JPH03206325A - Exhaust gas damper for gas turbine - Google Patents

Exhaust gas damper for gas turbine

Info

Publication number
JPH03206325A
JPH03206325A JP55190A JP55190A JPH03206325A JP H03206325 A JPH03206325 A JP H03206325A JP 55190 A JP55190 A JP 55190A JP 55190 A JP55190 A JP 55190A JP H03206325 A JPH03206325 A JP H03206325A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas turbine
gas
exhaust
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP55190A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kubo
久保 良文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55190A priority Critical patent/JPH03206325A/en
Publication of JPH03206325A publication Critical patent/JPH03206325A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Abstract

PURPOSE:To simplify an exhaust gas duct system by providing constitution such that exhaust gas, coming out from a gas turbine, is discharged into the atmosphere through an exhaust gas stack, when the gas turbine is in an individual operation, while drawn out into an exhaust heat recovery boiler in a combined cycle operation. CONSTITUTION:In the case of starting a gas turbine power generating equipment, first a compressor 1 is driven by actuating an electric drive motor 5, and compressed air is supplied to a combustor 3 and burned with fuel from a fuel pump 6. Generated high pressure combustion gas is supplied to a gas turbine 2 which performs work, and a generator 4 is directly coupled to start power generation when a rotational speed of this gas turbine 2 reaches a rated rotational speed. Here, exhaust gas coming out from the gas turbine 2 is discharged into the atmosphere through an exhaust gas damper 8a and an exhaust gas stack 7 at the time of gas turbine independent operation. On the other hand, the exhaust gas is fed to an exhaust heat recovery boiler 12 through an exhaust gas damper 8b and an exhaust gas duct 11 so as to recover heat at the time of combined cycle operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンから排出される排ガスの排出方
向と任意の流量に調節できる排ガスダンパに係り、バイ
パススタックの非設置,起動時間の短縮を可能とするガ
スタービン用排ガスダンパに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an exhaust gas damper that can adjust the exhaust direction and arbitrary flow rate of exhaust gas discharged from a gas turbine, does not require a bypass stack, and shortens startup time. The present invention relates to an exhaust gas damper for a gas turbine that enables.

〔従来の技術〕[Conventional technology]

従来の装置は、ガスタービンから排出される排ガスを、
排熱回収ボイラに導く際、ガスタービンと排熱回収ボイ
ラの間に、バイパススタックを設置し、ガスタービン単
独のシンプルサイクル運転時には、このバイパススタッ
クから排ガスを大気中へ放出していた。第4図は、従来
のプラント構成を示す。本図に示すように、従来方式は
、別置式のバイパススタックを設置するために、バイパ
ススタック及び、ガスタービンとバイパススタック間の
ダクトの設置により、プラント設置面積が広くなるとい
う問題があった。
Conventional equipment uses exhaust gas emitted from gas turbines to
A bypass stack is installed between the gas turbine and the exhaust heat recovery boiler when leading the exhaust gas to the exhaust heat recovery boiler, and when the gas turbine is operating in a simple cycle, the exhaust gas is released into the atmosphere from this bypass stack. FIG. 4 shows a conventional plant configuration. As shown in this figure, the conventional system has a problem in that the plant installation area becomes large due to the installation of a separately installed bypass stack and the installation of a duct between the gas turbine and the bypass stack.

また、排ガスダンパは、バイパススタックの上側及び横
側に設置されていたため、ガスタービンと、排ガスダン
パまでの距離が長く、ガスタービン起動時のパージ時間
を短縮することが出来ないという問題があった。
Additionally, because the exhaust gas damper was installed above and on the side of the bypass stack, there was a problem that the distance between the gas turbine and the exhaust gas damper was long, making it impossible to shorten the purge time when starting the gas turbine. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、ガスタービン単独運転の際に、別置式
のバイパススタックと、排ガスダンパを設置する構或と
なっており、プラント設置面積縮少の考慮がなされてお
らず、また、ガスタービンと排ガスダンパまでの距離が
離れているため、ガスタービン起動時のパージ時間を短
縮できないという問題があった。
The above conventional technology has a structure in which a separately installed bypass stack and exhaust gas damper are installed when the gas turbine is operated independently, and no consideration is given to reducing the installation area of the plant. Due to the distance to the exhaust gas damper, there was a problem in that it was not possible to shorten the purge time when starting the gas turbine.

