 3, the exhaust gas valve guide 15 on the valve seat 12 side is constructed so as to project to the inflow port from the gas turbine. Since the bypass side valve guide closes the inlet from the boiler from above, the exhaust gas is once drawn to the lower side. Next, the exhaust gas rises toward the center of the exhaust gas damper along the inclination of the boiler side valve guide. In this way, since the exhaust gas has a rising angle with respect to the horizon, it is possible to suppress a rapid change in the air volume particularly near the damper openings of 0% and 100%.

【0011】本実施例のコジェネシステムにおいては、
上記のように構成されているので、ガスタービン1の圧
縮機により圧縮された空気は、燃料を供給され燃焼器に
より燃焼されて高温のガスとなり、ガスタービン1のタ
ービンを駆動してジェネレータを回転して発電を行う。
タービンを駆動した排ガスは、排ガス三方切替ダンパー
2に導入され、この排ガス三方切替ダンパー2で流量を
調整されて排ガスボイラ5に流入する。排ガスボイラ5
では、内部に設けられた熱交換器によりガスタービン1
の排ガスの熱が回収されて給水された水を蒸気に変える
とともに、排ガス中の脱硝を行って、煙突8から無害の
水蒸気を大気中に放出される。
In the cogeneration system of this embodiment,
With the above configuration, the air compressed by the compressor of the gas turbine 1 is supplied with fuel and burned by the combustor to become high-temperature gas, which drives the turbine of the gas turbine 1 to rotate the generator. And generate electricity.
The exhaust gas that drives the turbine is introduced into the exhaust gas three-way switching damper 2, the flow rate of which is adjusted by the exhaust gas three-way switching damper 2 and flows into the exhaust gas boiler 5. Exhaust gas boiler 5
Then, by the heat exchanger provided inside, the gas turbine 1
The heat of the exhaust gas is recovered and the supplied water is converted into steam, and denitration in the exhaust gas is performed, and harmless steam is released from the chimney 8 to the atmosphere.

【0012】排ガスボイラ5で発生した蒸気は、蒸気ヘ
ッダ7に流入するが、この蒸気の圧力は、蒸気圧力セン
サ6で検出され、この圧力検出値が蒸気制御装置4に入
力され、圧力設定値となるようにモータ3を駆動して三
方切替ダンパー2の開度を制御する。このように、蒸気
ヘッダ7で設定圧力に調節されたプロセス用蒸気は、生
産工場に供給される。
The steam generated in the exhaust gas boiler 5 flows into the steam header 7. The pressure of the steam is detected by the steam pressure sensor 6, and the detected pressure value is input to the steam control device 4 to set the pressure set value. The motor 3 is driven so as to control the opening degree of the three-way switching damper 2. In this way, the process steam adjusted to the set pressure by the steam header 7 is supplied to the production plant.

【0013】ここで、図4に示す従来の三方切替ダンパ
ーでは、ダンパー開度とバイパス流量とは弁体の開き始
め及び全開となる部分で通風特性が大きく変化していた
ため、図5に示すようにダンパー開度0〜10%及び9
0〜100%間で排ガス量が大きく変化して圧力を設定
値に制御できないものであった。これに対し、本実施例
の三方切替ダンパー2は、上記のように排ガスボイラ5
への流出側及びバイパスダクト9への流出側の弁座に排
ガス弁ガイド14,15を設け、排ガス弁ガイド14,
15と弁体11との間にすきまΔlを設けてこのすきま
を弁の開度とともに広げるように構成しているので、図
3に示すようにダンパー開度と排ガス流量との関係を比
例した特性にすることができる。このため、ガスタービ
ンを用いたコジェネシステムの排ガスボイラにおいて燃
料焚ボイラと同等に蒸気負荷変動に対応してダンパー開
度と排ガス流量を比例的に制御できることから蒸気流量
の自動制御が可能となり、蒸気負荷変動に対応できるシ
ステムが可能となる。また、従来は、排ガスの流量調整
ができないため、余剰蒸気を大気中に放出していたが、
本実施例では、排ガスのバイパス量を調整することによ
って、余剰蒸気を発生するという無駄を小さくできる。
Here, in the conventional three-way switching damper shown in FIG. 4, the damper opening and the bypass flow rate largely change the ventilation characteristics at the opening and the fully opening of the valve body, and as shown in FIG. Damper opening 0 to 10% and 9
The exhaust gas amount varied greatly between 0 and 100%, and the pressure could not be controlled to the set value. On the other hand, the three-way switching damper 2 of the present embodiment has the exhaust gas boiler 5 as described above.
The exhaust gas valve guides 14, 15 are provided on the valve seats on the outflow side to the bypass duct 9 and the outflow side to the bypass duct 9,
Since a clearance Δl is provided between the valve 15 and the valve body 11 to widen this clearance with the opening of the valve, as shown in FIG. 3, the relationship between the damper opening and the exhaust gas flow rate is proportional. Can be For this reason, in an exhaust gas boiler of a cogeneration system using a gas turbine, the damper opening and the exhaust gas flow rate can be proportionally controlled in response to a steam load fluctuation, similarly to a fuel-fired boiler, so that the steam flow rate can be automatically controlled. A system capable of coping with load fluctuations becomes possible. Also, in the past, since the flow rate of exhaust gas could not be adjusted, surplus steam was released to the atmosphere,
In this embodiment, by adjusting the bypass amount of the exhaust gas, it is possible to reduce waste of generating excess steam.