本発明の目的は、バイパススタックを非設置とし、ガス
タービンシンプルサイクル時に標準として設置するスタ
ックをバイパススタックとして活用すること、及び、排
ガス流量調整可能な排ガスダンパを設置することにより
、ガスタービン起動時のパージ時間の短縮することにあ
り、プラント構或を単純化し、設置面積が大幅縮少した
コンパクトな、コンバインドサイクルプラントを提供す
ることにある。
The purpose of the present invention is to eliminate the bypass stack, utilize the stack installed as a standard during the gas turbine simple cycle as the bypass stack, and install an exhaust gas damper that can adjust the exhaust gas flow rate. The purpose of the present invention is to shorten the purge time, simplify the plant structure, and provide a compact combined cycle plant with a significantly reduced installation area.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために,本発明は別置式バイパスス
タックを削除し、ガスタービン標準のスタックをガスタ
ービンの上部に設置し、さらに、排ガスの方向を切換え
ることの出来る排ガスダンパを、前記標準スタックと、
横方向の排ガスダクト内に設置した。
In order to achieve the above object, the present invention eliminates the separate bypass stack, installs a standard gas turbine stack on the top of the gas turbine, and further adds an exhaust gas damper that can switch the direction of exhaust gas to the standard stack. and,
It was installed inside the horizontal exhaust gas duct.

また、上記他の目的を達或するために、排ガスダンパは
、排ガス流量を任意に調節できる構造とし、可能な限り
、ガスタービンの近傍に設置した.〔作用〕 ガスタービン上部のスタック及び、横側より出された排
ガスダクトに設置された排ガスダンパの動作について説
明する。
Furthermore, in order to achieve the other objectives mentioned above, the exhaust gas damper was designed to allow the exhaust gas flow rate to be adjusted arbitrarily, and was installed as close to the gas turbine as possible. [Operation] The operation of the exhaust gas damper installed in the stack at the top of the gas turbine and the exhaust gas duct coming out from the side will be explained.

第5図に本発明の原理を示す。ガスタービン2の燃焼に
よって発生した排ガスは、排ガススタック7、または、
排熱回収ボイラ12へ接続されている排ガスダクト11
の方向へ流れる。この時、プラントがコンバインドサイ
クルとして運転する際には、排ガスダンパ8aは全閉、
排ガスダンパ8bは全開とし,ガスタービンからの排ガ
スは全て、排ガスダクトl1を介し、排熱回収ボイラ1
2へ導かれる。また、その逆に、ガスタービン単独のシ
ンプルサイクルとして運転する際には、排ガスダンパ8
aは全開、排ガスダンパ8bは全開とし、すべての排ガ
スは、排ガススタック7を介し、大気中へ放出される。
FIG. 5 shows the principle of the present invention. The exhaust gas generated by the combustion of the gas turbine 2 is transferred to the exhaust gas stack 7 or
Exhaust gas duct 11 connected to exhaust heat recovery boiler 12
flows in the direction of At this time, when the plant operates as a combined cycle, the exhaust gas damper 8a is fully closed.
The exhaust gas damper 8b is fully opened, and all the exhaust gas from the gas turbine is passed through the exhaust gas duct l1 to the exhaust heat recovery boiler 1.
Leads to 2. Conversely, when operating the gas turbine as a simple cycle, the exhaust gas damper 8
a is fully opened, the exhaust gas damper 8b is fully opened, and all exhaust gases are discharged into the atmosphere via the exhaust gas stack 7.

次に、ガスタービン起動時のパージは、排ガスダンパ8
bを全開、排ガスダンパ8aを全開とする。一方、ガス
タービンの着火失敗を検出した時は排ガスダンパ8bを
全開,排ガスダンパ8aを全開し、再び、ガスタービン
バージを行い、ガスタービン着火を繰り返す。
Next, purge at the time of starting the gas turbine is performed by the exhaust gas damper 8.
b is fully opened, and the exhaust gas damper 8a is fully opened. On the other hand, when a gas turbine ignition failure is detected, the exhaust gas damper 8b is fully opened, the exhaust gas damper 8a is fully opened, the gas turbine barge is performed again, and the gas turbine ignition is repeated.

本発明の排ガスダンパは、全開,全開のほかに開度を調
節する機能をもっているため、コンバインドプラント運
転時に、排ガスダンパ8a、及び、8bの開度を調節す
ることにより、排熱回収ボイラl2へ導く排ガス流量を
制御することが出来る。
Since the exhaust gas damper of the present invention has a function of adjusting the opening degree in addition to fully opening and opening, when operating a combined plant, by adjusting the opening degrees of the exhaust gas dampers 8a and 8b, the exhaust gas damper 12 can be The flow rate of the introduced exhaust gas can be controlled.

〔実施例〕〔Example〕

以下,本発明の一実施例を、第1図,第3図、及び第5
図を用いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 3, and 5.
This will be explained using figures.

まず、第1図及び第3図で,全体の構成について説明す
る。ガスタービン発電設備の起動方法は、まず、外部電
源により駆動モータ5を回転させる。
First, the overall configuration will be explained with reference to FIGS. 1 and 3. To start up the gas turbine power generation equipment, first, the drive motor 5 is rotated by an external power source.

駆動モータ5に直結された圧縮機1は、燃焼用の空気を
圧縮していく。一方、燃料油は、燃料移送ポンプ6によ
ってガスタービンに導かれ、燃焼器3へ送られる。ガス
タービンロータの回転数がある規準値を超えると、燃料
油と圧縮された空気が、燃焼器3内で混合され着火され
る。この時、着火失敗が検知されると、燃焼器内の燃料
及び、ガスタービン2へ流れ込んだ燃料は、ドレンライ
ン9,10より機外へ排出される。
A compressor 1 directly connected to a drive motor 5 compresses air for combustion. On the other hand, fuel oil is guided to the gas turbine by the fuel transfer pump 6 and sent to the combustor 3. When the rotational speed of the gas turbine rotor exceeds a certain standard value, fuel oil and compressed air are mixed in the combustor 3 and ignited. At this time, if ignition failure is detected, the fuel in the combustor and the fuel that has flowed into the gas turbine 2 are discharged to the outside of the machine through drain lines 9 and 10.

着火に或功したガスタービンは、定格の回転数になると
、発電機4と同期を行い、発電を開始する。発電機で発
生した電気は変圧器l5で昇圧される。次に、ガスター
ビンで燃焼した排ガスは、ガスタービン単独運転の場合
、排ガススタック7を介し、大気中へ放出され、コンバ
インドサイクル運転の場合、排ガスダクト1lを介して
、排熱回収ボイラ12へ送られる。排熱回収ボイラ12
では、給水を加熱して蒸気を発生し、熱回収を行う。蒸
気は、配管を通して蒸気タービンへ導かれ、蒸気タービ
ンを駆動する。なお、排熱回収ボイラで仕事を終えた排
ガスは、スタック13より大気中へ放出される。
When the gas turbine that has successfully ignited reaches its rated rotational speed, it synchronizes with the generator 4 and starts generating electricity. The electricity generated by the generator is boosted by a transformer l5. Next, the exhaust gas combusted in the gas turbine is released into the atmosphere through the exhaust gas stack 7 in the case of the gas turbine independent operation, and is sent to the exhaust heat recovery boiler 12 through the exhaust gas duct 1l in the case of combined cycle operation. It will be done. Exhaust heat recovery boiler 12
Then, the feed water is heated to generate steam and heat is recovered. Steam is led to a steam turbine through piping and drives the steam turbine. Note that the exhaust gas that has finished its work in the exhaust heat recovery boiler is released into the atmosphere from the stack 13.