【0014】[0014]

【発明の効果】以上詳細に説明したように、本発明によ
れば、ガスタービンを用いたコジェネシステムの排ガス
ボイラにおいて燃料焚ボイラと同等に蒸気負荷変動に対
応してダンパー開度と排ガス流量を比例的に制御できる
ことから蒸気流量の自動制御が可能となり、蒸気負荷変
動に対応できるシステムが可能となる。また、従来は、
排ガスの流量調整ができないため、余剰蒸気を大気中に
放出していたが、排ガスのバイパス量を調整することに
よって、余剰蒸気を発生するという無駄を小さくでき
る。
As described in detail above, according to the present invention, in the exhaust gas boiler of the cogeneration system using the gas turbine, the damper opening degree and the exhaust gas flow rate can be adjusted in response to the steam load fluctuation as in the fuel-fired boiler. Since it can be controlled proportionally, the steam flow rate can be automatically controlled, and a system that can cope with steam load fluctuations becomes possible. Conventionally,
Since the flow rate of the exhaust gas cannot be adjusted, the excess steam was released into the atmosphere. However, by adjusting the bypass amount of the exhaust gas, the waste of generating the excess steam can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるコジェネシステムの構
成図である。
FIG. 1 is a configuration diagram of a cogeneration system that is an embodiment of the present invention.

【図2】本実施例の三方切替ダンパーの縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view of a three-way switching damper according to this embodiment.

【図3】本実施例の三方切替ダンパーの縦断面図であ
る。
FIG. 3 is a vertical cross-sectional view of a three-way switching damper according to this embodiment.

【図4】三方切替ダンパーのダンパー開度と排ガス流量
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a damper opening degree of a three-way switching damper and an exhaust gas flow rate.

【図5】従来の三方切替ダンパーの縦断面図である。FIG. 5 is a vertical cross-sectional view of a conventional three-way switching damper.

【図6】従来の三方切替ダンパーのダンパー開度と排ガ
ス流量の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a damper opening degree of a conventional three-way switching damper and an exhaust gas flow rate.

【符号の説明】[Explanation of symbols]