次に、第5図により、排ガスダンパ8a,8bの構造、
及び、動作について説明する。ガスタービン2によって
発生した排ガスは、排ガススタック7または、排熱回収
ボイラ12へ連絡する排ガスダクト11の方向へ流れる
。(矢印は、排ガス流れの方向を示す。)この時、プラ
ントがガスタービン単独のシンプルサイクルとして運転
する際には、排ガスダンパ8aは全開,8bは全開とし
、すべての排ガスは、排ガススタック7より放出される
。一方、コンパインドサイクルとして運転される場合に
は、排ガスダンパ8aは全閉.8bは全開とし、すべて
の排ガスは、排ガスダクトエ1を介して排熱回収ボイラ
l2へ導かれる。
Next, according to FIG. 5, the structure of the exhaust gas dampers 8a and 8b,
And the operation will be explained. The exhaust gas generated by the gas turbine 2 flows in the direction of an exhaust gas stack 7 or an exhaust gas duct 11 that communicates with an exhaust heat recovery boiler 12 . (The arrow indicates the direction of exhaust gas flow.) At this time, when the plant operates as a simple cycle with only a gas turbine, the exhaust gas damper 8a is fully open, and the exhaust gas damper 8b is fully open, and all exhaust gas is transferred from the exhaust gas stack 7. released. On the other hand, when operated as a combined cycle, the exhaust gas damper 8a is fully closed. 8b is fully opened, and all the exhaust gas is guided to the exhaust heat recovery boiler l2 via the exhaust gas duct 1.

次に、ガスタービン起動時のパージは、排ガスダンパ8
bを全開、排ガスダンパ8bを全開とする。ここで、ガ
スタービン着火失敗を検知した時は、排ガスダンパ8a
を全開、8bを全開し、再び、ガスタービンパージを行
い,ガスタービン着火を繰り返す。
Next, purge at the time of starting the gas turbine is performed by the exhaust gas damper 8.
b is fully opened, and the exhaust gas damper 8b is fully opened. Here, when gas turbine ignition failure is detected, the exhaust gas damper 8a
fully open, fully open 8b, purge the gas turbine again, and repeat the gas turbine ignition.

本発明の排ガスダンパ8a,8bは、第5図に示すよう
に、複数枚の可動板を組み合わせるルーバタイプである
ため、排ガスの流量を任意に調整することが出来る。従
って、プラントをコンバインドサイクルとして運転して
いる際に、排熱回収ボイラエ2に入る排ガス流量を制御
したい時には、排ガスダンパ8a,8bのそれぞれのダ
ンパ角度を調節することにより、排ガス流量の制御が可
能となる。従来技術のコンバインドサイクル時のプラン
トの制御方法は、ガスタービンで燃焼させる燃料流量を
調整しプラント出力を制御するため、排熱回収ボイラ1
2に送られる排ガスの性状は、圧力,温度,流量のどれ
もが変化するため、排熱回収ボイラエ2での制御が複雑
化するという問題あったが、本発明の排ガスダンパ8a
,8bにより、制御を行えば、定圧,定温で、排ガス流
量のみを変化させることが可能となる。
As shown in FIG. 5, the exhaust gas dampers 8a and 8b of the present invention are of a louver type that combines a plurality of movable plates, so that the flow rate of exhaust gas can be adjusted as desired. Therefore, when the plant is operated as a combined cycle and it is desired to control the flow rate of exhaust gas entering the exhaust heat recovery boiler 2, the flow rate of exhaust gas can be controlled by adjusting the damper angle of each of the exhaust gas dampers 8a and 8b. becomes. In the conventional combined cycle plant control method, in order to control the plant output by adjusting the flow rate of fuel burned in the gas turbine,
Since the properties of the exhaust gas sent to the exhaust gas damper 8a vary in pressure, temperature, and flow rate, there has been a problem that control in the exhaust heat recovery boiler 2 becomes complicated.
, 8b, if controlled, it becomes possible to change only the exhaust gas flow rate at constant pressure and constant temperature.

以上の排ガスダンパ8a,8b及び、ガスタービン上部
に設置した排ガススタック7のシステム構戊により、解
決すべき課題のほとんどを解決し、さらに、設置面積増
大の問題のあったバイパススタック14を廃止し、より
コンパクトなコンバインドサイクルプラントが達或でき
る。また、排ガス流量の調整可能な排ガスダンパ8a,
8bによって、起動時間の短縮,運転時の排ガス流量調
整、ひいては、プラントの制御といった、多目的な活用
が図られる。
With the system configuration of the exhaust gas dampers 8a, 8b and the exhaust gas stack 7 installed above the gas turbine, most of the problems to be solved have been solved, and the bypass stack 14, which had the problem of increasing the installation area, has been abolished. , a more compact combined cycle plant can be achieved. In addition, an exhaust gas damper 8a, which can adjust the exhaust gas flow rate,
8b can be used for multiple purposes, such as shortening start-up time, adjusting the flow rate of exhaust gas during operation, and even controlling the plant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バイパススタック非設置により、排ガ
スダクト系を単純化でき、また、排ガス流量調節の可能
な排ガスダンパの採用により、次の効果がある。
According to the present invention, the exhaust gas duct system can be simplified by not installing a bypass stack, and the following effects can be achieved by employing an exhaust gas damper that can adjust the flow rate of the exhaust gas.

(1)従来設置していたバイパススタックを非設置とす
ることができるため、機器の設置面積を大幅に縮少でき
、コンパクトなプラント配置が可能となる。
(1) Since the conventionally installed bypass stack can be omitted, the installation area of equipment can be significantly reduced, and a compact plant layout is possible.

(2)ガスタービン起動時に、排ガスダンパの操作によ
り、起動時のパージ時間の短縮を図ることができる。
(2) By operating the exhaust gas damper when starting the gas turbine, it is possible to shorten the purge time during startup.

(3)排ガスダンパの開度を調整することにより、排熱
回収ボイラヘ送る排ガス流量を任意に調節することが出
来る。
(3) By adjusting the opening degree of the exhaust gas damper, the flow rate of exhaust gas sent to the exhaust heat recovery boiler can be adjusted as desired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明ψ一実施例の系統図、第2図は、従来
方式の系統図、第3図は、本発明を適用した場合の各機
器のアレンジメントを示す側面図(a)および平面図(
b)、第4図は、従来方式の場合の各機器のアレンジメ
ントを示す側面図(a)および平面図(b)、第5図は
、本発明の一実施例の排ガスダンパの斜視図を示す。 1・・・圧縮機、2・・・ガスタービン、4・・・発電
機、7・・・排ガススタック、8a,8b・・・排ガス
ダンパ、8c,8d・・・従来式排ガスダンパ、11・
・・排ガスダクト、12・・・排熱回収ボイラ、13・
・・スタック、第 1 図 ≦ 第 2 図 第 3 図 (α) 第4図 (住)
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of a conventional system, and Fig. 3 is a side view (a) showing the arrangement of each device when the present invention is applied. Plan view(
b), FIG. 4 is a side view (a) and a plan view (b) showing the arrangement of each device in the case of a conventional method, and FIG. 5 is a perspective view of an exhaust gas damper according to an embodiment of the present invention. . DESCRIPTION OF SYMBOLS 1... Compressor, 2... Gas turbine, 4... Generator, 7... Exhaust gas stack, 8a, 8b... Exhaust gas damper, 8c, 8d... Conventional exhaust gas damper, 11.
・・Exhaust gas duct, 12・・Exhaust heat recovery boiler, 13・
...Stack, Figure 1 ≦ Figure 2 Figure 3 (α) Figure 4 (Residence)

Claims (1)