1…ガスタービン、2…三方切替ダンパー、3…モー
タ、4…蒸気制御装置、5…排ガスボイラ、6…蒸気圧
力センサ、7…蒸気ヘッダ、8…煙突、9…バイパスダ
クト、11…弁体、12,13…弁座、14,15…排
ガス弁ガイド。
DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Three-way switching damper, 3 ... Motor, 4 ... Steam control device, 5 ... Exhaust gas boiler, 6 ... Steam pressure sensor, 7 ... Steam header, 8 ... Chimney, 9 ... Bypass duct, 11 ... Valve body , 12, 13 ... Valve seats, 14, 15 ... Exhaust gas valve guides.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 豊 福岡県鞍手郡宮田町大字上有木字平山1番 トヨタ自動車九州株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Ito No. 1 Hirayama, Kamiariki, Miyata-cho, Kurate-gun, Fukuoka Prefecture Toyota Motor Kyushu Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンと、該ガスタービンからの排
ガスを導きバイパスダクトへの流路と排ガスボイラへの
流路のダンパー開度を切替えるための三方切替ダンパー
と、前記排ガスボイラで発生した蒸気を流入する蒸気ヘ
ッダと、該蒸気ヘッダの蒸気の圧力を検出するための蒸
気圧力センサと、該蒸気圧力センサの出力を入力する蒸
気制御装置と、該制御装置からの出力により前記三方切
替ダンパーのダンパー開度を変化させるモータとを備
え、前記三方切替ダンパーが前記ガスタービンからの流
入口とバイパスダクトへの流出口と排ガスボイラへの流
出口を有するとともに、前記バイパスダクトへの流出口
側と排ガスボイラへの流出口側に排ガス弁ガイドが設け
られたものであって、前記蒸気制御装置により前記モー
タで前記三方切替ダンパーの弁体の回転角を制御して前
記バイパスダクトと排ガスボイラとのダンパー開度を制
御することを特徴とする発電用ガスタービン排ガス制御
装置。
1. A gas turbine, a three-way switching damper for guiding exhaust gas from the gas turbine and switching damper openings of a flow path to a bypass duct and a flow path to an exhaust gas boiler, and steam generated in the exhaust gas boiler. A steam header that flows in, a steam pressure sensor for detecting the pressure of the steam in the steam header, a steam control device for inputting the output of the steam pressure sensor, and an output from the control device for the three-way switching damper. A three-way switching damper having an inflow port from the gas turbine, an outflow port to a bypass duct, and an outflow port to an exhaust gas boiler, and an outflow side to the bypass duct. An exhaust gas valve guide is provided on the outlet side to the exhaust gas boiler, and the three-way switching duct is driven by the motor by the steam control device. Power generation gas turbine exhaust gas control apparatus characterized by controlling the damper opening degree of the control the rotation angle of the par of the valve body and the bypass duct and the exhaust gas boiler.
【請求項2】前記排ガスガイドと弁体との間のすきまが
形成され、かつ該すきまが弁の開度とともに広がるよう
に構成されている請求項1に記載の発電用ガスタービン
排ガス制御装置。
2. The gas turbine exhaust gas control device for power generation according to claim 1, wherein a clearance is formed between the exhaust gas guide and the valve body, and the clearance widens with the opening degree of the valve.
【請求項3】前記蒸気制御装置により前記蒸気ヘッダの
圧力を設定圧力となるように制御する請求項1又は2に
記載の発電用ガスタービン排ガス制御装置。
3. The gas turbine exhaust gas control device for power generation according to claim 1, wherein the steam control device controls the pressure of the steam header to a set pressure.
【請求項4】ガスタービンと、該ガスタービンからの流
入口とバイパスダクトへの流出口と排ガスボイラへの流
出口を有するとともに前記バイパスダクトへの流出口側
と排ガスボイラへの流出口側に排ガス弁ガイドが設けら
れ、前記バイパスダクトと排ガスボイラとのダンパー開
度を切替えるための三方切替ダンパーと、前記排ガスボ
イラで発生した蒸気を流入する蒸気ヘッダと、該蒸気ヘ
ッダの蒸気の圧力を検出するための蒸気圧力センサと、
該蒸気圧力センサの出力を入力する蒸気制御装置と、該
制御装置からの出力により前記三方切替ダンパーのダン
パー開度を変化させるモータとを備え、前記蒸気圧力セ
ンサの出力を前記入力し、蒸気制御装置により前記モー
タを制御し、前記三方切替ダンパーの弁体の回転角を制
御して前記バイパスダクトと排ガスボイラとのダンパー
開度を制御し、前記排ガスボイラへの排ガス流量を制御
し、前記蒸気ヘッダの蒸気圧力を設定値となるように制
御することを特徴とする発電用ガスタービン排ガス制御
方法。
4. A gas turbine, an inlet from the gas turbine, an outlet to a bypass duct, an outlet to an exhaust gas boiler, and an outlet side to the bypass duct and an outlet side to the exhaust gas boiler. An exhaust gas valve guide is provided, and a three-way switching damper for switching the damper opening degree between the bypass duct and the exhaust gas boiler, a steam header into which steam generated in the exhaust gas boiler flows, and a steam pressure of the steam header are detected. A vapor pressure sensor for
A steam control device for inputting the output of the steam pressure sensor, and a motor for changing the damper opening of the three-way switching damper by the output from the control device are provided, and the output of the steam pressure sensor is input for the steam control. The device controls the motor, controls the rotation angle of the valve body of the three-way switching damper to control the damper opening of the bypass duct and the exhaust gas boiler, controls the exhaust gas flow rate to the exhaust gas boiler, the steam A gas turbine exhaust gas control method for power generation, comprising controlling the steam pressure of a header to a set value.
【請求項5】前記排ガス弁ガイドのバイパス側ガイド
が、該ガスタービンからの流入口を塞ぐように、ボイラ
側弁ガイドが該ガスタービンからの流入口に向かって下
り傾斜となるように構成されている請求項1に記載の発
電用ガスタービン排ガス制御装置。
5. The bypass side guide of the exhaust gas valve guide is configured so as to close the inlet from the gas turbine, and the boiler side valve guide is inclined downward toward the inlet from the gas turbine. The gas turbine exhaust gas control device for power generation according to claim 1.
JP4091796A 1996-02-28 1996-02-28 Power generating gas turbine exhaust gas control device and control method therefor Pending JPH09236023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091796A JPH09236023A (en) 1996-02-28 1996-02-28 Power generating gas turbine exhaust gas control device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091796A JPH09236023A (en) 1996-02-28 1996-02-28 Power generating gas turbine exhaust gas control device and control method therefor