【特許請求の範囲】 1、ガスタービンと、前記ガスタービンの排ガスから蒸
気を発生させる排熱回収ボイラと、前記ガスタービンの
排ガスを排熱回収ボイラへ送るダクトと、前記ガスター
ビンを単独で運転する際、排ガスを大気へ放出するバイ
パススタックと、排ガスの流れを遮断するダンパと、前
記排熱回収ボイラで発生させた蒸気によつて駆動する蒸
気タービンとを含むコンバインドプラントに於いて、 前記、蒸気タービンを保守等によつて停止している時に
、前記ガスタービンを単独のシンプルサイクルで運転す
る際、前記バイパススタックを、前記ガスタービンの上
部に設置できるように、前記ガスタービンの上側及び横
方向に、排ガス放出方向を、上側、横側に切り換えるこ
とができる排ガスダンパを設置することを特徴とするガ
スタービン用排ガスダンパ。 2、請求項1において、 前記排ガスダンパは、排ガス流量を任意に調節できる機
能をもち、前記ガスタービンの起動時のパージの際、前
記排ガスダンパを操作し、排ガス流量の調整により、前
記排熱回収ボイラへ送る排ガスを調節し、プラントの運
転状態を制御する機能をもつガスタービン用排ガスダン
パ。
[Scope of Claims] 1. A gas turbine, an exhaust heat recovery boiler that generates steam from the exhaust gas of the gas turbine, a duct that sends the exhaust gas of the gas turbine to the exhaust heat recovery boiler, and a system that operates the gas turbine independently. In a combined plant that includes a bypass stack that releases exhaust gas to the atmosphere, a damper that blocks the flow of exhaust gas, and a steam turbine that is driven by steam generated in the exhaust heat recovery boiler, When the gas turbine is operated in a single simple cycle when the steam turbine is stopped for maintenance or the like, the bypass stack can be installed on the top of the gas turbine. 1. An exhaust gas damper for a gas turbine, characterized in that an exhaust gas damper is installed in which the exhaust gas discharge direction can be switched between upward and sideways. 2. In claim 1, the exhaust gas damper has a function of arbitrarily adjusting the exhaust gas flow rate, and when purging at startup of the gas turbine, the exhaust gas damper is operated and the exhaust gas flow rate is adjusted to reduce the exhaust heat. An exhaust gas damper for gas turbines that has the function of adjusting the exhaust gas sent to the recovery boiler and controlling the operating status of the plant.
JP55190A 1990-01-08 1990-01-08 Exhaust gas damper for gas turbine Pending JPH03206325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55190A JPH03206325A (en) 1990-01-08 1990-01-08 Exhaust gas damper for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55190A JPH03206325A (en) 1990-01-08 1990-01-08 Exhaust gas damper for gas turbine

Publications (1)

Publication Number Publication Date
JPH03206325A true JPH03206325A (en) 1991-09-09

Family

ID=11476860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55190A Pending JPH03206325A (en) 1990-01-08 1990-01-08 Exhaust gas damper for gas turbine

Country Status (1)

Country Link
JP (1) JPH03206325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017987C1 (en) * 2000-04-11 2001-11-22 Nem Power Systems Niederlassun Method and arrangement for supplying exhaust gas from a gas turbine to a waste heat boiler
JP2012002125A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Gas turbine combined cycle plant and purging method of gas turbine combined cycle plant
JP2013040567A (en) * 2011-08-11 2013-02-28 Mitsubishi Heavy Ind Ltd Power generating plant and method of remodeling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017987C1 (en) * 2000-04-11 2001-11-22 Nem Power Systems Niederlassun Method and arrangement for supplying exhaust gas from a gas turbine to a waste heat boiler
US6919050B2 (en) 2000-04-11 2005-07-19 Nem Power Systems Method and arrangement for supplying a waste heat exchanger with exhaust gas from a gas turbine
JP2012002125A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Gas turbine combined cycle plant and purging method of gas turbine combined cycle plant
JP2013040567A (en) * 2011-08-11 2013-02-28 Mitsubishi Heavy Ind Ltd Power generating plant and method of remodeling the same

Similar Documents

Publication Publication Date Title
KR101431420B1 (en) Method for gas turbine operation during under-frequency operation through use of air extraction
KR101009852B1 (en) Waste heat steam generator
EP2669492B1 (en) Gas turbine compressor inlet pressurization and flow control system
US5727377A (en) Method of operating a gas turbine power plant with steam injection
JPH08200015A (en) Method for operating combined plant
JP2000130108A (en) Starting method for combined cycle power plant
JP4898651B2 (en) Combined cycle combined cycle power plant and its operation method
JPH04234534A (en) Gas turbine device and method for driving same
JPH03206325A (en) Exhaust gas damper for gas turbine
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP4341827B2 (en) Exhaust gas passage configuration of combined cycle and its operation method
JPH04128507A (en) Exhaust gas damper for gas turbine
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JPH0486307A (en) Gas turbine starting device
JPH0341654B2 (en)
JPS60249609A (en) Load control device in combined cycle power plant
EP0560818B1 (en) Device in a power plant
JPS5783616A (en) Output controller for combined cycle
JPS6359005B2 (en)
JPH1037802A (en) Heat recovery method for exhaust gas of prime mover
JPS6316135A (en) Gas turbine plant
JPS62267527A (en) Air flow control device for combined cycle
GB2249589A (en) Combined heat and power turbine
JPH0953801A (en) Starting method for exhaust re-combustion type composite plant