Publications (1)

Publication Number Publication Date
JPH09236023A true JPH09236023A (en) 1997-09-09

Family

ID=12593861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091796A Pending JPH09236023A (en) 1996-02-28 1996-02-28 Power generating gas turbine exhaust gas control device and control method therefor

Country Status (1)

Country Link
JP (1) JPH09236023A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096087A (en) * 2006-10-16 2008-04-24 Ebara Corp Steam boiler device
JP2010150986A (en) * 2008-12-24 2010-07-08 Sharp Corp Vehicle with wind power generation mechanism
JP2010163955A (en) * 2009-01-15 2010-07-29 Sharp Corp Vehicle with wind power generating mechanism
JP2010193556A (en) * 2009-02-16 2010-09-02 Sharp Corp Electric vehicle
CN113187610A (en) * 2021-06-15 2021-07-30 浙江燃创透平机械股份有限公司 Gas turbine gas flow adjusting structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096087A (en) * 2006-10-16 2008-04-24 Ebara Corp Steam boiler device
JP2010150986A (en) * 2008-12-24 2010-07-08 Sharp Corp Vehicle with wind power generation mechanism
JP2010163955A (en) * 2009-01-15 2010-07-29 Sharp Corp Vehicle with wind power generating mechanism
JP2010193556A (en) * 2009-02-16 2010-09-02 Sharp Corp Electric vehicle
CN113187610A (en) * 2021-06-15 2021-07-30 浙江燃创透平机械股份有限公司 Gas turbine gas flow adjusting structure
CN113187610B (en) * 2021-06-15 2022-04-26 浙江燃创透平机械股份有限公司 Gas turbine gas flow adjusting structure

Similar Documents

Publication Publication Date Title
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
KR950029657A (en) Method for optimizing operating efficiency of fossil fuel combustion power generation system
JPH09236023A (en) Power generating gas turbine exhaust gas control device and control method therefor
JPH0765724B2 (en) Thermal power plant automatic control device
JPH0118325B2 (en)
JP2004069104A (en) Method and apparatus for controlling oxygen concentration in boiler exhaust gas
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JPH09236201A (en) Method and device for controlling forced-draft blower for boiler
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JP4343037B2 (en) Hot air generator
JP2798439B2 (en) Air control device in combustion furnace
JP2554492Y2 (en) Control device for pressurized fluidized bed boiler
JPH08210601A (en) Controller for power plant having pressure fluidized bed boiler
JP2005146940A (en) Method for operating cogeneration system
JPH08177411A (en) Reheater outlet side steam temperature control device in exhaust burning-up type combined cycle plant
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JPH08284614A (en) Main steam pressure control device for steam generating plant
JP2007024425A (en) Composite boiler system, and its operating method
JPH0626602A (en) Control device for pressurized fluidized bed type boiler
JPH03206325A (en) Exhaust gas damper for gas turbine
JPH06265132A (en) Noise preventive device for induction ventilation
JPH04313601A (en) Boiler equipment
JP3765430B2 (en) Exhaust gas fired boiler
JPH08177410A (en) Plant control device of exhaust burning-up type combined cycle plant
JPS60206910A (en) Exhaust heat recovery gas turbine power generating facility